1
|
Nadeem A, Sharma P, Gupta P, Sandeep P, Sharma B, Sharma N, Yadav M, Dhiman N. Exploring Neuregulin3: From physiology to pathology, a novel target for rational drug design. Biochem Pharmacol 2025; 238:116964. [PMID: 40320052 DOI: 10.1016/j.bcp.2025.116964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/09/2025]
Abstract
Neuregulin 3 (NRG3) is an epidermal growth factor related protein that binds to and stimulates the Erb-B2 receptor tyrosine kinase 4 (ErbB4). NRG3 is a multifunctional protein with fifteen alternative splicing isoforms categorized into four classes. Numerous physiological processes, such as the formation of cortical plate, cortical patterning, synaptic development, neuronal proliferation, regulation of neurotransmission, control of impulsive behavior, mammary gland morphogenesis, spermatogonial proliferation and cardiac homeostasis are influenced by NRG3. Besides its physiological roles, NRG3 also modulates anxiogenic phenotypes. It is a susceptibility gene for schizophrenia, autism spectrum disorder and Hirschsprung's Disease. Furthermore, anxiety during nicotine withdrawal is dependent on NRG3-ErbB4 signaling. Research on a range of solid carcinomas, such as brain tumors, ovarian cancer, gastrointestinal cancer and breast cancer, has demonstrated NRG3 gene as a therapeutic target. NRG3 also has potential involvement in epilepsy, angular limb malformation in Rambouillet rams, amyotrophic lateral sclerosis and polythelia. Nevertheless, little is known about the molecular characteristics, activities specific to isoforms, and molecular mechanisms of NRG3. Examining its potential involvement in a range of physiological processes and pathological states is a unique area that needs in-depth study and may offer new mechanistic insights and comprehension of these elements. Thus, the purpose of this review is to shed light on the utility of NRG3 as a potential target in various health and disease conditions.
Collapse
Affiliation(s)
- Aqsa Nadeem
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India; Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh 201306, India.
| | - Palak Gupta
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Parth Sandeep
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Gurugram University (A State Govt. University), Gurugram, Haryana, India.
| | - Nitin Sharma
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Mahendra Yadav
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Neerupma Dhiman
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| |
Collapse
|
2
|
Rodriguez-Rodriguez P, Arroyo-Garcia LE, Tsagkogianni C, Li L, Wang W, Végvári Á, Salas-Allende I, Plautz Z, Cedazo-Minguez A, Sinha SC, Troyanskaya O, Flajolet M, Yao V, Roussarie JP. A cell autonomous regulator of neuronal excitability modulates tau in Alzheimer's disease vulnerable neurons. Brain 2024; 147:2384-2399. [PMID: 38462574 PMCID: PMC11224620 DOI: 10.1093/brain/awae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 03/12/2024] Open
Abstract
Neurons from layer II of the entorhinal cortex (ECII) are the first to accumulate tau protein aggregates and degenerate during prodromal Alzheimer's disease. Gaining insight into the molecular mechanisms underlying this vulnerability will help reveal genes and pathways at play during incipient stages of the disease. Here, we use a data-driven functional genomics approach to model ECII neurons in silico and identify the proto-oncogene DEK as a regulator of tau pathology. We show that epigenetic changes caused by Dek silencing alter activity-induced transcription, with major effects on neuronal excitability. This is accompanied by the gradual accumulation of tau in the somatodendritic compartment of mouse ECII neurons in vivo, reactivity of surrounding microglia, and microglia-mediated neuron loss. These features are all characteristic of early Alzheimer's disease. The existence of a cell-autonomous mechanism linking Alzheimer's disease pathogenic mechanisms in the precise neuron type where the disease starts provides unique evidence that synaptic homeostasis dysregulation is of central importance in the onset of tau pathology in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | - Christina Tsagkogianni
- Department of Neurobiology Care Sciences and Society, Karolinska Institutet, 17 164, Solna, Sweden
| | - Lechuan Li
- Department of Computer Science, Rice University, Houston, TX 77004, USA
| | - Wei Wang
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17 164, Solna, Sweden
| | - Isabella Salas-Allende
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Zakary Plautz
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Angel Cedazo-Minguez
- Department of Neurobiology Care Sciences and Society, Karolinska Institutet, 17 164, Solna, Sweden
| | - Subhash C Sinha
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olga Troyanskaya
- Department of Computer Science, Princeton University, Princeton, NJ 08540, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Vicky Yao
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17 164, Solna, Sweden
| | - Jean-Pierre Roussarie
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
3
|
Lu Y, Sun J, Wang L, Wang M, Wu Y, Getachew A, Matthews RC, Li H, Peng WG, Zhang J, Lu R, Zhou Y. ELM2-SANT Domain-Containing Scaffolding Protein 1 Regulates Differentiation and Maturation of Cardiomyocytes Derived From Human-Induced Pluripotent Stem Cells. J Am Heart Assoc 2024; 13:e034816. [PMID: 38904247 PMCID: PMC11255699 DOI: 10.1161/jaha.124.034816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND ELMSAN1 (ELM2-SANT domain-containing scaffolding protein 1) is a newly identified scaffolding protein of the MiDAC (mitotic deacetylase complex), playing a pivotal role in early embryonic development. Studies on Elmsan1 knockout mice showed that its absence results in embryo lethality and heart malformation. However, the precise function of ELMSAN1 in heart development and formation remains elusive. To study its potential role in cardiac lineage, we employed human-induced pluripotent stem cells (hiPSCs) to model early cardiogenesis and investigated the function of ELMSAN1. METHODS AND RESULTS We generated ELMSAN1-deficient hiPSCs through knockdown and knockout techniques. During cardiac differentiation, ELMSAN1 depletion inhibited pluripotency deactivation, decreased the expression of cardiac-specific markers, and reduced differentiation efficiency. The impaired expression of genes associated with contractile sarcomere structure, calcium handling, and ion channels was also noted in ELMSAN1-deficient cardiomyocytes derived from hiPSCs. Additionally, through a series of structural and functional assessments, we found that ELMSAN1-null hiPSC cardiomyocytes are immature, exhibiting incomplete sarcomere Z-line structure, decreased calcium handling, and impaired electrophysiological properties. Of note, we found that the cardiac-specific role of ELMSAN1 is likely associated with histone H3K27 acetylation level. The transcriptome analysis provided additional insights, indicating maturation reduction with the energy metabolism switch and restored cell proliferation in ELMSAN1 knockout cardiomyocytes. CONCLUSIONS In this study, we address the significance of the direct involvement of ELMSAN1 in the differentiation and maturation of hiPSC cardiomyocytes. We first report the impact of ELMSAN1 on multiple aspects of hiPSC cardiomyocyte generation, including cardiac differentiation, sarcomere formation, calcium handling, electrophysiological maturation, and proliferation.
Collapse
Affiliation(s)
- Yu‐An Lu
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Jiacheng Sun
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Lu Wang
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Meimei Wang
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Yalin Wu
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Anteneh Getachew
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Rachel C. Matthews
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Hui Li
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - William Gao Peng
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Jianyi Zhang
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
- Department of Medicine, Division of Cardiovascular Disease, Heersink School of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | - Rui Lu
- Department of Medicine, Division of Hematology/Oncology, Heersink School of MedicineUniversity of Alabama at BirminghamBirminghamAL
- O’Neal Comprehensive Cancer CenterUniversity of Alabama at BirminghamBirminghamAL
| | - Yang Zhou
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| |
Collapse
|
4
|
Deogharia M, Gurha P. Epigenetic regulation of heart failure. Curr Opin Cardiol 2024; 39:371-379. [PMID: 38606626 PMCID: PMC11150090 DOI: 10.1097/hco.0000000000001150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
PURPOSE OF REVIEW The studies on chromatin-modifying enzymes and how they respond to different stimuli within the cell have revolutionized our understanding of epigenetics. In this review, we provide an overview of the recent studies on epigenetic mechanisms implicated in heart failure. RECENT FINDINGS We focus on the major mechanisms and the conceptual advances in epigenetics as evidenced by studies in humans and mouse models of heart failure. The significance of epigenetic modifications and the enzymes that catalyze them is also discussed. New findings from the studies of histone lysine demethylases demonstrate their significance in regulating fetal gene expression, as well as their aberrant expression in adult hearts during HF. Similarly, the relevance of histone deacetylases inhibition in heart failure and the role of HDAC6 in cardio-protection are discussed. Finally, the role of LMNA (lamin A/C), a nuclear membrane protein that interacts with chromatin to form hundreds of large chromatin domains known as lamin-associated domains (LADs), and 3D genome structure in epigenetic regulation of gene expression and heart failure is discussed. SUMMARY Epigenetic modifications provide a mechanism for responding to stress and environmental variation, enabling reactions to both external and internal stimuli, and their dysregulation can be pathological as in heart failure. To gain a thorough understanding of the pathological mechanisms and to aid in the development of targeted treatments for heart failure, future research on studying the combined effects of numerous epigenetic changes and the structure of chromatin is warranted.
