1
|
Wu Z, Xu L, Xie Y, Sambangi A, Swaminathan S, Pei Z, Ji W, Li Z, Guo Y, Li Z, Chen G. Brain-Wide Neuroregenerative Gene Therapy Improves Cognition in a Mouse Model of Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410080. [PMID: 39951299 PMCID: PMC11984881 DOI: 10.1002/advs.202410080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/09/2025] [Indexed: 04/12/2025]
Abstract
Alzheimer's disease (AD) is a progressive and irreversible brain disorder with extensive neuronal loss in the neocortex and hippocampus. Current therapeutic interventions focus on the early stage of AD but lack effective treatment for the late stage of AD, largely due to the inability to replenish the lost neurons and repair the broken neural circuits. In this study, by using engineered adeno-associated virus vectors that efficiently cross the blood-brain-barrier in the mouse brain, a brain-wide neuroregenerative gene therapy is developed to directly convert endogenous astrocytes into functional neurons in a mouse model of AD. It is found that ≈500 000 new neurons are regenerated and widely distributed in the cerebral cortex and hippocampus. Importantly, it is demonstrated that the converted neurons can integrate into pre-existing neural networks and improve various cognitive performances in AD mice. Chemogenetic inhibition of the converted neurons abolishes memory enhancement in AD mice, suggesting a pivotal role for the newly converted neurons in cognitive restoration. Together, brain-wide neuroregenerative gene therapy may provide a viable strategy for the treatment of AD and other brain disorders associated with massive neuronal loss.
Collapse
Affiliation(s)
- Zheng Wu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative DrugsKey Laboratory of CNS Regeneration (Ministry of Education)Guangdong Key Laboratory of Non‐Human Primate ResearchGHM Institute of CNS RegenerationJinan UniversityGuangzhou510632China
- Department of BiologyHuck Institutes of Life SciencesPennsylvania State UniversityUniversity ParkPA16802USA
| | - Liang Xu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative DrugsKey Laboratory of CNS Regeneration (Ministry of Education)Guangdong Key Laboratory of Non‐Human Primate ResearchGHM Institute of CNS RegenerationJinan UniversityGuangzhou510632China
| | - Yu Xie
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative DrugsKey Laboratory of CNS Regeneration (Ministry of Education)Guangdong Key Laboratory of Non‐Human Primate ResearchGHM Institute of CNS RegenerationJinan UniversityGuangzhou510632China
| | - Abhijeet Sambangi
- Department of BiologyHuck Institutes of Life SciencesPennsylvania State UniversityUniversity ParkPA16802USA
| | - Shreya Swaminathan
- Department of BiologyHuck Institutes of Life SciencesPennsylvania State UniversityUniversity ParkPA16802USA
| | - Zifei Pei
- Department of BiologyHuck Institutes of Life SciencesPennsylvania State UniversityUniversity ParkPA16802USA
| | - Wenyu Ji
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative DrugsKey Laboratory of CNS Regeneration (Ministry of Education)Guangdong Key Laboratory of Non‐Human Primate ResearchGHM Institute of CNS RegenerationJinan UniversityGuangzhou510632China
| | - Zeru Li
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative DrugsKey Laboratory of CNS Regeneration (Ministry of Education)Guangdong Key Laboratory of Non‐Human Primate ResearchGHM Institute of CNS RegenerationJinan UniversityGuangzhou510632China
| | - Yaowei Guo
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative DrugsKey Laboratory of CNS Regeneration (Ministry of Education)Guangdong Key Laboratory of Non‐Human Primate ResearchGHM Institute of CNS RegenerationJinan UniversityGuangzhou510632China
| | - Zhifei Li
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative DrugsKey Laboratory of CNS Regeneration (Ministry of Education)Guangdong Key Laboratory of Non‐Human Primate ResearchGHM Institute of CNS RegenerationJinan UniversityGuangzhou510632China
| | - Gong Chen
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative DrugsKey Laboratory of CNS Regeneration (Ministry of Education)Guangdong Key Laboratory of Non‐Human Primate ResearchGHM Institute of CNS RegenerationJinan UniversityGuangzhou510632China
- Department of BiologyHuck Institutes of Life SciencesPennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
2
|
Benner O, Karr CH, Quintero-Gonzalez A, Tamkun MM, Chanda S. The Shab family potassium channels are highly enriched at the presynaptic terminals of human neurons. J Biol Chem 2025; 301:108235. [PMID: 39880095 PMCID: PMC11894309 DOI: 10.1016/j.jbc.2025.108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/02/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
The Shab family voltage-gated K+ channels (i.e., Kv2.1, Kv2.2) are widely expressed in mammalian brain and regulate neuronal action-potential firing. In addition to their canonical functions, the Kv2 proteins help establish direct attachments between plasma membrane and endoplasmic reticulum (ER), also known as ER-plasma membrane junctions. However, the biochemical properties and molecular organization of these ion channels have not yet been described in human neurons. Here, we have performed a systematic analysis of endogenous expression, post-translational modification, and subcellular distribution of the major components of Kv2 complex in neurons derived from human stem cells. We found that both Kv2.1, Kv2.2, and their auxiliary subunit AMIGO1 are significantly upregulated during early neurogenesis, localize at the cell surface, and already begin to assemble with each other. Human Kv2.1 and AMIGO1, but not Kv2.2, undergo substantial post-translational modification including phosphorylation and/or N-linked glycosylation. Acute pharmacological inhibition with Kv2 blockers also revealed their functional activation in human neurons. These proteins formed prominent clusters at cell bodies, dendritic branches, and axon initial segments. Interestingly, a large fraction of them also exhibited considerable accumulation at human presynaptic terminals, where they aggregated with the local ER network. This synaptic localization of Kv2 subunits was primarily restricted to presynaptic regions, as they demonstrated limited enrichment at postsynaptic densities. These results were highly reproducible in multiple stem cell lines used and alternative differentiation protocols tested, confirming that human presynaptic compartments can actively recruit the Shab family K+ ion channels.
Collapse
Affiliation(s)
- Orion Benner
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Charles H Karr
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Michael M Tamkun
- Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA; Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, Colorado, USA
| | - Soham Chanda
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA; Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, Colorado, USA; Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
3
|
Roh SH, Mendez-Vazquez H, Sathler MF, Doolittle MJ, Zaytseva A, Brown H, Sainsbury M, Kim S. Prenatal exposure to valproic acid reduces synaptic δ-catenin levels and disrupts ultrasonic vocalization in neonates. Neuropharmacology 2024; 253:109963. [PMID: 38657945 PMCID: PMC11127754 DOI: 10.1016/j.neuropharm.2024.109963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Valproic acid (VPA) is an effective and commonly prescribed drug for epilepsy and bipolar disorder. However, children born from mothers treated with VPA during pregnancy exhibit an increased incidence of autism spectrum disorder (ASD). Although VPA may impair brain development at the cellular level, the mechanism of VPA-induced ASD has not been completely addressed. A previous study has found that VPA treatment strongly reduces δ-catenin mRNA levels in cultured human neurons. δ-catenin is important for the control of glutamatergic synapses and is strongly associated with ASD. VPA inhibits dendritic morphogenesis in developing neurons, an effect that is also found in neurons lacking δ-catenin expression. We thus hypothesize that prenatal exposure to VPA significantly reduces δ-catenin levels in the brain, which impairs glutamatergic synapses to cause ASD. Here, we found that prenatal exposure to VPA markedly reduced δ-catenin levels in the brain of mouse pups. VPA treatment also impaired dendritic branching in developing mouse cortical neurons, which was partially reversed by elevating δ-catenin expression. Prenatal VPA exposure significantly reduced synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor levels and postsynaptic density 95 (PSD95) in the brain of mouse pups, indicating dysfunctions in glutamatergic synaptic transmission. VPA exposure also significantly altered ultrasonic vocalization (USV) in newly born pups when they were isolated from their nest. Moreover, VPA-exposed pups show impaired hypothalamic response to isolation, which is required to produce animals' USVs following isolation from the nest. Therefore, these results suggest that VPA-induced ASD pathology can be mediated by the loss of δ-catenin functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Morgan Sainsbury
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Seonil Kim
- Department of Biomedical Sciences, USA; Molecular, Cellular and Integrative Neurosciences Program, USA.
| |
Collapse
|
4
|
Carricaburu E, Benner O, Burlingham SR, Dos Santos Passos C, Hobaugh N, Karr CH, Chanda S. Gephyrin promotes autonomous assembly and synaptic localization of GABAergic postsynaptic components without presynaptic GABA release. Proc Natl Acad Sci U S A 2024; 121:e2315100121. [PMID: 38889143 PMCID: PMC11214061 DOI: 10.1073/pnas.2315100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Synapses containing γ-aminobutyric acid (GABA) constitute the primary centers for inhibitory neurotransmission in our nervous system. It is unclear how these synaptic structures form and align their postsynaptic machineries with presynaptic terminals. Here, we monitored the cellular distribution of several GABAergic postsynaptic proteins in a purely glutamatergic neuronal culture derived from human stem cells, which virtually lacks any vesicular GABA release. We found that several GABAA receptor (GABAAR) subunits, postsynaptic scaffolds, and major cell-adhesion molecules can reliably coaggregate and colocalize at even GABA-deficient subsynaptic domains, but remain physically segregated from glutamatergic counterparts. Genetic deletions of both Gephyrin and a Gephyrin-associated guanosine di- or triphosphate (GDP/GTP) exchange factor Collybistin severely disrupted the coassembly of these postsynaptic compositions and their proper apposition with presynaptic inputs. Gephyrin-GABAAR clusters, developed in the absence of GABA transmission, could be subsequently activated and even potentiated by delayed supply of vesicular GABA. Thus, molecular organization of GABAergic postsynapses can initiate via a GABA-independent but Gephyrin-dependent intrinsic mechanism.
