1
|
Gong Y, Wang S, Fang Z, Hu X, Li Y, Che Y, Tan Z, Su B, Ge M, Pan Z. POLR1F promotes proliferation and stemness of anaplastic thyroid cancer by activating F2R/p38 MAPK signaling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119963. [PMID: 40250711 DOI: 10.1016/j.bbamcr.2025.119963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/21/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Anaplastic thyroid cancer (ATC) is one of the most aggressive cancers characterized by a rapid growth rate. Dysregulation of RNA polymerase (Pol) is critical for cancer development. However, little is known about its role and mechanism in ATC. In the present study, the expression of Pol family members is screened in a large-cohort proteome containing 113 ATCs and 20 normal thyroid samples. Combined with the mRNA levels and gene dependency scores, we find that RNA Polymerase I Subunit F (POLR1F) is significantly upregulated in ATC tissues with the strongest gene effect among the Pol family members. The results are confirmed in ATC tissues and cell lines, revealing that POLR1F mainly locates in the nucleus and expresses stronger than that in normal thyrocytes. Silencing POLR1F in ATC cell lines significantly inhibit cell proliferation, colony formation, and sphere sizes. POLR1F knockdown dramatically reduces ATC tumor growth in both zebrafish and nude mouse xenograft models. RNA sequencing reveals that the coagulation factor thrombin receptor (F2R) is a downstream target of POLR1F, which participates in the p38 MAPK pathway. POLR1F promotes the H3K4 methylation at the F2R promoter by reducing the binding of demethylase KDM5C to H3K4me3, thereby enhancing F2R transcription. These results demonstrate that POLR1F maintains ATC stemness and growth by activating F2R/p38 MAPK signaling, shedding light on the essential role of POLR1F in ATC progression.
Collapse
Affiliation(s)
- Yingying Gong
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Shanshan Wang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Ziwen Fang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Xiaoping Hu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Ying Li
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Yulu Che
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Zhuo Tan
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Hangzhou, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China
| | - Baochun Su
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Minghua Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Hangzhou, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China.
| | - Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Hangzhou, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China.
| |
Collapse
|
2
|
Moraitis I, Taelman J, Arozamena B, Mularoni L, Wienskowska O, Sanjuan Garriga X, Arregui L, Stefanovic M, Modolell Farré I, Guedea F, Diaz M, Guiu J. Mucosal Macrophages Govern Intestinal Regeneration in Response to Injury. Gastroenterology 2025:S0016-5085(25)00465-2. [PMID: 40086603 DOI: 10.1053/j.gastro.2025.01.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 01/15/2025] [Accepted: 01/30/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND & AIMS Radiation-induced enteritis develops in cancer patients treated with radiotherapy in the abdominal and pelvic cavity, a condition that impairs their quality of life. Radiation injury depletes proliferative intestinal stem cells; in response to this, the epithelium activates a regenerative program that facilitates the healing of the intestine. However, the mechanisms that induce the activation of the intestinal regenerative program are poorly characterized. METHODS In this study, we induced radiation-induced enteritis in mice through abdominal irradiation, mimicking clinical scenarios. Through imaging and flow cytometric analysis, we investigated the recruitment of macrophages to the small intestine during injury and healing. Additionally, we developed a coculture system for mouse and human intestinal organoids and macrophages to explore the cross talk between these cells. Then by combining in vivo ablation of macrophages, fluorescent lineage tracing, imaging, bulk RNA-sequencing (RNA-seq), single-cell RNA-seq, human intestinal organoids, and cell trajectory analysis, we studied the macrophage induction of intestinal regeneration at the cellular and molecular level. RESULTS Our findings revealed that macrophages are recruited around the intestinal stem cell compartment upon radiation injury, promoting a fetal-like reprogramming and proliferation of epithelial cells that drives the regeneration process. In contrast, macrophage ablation led to compromised regeneration. Moreover, our single-cell RNA-seq analysis identified key secreted molecules, neuregulin 1 and osteopontin, as pivotal players in regulating this process. Additionally, characterization of human macrophage/organoid cocultures and cell trajectory inference confirmed the conservation of macrophages' role in triggering the regenerative program in primary human cells. CONCLUSIONS This study identifies macrophages as essential contributors to intestinal regeneration beyond their innate immune response. Targeting macrophages therapeutically may hold promise in enhancing regeneration and improving the quality of life for cancer survivors.
Collapse
Affiliation(s)
- Ilias Moraitis
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain; Biomedicine PhD Program, Universitat de Barcelona, Barcelona, Spain
| | - Jasin Taelman
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Borja Arozamena
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Loris Mularoni
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Olga Wienskowska
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Xavier Sanjuan Garriga
- Department of Pathology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Arregui
- HUB-ICO-IDIBELL Biobank, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Milica Stefanovic
- Department of Radiobiology and Cancer, ONCOBELL, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Radiation Oncology, Institut Català d'Oncologia (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ignasi Modolell Farré
- Servei de Física Mèdica i Protecció Radiològica, Institut Català d'Oncologia (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ferran Guedea
- Department of Radiobiology and Cancer, ONCOBELL, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Radiation Oncology, Institut Català d'Oncologia (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mònica Diaz
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Guiu
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain; Centre for Networked Biomedical Research on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
3
|
Schwarzmueller LJ, Adam RS, Moreno LF, Nijman LE, Logiantara A, Eleonora S, Bril O, Vromans S, de Groot NE, Giugliano FP, Stepanova E, Muncan V, Elbers CC, Lenos KJ, Zwijnenburg DA, van Eijndhoven MAJ, Pegtel DM, van Neerven SM, Loayza-Puch F, Dadali T, Broom WJ, Maier MA, Koster J, Vermeulen L, Léveillé N. Identifying colorectal cancer-specific vulnerabilities in the Wnt-driven long non-coding transcriptome. Gut 2025; 74:571-585. [PMID: 39562049 PMCID: PMC12013597 DOI: 10.1136/gutjnl-2024-332752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Aberrant Wnt pathway activation is a key driver of colorectal cancer (CRC) and is essential to sustain tumour growth and progression. Although the downstream protein-coding target genes of the Wnt cascade are well known, the long non-coding transcriptome has not yet been fully resolved. OBJECTIVE In this study, we aim to comprehensively reveal the Wnt-regulated long non-coding transcriptome and exploit essential molecules as novel therapeutic targets. DESIGN We used global run-on sequencing to define β-catenin-regulated long non-coding RNAs (lncRNAs) in CRC. CRISPRi dropout screens were subsequently used to establish the functional relevance of a subset of these lncRNAs for long-term expansion of CRC. RESULTS We uncovered that LINC02418 is essential for cancer cell clonogenic outgrowth. Mechanistically, LINC02418 regulates MYC expression levels to promote CRC stem cell functionality and prevent terminal differentiation. Furthermore, we developed effective small interfering RNA (siRNA)-based therapeutics to target LINC02418 RNA in vivo. CONCLUSION We propose that cancer-specific Wnt-regulated lncRNAs provide novel therapeutic opportunities to interfere with the Wnt pathway, which has so far defied effective pharmacological inhibition.
Collapse
Affiliation(s)
- Laura J Schwarzmueller
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Ronja S Adam
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Leandro F Moreno
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Lisanne E Nijman
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Adrian Logiantara
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Steven Eleonora
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Oscar Bril
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Sophie Vromans
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Nina E de Groot
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Francesca Paola Giugliano
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ekaterina Stepanova
- Translational Control and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vanesa Muncan
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Clara C Elbers
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Kristiaan J Lenos
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Danny A Zwijnenburg
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Dirk Michiel Pegtel
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sanne M van Neerven
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Fabricio Loayza-Puch
- Translational Control and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tulin Dadali
- Alnylam Pharmaceuticals Inc, Cambridge, Massachusetts, USA
| | - Wendy J Broom
- Alnylam Pharmaceuticals Inc, Cambridge, Massachusetts, USA
| | - Martin A Maier
- Alnylam Pharmaceuticals Inc, Cambridge, Massachusetts, USA
| | - Jan Koster
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Nicolas Léveillé
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Qiu W, Dincer AB, Janizek JD, Celik S, Pittet MJ, Naxerova K, Lee SI. Deep profiling of gene expression across 18 human cancers. Nat Biomed Eng 2025; 9:333-355. [PMID: 39690287 DOI: 10.1038/s41551-024-01290-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/23/2024] [Indexed: 12/19/2024]
Abstract
Clinical and biological information in large datasets of gene expression across cancers could be tapped with unsupervised deep learning. However, difficulties associated with biological interpretability and methodological robustness have made this impractical. Here we describe an unsupervised deep-learning framework for the generation of low-dimensional latent spaces for gene-expression data from 50,211 transcriptomes across 18 human cancers. The framework, which we named DeepProfile, outperformed dimensionality-reduction methods with respect to biological interpretability and allowed us to unveil that genes that are universally important in defining latent spaces across cancer types control immune cell activation, whereas cancer-type-specific genes and pathways define molecular disease subtypes. By linking latent variables in DeepProfile to secondary characteristics of tumours, we discovered that mutation burden is closely associated with the expression of cell-cycle-related genes, and that the activity of biological pathways for DNA-mismatch repair and MHC class II antigen presentation are consistently associated with patient survival. We also found that tumour-associated macrophages are a source of survival-correlated MHC class II transcripts. Unsupervised learning can facilitate the discovery of biological insight from gene-expression data.