Collapse
Affiliation(s)
- Manisha Deogharia
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, The University of Texas Health Sciences Center at Houston, Texas, USA
| | | |
Collapse
|
5
|
Daks A, Parfenyev S, Shuvalov O, Fedorova O, Nazarov A, Melino G, Barlev NA. Lysine-specific methyltransferase Set7/9 in stemness, differentiation, and development. Biol Direct 2024; 19:41. [PMID: 38812048 PMCID: PMC11137904 DOI: 10.1186/s13062-024-00484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
The enzymes performing protein post-translational modifications (PTMs) form a critical post-translational regulatory circuitry that orchestrates literally all cellular processes in the organism. In particular, the balance between cellular stemness and differentiation is crucial for the development of multicellular organisms. Importantly, the fine-tuning of this balance on the genetic level is largely mediated by specific PTMs of histones including lysine methylation. Lysine methylation is carried out by special enzymes (lysine methyltransferases) that transfer the methyl group from S-adenosyl-L-methionine to the lysine residues of protein substrates. Set7/9 is one of the exemplary protein methyltransferases that however, has not been fully studied yet. It was originally discovered as histone H3 lysine 4-specific methyltransferase, which later was shown to methylate a number of non-histone proteins that are crucial regulators of stemness and differentiation, including p53, pRb, YAP, DNMT1, SOX2, FOXO3, and others. In this review we summarize the information available to date on the role of Set7/9 in cellular differentiation and tissue development during embryogenesis and in adult organisms. Finally, we highlight and discuss the role of Set7/9 in pathological processes associated with aberrant cellular differentiation and self-renewal, including the formation of cancer stem cells.
Collapse
Affiliation(s)
- Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064.
| | - Sergey Parfenyev
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064
| | - Alexander Nazarov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Nickolai A Barlev
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064.
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, 001000, Astana, Kazakhstan.
| |
Collapse
|
6
|
Monteiro FL, Góis A, Direito I, Melo T, Neves B, Alves MI, Batista I, Domingues MDR, Helguero LA. Inhibiting SETD7 methyl-transferase activity impairs differentiation, lipid metabolism and lactogenesis in mammary epithelial cells. FEBS Lett 2023; 597:2656-2671. [PMID: 37723127 DOI: 10.1002/1873-3468.14737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/18/2023] [Accepted: 07/21/2023] [Indexed: 09/20/2023]
Abstract
SETD7 (SET7/9, KMT7) is a lysine methyltransferase that targets master regulators of cell proliferation and differentiation. Here, the impact of inhibiting SETD7 catalytic activity on mammary epithelial cell differentiation was studied by focusing on genes associated with epithelial differentiation, lactogenesis, and lipid metabolism in HC11 and EpH4 cell lines. Setd7 mRNA and protein levels were induced upon lactogenic differentiation in both cell lines. Inhibition of SETD7 activity by the compound (R)-PFI-2 increased cell proliferation and downregulated E-cadherin, beta-catenin, lactoferrin, insulin-like growth factor binding protein 5, and beta-casein levels. In addition, inhibition of SETD7 activity affected the lipid profile and altered the mRNA expression of the phospholipid biosynthesis-related genes choline phosphotransferase 1, and ethanolamine-phosphate cytidylyltransferase. Altogether, the results suggest that inhibiting SETD7 catalytic activity impairs mammary epithelial and lactogenic differentiation.
Collapse
Affiliation(s)
- Fátima Liliana Monteiro
- Institute of Biomedicine (IBIMED), Department of Medical Sciences (DCM), Universidade de Aveiro, Portugal
| | - André Góis
- Institute of Biomedicine (IBIMED), Department of Medical Sciences (DCM), Universidade de Aveiro, Portugal
| | - Inês Direito
- Institute of Biomedicine (IBIMED), Department of Medical Sciences (DCM), Universidade de Aveiro, Portugal
| | - Tânia Melo
- Department of Chemistry, Mass Spectrometry Centre & LAQV-REQUIMTE, University of Aveiro, Portugal
| | - Bruna Neves
- Department of Chemistry, Mass Spectrometry Centre & LAQV-REQUIMTE, University of Aveiro, Portugal
- Department of Chemistry, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | - Mariana I Alves
- Institute of Biomedicine (IBIMED), Department of Medical Sciences (DCM), Universidade de Aveiro, Portugal
| | - Inês Batista
- Institute of Biomedicine (IBIMED), Department of Medical Sciences (DCM), Universidade de Aveiro, Portugal
| | | | - Luisa A Helguero
- Institute of Biomedicine (IBIMED), Department of Medical Sciences (DCM), Universidade de Aveiro, Portugal
| |
Collapse
|
7
|
Gu R, Kim TD, Song H, Sui Y, Shin S, Oh S, Janknecht R. SET7/9-mediated methylation affects oncogenic functions of histone demethylase JMJD2A. JCI Insight 2023; 8:e164990. [PMID: 37870957 PMCID: PMC10619491 DOI: 10.1172/jci.insight.164990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/05/2023] [Indexed: 10/25/2023] Open
Abstract
The histone demethylase JMJD2A/KDM4A facilitates prostate cancer development, yet how JMJD2A function is regulated has remained elusive. Here, we demonstrate that SET7/9-mediated methylation on 6 lysine residues modulated JMJD2A. Joint mutation of these lysine residues suppressed JMJD2A's ability to stimulate the MMP1 matrix metallopeptidase promoter upon recruitment by the ETV1 transcription factor. Mutation of just 3 methylation sites (K505, K506, and K507) to arginine residues (3xR mutation) was sufficient to maximally reduce JMJD2A transcriptional activity and also decreased its binding to ETV1. Introduction of the 3xR mutation into DU145 prostate cancer cells reduced in vitro growth and invasion and also severely compromised tumorigenesis. Consistently, the 3xR genotype caused transcriptome changes related to cell proliferation and invasion pathways, including downregulation of MMP1 and the NPM3 nucleophosmin/nucleoplasmin gene. NPM3 downregulation phenocopied and its overexpression rescued, to a large degree, the 3xR mutation in DU145 cells, suggesting that NPM3 was a seminal downstream effector of methylated JMJD2A. Moreover, we found that NPM3 was overexpressed in prostate cancer and might be indicative of disease aggressiveness. SET7/9-mediated lysine methylation of JMJD2A may aggravate prostate tumorigenesis in a manner dependent on NPM3, implying that the SET7/9→JMJD2A→NPM3 axis could be targeted for therapy.
Collapse
Affiliation(s)
| | | | | | | | - Sook Shin
- Department of Cell Biology
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Sangphil Oh
- Department of Cell Biology
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Ralf Janknecht
- Department of Cell Biology
- Department of Pathology, and
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
8
|
Chi C, Knight WE, Riching AS, Zhang Z, Tatavosian R, Zhuang Y, Moldovan R, Rachubinski AL, Gao D, Xu H, Espinosa JM, Song K. Interferon hyperactivity impairs cardiogenesis in Down syndrome via downregulation of canonical Wnt signaling. iScience 2023; 26:107012. [PMID: 37360690 PMCID: PMC10285545 DOI: 10.1016/j.isci.2023.107012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/03/2023] [Accepted: 05/28/2023] [Indexed: 06/28/2023] Open
Abstract
Congenital heart defects (CHDs) are frequent in children with Down syndrome (DS), caused by trisomy of chromosome 21. However, the underlying mechanisms are poorly understood. Here, using a human-induced pluripotent stem cell (iPSC)-based model and the Dp(16)1Yey/+ (Dp16) mouse model of DS, we identified downregulation of canonical Wnt signaling downstream of increased dosage of interferon (IFN) receptors (IFNRs) genes on chromosome 21 as a causative factor of cardiogenic dysregulation in DS. We differentiated human iPSCs derived from individuals with DS and CHDs, and healthy euploid controls into cardiac cells. We observed that T21 upregulates IFN signaling, downregulates the canonical WNT pathway, and impairs cardiac differentiation. Furthermore, genetic and pharmacological normalization of IFN signaling restored canonical WNT signaling and rescued defects in cardiogenesis in DS in vitro and in vivo. Our findings provide insights into mechanisms underlying abnormal cardiogenesis in DS, ultimately aiding the development of therapeutic strategies.