Collapse
Affiliation(s)
- Etta Carricaburu
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523
| | - Orion Benner
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523
| | - Scott R. Burlingham
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523
| | | | - Natalia Hobaugh
- Biological Sciences Division, University of Chicago, Chicago, IL60637
| | - Charles H. Karr
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523
| | - Soham Chanda
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523
- Molecular, Cellular and Integrated Neurosciences Program, Colorado State University, Fort Collins, CO80523
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO80523
| |
Collapse
|
5
|
Marcó de la Cruz B, Campos J, Molinaro A, Xie X, Jin G, Wei Z, Acuna C, Sterky FH. Liprin-α proteins are master regulators of human presynapse assembly. Nat Neurosci 2024; 27:629-642. [PMID: 38472649 PMCID: PMC11001580 DOI: 10.1038/s41593-024-01592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024]
Abstract
The formation of mammalian synapses entails the precise alignment of presynaptic release sites with postsynaptic receptors but how nascent cell-cell contacts translate into assembly of presynaptic specializations remains unclear. Guided by pioneering work in invertebrates, we hypothesized that in mammalian synapses, liprin-α proteins directly link trans-synaptic initial contacts to downstream steps. Here we show that, in human neurons lacking all four liprin-α isoforms, nascent synaptic contacts are formed but recruitment of active zone components and accumulation of synaptic vesicles is blocked, resulting in 'empty' boutons and loss of synaptic transmission. Interactions with presynaptic cell adhesion molecules of either the LAR-RPTP family or neurexins via CASK are required to localize liprin-α to nascent synaptic sites. Liprin-α subsequently recruits presynaptic components via a direct interaction with ELKS proteins. Thus, assembly of human presynaptic terminals is governed by a hierarchical sequence of events in which the recruitment of liprin-α proteins by presynaptic cell adhesion molecules is a critical initial step.
Collapse
Affiliation(s)
- Berta Marcó de la Cruz
- Department of Laboratory Medicine, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Joaquín Campos
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Angela Molinaro
- Department of Laboratory Medicine, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Xingqiao Xie
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Brain Research Center, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Shenzhen, China
| | - Gaowei Jin
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Brain Research Center, Southern University of Science and Technology, Shenzhen, China
| | - Zhiyi Wei
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Brain Research Center, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Shenzhen, China
| | - Claudio Acuna
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.
| | - Fredrik H Sterky
- Department of Laboratory Medicine, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
6
|
Ang CE, Olmos VH, Vodehnal K, Zhou B, Lee QY, Sinha R, Narayanaswamy A, Mall M, Chesnov K, Dominicus CS, Südhof T, Wernig M. Generation of human excitatory forebrain neurons by cooperative binding of proneural NGN2 and homeobox factor EMX1. Proc Natl Acad Sci U S A 2024; 121:e2308401121. [PMID: 38446849 PMCID: PMC10945857 DOI: 10.1073/pnas.2308401121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/24/2024] [Indexed: 03/08/2024] Open
Abstract
Generation of defined neuronal subtypes from human pluripotent stem cells remains a challenge. The proneural factor NGN2 has been shown to overcome experimental variability observed by morphogen-guided differentiation and directly converts pluripotent stem cells into neurons, but their cellular heterogeneity has not been investigated yet. Here, we found that NGN2 reproducibly produces three different kinds of excitatory neurons characterized by partial coactivation of other neurotransmitter programs. We explored two principle approaches to achieve more precise specification: prepatterning the chromatin landscape that NGN2 is exposed to and combining NGN2 with region-specific transcription factors. Unexpectedly, the chromatin context of regionalized neural progenitors only mildly altered genomic NGN2 binding and its transcriptional response and did not affect neurotransmitter specification. In contrast, coexpression of region-specific homeobox factors such as EMX1 resulted in drastic redistribution of NGN2 including recruitment to homeobox targets and resulted in glutamatergic neurons with silenced nonglutamatergic programs. These results provide the molecular basis for a blueprint for improved strategies for generating a plethora of defined neuronal subpopulations from pluripotent stem cells for therapeutic or disease-modeling purposes.
Collapse
Affiliation(s)
- Cheen Euong Ang
- Department of Bioengineering, Stanford University, Stanford, CA94305
- Department of Pathology, Stanford University, Stanford, CA94305
- Institute of Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA94305
| | - Victor Hipolito Olmos
- Department of Pathology, Stanford University, Stanford, CA94305
- Institute of Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA94305
| | - Kayla Vodehnal
- Department of Pathology, Stanford University, Stanford, CA94305
- Institute of Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA94305
| | - Bo Zhou
- Department of Pathology, Stanford University, Stanford, CA94305
- Institute of Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA94305
- HHMI, Stanford University, Stanford, CA94305
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA94305
| | - Qian Yi Lee
- Department of Bioengineering, Stanford University, Stanford, CA94305
- Department of Pathology, Stanford University, Stanford, CA94305
- Institute of Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA94305
| | - Rahul Sinha
- Institute of Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA94305
| | - Aadit Narayanaswamy
- Department of Pathology, Stanford University, Stanford, CA94305
- Institute of Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA94305
| | - Moritz Mall
- Department of Pathology, Stanford University, Stanford, CA94305
- Institute of Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA94305
| | - Kirill Chesnov
- Department of Pathology, Stanford University, Stanford, CA94305
- Institute of Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA94305
| | - Caia S. Dominicus
- Wellcome Sanger Institute, Hinxton, CambridgeshireCB10 1SA, United Kingdom
- OpenTargets, Hinxton, CambridgeshireCB10 1SA, United Kingdom
| | - Thomas Südhof
- HHMI, Stanford University, Stanford, CA94305
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA94305
| | - Marius Wernig
- Department of Pathology, Stanford University, Stanford, CA94305
- Institute of Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA94305
| |
Collapse
|
7
|
Lim B, Domsch K, Mall M, Lohmann I. Canalizing cell fate by transcriptional repression. Mol Syst Biol 2024; 20:144-161. [PMID: 38302581 PMCID: PMC10912439 DOI: 10.1038/s44320-024-00014-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 02/03/2024] Open
Abstract
Precision in the establishment and maintenance of cellular identities is crucial for the development of multicellular organisms and requires tight regulation of gene expression. While extensive research has focused on understanding cell type-specific gene activation, the complex mechanisms underlying the transcriptional repression of alternative fates are not fully understood. Here, we provide an overview of the repressive mechanisms involved in cell fate regulation. We discuss the molecular machinery responsible for suppressing alternative fates and highlight the crucial role of sequence-specific transcription factors (TFs) in this process. Depletion of these TFs can result in unwanted gene expression and increased cellular plasticity. We suggest that these TFs recruit cell type-specific repressive complexes to their cis-regulatory elements, enabling them to modulate chromatin accessibility in a context-dependent manner. This modulation effectively suppresses master regulators of alternative fate programs and their downstream targets. The modularity and dynamic behavior of these repressive complexes enables a limited number of repressors to canalize and maintain major and minor cell fate decisions at different stages of development.
Collapse
Affiliation(s)
- Bryce Lim
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Katrin Domsch
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology and Cell Networks - Cluster of Excellence, Heidelberg, Germany
| | - Moritz Mall
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany.
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany.
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| | - Ingrid Lohmann
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology and Cell Networks - Cluster of Excellence, Heidelberg, Germany.
| |
Collapse
|
8
|
Roh SH, Mendez-Vazquez H, Sathler MF, Doolittle MJ, Zaytseva A, Brown H, Sainsbury M, Kim S. Prenatal exposure to valproic acid reduces synaptic δ-catenin levels and disrupts ultrasonic vocalization in neonates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571709. [PMID: 38168404 PMCID: PMC10760095 DOI: 10.1101/2023.12.14.571709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Valproic acid (VPA) is an effective and commonly prescribed drug for epilepsy and bipolar disorder. However, children born from mothers treated with VPA during pregnancy exhibit an increased incidence of autism spectrum disorder (ASD). Although VPA may impair brain development at the cellular level, the mechanism of VPA-induced ASD has not been completely addressed. A previous study has found that VPA treatment strongly reduces δ-catenin mRNA levels in cultured human neurons. δ-catenin is important for the control of glutamatergic synapses and is strongly associated with ASD. VPA inhibits dendritic morphogenesis in developing neurons, an effect that is also found in neurons lacking δ-catenin expression. We thus hypothesize that prenatal exposure to VPA significantly reduces δ-catenin levels in the brain, which impairs glutamatergic synapses to cause ASD. Here, we found that prenatal exposure to VPA markedly reduced δ-catenin levels in the brain of mouse pups. VPA treatment also impaired dendritic branching in developing mouse cortical neurons, which was reversed by elevating δ-catenin expression. Prenatal VPA exposure significantly reduced synaptic AMPA receptor levels and postsynaptic density 95 (PSD95) in the brain of mouse pups, indicating dysfunctions in glutamatergic synaptic transmission. VPA exposure also significantly altered ultrasonic vocalization (USV) in newly born pups when they were isolated from their nest. Moreover, VPA-exposed pups show impaired hypothalamic response to isolation, which is required to produce animals' USVs following isolation from the nest. Therefore, these results suggest that VPA-induced ASD pathology can be mediated by the loss of δ-catenin functions. Highlights Prenatal exposure of valproic acid (VPA) in mice significantly reduces synaptic δ-catenin protein and AMPA receptor levels in the pups' brains.VPA treatment significantly impairs dendritic branching in cultured cortical neurons, which is reversed by increased δ-catenin expression.VPA exposed pups exhibit impaired communication such as ultrasonic vocalization.Neuronal activation linked to ultrasonic vocalization is absent in VPA-exposed pups.The loss of δ-catenin functions underlies VPA-induced autism spectrum disorder (ASD) in early childhood.
Collapse
|
9
|
Benner O, Cast TP, Minamide LS, Lenninger Z, Bamburg JR, Chanda S. Multiple N-linked glycosylation sites critically modulate the synaptic abundance of neuroligin isoforms. J Biol Chem 2023; 299:105361. [PMID: 37865312 PMCID: PMC10679506 DOI: 10.1016/j.jbc.2023.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
In recent years, elegant glycomic and glycoproteomic approaches have revealed an intricate glycosylation profile of mammalian brain with enormous spatial and temporal diversities. Nevertheless, at a cellular level, it is unclear how these post-translational modifications affect various proteins to influence crucial neuronal properties. Here, we have investigated the impact of N-linked glycosylation on neuroligins (NLGNs), a class of cell-adhesion molecules that play instructive roles in synapse organization. We found that endogenous NLGN proteins are differentially glycosylated across several regions of murine brain in a sex-independent but isoform-dependent manner. In both rodent primary neurons derived from brain sections and human neurons differentiated from stem cells, all NLGN variants were highly enriched with multiple N-glycan subtypes, which cumulatively ensured their efficient trafficking to the cell surface. Removal of these N-glycosylation residues only had a moderate effect on NLGNs' stability or expression levels but particularly enhanced their retention at the endoplasmic reticulum. As a result, the glycosylation-deficient NLGNs exhibited considerable impairments in their dendritic distribution and postsynaptic accumulation, which in turn, virtually eliminated their ability to recruit presynaptic terminals and significantly reduced NLGN overexpression-induced assemblies of both glutamatergic and GABAergic synapse structures. Therefore, our results highlight an essential mechanistic contribution of N-linked glycosylations in facilitating the appropriate secretory transport of a major synaptic cell-adhesion molecule and promoting its cellular function in neurons.