Collapse
Affiliation(s)
- Wei Qiu
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Ayse B Dincer
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Joseph D Janizek
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Safiye Celik
- Recursion Pharmaceuticals, Salt Lake City, UT, USA
| | - Mikael J Pittet
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- AGORA Cancer Research Center and Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Kamila Naxerova
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Su-In Lee
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
Wang Q, Hu T, Zhang Q, Zhang Y, Dong X, Jin Y, Li J, Guo Y, Guo F, Chen Z, Zhong P, Yang Y, Ma Y. Fusobacterium nucleatum promotes colorectal cancer through neogenesis of tumor stem cells. J Clin Invest 2025; 135:e181595. [PMID: 39656543 PMCID: PMC11785920 DOI: 10.1172/jci181595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 12/05/2024] [Indexed: 02/04/2025] Open
Abstract
Intestinal stem cells are crucial for maintaining intestinal homeostasis, yet their transformation into tumor stem cells in the context of microbial infection remains poorly understood. Fusobacterium nucleatum is frequently associated with the onset and progression of colorectal cancer (CRC). In this study, we uncovered that F. nucleatum colonized the depths of gut crypts in both patients with CRC and mouse models. Through single-cell sequencing analysis, we demonstrated that F. nucleatum infection reprogrammed crypt cells and activated lymphocyte antigen 6 complex, locus A+ ( LY6A+, also known as stem cell antigen 1 [Sca-1]) revival stem cells (RSCs), promoting their hyperproliferation and subsequent transformation into tumor stem cells, which accelerated intestinal carcinogenesis. Mechanistically, we identified LY6A as a glycosylphosphatidylinositol-anchored (GPI-anchored) membrane receptor for F. nucleatum. Upon binding, F. nucleatum induced the upregulation of ribosomal protein S14 (RPS14) via the LY6A receptor, driving RSC hyperactivity and tumorigenic conversion. Functional studies showed that genetic ablation of Ly6a in intestinal epithelial cells or Rps14 in LY6A+ RSCs substantially reduced F. nucleatum colonization and tumorigenesis. Moreover, analysis of clinical CRC cohorts revealed a strong correlation between F. nucleatum infection, RSC expansion, and elevated RPS14 expression in tumor tissues. These findings highlight an alternative F. nucleatum/LY6A/RPS14 signaling axis as a critical driver of CRC progression and propose potential therapeutic targets for effective CRC intervention.
Collapse
Affiliation(s)
- Qinying Wang
- Department of Colorectal Surgery and
- Department of Cancer Institute, Fudan University Shanghai Cancer Center (FUSCC), Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tingting Hu
- Department of Colorectal Surgery and
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qinyuan Zhang
- Department of Colorectal Surgery and
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yichi Zhang
- Department of Colorectal Surgery and
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoxu Dong
- Department of Colorectal Surgery and
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yutao Jin
- Department of Colorectal Surgery and
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinming Li
- Department of Colorectal Surgery and
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yangyang Guo
- Department of Colorectal Surgery and
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanying Guo
- Department of Colorectal Surgery and
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ziying Chen
- Department of Colorectal Surgery and
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peijie Zhong
- Department of Colorectal Surgery and
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yongzhi Yang
- Department of Colorectal Surgery and
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanlei Ma
- Department of Colorectal Surgery and
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Villarreal OE, Xu Y, Tran H, Machado A, Prescod D, Anderson A, Minelli R, Peoples M, Martinez AH, Lee HM, Wong CW, Fowlkes N, Kanikarla P, Sorokin A, Alshenaifi J, Coker O, Lin K, Bristow C, Viale A, Shen JP, Parseghian C, Marszalek JR, Corcoran R, Kopetz S. Adaptive Plasticity Tumor Cells Modulate MAPK-Targeting Therapy Response in Colorectal Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634215. [PMID: 39896605 PMCID: PMC11785218 DOI: 10.1101/2025.01.22.634215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
MAPK pathway inhibitors (MAPKi) are increasingly used in the treatment of advanced colorectal cancer, but often produce short-lived responses in patients. Although acquired resistance by de novo mutations in tumors have been found to reduce response in some patients, additional mechanisms underlying the limited response durability of MAPK targeting therapy remain unknown. Here, we denote new contributory tumor biology and provide insight on the impact of tumor plasticity on therapy response. Analysis of MAPKi treated patients revealed activation of stemness programs and increased ASCL2 expression, which are associated with poor outcomes. Greater ASCL2 with MAPKi treatment was also seen in patient-derived CRC models, independent of driver mutations. We find ASCL2 denotes a distinct cell population, arising from phenotypic plasticity, with a proliferative, stem-like phenotype, and decreased sensitivity to MAPKi therapy, which were named adaptive plasticity tumor (APT) cells. MAPK pathway suppression induces the APT phenotype in cells, resulting in APT cell enrichment in tumors and limiting therapy response in preclinical and clinical data. APT cell depletion improved MAPKi treatment efficacy and extended MAPKi response durability in mice. These findings uncover a cellular program that mitigates the impact of MAPKi therapies and highlights the importance of addressing tumor plasticity to improve clinical outcomes.
Collapse
|
7
|
Zhou M, Niu H, Huang G, Zhou M, Cui D, Li H, Wen H, Zhang H, Liang F, Chen R. Biomimetic Nano-delivery of Small-Molecule Piceatannol Modulates Tumor Stemness and Suppresses Colorectal Cancer Metastasis via Hippo/YAP1/SOX9 Signaling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407191. [PMID: 39523731 PMCID: PMC11735875 DOI: 10.1002/smll.202407191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Suppressing tumor metastasis is a crucial strategy for improving survival rates in patients with colorectal cancer (CRC), with cancer stem cells (CSCs) being the primary drivers of metastasis. Current therapeutic approaches targeting CSCs are limited, and their molecular mechanisms remain unclear. To address this challenge, a biomimetic nanoparticle delivery system, CMD-BHQ3-PTL/DOX@RBCM is developed, to deliver the stem cell regulator, piceatannol (PTL). This system used carboxymethyl dextran (CMD) and Black Hole Quencher 3 (BHQ3) to encapsulate PTL and the cytotoxic drug doxorubicin (DOX) within a red blood cell membrane (RBCm), enhancing stability and biocompatibility while allowing gradual drug release under hypoxic conditions. The effects of PTL are investigated on CSCs using molecular biology experiments, plasmid construction, and high-throughput sequencing and elucidated the molecular mechanisms underlying this biomimetic nanoparticle delivery system. The therapeutic efficacy of PTL is validated at the tissue level using subcutaneous and metastatic tumor models in human and murine systems. The results demonstrated that CMD-BHQ3-PTL/DOX@RBCM effectively addressed the challenges of specificity and biocompatibility in vivo, significantly inhibiting CSC-related tumor metastasis. This inhibitory effect is closely associated with the Hippo/YAP1/SOX9 pathway. This study highlights the effectiveness of the pH-responsive biomimetic nanoparticle system CMD-BHQ3-PTL/DOX@RBCm in delivering PTL to tumor sites, with SOX9 and its upstream Hippo/YAP1 pathway playing a critical role in the underlying mechanism.