Collapse
Affiliation(s)
- Congwu Chi
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Walter E. Knight
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Andrew S. Riching
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Zhen Zhang
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Roubina Tatavosian
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Yonghua Zhuang
- Department of Pediatrics, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Radu Moldovan
- Department of Pharmacology, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Angela L. Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Dexiang Gao
- Department of Pediatrics, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Hongyan Xu
- Department of Population Health Sciences, Medical College of Georgia, Augusta University; Augusta, GA 30912, USA
| | - Joaquin M. Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Kunhua Song
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| |
Collapse
|
9
|
Zhu JY, van de Leemput J, Han Z. The Roles of Histone Lysine Methyltransferases in Heart Development and Disease. J Cardiovasc Dev Dis 2023; 10:305. [PMID: 37504561 PMCID: PMC10380575 DOI: 10.3390/jcdd10070305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Epigenetic marks regulate the transcriptomic landscape by facilitating the structural packing and unwinding of the genome, which is tightly folded inside the nucleus. Lysine-specific histone methylation is one such mark. It plays crucial roles during development, including in cell fate decisions, in tissue patterning, and in regulating cellular metabolic processes. It has also been associated with varying human developmental disorders. Heart disease has been linked to deregulated histone lysine methylation, and lysine-specific methyltransferases (KMTs) are overrepresented, i.e., more numerous than expected by chance, among the genes with variants associated with congenital heart disease. This review outlines the available evidence to support a role for individual KMTs in heart development and/or disease, including genetic associations in patients and supporting cell culture and animal model studies. It concludes with new advances in the field and new opportunities for treatment.
Collapse
Affiliation(s)
- Jun-yi Zhu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
10
|
Chen Y, Wu Y, Li J, Chen K, Wang W, Ye Z, Feng K, Yang Y, Xu Y, Kang J, Guo X. Cooperative regulation of Zhx1 and hnRNPA1 drives the cardiac progenitor-specific transcriptional activation during cardiomyocyte differentiation. Cell Death Discov 2023; 9:244. [PMID: 37452012 PMCID: PMC10349095 DOI: 10.1038/s41420-023-01548-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
The zinc finger proteins (ZNFs) mediated transcriptional regulation is critical for cell fate transition. However, it is still unclear how the ZNFs realize their specific regulatory roles in the stage-specific determination of cardiomyocyte differentiation. Here, we reported that the zinc fingers and homeoboxes 1 (Zhx1) protein, transiently expressed during the cell fate transition from mesoderm to cardiac progenitors, was indispensable for the proper cardiomyocyte differentiation of mouse and human embryonic stem cells. Moreover, Zhx1 majorly promoted the specification of cardiac progenitors via interacting with hnRNPA1 and co-activated the transcription of a wide range of genes. In-depth mechanistic studies showed that Zhx1 was bound with hnRNPA1 by the amino acid residues (Thr111-His120) of the second Znf domain, thus participating in the formation of cardiac progenitors. Together, our study highlights the unrevealed interaction of Zhx1/hnRNPA1 for activating gene transcription during cardiac progenitor specification and also provides new evidence for the specificity of cell fate determination in cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Yang Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yukang Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jianguo Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Kai Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Wuchan Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zihui Ye
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Ke Feng
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yiwei Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yanxin Xu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
- Institute for Advanced Study, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
11
|
Wang D, Li Y, Xu C, Wang H, Huang X, Jin X, Ren S, Gao J, Tong J, Liu J, Zhou J, Shi L. SETD7 promotes lateral plate mesoderm formation by modulating the Wnt/β-catenin signaling pathway. iScience 2023; 26:106917. [PMID: 37378343 PMCID: PMC10291335 DOI: 10.1016/j.isci.2023.106917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 02/16/2023] [Accepted: 05/14/2023] [Indexed: 06/29/2023] Open
Abstract
The role of SET domain containing 7 (SETD7) during human hematopoietic development remains elusive. Here, we found that deletion of SETD7 attenuated the generation of hematopoietic progenitor cells (HPCs) during the induction of hematopoietic differentiation from human embryonic stem cells (hESCs). Further analysis specified that SETD7 was required for lateral plate mesoderm (LPM) specification but dispensable for the generation of endothelial progenitor cells (EPCs) and HPCs. Mechanistically, rather than depending on its histone methyltransferase activity, SETD7 interacted with β-catenin at lysine residue 180 facilitated its degradation. Diminished SETD7 expression led to the accumulation of β-catenin and the consequent activation of the Wnt signaling pathway, which altered LPM patterning and facilitated the production of paraxial mesoderm (PM). Taken together, the findings indicate that SETD7 is related to LPM and PM patterning via posttranslational regulation of the Wnt/β-catenin signaling pathway, providing novel insights into mesoderm specification during hematopoietic differentiation from hESCs.
Collapse
Affiliation(s)
- Ding Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Yapu Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Changlu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Hongtao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Xin Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Xu Jin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Sirui Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Jinhua Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| |
Collapse
|
12
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
13
|
Gromova T, Gehred ND, Vondriska TM. Single-cell transcriptomes in the heart: when every epigenome counts. Cardiovasc Res 2023; 119:64-78. [PMID: 35325060 PMCID: PMC10233279 DOI: 10.1093/cvr/cvac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The response of an organ to stimuli emerges from the actions of individual cells. Recent cardiac single-cell RNA-sequencing studies of development, injury, and reprogramming have uncovered heterogeneous populations even among previously well-defined cell types, raising questions about what level of experimental resolution corresponds to disease-relevant, tissue-level phenotypes. In this review, we explore the biological meaning behind this cellular heterogeneity by undertaking an exhaustive analysis of single-cell transcriptomics in the heart (including a comprehensive, annotated compendium of studies published to date) and evaluating new models for the cardiac function that have emerged from these studies (including discussion and schematics that depict new hypotheses in the field). We evaluate the evidence to support the biological actions of newly identified cell populations and debate questions related to the role of cell-to-cell variability in development and disease. Finally, we present emerging epigenomic approaches that, when combined with single-cell RNA-sequencing, can resolve basic mechanisms of gene regulation and variability in cell phenotype.
Collapse
Affiliation(s)
- Tatiana Gromova
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Medicine/Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Natalie D Gehred
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Medicine/Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Thomas M Vondriska
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Medicine/Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Huang Z, Song S, Zhang X, Zeng L, Sun A, Ge J. Metabolic substrates, histone modifications, and heart failure. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194898. [PMID: 36403753 DOI: 10.1016/j.bbagrm.2022.194898] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 11/18/2022]
Abstract
Histone epigenetic modifications are chemical modification changes to histone amino acid residues that modulate gene expression without altering the DNA sequence. As both the phenotypic and causal factors, cardiac metabolism disorder exacerbates mitochondrial ATP generation deficiency, thus promoting pathological cardiac hypertrophy. Moreover, several concomitant metabolic substrates also promote the expression of hypertrophy-responsive genes via regulating histone modifications as substrates or enzyme-modifiers, indicating their dual roles as metabolic and epigenetic regulators. This review focuses on the cardiac acetyl-CoA-dependent histone acetylation, NAD+-dependent SIRT-mediated deacetylation, FAD+-dependent LSD-mediated, and α-KG-dependent JMJD-mediated demethylation after briefly addressing the pathological and physiological cardiac energy metabolism. Besides using an "iceberg model" to explain the dual role of metabolic substrates as both metabolic and epigenetic regulators, we also put forward that the therapeutic supplementation of metabolic substrates is promising to blunt HF via re-establishing histone modifications.
Collapse
Affiliation(s)
- Zihang Huang
- Department of Cardiology, Zhongshan Hospital, Fudan University, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Xiaokai Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Linqi Zeng
- Department of Cardiology, Zhongshan Hospital, Fudan University, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; Institute of Biomedical Sciences, Fudan University, Shanghai, China; National Clinical Research for Interventional Medicine, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; Institute of Biomedical Sciences, Fudan University, Shanghai, China; National Clinical Research for Interventional Medicine, China
| |
Collapse
|
15
|
Li J, Yan Z, Ma J, Chu Z, Li H, Guo J, Zhang Q, Zhao H, Li Y, Wang T. ZKSCAN5 Activates VEGFC Expression by Recruiting SETD7 to Promote the Lymphangiogenesis, Tumour Growth, and Metastasis of Breast Cancer. Front Oncol 2022; 12:875033. [PMID: 35600335 PMCID: PMC9117617 DOI: 10.3389/fonc.2022.875033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/15/2022] [Indexed: 12/28/2022] Open
Abstract
The growth of lymphatic vessels (lymphangiogenesis) plays a pivotal role in breast cancer progression and metastasis and the immune response. Vascular endothelial growth factor C (VEGFC) has been demonstrated to accelerate cancer metastasis and modulate the immune system by enhancing lymphangiogenesis. However, it remains largely unclear how transcription factors physically regulate VEGFC expression by interacting with histone-modifying enzymes. Like many histone-modifying enzymes, SETD7 plays a key role in cell proliferation and inhibits tumour cell differentiation. In this study, we identified the role of the transcription factor zinc finger with KRAB and SCAN domains 5 (ZKSCAN5) in interacting with histone methyltransferase SETD7 and mediating VEGFC transcription and tumour lymphangiogenesis. ZKSCAN5 interacts with and recruits SETD7 to the VEGFC promoter. By regulating breast cancer-secreted VEGFC, ZKSCAN5 could induce the tube formation of lymph endothelial cells, which promotes tumour proliferation, migration, and metastasis. Clinically, the expression of ZKSCAN5 was frequently upregulated in patients with breast cancer and positively correlated with the expression of VEGFC and the number of lymphatic microvessels. ZKSCAN5 is a poor prognostic factor for patients with breast cancer. Our results characterise the role of ZKSCAN5 in regulating VEGFC transcription and predict ZKSCAN5 as a breast cancer therapeutic target.