Collapse
Affiliation(s)
- Orion Benner
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA
| | - Thomas P Cast
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA
| | - Laurie S Minamide
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA
| | - Zephyr Lenninger
- Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, Colorado, USA
| | - James R Bamburg
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA; Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, Colorado, USA; Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Soham Chanda
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA; Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, Colorado, USA; Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
10
|
Tahtamouni LH, Alderfer SA, Kuhn TB, Minamide LS, Chanda S, Ruff MR, Bamburg JR. Characterization of a Human Neuronal Culture System for the Study of Cofilin-Actin Rod Pathology. Biomedicines 2023; 11:2942. [PMID: 38001943 PMCID: PMC10669520 DOI: 10.3390/biomedicines11112942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Cofilactin rod pathology, which can initiate synapse loss, has been extensively studied in rodent neurons, hippocampal slices, and in vivo mouse models of human neurodegenerative diseases such as Alzheimer's disease (AD). In these systems, rod formation induced by disease-associated factors, such as soluble oligomers of Amyloid-β (Aβ) in AD, utilizes a pathway requiring cellular prion protein (PrPC), NADPH oxidase (NOX), and cytokine/chemokine receptors (CCR5 and/or CXCR4). However, rod pathways have not been systematically assessed in a human neuronal model. Here, we characterize glutamatergic neurons differentiated from human-induced pluripotent stem cells (iPSCs) for the formation of rods in response to activators of the PrPC-dependent pathway. Optimization of substratum, cell density, and use of glial-conditioned medium yielded a robust system for studying the development of Aβ-induced rods in the absence of glia, suggesting a cell-autonomous pathway. Rod induction in younger neurons requires ectopic expression of PrPC, but this dependency disappears by Day 55. The quantification of proteins within the rod-inducing pathway suggests that increased PrPC and CXCR4 expression may be factors in the doubling of the rod response to Aβ between Days 35 and 55. FDA-approved antagonists to CXCR4 and CCR5 inhibit the rod response. Rods were predominantly observed in dendrites, although severe cytoskeletal disruptions prevented the assignment of over 40% of the rods to either an axon or dendrite. In the absence of glia, a condition in which rods are more readily observed, neurons mature and fire action potentials but do not form functional synapses. However, PSD95-containing dendritic spines associate with axonal regions of pre-synaptic vesicles containing the glutamate transporter, VGLUT1. Thus, our results identified stem cell-derived neurons as a robust model for studying cofilactin rod formation in a human cellular environment and for developing effective therapeutic strategies for the treatment of dementias arising from multiple proteinopathies with different rod initiators.
Collapse
Affiliation(s)
- Lubna H. Tahtamouni
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13133, Jordan;
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (S.C.)
| | - Sydney A. Alderfer
- Department of Chemical and Biological Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Thomas B. Kuhn
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (S.C.)
| | - Laurie S. Minamide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (S.C.)
| | - Soham Chanda
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (S.C.)
| | - Michael R. Ruff
- Creative Bio-Peptides, Inc., 10319 Glen Road, Suite 100, Potomac, MD 20854, USA;
| | - James R. Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (S.C.)
| |
Collapse
|
11
|
Liu Y, Wang J, Südhof TC, Wernig M. Efficient generation of functional neurons from mouse embryonic stem cells via neurogenin-2 expression. Nat Protoc 2023; 18:2954-2974. [PMID: 37596357 PMCID: PMC11349042 DOI: 10.1038/s41596-023-00863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/27/2023] [Indexed: 08/20/2023]
Abstract
The production of induced neuronal (iN) cells from human embryonic stem cells (ESCs) and induced pluripotent stem cells by the forced expression of proneural transcription factors is rapid, efficient and reproducible. The ability to generate large numbers of human neurons in such a robust manner enables large-scale studies of human neural differentiation and neuropsychiatric diseases. Surprisingly, similar transcription factor-based approaches for converting mouse ESCs into iN cells have been challenging, primarily because of low cell survival. Here, we provide a detailed approach for the efficient and reproducible generation of functional iN cells from mouse ESC cultures by the genetically induced expression of neurogenin-2. The resulting iN cells display mature pre- and postsynaptic specializations and form synaptic networks. Our method provides the basis for studying neuronal development and enables the direct comparison of cellular phenotypes in mouse and human neurons generated in an equivalent way. The procedure requires 14 d and can be carried out by users with expertise in stem cell culture.
Collapse
Affiliation(s)
- Yingfei Liu
- Institute for Stem Cell Biology and Regenerative Medicine, Departments of Pathology and Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jinzhao Wang
- Institute for Stem Cell Biology and Regenerative Medicine, Departments of Pathology and Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas C Südhof
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Departments of Pathology and Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
12
|
Cheng M, Fan X, He M, Dai X, Liu X, Hong J, Zhang L, Liao L. Identification of an endoplasmic reticulum stress-related prognostic risk model with excellent prognostic and clinical value in oral squamous cell carcinoma. Aging (Albany NY) 2023; 15:10010-10030. [PMID: 37647077 PMCID: PMC10599730 DOI: 10.18632/aging.204983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/20/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Recently, endoplasmic reticulum stress related gene (ERS) markers have performed very well in predicting the prognosis of tumor patients. METHODS The differentially expressed genes in Oral squamous cell carcinoma (OSCC) were obtained from TCGA and GTEx database. Three prognosis-related and differentially expressed ERSs were screened out by Least Absolute Selection and Shrinkage Operator (Lasso) regression to construct a prognostic risk model. Receiver Operating Characteristic Curve (ROC), riskplots and survival curves were used to verify the model's accuracy in predicting prognosis. Multi-omics analysis of immune infiltration, gene mutation, and stem cell characteristics were performed to explore the possible mechanism of OSCC. Finally, we discussed the model's clinical application value from the perspective of drug sensitivity. RESULTS Three genes used in the model (IBSP, RDM1, RBP4) were identified as prognostic risk factors. Bioinformatics analysis, tissue and cell experiments have fully verified the abnormal expression of these three genes in OSCC. Multiple validation methods and internal and external datasets confirmed the model's excellent performance in predicting and discriminating prognosis. Cox regression analysis identified risk score as an independent predictor of prognosis. Multi-omics analysis found strong correlations between risk scores and immune cells, cell stemness index, and tumor mutational burden (TMB). It was also observed that the risk score was closely related to the half maximal inhibitory concentration of docetaxel, gefitinib and erlotinib. The excellent performance of the nomogram has been verified by various means. CONCLUSION A prognostic model with high clinical application value was constructed. Immune cells, cellular stemness, and TMB may be involved in the progression of OSCC.
Collapse
Affiliation(s)
- Mingyang Cheng
- The Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Oral Diseases, Nanchang, Jiangxi, China
- Clinical Medical Research Center Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'An, Jiangxi, China
| | - Xin Fan
- The Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Oral Diseases, Nanchang, Jiangxi, China
| | - Mu He
- The Stomatology College of Nanchang University, Nanchang, Jiangxi, China
| | - Xianglin Dai
- The Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Oral Diseases, Nanchang, Jiangxi, China
| | - Xiaoli Liu
- The Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Oral Diseases, Nanchang, Jiangxi, China
| | - Jinming Hong
- The Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Oral Diseases, Nanchang, Jiangxi, China
| | - Laiyu Zhang
- The Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Oral Diseases, Nanchang, Jiangxi, China
| | - Lan Liao
- The Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Oral Diseases, Nanchang, Jiangxi, China
- Clinical Medical Research Center Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'An, Jiangxi, China
| |
Collapse
|
13
|
Takla TN, Luo J, Sudyk R, Huang J, Walker JC, Vora NL, Sexton JZ, Parent JM, Tidball AM. A Shared Pathogenic Mechanism for Valproic Acid and SHROOM3 Knockout in a Brain Organoid Model of Neural Tube Defects. Cells 2023; 12:1697. [PMID: 37443734 PMCID: PMC10340169 DOI: 10.3390/cells12131697] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Neural tube defects (NTDs), including anencephaly and spina bifida, are common major malformations of fetal development resulting from incomplete closure of the neural tube. These conditions lead to either universal death (anencephaly) or severe lifelong complications (spina bifida). Despite hundreds of genetic mouse models of neural tube defect phenotypes, the genetics of human NTDs are poorly understood. Furthermore, pharmaceuticals, such as antiseizure medications, have been found clinically to increase the risk of NTDs when administered during pregnancy. Therefore, a model that recapitulates human neurodevelopment would be of immense benefit to understand the genetics underlying NTDs and identify teratogenic mechanisms. Using our self-organizing single rosette cortical organoid (SOSR-COs) system, we have developed a high-throughput image analysis pipeline for evaluating the SOSR-CO structure for NTD-like phenotypes. Similar to small molecule inhibition of apical constriction, the antiseizure medication valproic acid (VPA), a known cause of NTDs, increases the apical lumen size and apical cell surface area in a dose-responsive manner. GSK3β and HDAC inhibitors caused similar lumen expansion; however, RNA sequencing suggests VPA does not inhibit GSK3β at these concentrations. The knockout of SHROOM3, a well-known NTD-related gene, also caused expansion of the lumen, as well as reduced f-actin polarization. The increased lumen sizes were caused by reduced cell apical constriction, suggesting that impingement of this process is a shared mechanism for VPA treatment and SHROOM3-KO, two well-known causes of NTDs. Our system allows the rapid identification of NTD-like phenotypes for both compounds and genetic variants and should prove useful for understanding specific NTD mechanisms and predicting drug teratogenicity.