Collapse
Affiliation(s)
- Minfeng Zhou
- Department of Integrative Chinese and Western MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Huifang Niu
- Jianghan University School of Medicine8 Triangle Lake RoadWuhan430056China
- Jianghan University Institute of Acupuncture and Moxibustion8 Triangle Lake RoadWuhan430056China
| | - Guoquan Huang
- Hubei Selenium and Human Health InstituteThe Central Hospital of Enshi Tujia and Miao Autonomous Prefecture. No.158 Wuyang AvenueEnshiHubei Province445000China
- Department of Colorectal and Anal SurgeryCentral Hospital of Enshi Tujia and Miao Autonomous Prefecture. No.158 Wuyang AvenueEnshiHubei Province445000China
| | - Minquan Zhou
- School of Pharmacy and NursingHubei University of MedicineShiyan442000China
| | - Dandan Cui
- Department of Integrative Chinese and Western MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Huarong Li
- Department of Integrative Chinese and Western MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Han Wen
- The Second Affiliated Hospital of Shenyang Medical College64 West Qishan RoadShengyang110036China
| | - Hongxing Zhang
- Jianghan University School of Medicine8 Triangle Lake RoadWuhan430056China
- Jianghan University Institute of Acupuncture and Moxibustion8 Triangle Lake RoadWuhan430056China
| | - Fengxia Liang
- School of Acupuncture and Bone InjuryHubei University of Traditional Chinese MedicineWuhan430065China
| | - Rui Chen
- Department of Integrative Chinese and Western MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
8
|
Chen J, Li Y, Wang Y, Wang H, Yang J, Pan X, Zhao Y, Xu H, Jiang P, Qian P, Wang H, Xie Z, Lei K. Fibrillarin homologs regulate translation in divergent cell lineages during planarian homeostasis and regeneration. EMBO J 2024; 43:6591-6625. [PMID: 39567829 PMCID: PMC11649923 DOI: 10.1038/s44318-024-00315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
Tissue homeostasis and regeneration involve complex cellular changes. The role of rRNA modification-dependent translational regulation in these processes remains largely unknown. Planarians, renowned for their ability to undergo remarkable tissue regeneration, provide an ideal model for the analysis of differential rRNA regulation in diverse cell types during tissue homeostasis and regeneration. We investigated the role of RNA 2'-O-methyltransferase, Fibrillarin (FBL), in the planarian Schmidtea mediterranea and identified two FBL homologs: Smed-fbl-1 (fbl-1) and Smed-fbl-2 (fbl-2). Both are essential for planarian regeneration, but play distinct roles: fbl-1 is crucial for progenitor cell differentiation, while fbl-2 is important for late-stage epidermal lineage specification. Different 2'-O-methylation patterns were observed upon fbl-1 and fbl-2 knockdown, suggesting their roles in translation of specific mRNA pools during regeneration. Ribo-seq analysis further revealed differing impacts of fbl-1 and fbl-2 knockdown on gene translation. These findings indicate divergent roles of the duplicate fbl genes in specific cell lineage development in planarians and suggest a role of rRNA modifications in translational regulation during tissue maintenance and regeneration.
Collapse
Affiliation(s)
- Jiajia Chen
- School of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yucong Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Fudan University, Shanghai, China
| | - Yan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangzhou, China
| | - Hui Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Jiaqi Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangzhou, China
| | - Xue Pan
- School of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yun Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Fudan University, Shanghai, China
| | - Hao Xu
- School of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Penglei Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Hongwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangzhou, China
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangzhou, China
| | - Kai Lei
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Qiu W, Dincer AB, Janizek JD, Celik S, Pittet M, Naxerova K, Lee SI. A deep profile of gene expression across 18 human cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585426. [PMID: 38559197 PMCID: PMC10980029 DOI: 10.1101/2024.03.17.585426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Clinically and biologically valuable information may reside untapped in large cancer gene expression data sets. Deep unsupervised learning has the potential to extract this information with unprecedented efficacy but has thus far been hampered by a lack of biological interpretability and robustness. Here, we present DeepProfile, a comprehensive framework that addresses current challenges in applying unsupervised deep learning to gene expression profiles. We use DeepProfile to learn low-dimensional latent spaces for 18 human cancers from 50,211 transcriptomes. DeepProfile outperforms existing dimensionality reduction methods with respect to biological interpretability. Using DeepProfile interpretability methods, we show that genes that are universally important in defining the latent spaces across all cancer types control immune cell activation, while cancer type-specific genes and pathways define molecular disease subtypes. By linking DeepProfile latent variables to secondary tumor characteristics, we discover that tumor mutation burden is closely associated with the expression of cell cycle-related genes. DNA mismatch repair and MHC class II antigen presentation pathway expression, on the other hand, are consistently associated with patient survival. We validate these results through Kaplan-Meier analyses and nominate tumor-associated macrophages as an important source of survival-correlated MHC class II transcripts. Our results illustrate the power of unsupervised deep learning for discovery of cancer biology from existing gene expression data.
Collapse
Affiliation(s)
- Wei Qiu
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA
| | - Ayse B. Dincer
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA
| | - Joseph D. Janizek
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA
- Medical Scientist Training Program, University of Washington, Seattle, WA
| | | | - Mikael Pittet
- Department of Pathology and Immunology, University of Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Switzerland
| | - Kamila Naxerova
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Su-In Lee
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA
| |
Collapse
|
10
|
Kongtanawanich K, Prasopporn S, Jamnongsong S, Thongsin N, Payungwong T, Okada S, Hokland M, Wattanapanitch M, Jirawatnotai S. A live single-cell reporter system reveals drug-induced plasticity of a cancer stem cell-like population in cholangiocarcinoma. Sci Rep 2024; 14:22619. [PMID: 39349745 PMCID: PMC11442615 DOI: 10.1038/s41598-024-73581-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
Cancer stem cells (CSC) play an important role in carcinogenesis and are acknowledged to be responsible for chemoresistance in cholangiocarcinoma (CCA). Studying CCA CSC has been challenging, due to lack of consensus CSC markers, and to their plastic nature. Since dual expression of the core pluripotent factors SOX2/OCT4 has been shown to correlate with poor outcome in CCA patients, we selected the SOX2/OCT4 activating short half-life GFP-based live reporter (SORE6-dsCopGFP) to study CSC dynamics at the single-cell level. Transduction of five human CCA cell lines resulted in the expression of 1.8-13.1% GFP-positive (SORE6POS) cells. By live imaging, we found that SORE6POS CCA cells possess self-renewal capacity and that they can be induced to differentiate. Significantly, the SORE6POS cells were highly tumorigenic, both in vitro and in vivo, thus implicating the characteristics of primary CSCs. When we then analyzed for selected CSC-related markers, we found that the majority of both CD133+/CD44+, and CD133+/LGR5+ CCA cells were SORE6POS cells. Exposing transduced cells to standard CCA chemotherapy revealed higher growth rate inhibition at 50% (GR50s) for SORE6POS cells compared to GFP-negative (SORE6NEG) ones indicating that these CSC-like cells were more resistant to the treatment. Moreover, the chemotherapy induced SORE6POS from SORE6NEG cells, while retaining the existing SORE6POS population. Finally, treatment of transduced cells with CDK4/6 inhibitors in vitro for 3 days resulted in a lowered CSC number in the culture. Thus, applying a live reporter system allowed us to elucidate the stem cell diversity and drug-induced plasticity of CCA CSCs. These findings have clear implications for future management of such patients.
Collapse
Affiliation(s)
| | - Sunisa Prasopporn
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supawan Jamnongsong
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nontaphat Thongsin
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tongchai Payungwong
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | | | - Methichit Wattanapanitch
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Siwanon Jirawatnotai
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand.
| |
Collapse
|
11
|
Imada S, Khawaled S, Shin H, Meckelmann SW, Whittaker CA, Corrêa RO, Alquati C, Lu Y, Tie G, Pradhan D, Calibasi-Kocal G, Nascentes Melo LM, Allies G, Rösler J, Wittenhofer P, Krystkiewicz J, Schmitz OJ, Roper J, Vinolo MAR, Ricciardiello L, Lien EC, Vander Heiden MG, Shivdasani RA, Cheng CW, Tasdogan A, Yilmaz ÖH. Short-term post-fast refeeding enhances intestinal stemness via polyamines. Nature 2024; 633:895-904. [PMID: 39169180 PMCID: PMC12103248 DOI: 10.1038/s41586-024-07840-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
For over a century, fasting regimens have improved health, lifespan and tissue regeneration in diverse organisms, including humans1-6. However, how fasting and post-fast refeeding affect adult stem cells and tumour formation has yet to be explored in depth. Here we demonstrate that post-fast refeeding increases intestinal stem cell (ISC) proliferation and tumour formation; post-fast refeeding augments the regenerative capacity of Lgr5+ ISCs, and loss of the tumour suppressor gene Apc in post-fast-refed ISCs leads to a higher tumour incidence in the small intestine and colon than in the fasted or ad libitum-fed states, demonstrating that post-fast refeeding is a distinct state. Mechanistically, we discovered that robust mTORC1 induction in post-fast-refed ISCs increases protein synthesis via polyamine metabolism to drive these changes, as inhibition of mTORC1, polyamine metabolite production or protein synthesis abrogates the regenerative or tumorigenic effects of post-fast refeeding. Given our findings, fast-refeeding cycles must be carefully considered and tested when planning diet-based strategies for regeneration without increasing cancer risk, as post-fast refeeding leads to a burst in stem-cell-driven regeneration and tumorigenicity.