Collapse
Affiliation(s)
- Jingtong Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhifeng Yan
- Department of Obstetrics and Gynecology, Seventh Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Jianli Ma
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhong Chu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Huizi Li
- Department of Nutrition, People’s Liberation Army (PLA) Rocket Force Characteristic Medical Center, Beijing, China
| | - Jingjing Guo
- Department of Oncology, Fourth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Qingyuan Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Qingyuan Zhang, ; Hui Zhao, ; Ying Li, ; Tao Wang,
| | - Hui Zhao
- Department of Oncology, Fourth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Qingyuan Zhang, ; Hui Zhao, ; Ying Li, ; Tao Wang,
| | - Ying Li
- Department of Oncology, Fifth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Qingyuan Zhang, ; Hui Zhao, ; Ying Li, ; Tao Wang,
| | - Tao Wang
- Department of Oncology, Fifth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Qingyuan Zhang, ; Hui Zhao, ; Ying Li, ; Tao Wang,
| |
Collapse
|
16
|
A Systematic Review to Define the Multi-Faceted Role of Lysine Methyltransferase SETD7 in Cancer. Cancers (Basel) 2022; 14:cancers14061414. [PMID: 35326563 PMCID: PMC8946661 DOI: 10.3390/cancers14061414] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
Histone–lysine N-methyltransferase SETD7 regulates a variety of cancer-related processes, in a tissue-type and signalling context-dependent manner. To date, there is no consensus regarding SETD7´s biological functions, or potential for cancer diagnostics and therapeutics. In this work, we summarised the literature on SETD7 expression and function in cancer, to identify the contexts where SETD7 expression and targeting can lead to improvements in cancer diagnosis and therapy. The most studied cancers were found to be lung and osteosarcoma followed by colorectal and breast cancers. SETD7 mRNA and/or protein expression in human cancer tissue was evaluated using public databases and/or in-house cohorts, but its prognostic significance remains inconclusive. The most studied cancer-related processes regulated by SETD7 were cell proliferation, apoptosis, epithelial-mesenchymal transition, migration and invasion with special relevance to the pRb/E2F-1 pathway. SETD7 consistently prevented epithelial to mesenchymal transition in different cancer types, and inhibition of its function appears to be associated with improved response to DNA-damaging agents in most of the analysed studies. Stabilising mutations in SETD7 target proteins prevent their methylation or promote other competing post-translational modifications that can override the SETD7 effect. This indicates that a clear discrimination of these mutations and competing signalling pathways must be considered in future functional studies.
Collapse
|
17
|
Pan X, Fan J, Peng F, Xiao L, Yang Z. SET domain containing 7 promotes oxygen-glucose deprivation/reoxygenation-induced PC12 cell inflammation and oxidative stress by regulating Keap1/Nrf2/ARE and NF-κB pathways. Bioengineered 2022; 13:7253-7261. [PMID: 35259059 PMCID: PMC8974222 DOI: 10.1080/21655979.2022.2045830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Oxidative stress and inflammation are implicated in the pathogenesis of cerebral ischemia-reperfusion (I/R) injury. SETD7 (SET Domain Containing 7) functions as a histone lysine methyltransferase, participates in cardiac lineage commitment, and silence of SETD7 exerts anti-inflammatory or antioxidant capacities. The effect of SETD7 in in vitro cell model of cerebral I/R injury was investigated in this study. Firstly, adrenal pheochromocytoma cell (PC12) was conducted with oxygen-glucose deprivation/reoxygenation (OGD/R) to establish cell model of cerebral I/R injury. OGD/R-enhanced SETD7 expression in PC12 cells. Cell viability of OGD/R-induced PC12 was reduced, while the apoptosis was promoted. Secondly, knockdown of SETD7 reversed the effect of OGD/R on cell viability and apoptosis of PC12. Moreover, OGD/R-induced inflammation in PC12 with decreased interleukin (IL)-10, increased IL-6, IL-1β, tumor necrosis factor-α (TNF-α), and cyclooxygenase 2 (COX-2) were restored by knockdown of SETD7. Thirdly, knockdown of SETD7 attenuated OGD/R-induced decrease of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT), as well as increase of malondialdehyde (MDA) and reactive oxygen species (ROS) in PC12. Lastly, OGD/R-induced decrease of NF-κB inhibitor α (IκBα), increase of phosphorylated (p)-p65, p-IκBα, and Keap1 (Kelch-like ECH-associated protein 1) were reversed by silence of SETD7. Silence of SETD7 increased heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) expression in OGD/R-induced PC12. In conclusion, suppression of SETD7 ameliorated OGD/R-induced inflammation and oxidative stress in PC12 cell through inactivation of NF-κB and activation of Keap1/Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Xianfang Pan
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Jin Fan
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Fang Peng
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Li Xiao
- Department of Neurology, Chengdu Shuangliu First People's Hospital, Chengdu, Sichuan Province, China
| | - Zhiyi Yang
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| |
Collapse
|
18
|
Yi SA, Jeon YJ, Lee MG, Nam KH, Ann S, Lee J, Han JW. S6K1 controls adiponectin expression by inducing a transcriptional switch: BMAL1-to-EZH2. Exp Mol Med 2022; 54:324-333. [PMID: 35338256 PMCID: PMC8979988 DOI: 10.1038/s12276-022-00747-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/03/2021] [Accepted: 12/29/2021] [Indexed: 11/24/2022] Open
Abstract
Adiponectin (encoded by Adipoq), a fat-derived hormone, alleviates risk factors associated with metabolic disorders. Although many transcription factors are known to control adiponectin expression, the mechanism underlying its fluctuation with regard to metabolic status remains unclear. Here, we show that ribosomal protein S6 kinase 1 (S6K1) controls adiponectin expression by inducing a transcriptional switch between two transcriptional machineries, BMAL1 and EZH2. Active S6K1 induced a suppressive histone code cascade, H2BS36p-EZH2-H3K27me3, leading to suppression of adiponectin expression. Moreover, active S6K1 phosphorylated BMAL1, an important transcription factor regulating the circadian clock system, at serine 42, which led to its dissociation from the Adipoq promoter region. This response resulted in EZH2 recruitment and subsequent H3K27me3 modification of the Adipoq promoter. Upon fasting, inactivation of S6K1 induced the opposite transcriptional switch, EZH2-to-BMAL1, promoting adiponectin expression. Consistently, S6K1-depleted mice exhibited lower H3K27me3 levels and elevated adiponectin expression. These findings identify a novel epigenetic switch system by which S6K1 controls the production of adiponectin, which displays beneficial effects on metabolism.
Collapse
Affiliation(s)
- Sang Ah Yi
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ye Ji Jeon
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Min Gyu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ki Hong Nam
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sora Ann
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaecheol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Korea.
- Imnewrun Biosciences, Inc, Suwon, 16419, Korea.
| | - Jeung-Whan Han
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
19
|
Lan Y, Banks KM, Pan H, Verma N, Dixon GR, Zhou T, Ding B, Elemento O, Chen S, Huangfu D, Evans T. Stage-specific regulation of DNA methylation by TET enzymes during human cardiac differentiation. Cell Rep 2021; 37:110095. [PMID: 34879277 PMCID: PMC11229417 DOI: 10.1016/j.celrep.2021.110095] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
Changes in DNA methylation are associated with normal cardiogenesis, whereas altered methylation patterns can occur in congenital heart disease. Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (5mC) and promote locus-specific DNA demethylation. Here, we characterize stage-specific methylation dynamics and the function of TETs during human cardiomyocyte differentiation. Human embryonic stem cells (hESCs) in which all three TET genes are inactivated fail to generate cardiomyocytes (CMs), with altered mesoderm patterning and defective cardiac progenitor specification. Genome-wide methylation analysis shows TET knockout causes promoter hypermethylation of genes encoding WNT inhibitors, leading to hyperactivated WNT signaling and defects in cardiac mesoderm patterning. TET activity is also needed to maintain hypomethylated status and expression of NKX2-5 for subsequent cardiac progenitor specification. Finally, loss of TETs causes a set of cardiac structural genes to fail to be demethylated at the cardiac progenitor stage. Our data demonstrate key roles for TET proteins in controlling methylation dynamics at sequential steps during human cardiac development.