Collapse
Affiliation(s)
- Taylor N. Takla
- Department of Neurology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA (R.S.)
| | - Jinghui Luo
- Department of Neurology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA (R.S.)
| | - Roksolana Sudyk
- Department of Neurology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA (R.S.)
| | - Joy Huang
- Department of Neurology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA (R.S.)
| | - John Clayton Walker
- Department of Neurology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA (R.S.)
| | - Neeta L. Vora
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jonathan Z. Sexton
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Drug Repurposing, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jack M. Parent
- Department of Neurology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA (R.S.)
- Michigan Neuroscience Institute, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Andrew M. Tidball
- Department of Neurology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA (R.S.)
| |
Collapse
|
14
|
Weigel B, Tegethoff JF, Grieder SD, Lim B, Nagarajan B, Liu YC, Truberg J, Papageorgiou D, Adrian-Segarra JM, Schmidt LK, Kaspar J, Poisel E, Heinzelmann E, Saraswat M, Christ M, Arnold C, Ibarra IL, Campos J, Krijgsveld J, Monyer H, Zaugg JB, Acuna C, Mall M. MYT1L haploinsufficiency in human neurons and mice causes autism-associated phenotypes that can be reversed by genetic and pharmacologic intervention. Mol Psychiatry 2023; 28:2122-2135. [PMID: 36782060 PMCID: PMC10575775 DOI: 10.1038/s41380-023-01959-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 02/15/2023]
Abstract
MYT1L is an autism spectrum disorder (ASD)-associated transcription factor that is expressed in virtually all neurons throughout life. How MYT1L mutations cause neurological phenotypes and whether they can be targeted remains enigmatic. Here, we examine the effects of MYT1L deficiency in human neurons and mice. Mutant mice exhibit neurodevelopmental delays with thinner cortices, behavioural phenotypes, and gene expression changes that resemble those of ASD patients. MYT1L target genes, including WNT and NOTCH, are activated upon MYT1L depletion and their chemical inhibition can rescue delayed neurogenesis in vitro. MYT1L deficiency also causes upregulation of the main cardiac sodium channel, SCN5A, and neuronal hyperactivity, which could be restored by shRNA-mediated knockdown of SCN5A or MYT1L overexpression in postmitotic neurons. Acute application of the sodium channel blocker, lamotrigine, also rescued electrophysiological defects in vitro and behaviour phenotypes in vivo. Hence, MYT1L mutation causes both developmental and postmitotic neurological defects. However, acute intervention can normalise resulting electrophysiological and behavioural phenotypes in adulthood.
Collapse
Affiliation(s)
- Bettina Weigel
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Jana F Tegethoff
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Sarah D Grieder
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Bryce Lim
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Bhuvaneswari Nagarajan
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Yu-Chao Liu
- Department of Clinical Neurobiology, University Hospital Heidelberg and DKFZ, Heidelberg, Germany
| | - Jule Truberg
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Dimitris Papageorgiou
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - Juan M Adrian-Segarra
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Laura K Schmidt
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Janina Kaspar
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Eric Poisel
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Elisa Heinzelmann
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Manu Saraswat
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Marleen Christ
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Christian Arnold
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69115, Heidelberg, Germany
| | - Ignacio L Ibarra
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69115, Heidelberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Joaquin Campos
- Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, 69120, Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology, University Hospital Heidelberg and DKFZ, Heidelberg, Germany
| | - Judith B Zaugg
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69115, Heidelberg, Germany
| | - Claudio Acuna
- Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, 69120, Heidelberg, Germany
| | - Moritz Mall
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany.
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany.
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
15
|
Berryer MH, Rizki G, Nathanson A, Klein JA, Trendafilova D, Susco SG, Lam D, Messana A, Holton KM, Karhohs KW, Cimini BA, Pfaff K, Carpenter AE, Rubin LL, Barrett LE. High-content synaptic phenotyping in human cellular models reveals a role for BET proteins in synapse assembly. eLife 2023; 12:80168. [PMID: 37083703 PMCID: PMC10121225 DOI: 10.7554/elife.80168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 04/10/2023] [Indexed: 04/22/2023] Open
Abstract
Resolving fundamental molecular and functional processes underlying human synaptic development is crucial for understanding normal brain function as well as dysfunction in disease. Based upon increasing evidence of species-divergent features of brain cell types, coupled with emerging studies of complex human disease genetics, we developed the first automated and quantitative high-content synaptic phenotyping platform using human neurons and astrocytes. To establish the robustness of our platform, we screened the effects of 376 small molecules on presynaptic density, neurite outgrowth, and cell viability, validating six small molecules that specifically enhanced human presynaptic density in vitro. Astrocytes were essential for mediating the effects of all six small molecules, underscoring the relevance of non-cell-autonomous factors in synapse assembly and their importance in synaptic screening applications. Bromodomain and extraterminal (BET) inhibitors emerged as the most prominent hit class and global transcriptional analyses using multiple BET inhibitors confirmed upregulation of synaptic gene expression. Through these analyses, we demonstrate the robustness of our automated screening platform for identifying potent synaptic modulators, which can be further leveraged for scaled analyses of human synaptic mechanisms and drug discovery efforts.
Collapse
Affiliation(s)
- Martin H Berryer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Gizem Rizki
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Anna Nathanson
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Jenny A Klein
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Darina Trendafilova
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Sara G Susco
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Daisy Lam
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Angelica Messana
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Kristina M Holton
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Kyle W Karhohs
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Beth A Cimini
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Kathleen Pfaff
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Lee L Rubin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Lindy E Barrett
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| |
Collapse
|
16
|
Takla TN, Luo J, Sudyk R, Huang J, Walker JC, Vora NL, Sexton JZ, Parent JM, Tidball AM. A Shared Pathogenic Mechanism for Valproic Acid and SHROOM3 Knockout in a Brain Organoid Model of Neural Tube Defects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536245. [PMID: 37090564 PMCID: PMC10120643 DOI: 10.1101/2023.04.11.536245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Neural tube defects (NTDs) including anencephaly and spina bifida are common major malformations of fetal development resulting from incomplete closure of the neural tube. These conditions lead to either universal death (anencephaly) or life-long severe complications (spina bifida). Despite hundreds of genetic mouse models having neural tube defect phenotypes, the genetics of human NTDs are poorly understood. Furthermore, pharmaceuticals such as antiseizure medications have been found clinically to increase the risk of NTDs when administered during pregnancy. Therefore, a model that recapitulates human neurodevelopment would be of immense benefit to understand the genetics underlying NTDs and identify teratogenic mechanisms. Using our self-organizing single rosette spheroid (SOSRS) brain organoid system, we have developed a high-throughput image analysis pipeline for evaluating SOSRS structure for NTD-like phenotypes. Similar to small molecule inhibition of apical constriction, the antiseizure medication valproic acid (VPA), a known cause of NTDs, increases the apical lumen size and apical cell surface area in a dose-responsive manner. This expansion was mimicked by GSK3β and HDAC inhibitors; however, RNA sequencing suggests VPA does not inhibit GSK3β at these concentrations. Knockout of SHROOM3, a well-known NTD-related gene, also caused expansion of the lumen as well as reduced f-actin polarization. The increased lumen sizes were caused by reduced cell apical constriction suggesting that impingement of this process is a shared mechanism for VPA treatment and SHROOM3-KO, two well-known causes of NTDs. Our system allows the rapid identification of NTD-like phenotypes for both compounds and genetic variants and should prove useful for understanding specific NTD mechanisms and predicting drug teratogenicity.
Collapse
Affiliation(s)
- Taylor N. Takla
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI
| | - Jinghui Luo
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI
| | - Roksolana Sudyk
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI
| | - Joy Huang
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI
| | - J. Clayton Walker
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI
| | - Neeta L. Vora
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Jonathan Z. Sexton
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Ann Arbor, MI
- Center for Drug Repurposing, University of Michigan, Ann Arbor, MI
| | - Jack M. Parent
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI
- VA Ann Arbor Healthcare System, Ann Arbor, MI
| | - Andrew M. Tidball
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
17
|
Ackerman HD, Gerhard GS. Bile Acids Induce Neurite Outgrowth in Nsc-34 Cells via TGR5 and a Distinct Transcriptional Profile. Pharmaceuticals (Basel) 2023; 16:174. [PMID: 37259326 PMCID: PMC9963315 DOI: 10.3390/ph16020174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 09/24/2024] Open
Abstract
Increasing evidence supports a neuroprotective role for bile acids in major neurodegenerative disorders. We studied major human bile acids as signaling molecules for their two cellular receptors, farnesoid X receptor (FXR or NR1H4) and G protein-coupled bile acid receptor 1 (GPBAR1 or TGR5), as potential neurotrophic agents. Using quantitative image analysis, we found that 20 μM deoxycholic acid (DCA) could induce neurite outgrowth in NSC-34 cells that was comparable to the neurotrophic effects of the culture control 1 μM retinoic acid (RA), with lesser effects observed for chenodexoycholic acid (CDCA) at 20 μM, and similar though less robust neurite outgrowth in SH-SY5Y cells. Using chemical agonists and antagonists of FXR, LXR, and TGR5, we found that TGR5 agonism was comparable to DCA stimulation and stronger than RA, and that neither FXR nor liver X receptor (LXR) inhibition could block bile acid-induced neurite growth. RNA sequencing identified a core set of genes whose expression was regulated by DCA, CDCA, and RA. Our data suggest that bile acid signaling through TGR5 may be a targetable pathway to stimulate neurite outgrowth.