Collapse
Affiliation(s)
- Shinya Imada
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Saleh Khawaled
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Heaji Shin
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Charles A Whittaker
- Barbara K. Ostrom (1978) Bioinformatics and Computing Core Facility, Swanson Biotechnology Center, Koch Institute at the MIT, Cambridge, MA, USA
| | - Renan Oliveira Corrêa
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, São Paulo, Brazil
| | - Chiara Alquati
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Yixin Lu
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Guodong Tie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Dikshant Pradhan
- Barbara K. Ostrom (1978) Bioinformatics and Computing Core Facility, Swanson Biotechnology Center, Koch Institute at the MIT, Cambridge, MA, USA
| | - Gizem Calibasi-Kocal
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, Izmir-Turkey, Turkey
| | | | - Gabriele Allies
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Jonas Rösler
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Pia Wittenhofer
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Jonathan Krystkiewicz
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Oliver J Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Jatin Roper
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Marco Aurelio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, São Paulo, Brazil
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Department of Gastroenterology, Hepatology and Nutrition, MD Anderson Cancer Center, Houston, TX, USA
| | - Evan C Lien
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Matthew G Vander Heiden
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Chia-Wei Cheng
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany.
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Pathology, Beth Israel Deaconess Medical Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Fey SK, Vaquero-Siguero N, Jackstadt R. Dark force rising: Reawakening and targeting of fetal-like stem cells in colorectal cancer. Cell Rep 2024; 43:114270. [PMID: 38787726 DOI: 10.1016/j.celrep.2024.114270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/14/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Stem cells play pivotal roles in maintaining intestinal homeostasis, orchestrating regeneration, and in key steps of colorectal cancer (CRC) initiation and progression. Intriguingly, adult stem cells are reduced during many of these processes. On the contrary, primitive fetal programs, commonly detected in development, emerge during tissue repair, CRC metastasis, and therapy resistance. Recent findings indicate a dynamic continuum between adult and fetal stem cell programs. We discuss critical mechanisms facilitating the plasticity between stem cell states and highlight the heterogeneity observed upon the appearance of fetal-like states. We focus on therapeutic opportunities that arise by targeting fetal-like CRC cells and how those concepts can be translated into the clinic.
Collapse
Affiliation(s)
- Sigrid K Fey
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Nuria Vaquero-Siguero
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Rene Jackstadt
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
13
|
Hwang SP, Denicourt C. The impact of ribosome biogenesis in cancer: from proliferation to metastasis. NAR Cancer 2024; 6:zcae017. [PMID: 38633862 PMCID: PMC11023387 DOI: 10.1093/narcan/zcae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
The dysregulation of ribosome biogenesis is a hallmark of cancer, facilitating the adaptation to altered translational demands essential for various aspects of tumor progression. This review explores the intricate interplay between ribosome biogenesis and cancer development, highlighting dynamic regulation orchestrated by key oncogenic signaling pathways. Recent studies reveal the multifaceted roles of ribosomes, extending beyond protein factories to include regulatory functions in mRNA translation. Dysregulated ribosome biogenesis not only hampers precise control of global protein production and proliferation but also influences processes such as the maintenance of stem cell-like properties and epithelial-mesenchymal transition, contributing to cancer progression. Interference with ribosome biogenesis, notably through RNA Pol I inhibition, elicits a stress response marked by nucleolar integrity loss, and subsequent G1-cell cycle arrest or cell death. These findings suggest that cancer cells may rely on heightened RNA Pol I transcription, rendering ribosomal RNA synthesis a potential therapeutic vulnerability. The review further explores targeting ribosome biogenesis vulnerabilities as a promising strategy to disrupt global ribosome production, presenting therapeutic opportunities for cancer treatment.
Collapse
Affiliation(s)
- Sseu-Pei Hwang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Catherine Denicourt
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
14
|
Higa T, Nakayama KI. Cell cycle heterogeneity and plasticity of colorectal cancer stem cells. Cancer Sci 2024; 115:1370-1377. [PMID: 38413370 PMCID: PMC11093209 DOI: 10.1111/cas.16117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/29/2024] Open
Abstract
Cancer stem cells (CSCs) are a long-lived and self-renewing cancer cell population that drives tumor propagation and maintains cancer heterogeneity. They are also implicated in the therapeutic resistance of various types of cancer. Recent studies of CSCs in colorectal cancer (CRC) have uncovered fundamental paradigms that have increased understanding of CSC systems in solid tumors. Colorectal CSCs share multiple biological properties with normal intestinal stem cells (ISCs), including expression of the stem cell marker Lgr5. New evidence suggests that colorectal CSCs manifest substantial heterogeneity, as exemplified by the existence of both actively cycling Lgr5+ CSCs as well as quiescent Lgr5+ CSCs that are resistant to conventional anticancer therapies. The classical view of a rigid cell hierarchy and irreversible cell differentiation trajectory in normal and neoplastic tissues is now challenged by the finding that differentiated cells have the capacity to revert to stem cells through dynamic physiological reprogramming events. Such plasticity of CSC systems likely underlies both carcinogenesis and therapeutic resistance in CRC. Further characterization of the mechanisms underpinning the heterogeneity and plasticity of CSCs should inform future development of eradicative therapeutic strategies for CRC.
Collapse
Affiliation(s)
- Tsunaki Higa
- Department of Molecular and Cellular Biology, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
- Anticancer Strategies Laboratory, TMDU Advanced Research InstituteTokyo Medical and Dental UniversityTokyoJapan
| |
Collapse
|
15
|
Conti S, Venturini V, Cañellas-Socias A, Cortina C, Abenza JF, Stephan-Otto Attolini C, Middendorp Guerra E, Xu CK, Li JH, Rossetti L, Stassi G, Roca-Cusachs P, Diz-Muñoz A, Ruprecht V, Guck J, Batlle E, Labernadie A, Trepat X. Membrane to cortex attachment determines different mechanical phenotypes in LGR5+ and LGR5- colorectal cancer cells. Nat Commun 2024; 15:3363. [PMID: 38637494 PMCID: PMC11026456 DOI: 10.1038/s41467-024-47227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
Colorectal cancer (CRC) tumors are composed of heterogeneous and plastic cell populations, including a pool of cancer stem cells that express LGR5. Whether these distinct cell populations display different mechanical properties, and how these properties might contribute to metastasis is poorly understood. Using CRC patient derived organoids (PDOs), we find that compared to LGR5- cells, LGR5+ cancer stem cells are stiffer, adhere better to the extracellular matrix (ECM), move slower both as single cells and clusters, display higher nuclear YAP, show a higher survival rate in response to mechanical confinement, and form larger transendothelial gaps. These differences are largely explained by the downregulation of the membrane to cortex attachment proteins Ezrin/Radixin/Moesin (ERMs) in the LGR5+ cells. By analyzing single cell RNA-sequencing (scRNA-seq) expression patterns from a patient cohort, we show that this downregulation is a robust signature of colorectal tumors. Our results show that LGR5- cells display a mechanically dynamic phenotype suitable for dissemination from the primary tumor whereas LGR5+ cells display a mechanically stable and resilient phenotype suitable for extravasation and metastatic growth.