Collapse
Affiliation(s)
- Yahui Lan
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kelly M Banks
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Heng Pan
- Department of Physiology and Biophysics, Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Nipun Verma
- Developmental Biology Program; Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gary R Dixon
- Developmental Biology Program; Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ting Zhou
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Bo Ding
- Bonacept LLC, 6755 Mira Mesa Blvd, Ste123-360, San Diego, CA 92122, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Danwei Huangfu
- Developmental Biology Program; Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
20
|
Han Z, Xu Z, Yu Y, Cao Y, Bao Z, Gao X, Ye D, Yan G, Gong R, Xu J, Zhang L, Ma W, Wang X, Yang F, Lei H, Tian Y, Hu S, Bamba D, Li Y, Li D, Li C, Wang N, Zhang Y, Pan Z, Yang B, Cai B. ALKBH5-mediated m 6A mRNA methylation governs human embryonic stem cell cardiac commitment. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:22-33. [PMID: 34513291 PMCID: PMC8408434 DOI: 10.1016/j.omtn.2021.05.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/19/2021] [Indexed: 12/17/2022]
Abstract
N6-methyladenosine (m6A), as the most abundant modification of mammalian messenger RNAs, is essential for tissue development and pathogenesis. However, the biological significance of m6A methylation in cardiac differentiation and development remains largely unknown. Here, we identify that the downregulation of m6A demethylase ALKBH5 is responsible for the increase of m6A methylation and cardiomyocyte fate determination of human embryonic stem cells (hESCs) from mesoderm cells (MESs). In contrast, ALKBH5 overexpression remarkably blocks cardiomyocyte differentiation of hESCs. Mechanistically, KDM5B and RBBP5, the components of H3K4 modifying enzyme complexes, are identified as downstream targets for ALKBH5 in cardiac-committed hESCs. Loss of function of ALKBH5 alters the expression of KDM5B and RBBP5 through impairing stability of their mRNAs, which in turn promotes the transcription of GATA4 by enhancing histone H3 Lys4 trimethylation (H3K4me3) at the promoter region of GATA4. Taken together, we reveal a previously unidentified role of m6A demethylase ALKBH5 in determining cardiac lineage commitment of hESCs.
Collapse
Affiliation(s)
- Zhenbo Han
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Zihang Xu
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Ying Yu
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Yang Cao
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Zhengyi Bao
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Xinlu Gao
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Danyu Ye
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Gege Yan
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Rui Gong
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Juan Xu
- Department of Bioinformatics, Harbin Medical University, Harbin 150086, China
| | - Lai Zhang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Wenya Ma
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Xiuxiu Wang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Fan Yang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Hong Lei
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Ye Tian
- Department of Cardiology at the First Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Shijun Hu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou 215000, China
| | - Djibril Bamba
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Ying Li
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Desheng Li
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Changzhu Li
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Ning Wang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Ying Zhang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Zhenwei Pan
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Baofeng Yang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Benzhi Cai
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China.,Institute of Clinical Pharmacy, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University, Harbin 150086, China
| |
Collapse
|
21
|
Jetton TL, Flores-Bringas P, Leahy JL, Gupta D. SetD7 (Set7/9) is a novel target of PPARγ that promotes the adaptive pancreatic β-cell glycemic response. J Biol Chem 2021; 297:101250. [PMID: 34592314 PMCID: PMC8526774 DOI: 10.1016/j.jbc.2021.101250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022] Open
Abstract
Loss of functional pancreatic β-cell mass leads to type 2 diabetes (T2D), attributable to modified β-cell-dependent adaptive gene expression patterns. SetD7 is a histone methyltransferase enriched in pancreatic islets that mono- and dimethylates histone-3-lysine-4 (H3K4), promoting euchromatin modifications, and also maintains the regulation of key β-cell function and survival genes. However, the transcriptional regulation of this important epigenetic modifier is unresolved. Here we identified the nuclear hormone receptor peroxisome proliferator-activated receptor-gamma (PPARγ) as a major transcriptional regulator of SetD7 and provide evidence for direct binding and functionality of PPARγ in the SetD7 promoter region. Furthermore, constitutive shRNA-mediated PPARγ knockdown in INS-1 β-cells or pancreas-specific PPARγ deletion in mice led to downregulation of SetD7 expression as well as its nuclear enrichment. The relevance of the SetD7-PPARγ interaction in β-cell adaptation was tested in normoglycemic 60% partial pancreatectomy (Px) and hyperglycemic 90% Px rat models. Whereas a synergistic increase in islet PPARγ and SetD7 expression was observed upon glycemic adaptation post-60% Px, in hyperglycemic 90% Px rats, islet PPARγ, and PPARγ targets SetD7 and Pdx1 were downregulated. PPARγ agonist pioglitazone treatment in 90% Px rats partially restored glucose homeostasis and β-cell mass and enhanced expression of SetD7 and Pdx1. Collectively, these data provide evidence that the SetD7-PPARγ interaction serves as an important element of the adaptive β-cell response.
Collapse
Affiliation(s)
- Thomas L Jetton
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Patricio Flores-Bringas
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - John L Leahy
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Dhananjay Gupta
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA.
| |
Collapse
|
22
|
Kang SM, Yoon MH, Lee SJ, Ahn J, Yi SA, Nam KH, Park S, Woo TG, Cho JH, Lee J, Ha NC, Park BJ. Human WRN is an intrinsic inhibitor of progerin, abnormal splicing product of lamin A. Sci Rep 2021; 11:9122. [PMID: 33907225 PMCID: PMC8079706 DOI: 10.1038/s41598-021-88325-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
Werner syndrome (WRN) is a rare progressive genetic disorder, caused by functional defects in WRN protein and RecQ4L DNA helicase. Acceleration of the aging process is initiated at puberty and the expected life span is approximately the late 50 s. However, a Wrn-deficient mouse model does not show premature aging phenotypes or a short life span, implying that aging processes differ greatly between humans and mice. Gene expression analysis of WRN cells reveals very similar results to gene expression analysis of Hutchinson Gilford progeria syndrome (HGPS) cells, suggesting that these human progeroid syndromes share a common pathological mechanism. Here we show that WRN cells also express progerin, an abnormal variant of the lamin A protein. In addition, we reveal that duplicated sequences of human WRN (hWRN) from exon 9 to exon 10, which differ from the sequence of mouse WRN (mWRN), are a natural inhibitor of progerin. Overexpression of hWRN reduced progerin expression and aging features in HGPS cells. Furthermore, the elimination of progerin by siRNA or a progerin-inhibitor (SLC-D011 also called progerinin) can ameliorate senescence phenotypes in WRN fibroblasts and cardiomyocytes, derived from WRN-iPSCs. These results suggest that progerin, which easily accumulates under WRN-deficient conditions, can lead to premature aging in WRN and that this effect can be prevented by SLC-D011.
Collapse
Affiliation(s)
- So-Mi Kang
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Min-Ho Yoon
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Su-Jin Lee
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Jinsook Ahn
- Program in Food Science and Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang Ah Yi
- School of Pharmacy, Sungkyunkwan University, Suwon, Kyunggi-Do, Republic of Korea
| | - Ki Hong Nam
- School of Pharmacy, Sungkyunkwan University, Suwon, Kyunggi-Do, Republic of Korea
| | - Soyoung Park
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Tae-Gyun Woo
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Jung-Hyun Cho
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Jaecheol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Kyunggi-Do, Republic of Korea
| | - Nam-Chul Ha
- Program in Food Science and Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Bum-Joon Park
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
23
|
Turunen T, Hernández de Sande A, Pölönen P, Heinäniemi M. Genome-wide analysis of primary microRNA expression using H3K36me3 ChIP-seq data. Comput Struct Biotechnol J 2021; 19:1944-1955. [PMID: 33995896 PMCID: PMC8082160 DOI: 10.1016/j.csbj.2021.03.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 10/29/2022] Open
Abstract
MicroRNAs are key players in gene regulatory networks controlling cell homeostasis. Their altered expression has been previously linked to disease outcomes and microRNAs thus serve as biomarkers for disease diagnostics. However, their synthesis and its transcriptional regulation have been challenging to investigate. In this study, we validated the use of H3K36me3 histone modification for the quantification of microRNA transcription levels using data from the ENCODE Consortium and then applied this approach to provide new insight into the cell-type-specific regulation in tissues, cell line models and cardiac disease. In cardiomyocytes derived from patients suffering from septal defects, carrying a G296S mutation in the transcription factor GATA4, we show that microRNA gene transcription is altered in cardiomyocytes carrying this mutation and coincides with novel super-enhancers formed within regulatory domains defined using chromatin interaction profiles. The most prominently elevated primary transcript encodes for let-7a and miR-100 that may target genes in the Hippo signaling pathway. Collectively, our work presents a methodology to quantify microRNA gene expression using histone marker data and paves the way for functional studies of cell-type-specific transcriptional regulation occurring in disease pathology.