Collapse
Affiliation(s)
- Hayley D Ackerman
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Glenn S Gerhard
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
18
|
Mendez-Vazquez H, Roach RL, Nip K, Sathler MF, Garver T, Danzman RA, Moseley MC, Roberts JP, Koch ON, Steger AA, Lee R, Arikkath J, Kim S. The autism-associated loss of δ-catenin functions disrupts social behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523372. [PMID: 36711484 PMCID: PMC9882145 DOI: 10.1101/2023.01.12.523372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
δ-catenin is expressed in excitatory synapses and functions as an anchor for the glutamatergic AMPA receptor (AMPAR) GluA2 subunit in the postsynaptic density. The glycine 34 to serine (G34S) mutation in the δ-catenin gene is found in autism spectrum disorder (ASD) patients and induces loss of δ-catenin functions at excitatory synapses, which is presumed to underlie ASD pathogenesis in humans. However, how the G34S mutation causes loss of δ-catenin functions to induce ASD remains unclear. Here, using neuroblastoma cells, we discover that the G34S mutation generates an additional phosphorylation site for glycogen synthase kinase 3β (GSK3β). This promotes δ-catenin degradation and causes the reduction of δ-catenin levels, which likely contributes to the loss of δ-catenin functions. Synaptic δ-catenin and GluA2 levels in the cortex are significantly decreased in mice harboring the δ-catenin G34S mutation. The G34S mutation increases glutamatergic activity in cortical excitatory neurons while it is decreased in inhibitory interneurons, indicating changes in cellular excitation and inhibition. δ-catenin G34S mutant mice also exhibit social dysfunction, a common feature of ASD. Most importantly, inhibition of GSK3β activity reverses the G34S-induced loss of δ-catenin function effects in cells and mice. Finally, using δ-catenin knockout mice, we confirm that δ-catenin is required for GSK3β inhibition-induced restoration of normal social behaviors in δ-catenin G34S mutant animals. Taken together, we reveal that the loss of δ-catenin functions arising from the ASD-associated G34S mutation induces social dysfunction via alterations in glutamatergic activity and that GSK3β inhibition can reverse δ-catenin G34S-induced synaptic and behavioral deficits. Significance Statement δ-catenin is important for the localization and function of glutamatergic AMPA receptors at synapses in many brain regions. The glycine 34 to serine (G34S) mutation in the δ-catenin gene is found in autism patients and results in the loss of δ-catenin functions. δ-catenin expression is also closely linked to other autism-risk genes involved in synaptic structure and function, further implying that it is important for the autism pathophysiology. Importantly, social dysfunction is a key characteristic of autism. Nonetheless, the links between δ-catenin functions and social behaviors are largely unknown. The significance of the current research is thus predicated on filling this gap by discovering the molecular, cellular, and synaptic underpinnings of the role of δ-catenin in social behaviors.
Collapse
|
19
|
Chong ZS, Khong ZJ, Tay SH, Ng SY. Metabolic contributions to neuronal deficits caused by genomic disruption of schizophrenia risk gene SETD1A. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:115. [PMID: 36581615 PMCID: PMC9800576 DOI: 10.1038/s41537-022-00326-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
Regulation of neuronal metabolism during early brain development is crucial for directing synaptic plasticity and proper circuit formation. Alterations in neuronal glycolysis or mitochondrial function are associated with several neuropsychiatric disorders, including schizophrenia. Recently, loss-of-function mutations in SETD1A, a histone methyltransferase, have been linked to increased schizophrenia risk and global developmental delay. Here, we show that heterozygous disruption of SETD1A in human induced pluripotent stem cell (hiPSC)-derived neurons results in reduced neurite outgrowth and spontaneous activity, two phenotypes commonly associated with schizophrenia, as well as alterations in metabolic capacity. Furthermore, supplementing culture media with metabolic intermediates ameliorated changes in neurite outgrowth and spontaneous activity, suggesting that metabolic dysfunction contributes to neuronal phenotypes caused by SETD1A haploinsufficiency. These findings highlight a previously unknown connection between SETD1A function, metabolic regulation, and neuron development, and identifies alternative avenues for therapeutic development.
Collapse
Affiliation(s)
- Zheng-Shan Chong
- grid.418812.60000 0004 0620 9243Cellular Basis of Neural Diseases Laboratory, Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, Singapore
| | - Zi Jian Khong
- grid.418812.60000 0004 0620 9243Cellular Basis of Neural Diseases Laboratory, Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Shermaine Huiping Tay
- grid.418812.60000 0004 0620 9243Cellular Basis of Neural Diseases Laboratory, Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, Singapore
| | - Shi-Yan Ng
- grid.418812.60000 0004 0620 9243Cellular Basis of Neural Diseases Laboratory, Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431National University of Singapore, Yong Loo Lin School of Medicine (Department of Physiology, Singapore, Singapore ,grid.276809.20000 0004 0636 696XNational Neuroscience Institute, Singapore, Singapore
| |
Collapse
|
20
|
Zang Z, Yin H, Du Z, Xie R, Yang L, Cai Y, Wang L, Zhang D, Li X, Liu T, Gong H, Gao J, Yang H, Warner M, Gustafsson JA, Xu H, Fan X. Valproic acid exposure decreases neurogenic potential of outer radial glia in human brain organoids. Front Mol Neurosci 2022; 15:1023765. [PMID: 36523605 PMCID: PMC9744776 DOI: 10.3389/fnmol.2022.1023765] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/08/2022] [Indexed: 07/29/2023] Open
Abstract
Valproic acid (VPA) exposure during pregnancy leads to a higher risk of autism spectrum disorder (ASD) susceptibility in offspring. Human dorsal forebrain organoids were used to recapitulate course of cortical neurogenesis in the developing human brain. Combining morphological characterization with massive parallel RNA sequencing (RNA-seq) on organoids to analyze the pathogenic effects caused by VPA exposure and critical signaling pathway. We found that VPA exposure in organoids caused a reduction in the size and impairment in the proliferation and expansion of neural progenitor cells (NPCs) in a dose-dependent manner. VPA exposure typically decreased the production of outer radial glia-like cells (oRGs), a subtype of NPCs contributing to mammalian neocortical expansion and delayed their fate toward upper-layer neurons. Transcriptomics analysis revealed that VPA exposure influenced ASD risk gene expression in organoids, which markedly overlapped with irregulated genes in brains or organoids originating from ASD patients. We also identified that VPA-mediated Wnt/β-catenin signaling pathway activation is essential for sustaining cortical neurogenesis and oRGs output. Taken together, our study establishes the use of dorsal forebrain organoids as an effective platform for modeling VPA-induced teratogenic pathways involved in the cortical neurogenesis and oRGs output, which might contribute to ASD pathogenesis in the developing brain.
Collapse
Affiliation(s)
- Zhenle Zang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Huachun Yin
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhulin Du
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ruxin Xie
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ling Yang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yun Cai
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liuyongwei Wang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dandan Zhang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xin Li
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tianyao Liu
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hong Gong
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junwei Gao
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Margaret Warner
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, United States
| | - Jan-Ake Gustafsson
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, United States
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Haiwei Xu
- Southwest Hospital and Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
21
|
McSweeney D, Gabriel R, Jin K, Pang ZP, Aronow B, Pak C. CASK loss of function differentially regulates neuronal maturation and synaptic function in human induced cortical excitatory neurons. iScience 2022; 25:105187. [PMID: 36262316 PMCID: PMC9574418 DOI: 10.1016/j.isci.2022.105187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/30/2022] [Accepted: 09/20/2022] [Indexed: 12/14/2022] Open
Abstract
Loss-of-function (LOF) mutations in CASK cause severe developmental phenotypes, including microcephaly with pontine and cerebellar hypoplasia, X-linked intellectual disability, and autism. Unraveling the pathological mechanisms of CASK-related disorders has been challenging owing to limited human cellular models to study the dynamic roles of this molecule during neuronal maturation and synapse development. Here, we investigate cell-autonomous functions of CASK in cortical excitatory induced neurons (iNs) generated from CASK knockout (KO) isogenic human embryonic stem cells (hESCs) using gene expression, morphometrics, and electrophysiology. While immature CASK KO iNs show robust neuronal outgrowth, mature CASK KO iNs display severe defects in synaptic transmission and synchronized network activity without compromising neuronal morphology and synapse numbers. In the developing human cortical excitatory neurons, CASK functions to promote both structural integrity and establishment of cortical excitatory neuronal networks. These results lay the foundation for future studies identifying suppressors of such phenotypes relevant to human patients.
Collapse
Affiliation(s)
- Danny McSweeney
- Graduate Program in Molecular and Cellular Biology, UMass Amherst, Amherst, MA 01003, USA,Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA 01003, USA
| | - Rafael Gabriel
- Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA 01003, USA
| | - Kang Jin
- Departments of Biomedical Informatics, Pediatrics, University of Cincinnati, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Zhiping P. Pang
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Bruce Aronow
- Departments of Biomedical Informatics, Pediatrics, University of Cincinnati, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - ChangHui Pak
- Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA 01003, USA,Corresponding author
| |
Collapse
|
22
|
Susco SG, Ghosh S, Mazzucato P, Angelini G, Beccard A, Barrera V, Berryer MH, Messana A, Lam D, Hazelbaker DZ, Barrett LE. Molecular convergence between Down syndrome and fragile X syndrome identified using human pluripotent stem cell models. Cell Rep 2022; 40:111312. [PMID: 36070702 PMCID: PMC9465809 DOI: 10.1016/j.celrep.2022.111312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/19/2022] [Accepted: 08/12/2022] [Indexed: 11/27/2022] Open
Abstract
Down syndrome (DS), driven by an extra copy of chromosome 21 (HSA21), and fragile X syndrome (FXS), driven by loss of the RNA-binding protein FMRP, are two common genetic causes of intellectual disability and autism. Based upon the number of DS-implicated transcripts bound by FMRP, we hypothesize that DS and FXS may share underlying mechanisms. Comparing DS and FXS human pluripotent stem cell (hPSC) and glutamatergic neuron models, we identify increased protein expression of select targets and overlapping transcriptional perturbations. Moreover, acute upregulation of endogenous FMRP in DS patient cells using CRISPRa is sufficient to significantly reduce expression levels of candidate proteins and reverse 40% of global transcriptional perturbations. These results pinpoint specific molecular perturbations shared between DS and FXS that can be leveraged as a strategy for target prioritization; they also provide evidence for the functional relevance of previous associations between FMRP targets and disease-implicated genes.