Collapse
Affiliation(s)
- Sefora Conti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Valeria Venturini
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Adrià Cañellas-Socias
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC), Barcelona, Spain
| | - Carme Cortina
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC), Barcelona, Spain
| | - Juan F Abenza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Emily Middendorp Guerra
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC), Barcelona, Spain
| | - Catherine K Xu
- Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Jia Hui Li
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Leone Rossetti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Giorgio Stassi
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Facultat de Medicina, University of Barcelona (UB), Barcelona, Spain
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Verena Ruprecht
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Max-Planck Zentrum für Physik und Medizin, Erlangen, Germany
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Anna Labernadie
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Principe Felipe (CIPF), Valencia, Spain.
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
- Facultat de Medicina, University of Barcelona (UB), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain.
| |
Collapse
|
16
|
Dagostino R, Gottlieb A. Tissue-specific atlas of trans-models for gene regulation elucidates complex regulation patterns. BMC Genomics 2024; 25:377. [PMID: 38632500 PMCID: PMC11022497 DOI: 10.1186/s12864-024-10317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/16/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Deciphering gene regulation is essential for understanding the underlying mechanisms of healthy and disease states. While the regulatory networks formed by transcription factors (TFs) and their target genes has been mostly studied with relation to cis effects such as in TF binding sites, we focused on trans effects of TFs on the expression of their transcribed genes and their potential mechanisms. RESULTS We provide a comprehensive tissue-specific atlas, spanning 49 tissues of TF variations affecting gene expression through computational models considering two potential mechanisms, including combinatorial regulation by the expression of the TFs, and by genetic variants within the TF. We demonstrate that similarity between tissues based on our discovered genes corresponds to other types of tissue similarity. The genes affected by complex TF regulation, and their modelled TFs, were highly enriched for pharmacogenomic functions, while the TFs themselves were also enriched in several cancer and metabolic pathways. Additionally, genes that appear in multiple clusters are enriched for regulation of immune system while tissue clusters include cluster-specific genes that are enriched for biological functions and diseases previously associated with the tissues forming the cluster. Finally, our atlas exposes multilevel regulation across multiple tissues, where TFs regulate other TFs through the two tested mechanisms. CONCLUSIONS Our tissue-specific atlas provides hierarchical tissue-specific trans genetic regulations that can be further studied for association with human phenotypes.
Collapse
Affiliation(s)
- Robert Dagostino
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Assaf Gottlieb
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
17
|
Piecyk M, Fauvre J, Duret C, Chaveroux C, Ferraro-Peyret C. SUrface SEnsing of Translation (SUnSET), a Method Based on Western Blot Assessing Protein Synthesis Rates in vitro. Bio Protoc 2024; 14:e4933. [PMID: 38379826 PMCID: PMC10875356 DOI: 10.21769/bioprotoc.4933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 02/22/2024] Open
Abstract
As the most energy- and metabolite-consuming process, protein synthesis is under the control of several intrinsic and extrinsic factors that determine its fine-tuning to the cellular microenvironment. Consequently, variations in protein synthesis rates occur under various physiological and pathological conditions, enabling an adaptive response by the cell. For example, global protein synthesis increases upon mitogenic factors to support biomass generation and cell proliferation, while exposure to low concentrations of oxygen or nutrients require translational repression and reprogramming to avoid energy depletion and cell death. To assess fluctuations in protein synthesis rates, radioactive isotopes or radiolabeled amino acids are often used. Although highly sensitive, these techniques involve the use of potentially toxic radioactive compounds and require specific materials and processes for the use and disposal of these molecules. The development of alternative, non-radioactive methods that can be easily and safely implemented in laboratories has therefore been encouraged to avoid handling radioactivity. In this context, the SUrface SEnsing of Translation (SUnSET) method, based on the classical western blot technique, was developed by Schmidt et al. in 2009. The SUnSET is nowadays recognized as a simple alternative to radioactive methods assessing protein synthesis rates. Key features • As a structural analogue of aminoacyl-transfer RNA, puromycin incorporates into the elongating peptide chain. • Detection of puromycin-labeled peptides by western blotting reflects translation rates without the need for radioactive isotopes. • The protocol described here for in vitro applications is derived from the SUnSET method originally published by Schmidt et al. (2009).
Collapse
Affiliation(s)
- Marie Piecyk
- Centre de Recherche en Cancérologie de Lyon,
INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de
Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Joëlle Fauvre
- Centre de Recherche en Cancérologie de Lyon,
INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de
Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Cédric Duret
- Centre de Recherche en Cancérologie de Lyon,
INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de
Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Cédric Chaveroux
- Centre de Recherche en Cancérologie de Lyon,
INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de
Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Carole Ferraro-Peyret
- Centre de Recherche en Cancérologie de Lyon,
INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de
Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Hospices Civils de Lyon, Laboratoire AURAGEN,
Hôpital E. Herriot, Lyon, France
| |
Collapse
|
18
|
Ruz-Caracuel I, Pedraza-Arevalo S, Alonso-Gordoa T, Molina-Cerrillo J, Earl J, Sainz B. Everything you ever wanted to know about cancer stem cells in neuroendocrine neoplasms but were afraid to ask. ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2024; 4:e240006. [PMID: 39822777 PMCID: PMC11737516 DOI: 10.1530/eo-24-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/28/2024] [Accepted: 10/30/2024] [Indexed: 01/19/2025]
Abstract
While the role of cancer stem cells (CSCs) in tumorigenesis, chemoresistance, metastasis, and relapse has been extensively studied in solid tumors, such as adenocarcinomas or sarcomas, the same cannot be said for neuroendocrine neoplasms (NENs). While lagging, CSCs have been described in numerous NENs, including gastrointestinal and pancreatic NENs (PanNENs), and they have been found to play critical roles in tumor initiation, progression, and treatment resistance. However, it seems that there is still skepticism regarding the role of CSCs in NENs, even in light of studies that support the CSC model in these tumors and the therapeutic benefits of targeting them. For example, in lung neuroendocrine carcinoids, a high percentage of CSCs have been found in atypical carcinoids, suggesting the presence of CSCs in these cancers. In PanNENs, CSCs marked by aldehyde dehydrogenases or CD90 have been identified, and targeting CSCs with inhibitors of molecular pathways has shown therapeutic potential. Overall, while evidence exists for the presence of CSCs in NENs, either the CSC field has neglected NENs or the NEN field has not fully embraced the CSC model. Both might apply and/or may be a consequence of the fact that NENs are a relatively rare and heterogeneous tumor entity, with confusing histology and nomenclature to match. Regardless, this review intends to summarize our current knowledge of CSCs in NENs and highlight the importance of understanding the role of CSCs in the biology of these rare tumors, with a special focus on developing targeted therapies to improve patients' outcomes.
Collapse
Affiliation(s)
- Ignacio Ruz-Caracuel
- Pathology Department, Hospital
Universitario Ramón y Cajal, Madrid,
Spain
- Molecular Pathology of Cancer
Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación
Sanitaria (IRYCIS), Madrid,
Spain
- Centro de Investigación
Biomédica en Red, CIBERONC, ISCIII, Madrid,
Spain
| | - Sergio Pedraza-Arevalo
- Maimonides Biomedical Research
Institute of Córdoba (IMIBIC), Cordoba,
Spain
- Department of Cell Biology,
Physiology, and Immunology, University of Córdoba,
Cordoba, Spain
- Reina Sofía University
Hospital (HURS), Cordoba,
Spain
| | - Teresa Alonso-Gordoa
- Molecular Pathology of Cancer
Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación
Sanitaria (IRYCIS), Madrid,
Spain
- Medical Oncology Department,
Hospital Universitario Ramón y Cajal, Madrid,
Spain
| | | | - Julie Earl
- Centro de Investigación
Biomédica en Red, CIBERONC, ISCIII, Madrid,
Spain
- Biomarkers and Personalized
Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal
de Investigación Sanitaria (IRYCIS), Madrid,
Spain
| | - Bruno Sainz
- Centro de Investigación
Biomédica en Red, CIBERONC, ISCIII, Madrid,
Spain
- Biomarkers and Personalized
Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal
de Investigación Sanitaria (IRYCIS), Madrid,
Spain
- Department of Cancer, Instituto
de Investigaciones Biomédicas (IIBm) Sols-Morreale
(CSIC-UAM), Madrid, Spain
| |
Collapse
|
19
|
Zhao H, Han R, Wang Z, Xian J, Bai X. Colorectal Cancer Stem Cells and Targeted Agents. Pharmaceutics 2023; 15:2763. [PMID: 38140103 PMCID: PMC10748092 DOI: 10.3390/pharmaceutics15122763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Since their discovery, cancer stem cells have become a hot topic in cancer therapy research. These cells possess stem cell-like self-renewal and differentiation capacities and are important factors that dominate cancer metastasis, therapy-resistance and recurrence. Worse, their inherent characteristics make them difficult to eliminate. Colorectal cancer is the third-most common cancer and the second leading cause of cancer death worldwide. Targeting colorectal cancer stem cells (CR-CSCs) can inhibit colorectal cancer metastasis, enhance therapeutic efficacy and reduce recurrence. Here, we introduced the origin, biomarker proteins, identification, cultivation and research techniques of CR-CSCs, and we summarized the signaling pathways that regulate the stemness of CR-CSCs, such as Wnt, JAK/STAT3, Notch and Hh signaling pathway. In addition to these, we also reviewed recent anti-CR-CSC drugs targeting signaling pathways, biomarkers and other regulators. These will help researchers gain insight into the current agents targeting to CR-CSCs, explore new cancer drugs and propose potential therapies.