Collapse
Affiliation(s)
- Tanja Turunen
- School of Medicine, University of Eastern Finland, Kuopio FI-70200, Finland.,Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu FI-80101, Finland
| | | | - Petri Pölönen
- School of Medicine, University of Eastern Finland, Kuopio FI-70200, Finland
| | - Merja Heinäniemi
- School of Medicine, University of Eastern Finland, Kuopio FI-70200, Finland
| |
Collapse
|
24
|
Xing J, Jie W. Methyltransferase SET domain family and its relationship with cardiovascular development and diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 51:251-260. [PMID: 35462466 DOI: 10.3724/zdxbyxb-2021-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abnormal epigenetic modification is closely related to the occurrence and development of cardiovascular diseases. The SET domain (SETD) family is an important epigenetic modifying enzyme containing SETD. They mainly affect gene expression by methylating H3K4, H3K9, H3K36 and H4K20. Additionally, the SETD family catalyzes the methylation of non-histone proteins, thereby affects the signal transduction of signal transduction and activator of transcription (STAT) 1, Wnt/β-catenin, hypoxia-inducible factor (HIF)-1α and Hippo/YAP pathways. The SETD family has the following regulatory effects on cardiovascular development and diseases: regulating coronary artery formation and cardiac development; protecting cardiac tissue from ischemia reperfusion injury; regulating inflammation, oxidative stress and apoptosis in cardiovascular complications of diabetes; participating in the formation of pulmonary hypertension; regulating thrombosis, cardiac hypertrophy and arrhythmia. This article summarizes the basic structures, expression regulation mechanisms and the role of existing SETD family members in cardiovascular development and diseases, in order to provide a basis for understanding the molecular mechanism of cardiovascular disease and exploring the therapeutic targets.
Collapse
Affiliation(s)
- Jingci Xing
- 1. Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang 524023, Guangdong Province, China
| | - Wei Jie
- 1. Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang 524023, Guangdong Province, China.,Medical University, Key Laboratory of Emergency and Trauma, Ministry of Education, Hainan Provincial Key Laboratory of Tropical Cardiovascular Diseases Research, Haikou 571199, China
| |
Collapse
|
25
|
Lam CK, Wu JC. Clinical Trial in a Dish: Using Patient-Derived Induced Pluripotent Stem Cells to Identify Risks of Drug-Induced Cardiotoxicity. Arterioscler Thromb Vasc Biol 2021; 41:1019-1031. [PMID: 33472401 PMCID: PMC11006431 DOI: 10.1161/atvbaha.120.314695] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-induced cardiotoxicity is a significant clinical issue, with many drugs in the market being labeled with warnings on cardiovascular adverse effects. Treatments are often prematurely halted when cardiotoxicity is observed, which limits their therapeutic potential. Moreover, cardiotoxicity is a major reason for abandonment during drug development, reducing available treatment options for diseases and creating a significant financial burden and disincentive for drug developers. Thus, it is important to minimize the cardiotoxic effects of medications that are in use or in development. To this end, identifying patients at a higher risk of developing cardiovascular adverse effects for the drug of interest may be an effective strategy. The discovery of human induced pluripotent stem cells has enabled researchers to generate relevant cell types that retain a patient's own genome and examine patient-specific disease mechanisms, paving the way for precision medicine. Combined with the rapid development of pharmacogenomic analysis, the ability of induced pluripotent stem cell-derivatives to recapitulate patient-specific drug responses provides a powerful platform to identify subsets of patients who are particularly vulnerable to drug-induced cardiotoxicity. In this review, we will discuss the current use of patient-specific induced pluripotent stem cells in identifying populations who are at risk to drug-induced cardiotoxicity and their potential applications in future precision medicine practice. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Chi Keung Lam
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Biological Sciences, University of Delaware, Newark, DE
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
26
|
Amrute‐Nayak M, Pegoli G, Holler T, Lopez‐Davila AJ, Lanzuolo C, Nayak A. Chemotherapy triggers cachexia by deregulating synergetic function of histone-modifying enzymes. J Cachexia Sarcopenia Muscle 2021; 12:159-176. [PMID: 33305533 PMCID: PMC7890149 DOI: 10.1002/jcsm.12645] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/10/2020] [Accepted: 10/12/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Chemotherapy is the first line of treatment for cancer patients. However, the side effects cause severe muscle atrophy or chemotherapy-induced cachexia. Previously, the NF-κB/MuRF1-dependent pathway was shown to induce chemotherapy-induced cachexia. We hypothesized that acute collateral toxic effects of chemotherapy on muscles might involve other unknown pathways promoting chemotherapy-induced muscle atrophy. In this study, we investigated differential effects of chemotherapeutic drugs and probed whether alternative molecular mechanisms lead to cachexia. METHODS We employed mouse satellite stem cell-derived primary muscle cells and mouse C2C12 progenitor cell-derived differentiated myotubes as model systems to test the effect of drugs. The widely used chemotherapeutic drugs, such as daunorubicin (Daun), etoposide (Etop), and cytarabine (Ara-C), were tested. Molecular mechanisms by which drug affects the muscle cell organization at epigenetic, transcriptional, and protein levels were measured by employing chromatin immunoprecipitations, endogenous gene expression profiling, co-immunoprecipitation, complementation assays, and confocal microscopy. Myotube function was examined using the electrical stimulation of myotubes to monitor contractile ability (excitation-contraction coupling) post drug treatment. RESULTS Here, we demonstrate that chemotherapeutic drugs disrupt sarcomere organization and thereby the contractile ability of skeletal muscle cells. The sarcomere disorganization results from severe loss of molecular motor protein MyHC-II upon drug treatment. We identified that drugs impede chromatin targeting of SETD7 histone methyltransferase and disrupt association and synergetic function of SETD7 with p300 histone acetyltransferase. The compromised transcriptional activity of histone methyltransferase and acetyltransferase causes reduced histone acetylation and low occupancy of active RNA polymerase II on MyHC-II, promoting drastic down-regulation of MyHC-II expression (~3.6-fold and ~4.5-fold reduction of MyHC-IId mRNA levels in Daun and Etop treatment, respectively. P < 0.0001). For MyHC-IIa, gene expression was down-regulated by ~2.6-fold and ~4.5-fold in Daun and Etop treatment, respectively (P < 0.0001). Very interestingly, the drugs destabilize SUMO deconjugase SENP3. Reduction in SENP3 protein level leads to deregulation of SETD7-p300 function. Importantly, we identified that SUMO deconjugation independent role of SENP3 regulates SETD7-p300 functional axis. CONCLUSIONS The results show that the drugs critically alter SENP3-dependent synergistic action of histone-modifying enzymes in muscle cells. Collectively, we defined a unique epigenetic mechanism targeted by distinct chemotherapeutic drugs, triggering chemotherapy-induced cachexia.
Collapse
Affiliation(s)
- Mamta Amrute‐Nayak
- Institute of Molecular and Cell PhysiologyHannover Medical SchoolHannoverGermany
| | - Gloria Pegoli
- Institute of Biomedical TechnologiesNational Research CouncilMilanItaly
- Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Tim Holler
- Institute of Molecular and Cell PhysiologyHannover Medical SchoolHannoverGermany
| | | | - Chiara Lanzuolo
- Institute of Biomedical TechnologiesNational Research CouncilMilanItaly
- Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Arnab Nayak
- Institute of Molecular and Cell PhysiologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
27
|
Minimal contribution of IP 3R2 in cardiac differentiation and derived ventricular-like myocytes from human embryonic stem cells. Acta Pharmacol Sin 2020; 41:1576-1586. [PMID: 33037404 DOI: 10.1038/s41401-020-00528-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Type 2 inositol 1,4,5-trisphosphate receptor (IP3R2) regulates the intracellular Ca2+ release from endoplasmic reticulum in human embryonic stem cells (hESCs), cardiovascular progenitor cells (CVPCs), and mammalian cardiomyocytes. However, the role of IP3R2 in human cardiac development is unknown and its function in mammalian cardiomyocytes is controversial. hESC-derived cardiomyocytes have unique merits in disease modeling, cell therapy, and drug screening. Therefore, understanding the role of IP3R2 in the generation and function of human cardiomyocytes would be valuable for the application of hESC-derived cardiomyocytes. In the current study, we investigated the role of IP3R2 in the differentiation of hESCs to cardiomyocytes and in the hESC-derived cardiomyocytes. By using IP3R2 knockout (IP3R2KO) hESCs, we showed that IP3R2KO did not affect the self-renewal of hESCs as well as the differentiation ability of hESCs into CVPCs and cardiomyocytes. Furthermore, we demonstrated the ventricular-like myocyte characteristics of hESC-derived cardiomyocytes. Under the α1-adrenergic stimulation by phenylephrine (10 μmol/L), the amplitude and maximum rate of depolarization of action potential (AP) were slightly affected in the IP3R2KO hESC-derived cardiomyocytes at differentiation day 90, whereas the other parameters of APs and the Ca2+ transients did not show significant changes compared with these in the wide-type ones. These results demonstrate that IP3R2 has minimal contribution to the differentiation and function of human cardiomyocytes derived from hESCs, thus provide the new knowledge to the function of IP3R2 in the generation of human cardiac lineage cells and in the early cardiomyocytes.