Collapse
Affiliation(s)
- Sara G Susco
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sulagna Ghosh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Patrizia Mazzucato
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gabriella Angelini
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amanda Beccard
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Victor Barrera
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Martin H Berryer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Angelica Messana
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daisy Lam
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dane Z Hazelbaker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lindy E Barrett
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
23
|
Burlingham SR, Wong NF, Peterkin L, Lubow L, Dos Santos Passos C, Benner O, Ghebrial M, Cast TP, Xu-Friedman MA, Südhof TC, Chanda S. Induction of synapse formation by de novo neurotransmitter synthesis. Nat Commun 2022; 13:3060. [PMID: 35650274 PMCID: PMC9160008 DOI: 10.1038/s41467-022-30756-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 05/17/2022] [Indexed: 11/09/2022] Open
Abstract
A vital question in neuroscience is how neurons align their postsynaptic structures with presynaptic release sites. Although synaptic adhesion proteins are known to contribute in this process, the role of neurotransmitters remains unclear. Here we inquire whether de novo biosynthesis and vesicular release of a noncanonical transmitter can facilitate the assembly of its corresponding postsynapses. We demonstrate that, in both stem cell-derived human neurons as well as in vivo mouse neurons of purely glutamatergic identity, ectopic expression of GABA-synthesis enzymes and vesicular transporters is sufficient to both produce GABA from ambient glutamate and transmit it from presynaptic terminals. This enables efficient accumulation and consistent activation of postsynaptic GABAA receptors, and generates fully functional GABAergic synapses that operate in parallel but independently of their glutamatergic counterparts. These findings suggest that presynaptic release of a neurotransmitter itself can signal the organization of relevant postsynaptic apparatus, which could be directly modified to reprogram the synapse identity of neurons.
Collapse
Affiliation(s)
- Scott R Burlingham
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Nicole F Wong
- Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Lindsay Peterkin
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Lily Lubow
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Orion Benner
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Michael Ghebrial
- Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Thomas P Cast
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Thomas C Südhof
- Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Soham Chanda
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, USA.
- Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
24
|
Meng Q, Zhang W, Wang X, Jiao C, Xu S, Liu C, Tang B, Chen C. Human forebrain organoids reveal connections between valproic acid exposure and autism risk. Transl Psychiatry 2022; 12:130. [PMID: 35351869 PMCID: PMC8964691 DOI: 10.1038/s41398-022-01898-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 12/13/2022] Open
Abstract
Valproic acid (VPA) exposure as an environmental factor that confers risk of autism spectrum disorder (ASD), its functional mechanisms in the human brain remain unclear since relevant studies are currently restricted to two-dimensional cell cultures and animal models. To identify mechanisms by which VPA contribute to ASD risk in human, here we used human forebrain organoids (hFOs), in vitro derived three-dimensional cell cultures that recapitulate key human brain developmental features. We identified that VPA exposure in hFOs affected the expression of genes enriched in neural development, synaptic transmission, oxytocin signaling, calcium, and potassium signaling pathways, which have been implicated in ASD. Genes (e.g., CAMK4, CLCN4, DPP10, GABRB3, KCNB1, PRKCB, SCN1A, and SLC24A2) that affected by VPA were significantly overlapped with those dysregulated in brains or organoids derived from ASD patients, and known ASD risk genes, as well as genes in ASD risk-associated gene coexpression modules. Single-cell RNA sequencing analysis showed that VPA exposure affected the expression of genes in choroid plexus, excitatory neuron, immature neuron, and medial ganglionic eminence cells annotated in hFOs. Microelectrode array further identified that VPA exposure in hFOs disrupted synaptic transmission. Taken together, this study connects VPA exposure to ASD pathogenesis using hFOs, which is valuable for illuminating the etiology of ASD and screening for potential therapeutic targets.
Collapse
Affiliation(s)
- Qingtuan Meng
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Wendiao Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Xuan Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Chuan Jiao
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Sheng Xu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Chunyu Liu
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Beisha Tang
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China.
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Molecular Precision Medicine, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|
25
|
Wang J, Miao Y, Wicklein R, Sun Z, Wang J, Jude KM, Fernandes RA, Merrill SA, Wernig M, Garcia KC, Südhof TC. RTN4/NoGo-receptor binding to BAI adhesion-GPCRs regulates neuronal development. Cell 2021; 184:5869-5885.e25. [PMID: 34758294 PMCID: PMC8620742 DOI: 10.1016/j.cell.2021.10.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/01/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022]
Abstract
RTN4-binding proteins were widely studied as "NoGo" receptors, but their physiological interactors and roles remain elusive. Similarly, BAI adhesion-GPCRs were associated with numerous activities, but their ligands and functions remain unclear. Using unbiased approaches, we observed an unexpected convergence: RTN4 receptors are high-affinity ligands for BAI adhesion-GPCRs. A single thrombospondin type 1-repeat (TSR) domain of BAIs binds to the leucine-rich repeat domain of all three RTN4-receptor isoforms with nanomolar affinity. In the 1.65 Å crystal structure of the BAI1/RTN4-receptor complex, C-mannosylation of tryptophan and O-fucosylation of threonine in the BAI TSR-domains creates a RTN4-receptor/BAI interface shaped by unusual glycoconjugates that enables high-affinity interactions. In human neurons, RTN4 receptors regulate dendritic arborization, axonal elongation, and synapse formation by differential binding to glial versus neuronal BAIs, thereby controlling neural network activity. Thus, BAI binding to RTN4/NoGo receptors represents a receptor-ligand axis that, enabled by rare post-translational modifications, controls development of synaptic circuits.
Collapse
Affiliation(s)
- Jie Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yi Miao
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rebecca Wicklein
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zijun Sun
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jinzhao Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin M Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ricardo A Fernandes
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sean A Merrill
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
26
|
Canals I, Quist E, Ahlenius H. Transcription Factor-Based Strategies to Generate Neural Cell Types from Human Pluripotent Stem Cells. Cell Reprogram 2021; 23:206-220. [PMID: 34388027 DOI: 10.1089/cell.2021.0045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the last years, the use of pluripotent stem cells in studies of human biology has grown exponentially. These cells represent an infinite source for differentiation into several human cell types facilitating the investigation on biological processes, functionality of cells, or diseases mechanisms in relevant human models. In the neurobiology field, pluripotent stem cells have been extensively used to generate the main neuronal and glial cells of the brain. Traditionally, protocols following developmental cues have been applied to pluripotent stem cells to drive differentiation toward different cell lineages; however, these protocols give rise to populations with mixed identities. Interestingly, new protocols applying overexpression of lineage-specific transcription factors (TFs) have emerged and facilitated the generation of highly pure populations of specific subtypes of neurons and glial cells in an easy, reproducible, and rapid manner. In this study, we review protocols based on this strategy to generate excitatory, inhibitory, dopaminergic, and motor neurons as well as astrocytes, oligodendrocytes, and microglia. In addition, we will discuss the main applications for cells generated with these protocols, including disease modeling, drug screening, and mechanistic studies. Finally, we will discuss the advantages and disadvantages of TF-based protocols and present our view of the future in this field.
Collapse
Affiliation(s)
- Isaac Canals
- Stem Cells, Aging and Neurodegeneration Group, Faculty of Medicine, Lund University, Lund, Sweden.,Division of Neurology, Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund, Sweden
| | - Ella Quist
- Stem Cells, Aging and Neurodegeneration Group, Faculty of Medicine, Lund University, Lund, Sweden.,Division of Neurology, Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund, Sweden
| | - Henrik Ahlenius
- Stem Cells, Aging and Neurodegeneration Group, Faculty of Medicine, Lund University, Lund, Sweden.,Division of Neurology, Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund, Sweden
| |
Collapse
|
27
|
Liu H, Tan M, Cheng B, Wang S, Xiao L, Zhu J, Wu Q, Lai X, Zhang Q, Chen J, Li T. Valproic Acid Induces Autism-Like Synaptic and Behavioral Deficits by Disrupting Histone Acetylation of Prefrontal Cortex ALDH1A1 in Rats. Front Neurosci 2021; 15:641284. [PMID: 33994921 PMCID: PMC8113628 DOI: 10.3389/fnins.2021.641284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/06/2021] [Indexed: 12/27/2022] Open
Abstract
Objectives This study aimed to investigate the impact of valproic acid (VPA) on the histone acetylation of acetaldehyde dehydrogenase 1A1 (ALDH1A1) and the mechanism underlying VPA-induced autism-like behavior. Methods Female Sprague-Dawley rats were intraperitoneally injected with VPA during gestation to establish an autism model in their offspring. Some offspring prenatally exposed to VPA were randomly treated with MS-275, one histone deacetylase (HDAC) inhibitor, or retinoic acid (RA) after birth. Behavioral tests were conducted on the offspring 6 weeks after birth. Electrophysiological experiments were performed to investigate long-term potentiation (LTP) in the prefrontal cortex (PFC). The expression levels of AMPA receptors (GluA1 and 2), NMDA receptors (GluN1 and 2), synapsin 1 (SYN1), HDAC, acetylated histone 3 (AcH3), RA receptor alpha (RARα), and ALDH1A1 in the PFC were measured by Western blotting and quantitative polymerase chain reaction. ALDH enzyme activity in PFC tissue was detected using a Micro ALDH Assay Kit. The RA level in the PFC was measured using ultrahigh-performance liquid chromatography/tandem mass spectrometry. A chromatin immunoprecipitation (ChIP) experiment explored the interaction between the ALDH1A1 gene and AcH3. Results Offspring prenatally exposed to VPA showed autism-like behavior, upregulated the levels of LTP and GluN2A, GluA1, and SYN1 proteins relevant to synaptic plasticity in the PFC. The expression levels of HDAC3 mRNA and protein were increased. On the other hand, there was a significant reduction in the levels of AcH3, RARα, RA, ALDH1A1 mRNA and protein, the level of ALDH activity and AcH3 enrichment in the ALDH1A1 promoter region in VPA-induced offspring. Administration of MS-275 in VPA offspring significantly elevated the levels of AcH3, ALDH1A1 mRNA and protein, ALDH activity, RA, the level of RARα protein and the binding of AcH3 to the ALDH1A1 promoter. In addition, the GluA1 protein level and LTP were reduced, and most behavioral deficits were reversed. After RA supplementation in the VPA-treated offspring, the RA and RARα protein levels were significantly upregulated, GluA1 protein and LTP were downregulated, and most autism-like behavioral deficits were effectively reversed. Conclusion These findings suggest that VPA impairs histoneacetylation of ALDH1A1 and downregulates the RA-RARα pathway. Such epigenetic modification of ALDH1A1 by VPA leads to autism-like synaptic and behavioral deficits.