Collapse
Affiliation(s)
- Haobin Zhao
- Department of General Practice, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China; (H.Z.); (J.X.)
- Endocrinology Department, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China
| | - Ruining Han
- Obstetric Department, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China;
| | - Zhankun Wang
- Emergency Department, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China;
| | - Junfang Xian
- Department of General Practice, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China; (H.Z.); (J.X.)
| | - Xiaosu Bai
- Endocrinology Department, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China
| |
Collapse
|
20
|
Ramos Zapatero M, Tong A, Opzoomer JW, O'Sullivan R, Cardoso Rodriguez F, Sufi J, Vlckova P, Nattress C, Qin X, Claus J, Hochhauser D, Krishnaswamy S, Tape CJ. Trellis tree-based analysis reveals stromal regulation of patient-derived organoid drug responses. Cell 2023; 186:5606-5619.e24. [PMID: 38065081 DOI: 10.1016/j.cell.2023.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/27/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Patient-derived organoids (PDOs) can model personalized therapy responses; however, current screening technologies cannot reveal drug response mechanisms or how tumor microenvironment cells alter therapeutic performance. To address this, we developed a highly multiplexed mass cytometry platform to measure post-translational modification (PTM) signaling, DNA damage, cell-cycle activity, and apoptosis in >2,500 colorectal cancer (CRC) PDOs and cancer-associated fibroblasts (CAFs) in response to clinical therapies at single-cell resolution. To compare patient- and microenvironment-specific drug responses in thousands of single-cell datasets, we developed "Trellis"-a highly scalable, tree-based treatment effect analysis method. Trellis single-cell screening revealed that on-target cell-cycle blockage and DNA-damage drug effects are common, even in chemorefractory PDOs. However, drug-induced apoptosis is rarer, patient-specific, and aligns with cancer cell PTM signaling. We find that CAFs can regulate PDO plasticity-shifting proliferative colonic stem cells (proCSCs) to slow-cycling revival colonic stem cells (revCSCs) to protect cancer cells from chemotherapy.
Collapse
Affiliation(s)
- María Ramos Zapatero
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Alexander Tong
- Department of Computer Science, Yale University, New Haven, CT, USA; Department of Computer Science and Operations Research, Université de Montréal, Montreal, QC, Canada; Mila - Quebec AI Institute, Montréal, QC, Canada
| | - James W Opzoomer
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Rhianna O'Sullivan
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Ferran Cardoso Rodriguez
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Jahangir Sufi
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Petra Vlckova
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Callum Nattress
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Xiao Qin
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Jeroen Claus
- Phospho Biomedical Animation, The Greenhouse Studio 6, London N17 9QU, UK
| | - Daniel Hochhauser
- Drug-DNA Interactions Group, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Smita Krishnaswamy
- Department of Computer Science, Yale University, New Haven, CT, USA; Department of Genetics, Yale University, New Haven, CT, USA; Program for Computational Biology & Bioinformatics, Yale University, New Haven, CT, USA; Program for Applied Math, Yale University, New Haven, CT, USA; Wu-Tsai Institute, Yale University, New Haven, CT, USA.
| | - Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK.
| |
Collapse
|
21
|
Qin X, Cardoso Rodriguez F, Sufi J, Vlckova P, Claus J, Tape CJ. An oncogenic phenoscape of colonic stem cell polarization. Cell 2023; 186:5554-5568.e18. [PMID: 38065080 DOI: 10.1016/j.cell.2023.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/14/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Cancer cells are regulated by oncogenic mutations and microenvironmental signals, yet these processes are often studied separately. To functionally map how cell-intrinsic and cell-extrinsic cues co-regulate cell fate, we performed a systematic single-cell analysis of 1,107 colonic organoid cultures regulated by (1) colorectal cancer (CRC) oncogenic mutations, (2) microenvironmental fibroblasts and macrophages, (3) stromal ligands, and (4) signaling inhibitors. Multiplexed single-cell analysis revealed a stepwise epithelial differentiation phenoscape dictated by combinations of oncogenes and stromal ligands, spanning from fibroblast-induced Clusterin (CLU)+ revival colonic stem cells (revCSCs) to oncogene-driven LRIG1+ hyper-proliferative CSCs (proCSCs). The transition from revCSCs to proCSCs is regulated by decreasing WNT3A and TGF-β-driven YAP signaling and increasing KRASG12D or stromal EGF/Epiregulin-activated MAPK/PI3K flux. We find that APC loss and KRASG12D collaboratively limit access to revCSCs and disrupt stromal-epithelial communication-trapping epithelia in the proCSC fate. These results reveal that oncogenic mutations dominate homeostatic differentiation by obstructing cell-extrinsic regulation of cell-fate plasticity.
Collapse
Affiliation(s)
- Xiao Qin
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Ferran Cardoso Rodriguez
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Jahangir Sufi
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Petra Vlckova
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Jeroen Claus
- Phospho Biomedical Animation, The Greenhouse Studio 6, London N17 9QU, UK
| | - Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK.
| |
Collapse
|
22
|
Blanco-Carmona E, Narayanan A, Hernandez I, Nieto JC, Elosua-Bayes M, Sun X, Schmidt C, Pamir N, Özduman K, Herold-Mende C, Pagani F, Cominelli M, Taranda J, Wick W, von Deimling A, Poliani PL, Rehli M, Schlesner M, Heyn H, Turcan Ş. Tumor heterogeneity and tumor-microglia interactions in primary and recurrent IDH1-mutant gliomas. Cell Rep Med 2023; 4:101249. [PMID: 37883975 PMCID: PMC10694621 DOI: 10.1016/j.xcrm.2023.101249] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 08/06/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
The isocitrate dehydrogenase (IDH) gene is recurrently mutated in adult diffuse gliomas. IDH-mutant gliomas are categorized into oligodendrogliomas and astrocytomas, each with unique pathological features. Here, we use single-nucleus RNA and ATAC sequencing to compare the molecular heterogeneity of these glioma subtypes. In addition to astrocyte-like, oligodendrocyte progenitor-like, and cycling tumor subpopulations, a tumor population enriched for ribosomal genes and translation elongation factors is primarily present in oligodendrogliomas. Longitudinal analysis of astrocytomas indicates that the proportion of tumor subpopulations remains stable in recurrent tumors. Analysis of tumor-associated microglia/macrophages (TAMs) reveals significant differences between oligodendrogliomas, with astrocytomas harboring inflammatory TAMs expressing phosphorylated STAT1, as confirmed by immunohistochemistry. Furthermore, inferred receptor-ligand interactions between tumor subpopulations and TAMs may contribute to TAM state diversity. Overall, our study sheds light on distinct tumor populations, TAM heterogeneity, TAM-tumor interactions in IDH-mutant glioma subtypes, and the relative stability of tumor subpopulations in recurrent astrocytomas.