Collapse
|
28
|
Wilson KD, Ameen M, Guo H, Abilez OJ, Tian L, Mumbach MR, Diecke S, Qin X, Liu Y, Yang H, Ma N, Gaddam S, Cunningham NJ, Gu M, Neofytou E, Prado M, Hildebrandt TB, Karakikes I, Chang HY, Wu JC. Endogenous Retrovirus-Derived lncRNA BANCR Promotes Cardiomyocyte Migration in Humans and Non-human Primates. Dev Cell 2020; 54:694-709.e9. [PMID: 32763147 PMCID: PMC7529962 DOI: 10.1016/j.devcel.2020.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/03/2020] [Accepted: 07/11/2020] [Indexed: 01/04/2023]
Abstract
Transposable elements (TEs) comprise nearly half of the human genome and are often transcribed or exhibit cis-regulatory properties with unknown function in specific processes such as heart development. In the case of endogenous retroviruses (ERVs), a TE subclass, experimental interrogation is constrained as many are primate-specific or human-specific. Here, we use primate pluripotent stem-cell-derived cardiomyocytes that mimic fetal cardiomyocytes in vitro to discover hundreds of ERV transcripts from the primate-specific MER41 family, some of which are regulated by the cardiogenic transcription factor TBX5. The most significant of these are located within BANCR, a long non-coding RNA (lncRNA) exclusively expressed in primate fetal cardiomyocytes. Functional studies reveal that BANCR promotes cardiomyocyte migration in vitro and ventricular enlargement in vivo. We conclude that recently evolved TE loci such as BANCR may represent potent de novo developmental regulatory elements that can be interrogated with species-matching pluripotent stem cell models.
Collapse
Affiliation(s)
- Kitchener D Wilson
- Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA.
| | - Mohamed Ameen
- Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Cancer Biology, Stanford University, Stanford, CA 94305, USA
| | - Hongchao Guo
- Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Oscar J Abilez
- Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Lei Tian
- Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Maxwell R Mumbach
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University, Stanford, CA 94305, USA
| | - Sebastian Diecke
- Berlin Institute of Health, Max Delbrück Center, and DZHK (German Center for Cardiovascular Research), Berlin, Germany
| | - Xulei Qin
- Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Yonggang Liu
- Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Huaxiao Yang
- Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Ning Ma
- Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Sadhana Gaddam
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Mingxia Gu
- Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Evgenios Neofytou
- Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Maricela Prado
- Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Thomas B Hildebrandt
- Wildlife Reproduction Medicine, Freie University and Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Ioannis Karakikes
- Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University, Stanford, CA 94305, USA
| | - Joseph C Wu
- Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
29
|
TATA box-binding protein-related factor 3 drives the mesendoderm specification of human embryonic stem cells by globally interacting with the TATA box of key mesendodermal genes. Stem Cell Res Ther 2020; 11:196. [PMID: 32448362 PMCID: PMC7245780 DOI: 10.1186/s13287-020-01711-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/23/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mesendodermal formation during early gastrulation requires the expression of lineage-specific genes, while the regulatory mechanisms during this process have not yet been fully illustrated. TATA box-binding protein (TBP) and TBP-like factors are general transcription factors responsible for the transcription initiation by recruiting the preinitiation complex to promoter regions. However, the role of TBP family members in the regulation of mesendodermal specification remains largely unknown. METHODS We used an in vitro mesendodermal differentiation system of human embryonic stem cells (hESCs), combining with the microarray and quantitative polymerase chain reaction (qRT-PCR) analysis, loss of function and gain of function to determine the function of the TBP family member TBP-related factor 3 (TRF3) during mesendodermal differentiation of hESCs. The chromatin immunoprecipitation (ChIP) and biochemistry analysis were used to determine the binding of TRF3 to the promoter region of key mesendodermal genes. RESULTS The mesendodermal differentiation of hESCs was confirmed by the microarray gene expression profile, qRT-PCR, and immunocytochemical staining. The expression of TRF3 mRNA was enhanced during mesendodermal differentiation of hESCs. The TRF3 deficiency did not affect the pluripotent marker expression, alkaline phosphatase activity, and cell cycle distribution of undifferentiated hESCs or the expression of early neuroectodermal genes during neuroectodermal differentiation. During the mesendodermal differentiation, the expression of pluripotency markers decreased in both wild-type and TRF3 knockout (TRF3-/-) cells, while the TRF3 deficiency crippled the expression of the mesendodermal markers. The reintroduction of TRF3 into the TRF3-/- hESCs rescued inhibited mesendodermal differentiation. Mechanistically, the TRF3 binding profile was significantly shifted to the mesendodermal specification during mesendodermal differentiation of hESCs based on the ChIP-seq data. Moreover, ChIP and ChIP-qPCR analysis showed that TRF3 was enriched at core promoter regions of mesendodermal developmental genes, EOMESODERMIN, BRACHYURY, mix paired-like homeobox, and GOOSECOID homeobox, during mesendodermal differentiation of hESCs. CONCLUSIONS These results reveal that the TBP family member TRF3 is dispensable in the undifferentiated hESCs and the early neuroectodermal differentiation. However, it directs mesendodermal lineage commitment of hESCs via specifically promoting the transcription of key mesendodermal transcription factors. These findings provide new insights into the function and mechanisms of the TBP family member in hESC early lineage specification.
Collapse
|
30
|
Basuroy T, de la Serna IL. SETD7 in cardiomyocyte differentiation and cardiac function. Stem Cell Investig 2019; 6:29. [PMID: 31620476 DOI: 10.21037/sci.2019.08.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/30/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Tupa Basuroy
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | - Ivana L de la Serna
- University of Toledo College of Medicine and Life Sciences, Department of Cancer Biology, Toledo, OH, USA
| |
Collapse
|
31
|
Barsyte-Lovejoy D. SETD7 at the heart of chromatin factor interplay. Stem Cell Investig 2019; 6:20. [PMID: 31559307 DOI: 10.21037/sci.2019.06.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/10/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada.,Nature Research Center, Vilnius, Lithuania
| |
Collapse
|
32
|
Soshnikova N. Functions of SETD7 during development, homeostasis and cancer. Stem Cell Investig 2019; 6:26. [PMID: 31620473 DOI: 10.21037/sci.2019.06.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Natalia Soshnikova
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
33
|
Lan Y, Evans T. Epigenetic Regulation of Cardiac Development and Disease through DNA Methylation. JOURNAL OF LIFE SCIENCES (WESTLAKE VILLAGE, CALIF.) 2019; 1:1-10. [PMID: 31595268 PMCID: PMC6783123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Epigenetic control mechanisms play critical roles in organ development and tissue homeostasis. Increasing evidence suggests that cardiac lineage commitment and cardiovascular disease are tightly regulated by epigenetic mechanisms, controlling changes in DNA methylation, histone modifications, ATP-dependent chromatin remodeling, and expression levels for non-coding RNAs. This review summarizes our current understanding of epigenetic control mechanisms regulating cardiac development and disease, particularly focuses on the function of DNA methylation and demethylation through families of DNA methyltransferases and dioxygenases.