Collapse
Affiliation(s)
- Huan Liu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Nutrition and Health, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, Chongqing, China
| | - Mei Tan
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Nutrition and Health, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, Chongqing, China
| | - Boli Cheng
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Nutrition and Health, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, Chongqing, China
| | - Si Wang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Nutrition and Health, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, Chongqing, China
| | - Lu Xiao
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Nutrition and Health, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, Chongqing, China
| | - Jiang Zhu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Nutrition and Health, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, Chongqing, China
| | - Qionghui Wu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Nutrition and Health, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, Chongqing, China
| | - Xi Lai
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Nutrition and Health, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, Chongqing, China
| | - Qian Zhang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Nutrition and Health, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, Chongqing, China
| | - Jie Chen
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Nutrition and Health, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, Chongqing, China
| | - Tingyu Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Nutrition and Health, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, Chongqing, China
| |
Collapse
|
28
|
Rizk M, Saker Z, Harati H, Fares Y, Bahmad HF, Nabha S. Deciphering the roles of glycogen synthase kinase 3 (GSK3) in the treatment of autism spectrum disorder and related syndromes. Mol Biol Rep 2021; 48:2669-2686. [PMID: 33650079 DOI: 10.1007/s11033-021-06237-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
Autism spectrum disorder (ASD) is a complex and multifactorial neurodevelopmental disorder characterized by the presence of restricted interests and repetitive behaviors besides deficits in social communication. Syndromic ASD is a subset of ASD caused by underlying genetic disorders, most commonly Fragile X Syndrome (FXS) and Rett Syndrome (RTT). Various mutations and consequent malfunctions in core signaling pathways have been identified in ASD, including glycogen synthase kinase 3 (GSK3). A growing body of evidence suggests a key role of GSK3 dysregulation in the pathogenesis of ASD and its related disorders. Here, we provide a synopsis of the implication of GSK3 in ASD, FXS, and RTT as a promising therapeutic target for the treatment of ASD.
Collapse
Affiliation(s)
- Mahdi Rizk
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Zahraa Saker
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hayat Harati
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.,Department of Neurosurgery, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hisham F Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL, 33140, USA
| | - Sanaa Nabha
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
29
|
Abstract
MicroRNAs (miRNAs), miR-9/9*, and miR-124 (miR-9/9*-124) display fate-reprogramming activities when ectopically expressed in human fibroblasts by erasing the fibroblast identity and evoking a pan-neuronal state. In contrast to induced pluripotent stem cell-derived neurons, miRNA-induced neurons (miNs) retain the biological age of the starting fibroblasts through direct fate conversion and thus provide a human neuron-based platform to study cellular properties inherent in aged neurons and model adult-onset neurodegenerative disorders using patient-derived cells. Furthermore, expression of neuronal subtype-specific transcription factors in conjunction with miR-9/9*-124 guides the miNs to distinct neuronal fates, a feature critical for modeling disorders that affect specific neuronal subtypes. Here, we describe the miR-9/9*-124-based neuronal reprogramming protocols for the generation of several disease-relevant neuronal subtypes: striatal medium spiny neurons, cortical neurons, and spinal cord motor neurons.
Collapse
|
30
|
Meisig J, Dreser N, Kapitza M, Henry M, Rotshteyn T, Rahnenführer J, Hengstler J, Sachinidis A, Waldmann T, Leist M, Blüthgen N. Kinetic modeling of stem cell transcriptome dynamics to identify regulatory modules of normal and disturbed neuroectodermal differentiation. Nucleic Acids Res 2020; 48:12577-12592. [PMID: 33245762 PMCID: PMC7736781 DOI: 10.1093/nar/gkaa1089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 12/22/2022] Open
Abstract
Thousands of transcriptome data sets are available, but approaches for their use in dynamic cell response modelling are few, especially for processes affected simultaneously by two orthogonal influencing variables. We approached this problem for neuroepithelial development of human pluripotent stem cells (differentiation variable), in the presence or absence of valproic acid (signaling variable). Using few basic assumptions (sequential differentiation states of cells; discrete on/off states for individual genes in these states), and time-resolved transcriptome data, a comprehensive model of spontaneous and perturbed gene expression dynamics was developed. The model made reliable predictions (average correlation of 0.85 between predicted and subsequently tested expression values). Even regulations predicted to be non-monotonic were successfully validated by PCR in new sets of experiments. Transient patterns of gene regulation were identified from model predictions. They pointed towards activation of Wnt signaling as a candidate pathway leading to a redirection of differentiation away from neuroepithelial cells towards neural crest. Intervention experiments, using a Wnt/beta-catenin antagonist, led to a phenotypic rescue of this disturbed differentiation. Thus, our broadly applicable model allows the analysis of transcriptome changes in complex time/perturbation matrices.
Collapse
Affiliation(s)
- Johannes Meisig
- Institute of Pathology, Charité-Universitätsmedizin, 10117 Berlin, Germany
- IRI Life Sciences, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Nadine Dreser
- In Vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden Chair foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Marion Kapitza
- In Vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden Chair foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Margit Henry
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Tamara Rotshteyn
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Jörg Rahnenführer
- Department of Statistics, TU Dortmund University, 44221 Dortmund, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), TU Dortmund University, 44139 Dortmund, Germany
| | - Agapios Sachinidis
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Tanja Waldmann
- In Vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden Chair foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden Chair foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charité-Universitätsmedizin, 10117 Berlin, Germany
- IRI Life Sciences, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
31
|
Cheffer A, Flitsch LJ, Krutenko T, Röderer P, Sokhranyaeva L, Iefremova V, Hajo M, Peitz M, Schwarz MK, Brüstle O. Human stem cell-based models for studying autism spectrum disorder-related neuronal dysfunction. Mol Autism 2020; 11:99. [PMID: 33308283 PMCID: PMC7733257 DOI: 10.1186/s13229-020-00383-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
The controlled differentiation of pluripotent stem cells (PSCs) into neurons and glia offers a unique opportunity to study early stages of human central nervous system development under controlled conditions in vitro. With the advent of cell reprogramming and the possibility to generate induced pluripotent stem cells (iPSCs) from any individual in a scalable manner, these studies can be extended to a disease- and patient-specific level. Autism spectrum disorder (ASD) is considered a neurodevelopmental disorder, with substantial evidence pointing to early alterations in neurogenesis and network formation as key pathogenic drivers. For that reason, ASD represents an ideal candidate for stem cell-based disease modeling. Here, we provide a concise review on recent advances in the field of human iPSC-based modeling of syndromic and non-syndromic forms of ASD, with a particular focus on studies addressing neuronal dysfunction and altered connectivity. We further discuss recent efforts to translate stem cell-based disease modeling to 3D via brain organoid and cell transplantation approaches, which enable the investigation of disease mechanisms in a tissue-like context. Finally, we describe advanced tools facilitating the assessment of altered neuronal function, comment on the relevance of iPSC-based models for the assessment of pharmaceutical therapies and outline potential future routes in stem cell-based ASD research.
Collapse
Affiliation(s)
- Arquimedes Cheffer
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Lea Jessica Flitsch
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Tamara Krutenko
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Pascal Röderer
- Life & Brain GmbH, Platform Cellomics, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Liubov Sokhranyaeva
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Vira Iefremova
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Mohamad Hajo
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
- Life & Brain GmbH, Platform Cellomics, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
- Cell Programming Core Facility, University of Bonn Medical Faculty, Bonn, Germany
| | - Martin Karl Schwarz
- Life & Brain GmbH, Platform Cellomics, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany.
| |
Collapse
|
32
|
An Autism-Associated Mutation Impairs Neuroligin-4 Glycosylation and Enhances Excitatory Synaptic Transmission in Human Neurons. J Neurosci 2020; 41:392-407. [PMID: 33268543 DOI: 10.1523/jneurosci.0404-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Neuroligins (NLGNs) are a class of postsynaptic cell adhesion molecules that interact with presynaptic neurexins (NRXNs) and regulate synapse function. NLGN4 is a member of the NLGN family and consists of a unique amino acid sequence in humans that is not evolutionarily well conserved in rodents. The human-specific NLGN4 gene has been reported to be mutated in many patients with autism and other neurodevelopmental disorders. However, it remained unclear how these mutations might alter the molecular properties of NLGN4 and affect synaptic transmission in human neurons. Here, we describe a severely autistic male patient carrying a single amino acid substitution (R101Q) in the NLGN4 gene. When expressed in HEK293 cells, the R101Q mutation in NLGN4 did not affect its binding affinity for NRXNs or its capacity to form homodimers. This mutation, however, impaired the maturation of NLGN4 protein by inhibiting N-linked glycosylation at an adjacent residue (N102), which is conserved in all NLGNs. As a result, the R101Q substitution significantly decreased the surface trafficking of NLGN4 and increased its retention in the endoplasmic reticulum and Golgi apparatus. In human neurons derived from male stem cell lines, the R101Q mutation also similarly reduced the synaptic localization of NLGN4, resulting in a loss-of-function phenotype. This mutation-induced trafficking defect substantially diminished the ability of NLGN4 to form excitatory synapses and modulate their functional properties. Viewed together, our findings suggest that the R101Q mutation is pathogenic for NLGN4 and can lead to synaptic dysfunction in autism.
Collapse
|
33
|
Garcia-Leon JA, Caceres-Palomo L, Sanchez-Mejias E, Mejias-Ortega M, Nuñez-Diaz C, Fernandez-Valenzuela JJ, Sanchez-Varo R, Davila JC, Vitorica J, Gutierrez A. Human Pluripotent Stem Cell-Derived Neural Cells as a Relevant Platform for Drug Screening in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21186867. [PMID: 32962164 PMCID: PMC7558359 DOI: 10.3390/ijms21186867] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular amyloid-beta deposition and intraneuronal Tau-laden neurofibrillary tangles are prime features of Alzheimer's disease (AD). The pathology of AD is very complex and still not fully understood, since different neural cell types are involved in the disease. Although neuronal function is clearly deteriorated in AD patients, recently, an increasing number of evidences have pointed towards glial cell dysfunction as one of the main causative phenomena implicated in AD pathogenesis. The complex disease pathology together with the lack of reliable disease models have precluded the development of effective therapies able to counteract disease progression. The discovery and implementation of human pluripotent stem cell technology represents an important opportunity in this field, as this system allows the generation of patient-derived cells to be used for disease modeling and therapeutic target identification and as a platform to be employed in drug discovery programs. In this review, we discuss the current studies using human pluripotent stem cells focused on AD, providing convincing evidences that this system is an excellent opportunity to advance in the comprehension of AD pathology, which will be translated to the development of the still missing effective therapies.
Collapse
Affiliation(s)
- Juan Antonio Garcia-Leon
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (L.C.-P.); (E.S.-M.); (M.M.-O.); (C.N.-D.); (J.J.F.-V.); (R.S.-V.); (J.C.D.)