Collapse
Affiliation(s)
- Enrique Blanco-Carmona
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ashwin Narayanan
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital and Heidelberg University, Heidelberg, Germany
| | - Inmaculada Hernandez
- Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, c/o University Hospital Regensburg, Regensburg, Germany; CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Juan C Nieto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marc Elosua-Bayes
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Xueyuan Sun
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital and Heidelberg University, Heidelberg, Germany; DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany
| | - Claudia Schmidt
- Core Facility Unit Light Microscopy, DKFZ, Heidelberg, Germany
| | - Necmettin Pamir
- Acıbadem Mehmet Ali Aydınlar University, School of Medicine, Department of Neurosurgery, Istanbul, Turkey
| | - Koray Özduman
- Acıbadem Mehmet Ali Aydınlar University, School of Medicine, Department of Neurosurgery, Istanbul, Turkey
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Francesca Pagani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Manuela Cominelli
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Julian Taranda
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital and Heidelberg University, Heidelberg, Germany; DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital and Heidelberg University, Heidelberg, Germany; DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital, and DKTK CCU Neuropathology, DKFZ, Heidelberg, Germany
| | - Pietro Luigi Poliani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Michael Rehli
- Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, c/o University Hospital Regensburg, Regensburg, Germany; Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Schlesner
- Biomedical Informatics, Data Mining and Data Analytics, Faculty for Applied Informatics, University of Augsburg, Augsburg, Germany
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain.
| | - Şevin Turcan
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital and Heidelberg University, Heidelberg, Germany; DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany.
| |
Collapse
|
23
|
Moorman AR, Cambuli F, Benitez EK, Jiang Q, Xie Y, Mahmoud A, Lumish M, Hartner S, Balkaran S, Bermeo J, Asawa S, Firat C, Saxena A, Luthra A, Sgambati V, Luckett K, Wu F, Li Y, Yi Z, Masilionis I, Soares K, Pappou E, Yaeger R, Kingham P, Jarnagin W, Paty P, Weiser MR, Mazutis L, D'Angelica M, Shia J, Garcia-Aguilar J, Nawy T, Hollmann TJ, Chaligné R, Sanchez-Vega F, Sharma R, Pe'er D, Ganesh K. Progressive plasticity during colorectal cancer metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553925. [PMID: 37662289 PMCID: PMC10473595 DOI: 10.1101/2023.08.18.553925] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Metastasis is the principal cause of cancer death, yet we lack an understanding of metastatic cell states, their relationship to primary tumor states, and the mechanisms by which they transition. In a cohort of biospecimen trios from same-patient normal colon, primary and metastatic colorectal cancer, we show that while primary tumors largely adopt LGR5 + intestinal stem-like states, metastases display progressive plasticity. Loss of intestinal cell states is accompanied by reprogramming into a highly conserved fetal progenitor state, followed by non-canonical differentiation into divergent squamous and neuroendocrine-like states, which is exacerbated by chemotherapy and associated with poor patient survival. Using matched patient-derived organoids, we demonstrate that metastatic cancer cells exhibit greater cell-autonomous multilineage differentiation potential in response to microenvironment cues than their intestinal lineage-restricted primary tumor counterparts. We identify PROX1 as a stabilizer of intestinal lineage in the fetal progenitor state, whose downregulation licenses non-canonical reprogramming.
Collapse
|
24
|
Groenewald W, Lund AH, Gay DM. The Role of WNT Pathway Mutations in Cancer Development and an Overview of Therapeutic Options. Cells 2023; 12:990. [PMID: 37048063 PMCID: PMC10093220 DOI: 10.3390/cells12070990] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
It is well established that mutations in the canonical WNT-signalling pathway play a major role in various cancers. Critical to developing new therapeutic strategies is understanding which cancers are driven by WNT pathway activation and at what level these mutations occur within the pathway. Some cancers harbour mutations in genes whose protein products operate at the receptor level of the WNT pathway. For instance, tumours with RNF43 or RSPO mutations, still require exogenous WNT ligands to drive WNT signalling (ligand-dependent mutations). Conversely, mutations within the cytoplasmic segment of the Wnt pathway, such as in APC and CTNNB1, lead to constitutive WNT pathway activation even in the absence of WNT ligands (ligand-independent). Here, we review the predominant driving mutations found in cancer that lead to WNT pathway activation, as well as explore some of the therapeutic interventions currently available against tumours harbouring either ligand-dependent or ligand-independent mutations. Finally, we discuss a potentially new therapeutic avenue by targeting the translational apparatus downstream from WNT signalling.
Collapse
Affiliation(s)
| | - Anders H. Lund
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - David Michael Gay
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
25
|
Chen Y, Qiu Q, She J, Yu J. Extrachromosomal circular DNA in colorectal cancer: biogenesis, function and potential as therapeutic target. Oncogene 2023; 42:941-951. [PMID: 36859558 PMCID: PMC10038807 DOI: 10.1038/s41388-023-02640-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023]
Abstract
Extrachromosomal circular DNA (ecDNA) has gained renewed interest since its discovery more than half a century ago, emerging as critical driver of tumor evolution. ecDNA is highly prevalent in many types of cancers, including colorectal cancer (CRC), which is one of the most deadly cancers worldwide. ecDNAs play an essential role in regulating oncogene expression, intratumor heterogeneity, and resistance to therapy independently of canonical chromosomal alterations in CRC. Furthermore, the existence of ecDNAs is attributed to the patient's prognosis, since ecDNA-based oncogene amplification adversely affects clinical outcomes. Recent understanding of ecDNA put an extra layer of complexity in the pathogenesis of CRC. In this review, we will discuss the current understanding on mechanisms of biogenesis, and distinctive features of ecDNA in CRC. In addition, we will examine how ecDNAs mediate oncogene overexpression, gene regulation, and topological interactions with active chromatin, which facilitates genetic heterogeneity, accelerates CRC malignancy, and enhances rapid adaptation to therapy resistance. Finally, we will discuss the potential diagnostic and therapeutic implications of ecDNAs in CRC.
Collapse
Affiliation(s)
- Yinnan Chen
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Quanpeng Qiu
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Junjun She
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Jun Yu
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
26
|
Watt KE, Macintosh J, Bernard G, Trainor PA. RNA Polymerases I and III in development and disease. Semin Cell Dev Biol 2023; 136:49-63. [PMID: 35422389 PMCID: PMC9550887 DOI: 10.1016/j.semcdb.2022.03.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022]
Abstract
Ribosomes are macromolecular machines that are globally required for the translation of all proteins in all cells. Ribosome biogenesis, which is essential for cell growth, proliferation and survival, commences with transcription of a variety of RNAs by RNA Polymerases I and III. RNA Polymerase I (Pol I) transcribes ribosomal RNA (rRNA), while RNA Polymerase III (Pol III) transcribes 5S ribosomal RNA and transfer RNAs (tRNA) in addition to a wide variety of small non-coding RNAs. Interestingly, despite their global importance, disruptions in Pol I and Pol III function result in tissue-specific developmental disorders, with craniofacial anomalies and leukodystrophy/neurodegenerative disease being among the most prevalent. Furthermore, pathogenic variants in genes encoding subunits shared between Pol I and Pol III give rise to distinct syndromes depending on whether Pol I or Pol III function is disrupted. In this review, we discuss the global roles of Pol I and III transcription, the consequences of disruptions in Pol I and III transcription, disorders arising from pathogenic variants in Pol I and Pol III subunits, and mechanisms underpinning their tissue-specific phenotypes.
Collapse
Affiliation(s)
- Kristin En Watt
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Julia Macintosh
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada; Departments of Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada; Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada.
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
27
|
Martinez-Ordoñez A, Duran A, Ruiz-Martinez M, Cid-Diaz T, Zhang X, Han Q, Kinoshita H, Muta Y, Linares JF, Kasashima H, Nakanishi Y, Omar M, Nishimura S, Avila L, Yashiro M, Maeda K, Pannellini T, Pigazzi A, Inghirami G, Marchionni L, Sigal D, Diaz-Meco MT, Moscat J. Hyaluronan driven by epithelial aPKC deficiency remodels the microenvironment and creates a vulnerability in mesenchymal colorectal cancer. Cancer Cell 2023; 41:252-271.e9. [PMID: 36525970 PMCID: PMC9931663 DOI: 10.1016/j.ccell.2022.11.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/17/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
Mesenchymal colorectal cancer (mCRC) is microsatellite stable (MSS), highly desmoplastic, with CD8+ T cells excluded to the stromal periphery, resistant to immunotherapy, and driven by low levels of the atypical protein kinase Cs (aPKCs) in the intestinal epithelium. We show here that a salient feature of these tumors is the accumulation of hyaluronan (HA) which, along with reduced aPKC levels, predicts poor survival. HA promotes epithelial heterogeneity and the emergence of a tumor fetal metaplastic cell (TFMC) population endowed with invasive cancer features through a network of interactions with activated fibroblasts. TFMCs are sensitive to HA deposition, and their metaplastic markers have prognostic value. We demonstrate that in vivo HA degradation with a clinical dose of hyaluronidase impairs mCRC tumorigenesis and liver metastasis and enables immune checkpoint blockade therapy by promoting the recruitment of B and CD8+ T cells, including a proportion with resident memory features, and by blocking immunosuppression.