Collapse
Affiliation(s)
- Yahui Lan
- Department of Surgery, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, NY, 10065, USA
| |
Collapse
|
34
|
Bai HJ, Zhang P, Ma L, Liang H, Wei G, Yang HT. SMYD2 Drives Mesendodermal Differentiation of Human Embryonic Stem Cells Through Mediating the Transcriptional Activation of Key Mesendodermal Genes. Stem Cells 2019; 37:1401-1415. [PMID: 31348575 DOI: 10.1002/stem.3068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/27/2019] [Accepted: 07/09/2019] [Indexed: 01/04/2023]
Abstract
Histone methyltransferases play a critical role in early human development, whereas their roles and precise mechanisms are less understood. SET and MYND domain-containing protein 2 (SMYD2) is a histone lysine methyltransferase induced during early differentiation of human embryonic stem cells (hESCs), but little is known about its function in undifferentiated hESCs and in their early lineage fate decision as well as underlying mechanisms. Here, we explored the role of SMYD2 in the self-renewal and mesendodermal lineage commitment of hESCs. We demonstrated that the expression of SMYD2 was significantly enhanced during mesendodermal but not neuroectodermal differentiation of hESCs. SMYD2 knockout (SMYD2-/- ) did not affect self-renewal and early neuroectodermal differentiation of hESCs, whereas it blocked the mesendodermal lineage commitment. This phenotype was rescued by reintroduction of SMYD2 into the SMYD2-/- hESCs. Mechanistically, the bindings of SMYD2 at the promoter regions of critical mesendodermal transcription factor genes, namely, brachyury (T), eomesodermin (EOMES), mix paired-like homeobox (MIXL1), and goosecoid homeobox (GSC) were significantly enhanced during mesendodermal differentiation of SMYD2+/+ hESCs but totally suppressed in SMYD2-/- ones. Concomitantly, such a suppression was associated with the remarkable reduction of methylation at histone 3 lysine 4 and lysine 36 but not at histone 4 lysine 20 globally and specifically on the promoter regions of mesendodermal genes, namely, T, EOMES, MIXL1, and GSC. These results reveal that the histone methyltransferase SMYD2 is dispensable in the undifferentiated hESCs and the early neuroectodermal differentiation, but it promotes the mesendodermal differentiation of hESCs through the epigenetic control of critical genes to mesendodermal lineage commitment. Stem Cells 2019;37:1401-1415.
Collapse
Affiliation(s)
- Hua-Jun Bai
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Peng Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Li Ma
- CAS Key Laboratory of Computational Biology, Laboratory of Epigenome Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - He Liang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, Laboratory of Epigenome Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Huang-Tian Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| |
Collapse
|
35
|
Lee J, Termglinchan V, Diecke S, Itzhaki I, Lam CK, Garg P, Lau E, Greenhaw M, Seeger T, Wu H, Zhang JZ, Chen X, Gil IP, Ameen M, Sallam K, Rhee JW, Churko JM, Chaudhary R, Chour T, Wang PJ, Snyder MP, Chang HY, Karakikes I, Wu JC. Activation of PDGF pathway links LMNA mutation to dilated cardiomyopathy. Nature 2019; 572:335-340. [PMID: 31316208 PMCID: PMC6779479 DOI: 10.1038/s41586-019-1406-x] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 06/19/2019] [Indexed: 12/11/2022]
Abstract
Lamin A/C (LMNA) is one of the most frequently mutated genes associated with dilated cardiomyopathy (DCM). DCM related to mutations in LMNA is a common inherited cardiomyopathy that is associated with systolic dysfunction and cardiac arrhythmias. Here we modelled the LMNA-related DCM in vitro using patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Electrophysiological studies showed that the mutant iPSC-CMs displayed aberrant calcium homeostasis that led to arrhythmias at the single-cell level. Mechanistically, we show that the platelet-derived growth factor (PDGF) signalling pathway is activated in mutant iPSC-CMs compared to isogenic control iPSC-CMs. Conversely, pharmacological and molecular inhibition of the PDGF signalling pathway ameliorated the arrhythmic phenotypes of mutant iPSC-CMs in vitro. Taken together, our findings suggest that the activation of the PDGF pathway contributes to the pathogenesis of LMNA-related DCM and point to PDGF receptor-β (PDGFRB) as a potential therapeutic target.
Collapse
MESH Headings
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/pathology
- Calcium/metabolism
- Cardiomyopathy, Dilated/genetics
- Cells, Cultured
- Chromatin/chemistry
- Chromatin/genetics
- Chromatin/metabolism
- Chromatin Assembly and Disassembly/genetics
- Haploinsufficiency/genetics
- Homeostasis
- Humans
- In Vitro Techniques
- Induced Pluripotent Stem Cells/pathology
- Lamin Type A/genetics
- Models, Biological
- Mutation
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Nonsense Mediated mRNA Decay
- Platelet-Derived Growth Factor/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Signal Transduction
- Single-Cell Analysis
Collapse
Affiliation(s)
- Jaecheol Lee
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea.
| | - Vittavat Termglinchan
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Sebastian Diecke
- Berlin Institute of Health, Berlin, Germany
- Max Delbrueck Center, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Ilanit Itzhaki
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Chi Keung Lam
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Priyanka Garg
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Edward Lau
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Matthew Greenhaw
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Timon Seeger
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Haodi Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Joe Z Zhang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Xingqi Chen
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Isaac Perea Gil
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Mohamed Ameen
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Karim Sallam
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - June-Wha Rhee
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Jared M Churko
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Rinkal Chaudhary
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Tony Chour
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Paul J Wang
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Michael P Snyder
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Ioannis Karakikes
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
36
|
Bultman SJ. SETD7 interacts with other chromatin-modifying factors to regulate cardiac development. Stem Cell Investig 2019; 6:14. [PMID: 31304180 DOI: 10.21037/sci.2019.05.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/20/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Scott J Bultman
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
37
|
Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol 2019; 20:625-641. [PMID: 31267065 DOI: 10.1038/s41580-019-0151-1] [Citation(s) in RCA: 353] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2019] [Indexed: 12/26/2022]
Abstract
Histone methylation can occur at various sites in histone proteins, primarily on lysine and arginine residues, and it can be governed by multiple positive and negative regulators, even at a single site, to either activate or repress transcription. It is now apparent that histone methylation is critical for almost all stages of development, and its proper regulation is essential for ensuring the coordinated expression of gene networks that govern pluripotency, body patterning and differentiation along appropriate lineages and organogenesis. Notably, developmental histone methylation is highly dynamic. Early embryonic systems display unique histone methylation patterns, prominently including the presence of bivalent (both gene-activating and gene-repressive) marks at lineage-specific genes that resolve to monovalent marks during differentiation, which ensures that appropriate genes are expressed in each tissue type. Studies of the effects of methylation on embryonic stem cell pluripotency and differentiation have helped to elucidate the developmental roles of histone methylation. It has been revealed that methylation and demethylation of both activating and repressive marks are essential for establishing embryonic and extra-embryonic lineages, for ensuring gene dosage compensation via genomic imprinting and for establishing body patterning via HOX gene regulation. Not surprisingly, aberrant methylation during embryogenesis can lead to defects in body patterning and in the development of specific organs. Human genetic disorders arising from mutations in histone methylation regulators have revealed their important roles in the developing skeletal and nervous systems, and they highlight the overlapping and unique roles of different patterns of methylation in ensuring proper development.
Collapse
|
38
|
Nayak A, Lopez-Davila AJ, Kefalakes E, Holler T, Kraft T, Amrute-Nayak M. Regulation of SETD7 Methyltransferase by SENP3 Is Crucial for Sarcomere Organization and Cachexia. Cell Rep 2019; 27:2725-2736.e4. [DOI: 10.1016/j.celrep.2019.04.107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/20/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022] Open
|
39
|
Wang M, Ling W, Xiong C, Xie D, Chu X, Li Y, Qiu X, Li Y, Xiao X. Potential Strategies for Cardiac Diseases: Lineage Reprogramming of Somatic Cells into Induced Cardiomyocytes. Cell Reprogram 2019; 21:63-77. [DOI: 10.1089/cell.2018.0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Mingyu Wang
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Wenhui Ling
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Chunxia Xiong
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Dengfeng Xie
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xinyue Chu
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yunxin Li
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiaoyan Qiu
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yuemin Li
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiong Xiao
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
40
|
Lau E, Paik DT, Wu JC. Systems-Wide Approaches in Induced Pluripotent Stem Cell Models. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:395-419. [PMID: 30379619 DOI: 10.1146/annurev-pathmechdis-012418-013046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human induced pluripotent stem cells (iPSCs) provide a renewable supply of patient-specific and tissue-specific cells for cellular and molecular studies of disease mechanisms. Combined with advances in various omics technologies, iPSC models can be used to profile the expression of genes, transcripts, proteins, and metabolites in relevant tissues. In the past 2 years, large panels of iPSC lines have been derived from hundreds of genetically heterogeneous individuals, further enabling genome-wide mapping to identify coexpression networks and elucidate gene regulatory networks. Here, we review recent developments in omics profiling of various molecular phenotypes and the emergence of human iPSCs as a systems biology model of human diseases.
Collapse
Affiliation(s)
- Edward Lau
- Stanford Cardiovascular Institute, and Department of Medicine, Division of Cardiology, Stanford University, Stanford, California 94305, USA;
| | - David T Paik
- Stanford Cardiovascular Institute, and Department of Medicine, Division of Cardiology, Stanford University, Stanford, California 94305, USA;
| | - Joseph C Wu
- Stanford Cardiovascular Institute, and Department of Medicine, Division of Cardiology, Stanford University, Stanford, California 94305, USA; .,Department of Radiology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|