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
- Correspondence: (J.A.G.-L.); (A.G.); Tel.: +34-952131935 (J.A.G.-L.); +34-952133344 (A.G.)
| | - Laura Caceres-Palomo
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (L.C.-P.); (E.S.-M.); (M.M.-O.); (C.N.-D.); (J.J.F.-V.); (R.S.-V.); (J.C.D.)
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Elisabeth Sanchez-Mejias
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (L.C.-P.); (E.S.-M.); (M.M.-O.); (C.N.-D.); (J.J.F.-V.); (R.S.-V.); (J.C.D.)
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Marina Mejias-Ortega
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (L.C.-P.); (E.S.-M.); (M.M.-O.); (C.N.-D.); (J.J.F.-V.); (R.S.-V.); (J.C.D.)
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Cristina Nuñez-Diaz
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (L.C.-P.); (E.S.-M.); (M.M.-O.); (C.N.-D.); (J.J.F.-V.); (R.S.-V.); (J.C.D.)
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Juan Jose Fernandez-Valenzuela
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (L.C.-P.); (E.S.-M.); (M.M.-O.); (C.N.-D.); (J.J.F.-V.); (R.S.-V.); (J.C.D.)
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Raquel Sanchez-Varo
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (L.C.-P.); (E.S.-M.); (M.M.-O.); (C.N.-D.); (J.J.F.-V.); (R.S.-V.); (J.C.D.)
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Jose Carlos Davila
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (L.C.-P.); (E.S.-M.); (M.M.-O.); (C.N.-D.); (J.J.F.-V.); (R.S.-V.); (J.C.D.)
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Javier Vitorica
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Sevilla, Spain
| | - Antonia Gutierrez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (L.C.-P.); (E.S.-M.); (M.M.-O.); (C.N.-D.); (J.J.F.-V.); (R.S.-V.); (J.C.D.)
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
- Correspondence: (J.A.G.-L.); (A.G.); Tel.: +34-952131935 (J.A.G.-L.); +34-952133344 (A.G.)
| |
Collapse
|
34
|
Wuputra K, Ku CC, Wu DC, Lin YC, Saito S, Yokoyama KK. Prevention of tumor risk associated with the reprogramming of human pluripotent stem cells. J Exp Clin Cancer Res 2020; 39:100. [PMID: 32493501 PMCID: PMC7268627 DOI: 10.1186/s13046-020-01584-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Human pluripotent embryonic stem cells have two special features: self-renewal and pluripotency. It is important to understand the properties of pluripotent stem cells and reprogrammed stem cells. One of the major problems is the risk of reprogrammed stem cells developing into tumors. To understand the process of differentiation through which stem cells develop into cancer cells, investigators have attempted to identify the key factors that generate tumors in humans. The most effective method for the prevention of tumorigenesis is the exclusion of cancer cells during cell reprogramming. The risk of cancer formation is dependent on mutations of oncogenes and tumor suppressor genes during the conversion of stem cells to cancer cells and on the environmental effects of pluripotent stem cells. Dissecting the processes of epigenetic regulation and chromatin regulation may be helpful for achieving correct cell reprogramming without inducing tumor formation and for developing new drugs for cancer treatment. This review focuses on the risk of tumor formation by human pluripotent stem cells, and on the possible treatment options if it occurs. Potential new techniques that target epigenetic processes and chromatin regulation provide opportunities for human cancer modeling and clinical applications of regenerative medicine.
Collapse
Affiliation(s)
- Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Ying-Chu Lin
- School of Dentistry, School of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shigeo Saito
- Waseda University Research Institute for Science and Engineering, Shinjuku, Tokyo, 162-8480, Japan.
- Saito Laboratory of Cell Technology Institute, Yaita, Tochigi, 329-1571, Japan.
| | - Kazunari K Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 807, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Waseda University Research Institute for Science and Engineering, Shinjuku, Tokyo, 162-8480, Japan.
| |
Collapse
|
35
|
Matsuda T, Nakashima K. Natural and forced neurogenesis in the adult brain: Mechanisms and their possible application to treat neurological disorders. Neurosci Res 2020; 166:1-11. [PMID: 32497571 DOI: 10.1016/j.neures.2020.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/17/2023]
Abstract
Neural stem cells (NSCs) in the adult hippocampus generate new neurons via a process referred to as neurogenesis, supporting cognitive functions. Since altered neurogenesis has been reportedly associated with several diseases such as epilepsy, the molecular basis of NSC activity is an important focus in the study of neurogenesis. Furthermore, facilitation of neurogenesis in the injured brain would be an ideal approach to replenish lost neurons for damage recovery. However, natural neurogenesis by endogenous NSCs in the adult brain is insufficient for complete recovery after severe injury. Recent advances in understanding forced neurogenesis from brain-resident non-neuronal cells by direct reprogramming and clearing hurdles to achieve it have improved the ability to replace damaged neurons in the brain. In this review, we describe molecular mechanisms underlying natural and forced neurogenesis, and discuss future directions for treatments of diseases in the central nervous system.
Collapse
Affiliation(s)
- Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
36
|
S-Adenosine Methionine (SAMe) and Valproic Acid (VPA) as Epigenetic Modulators: Special Emphasis on their Interactions Affecting Nervous Tissue during Pregnancy. Int J Mol Sci 2020; 21:ijms21103721. [PMID: 32466248 PMCID: PMC7279375 DOI: 10.3390/ijms21103721] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
S-adenosylmethionine (SAMe) is involved in many transmethylation reactions in most living organisms and is also required in the synthesis of several substances such as monoamine neurotransmitters and the N-methyl-D-aspartate (NMDA) receptor. Due to its important role as an epigenetic modulator, we discuss in some length the process of DNA methylation and demethylation and the critical periods of epigenetic modifications in the embryo, fetus, and thereafter. We also discuss the effects of SAMe deficiency and the attempts to use SAMe for therapeutic purposes such as the treatment of major depressive disorder, Alzheimer disease, and other neuropsychiatric disorders. SAMe is an approved food additive and as such is also used during pregnancy. Yet, there seems to scanty data on the possible effects of SAMe on the developing embryo and fetus. Valproic acid (VPA) is a well-tolerated and effective antiepileptic drug that is also used as a mood stabilizer. Due to its high teratogenicity, it is contraindicated in pregnancy. A major mechanism of its action is histone deacetylase inhibition, and therefore, it acts as an epigenetic modulator, mainly on the brain. This prompted clinical trials using VPA for additional indications i.e., treating degenerative brain disease such as Alzheimer disease, dementia, HIV, and even cancer. Therefore, we discuss the possible effects of VPA and SAMe on the conceptus and early postnatally, during periods of susceptibility to epigenetic modifications. VPA is also used as an inducer of autistic-like behavior in rodents and was found by us to modify gene expression when administered during the first postnatal week but not when administered to the pregnant dams on day 12 of gestation. In contrast, SAMe modified gene expression when administered on day 12 of pregnancy but not postnatally. If administered together, VPA prevented the changes in gene expression induced by prenatal SAMe administration, and SAMe prevented the gene expression changes and autistic-like behavior induced by early postnatal VPA. It is concluded that both VPA and SAMe are powerful epigenetic modifiers with antagonistic actions on the brain that will probably be used in the future more extensively for the treatment of a variety of epigenetic diseases of the nervous system.
Collapse
|
37
|
Abstract
Direct lineage conversion offers a fast and simple method to study mature neurons in vitro, but its utility for investigating neurodevelopment has remained unclear. In this issue of Cell Stem Cell, Chanda et al. (2019) use Ngn2-induced neurons to elucidate the pathogenic mechanisms of the teratogenic compound valproic acid.
Collapse
|
38
|
HORISAWA K, SUZUKI A. Direct cell-fate conversion of somatic cells: Toward regenerative medicine and industries. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:131-158. [PMID: 32281550 PMCID: PMC7247973 DOI: 10.2183/pjab.96.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cells of multicellular organisms have diverse characteristics despite having the same genetic identity. The distinctive phenotype of each cell is determined by molecular mechanisms such as epigenetic changes that occur throughout the lifetime of an individual. Recently, technologies that enable modification of the fate of somatic cells have been developed, and the number of studies using these technologies has increased drastically in the last decade. Various cell types, including neuronal cells, cardiomyocytes, and hepatocytes, have been generated using these technologies. Although most direct reprogramming methods employ forced transduction of a defined sets of transcription factors to reprogram cells in a manner similar to induced pluripotent cell technology, many other strategies, such as methods utilizing chemical compounds and microRNAs to change the fate of somatic cells, have also been developed. In this review, we summarize transcription factor-based reprogramming and various other reprogramming methods. Additionally, we describe the various industrial applications of direct reprogramming technologies.
Collapse
Affiliation(s)
- Kenichi HORISAWA
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi SUZUKI
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
- Correspondence should be addressed: A. Suzuki, Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan (e-mail: )
| |
Collapse
|
39
|
Vignoles R, Lentini C, d'Orange M, Heinrich C. Direct Lineage Reprogramming for Brain Repair: Breakthroughs and Challenges. Trends Mol Med 2019; 25:897-914. [PMID: 31371156 DOI: 10.1016/j.molmed.2019.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 01/10/2023]
Abstract
Injury to the human central nervous system (CNS) is devastating because our adult mammalian brain lacks intrinsic regenerative capacity to replace lost neurons and induce functional recovery. An emerging approach towards brain repair is to instruct fate conversion of brain-resident non-neuronal cells into induced neurons (iNs) by direct lineage reprogramming. Considerable progress has been made in converting various source cell types of mouse and human origin into clinically relevant iNs. Recent achievements using transcriptomics and epigenetics have shed light on the molecular mechanisms underpinning neuronal reprogramming, while the potential capability of iNs in promoting functional recovery in pathological contexts has started to be evaluated. Although future challenges need to be overcome before clinical translation, lineage reprogramming holds promise for effective cell-replacement therapy in regenerative medicine.
Collapse
Affiliation(s)
- Rory Vignoles
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, F-69500 Bron, France
| | - Célia Lentini
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, F-69500 Bron, France
| | - Marie d'Orange
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, F-69500 Bron, France
| | - Christophe Heinrich
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, F-69500 Bron, France.
| |
Collapse
|