Collapse
Affiliation(s)
- Anxo Martinez-Ordoñez
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Angeles Duran
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Marc Ruiz-Martinez
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Tania Cid-Diaz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Xiao Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Qixiu Han
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Hiroto Kinoshita
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Yu Muta
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Juan F Linares
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Hiroaki Kasashima
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City 545-8585, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mohamed Omar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Sadaaki Nishimura
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Leandro Avila
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Masakazu Yashiro
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City 545-8585, Japan
| | - Kiyoshi Maeda
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City 545-8585, Japan
| | - Tania Pannellini
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Alessio Pigazzi
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Darren Sigal
- Division of Hematology-Oncology, Scripps Clinic, La Jolla, CA 92037, USA
| | - Maria T Diaz-Meco
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| | - Jorge Moscat
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
28
|
Imada S, Shin H, Khawaled S, Meckelmann SW, Whittaker CA, Corrêa RO, Pradhan D, Calibasi-Kocal G, Melo LMN, Allies G, Wittenhofer P, Schmitz OJ, Roper J, Vinolo MAR, Cheng CW, Tasdogan A, Yilmaz ÖH. Post-fast refeeding enhances intestinal stem cell-mediated regeneration and tumourigenesis through mTORC1-dependent polyamine synthesis. RESEARCH SQUARE 2023:rs.3.rs-2320717. [PMID: 36711807 PMCID: PMC9882602 DOI: 10.21203/rs.3.rs-2320717/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
For more than a century, fasting regimens have improved health, lifespan, and tissue regeneration in diverse organisms, including humans. However, how fasting and post-fast refeeding impact adult stem cells and tumour formation has yet to be explored in depth. Here, we demonstrate that post-fast refeeding increases intestinal stem cell (ISC) proliferation and tumour formation: Post-fast refeeding augments the regenerative capacity of Lgr5+ intestinal stem cells (ISCs), and loss of the tumour suppressor Apc in ISCs under post-fast refeeding leads to a higher tumour incidence in the small intestine and colon than in the fasted or ad libitum (AL) fed states. This demonstrates that post-fast refeeding is a distinct state. Mechanistically, we discovered that robust induction of mTORC1 in post-fast-refed ISCs increases protein synthesis via polyamine metabolism to drive these changes, as inhibition of mTORC1, polyamine metabolite production, or protein synthesis abrogates the regenerative or tumourigenic effects of post-fast refeeding. Thus, fast-refeeding cycles must be carefully considered when planning diet-based strategies for regeneration without increasing cancer risk, as post-fast refeeding leads to a burst not only in stem cell-driven regeneration but also in tumourigenicity.
Collapse
Affiliation(s)
- Shinya Imada
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA 02139, USA
| | - Heaji Shin
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA 02139, USA
| | - Saleh Khawaled
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA 02139, USA
| | - Sven W. Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Charles A. Whittaker
- Barbara K. Ostrom (1978) Bioinformatics and Computing Core Facility, Swanson Biotechnology Center, Koch Institute at the MIT, Cambridge, MA 02139, USA
| | - Renan Oliveira Corrêa
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA 02139, USA
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Dikshant Pradhan
- Barbara K. Ostrom (1978) Bioinformatics and Computing Core Facility, Swanson Biotechnology Center, Koch Institute at the MIT, Cambridge, MA 02139, USA
| | - Gizem Calibasi-Kocal
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA 02139, USA
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, Izmir-Turkey, Turkey
| | - Luiza Martins Nascentes Melo
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Partner Site, Essen, 45147, Germany
| | - Gabriele Allies
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Partner Site, Essen, 45147, Germany
| | - Pia Wittenhofer
- Applied Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Oliver J. Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Jatin Roper
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, NC 27710, USA
| | - Marco Aurelio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Chia-Wei Cheng
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA 02139, USA
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Partner Site, Essen, 45147, Germany
| | - Ömer H. Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA 02139, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
29
|
Loevenich LP, Tschurtschenthaler M, Rokavec M, Silva MG, Jesinghaus M, Kirchner T, Klauschen F, Saur D, Neumann J, Hermeking H, Jung P. SMAD4 Loss Induces c-MYC-Mediated NLE1 Upregulation to Support Protein Biosynthesis, Colorectal Cancer Growth, and Metastasis. Cancer Res 2022; 82:4604-4623. [PMID: 36219392 PMCID: PMC9755967 DOI: 10.1158/0008-5472.can-22-1247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/30/2022] [Accepted: 10/06/2022] [Indexed: 01/24/2023]
Abstract
Growth and metastasis of colorectal cancer is closely connected to the biosynthetic capacity of tumor cells, and colorectal cancer stem cells that reside at the top of the intratumoral hierarchy are especially dependent on this feature. By performing disease modeling on patient-derived tumor organoids, we found that elevated expression of the ribosome biogenesis factor NLE1 occurs upon SMAD4 loss in TGFβ1-exposed colorectal cancer organoids. TGFβ signaling-mediated downregulation of NLE1 was prevented by ectopic expression of c-MYC, which occupied an E-box-containing region within the NLE1 promoter. Elevated levels of NLE1 were found in colorectal cancer cohorts compared with normal tissues and in colorectal cancer subtypes characterized by Wnt/MYC and intestinal stem cell gene expression. In colorectal cancer cells and organoids, NLE1 was limiting for de novo protein biosynthesis. Upon NLE1 ablation, colorectal cancer cell lines activated p38/MAPK signaling, accumulated p62- and LC3-positive structures indicative of impaired autophagy, and displayed more reactive oxygen species. Phenotypically, knockout of NLE1 inhibit.ed proliferation, migration and invasion, clonogenicity, and anchorage-independent growth. NLE1 loss also increased the fraction of apoptotic tumor cells, and deletion of TP53 further sensitized NLE1-deficient colorectal cancer cells to apoptosis. In an endoscopy-guided orthotopic mouse transplantation model, ablation of NLE1 impaired tumor growth in the colon and reduced primary tumor-derived liver metastasis. In patients with colorectal cancer, NLE1 mRNA levels predicted overall and relapse-free survival. Taken together, these data reveal a critical role of NLE1 in colorectal cancer growth and progression and suggest that NLE1 represents a potential therapeutic target in colorectal cancer patients. SIGNIFICANCE NLE1 limits de novo protein biosynthesis and the tumorigenic potential of advanced colorectal cancer cells, suggesting NLE1 could be targeted to improve the treatment of metastatic colorectal cancer.
Collapse
Affiliation(s)
- Leon P. Loevenich
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Germany.,DKTK Research Group, Oncogenic Signaling Pathways of Colorectal Cancer, Institute of Pathology, Ludwig-Maximilians-University (LMU) Munich, Germany.,Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University (LMU) Munich, Munich
| | - Markus Tschurtschenthaler
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matjaz Rokavec
- Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University (LMU) Munich, Munich.,Experimental and Molecular Pathology, Institute of Pathology, LMU Munich, Germany
| | - Miguel G. Silva
- Department of Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Moritz Jesinghaus
- Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Pathology, Phillips University Marburg and University Hospital Marburg, Marburg, Germany
| | - Thomas Kirchner
- Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University (LMU) Munich, Munich
| | - Frederick Klauschen
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Germany.,Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University (LMU) Munich, Munich
| | - Dieter Saur
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jens Neumann
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Germany.,Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University (LMU) Munich, Munich
| | - Heiko Hermeking
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Germany.,Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University (LMU) Munich, Munich.,Experimental and Molecular Pathology, Institute of Pathology, LMU Munich, Germany
| | - Peter Jung
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Germany.,DKTK Research Group, Oncogenic Signaling Pathways of Colorectal Cancer, Institute of Pathology, Ludwig-Maximilians-University (LMU) Munich, Germany.,Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University (LMU) Munich, Munich.,Corresponding Author: Peter Jung, DKTK AG Oncogenic Signal Transduction Pathways in Colorectal/Pancreatic Cancer, Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, DKTK Partnerstandort München, Thalkirchner Straße 36, Munich D-80337, Germany. Phone: 4989-2180-73702; E-mail:
| |
Collapse
|
30
|
Cui K, Gong L, Zhang H, Chen Y, Liu B, Gong Z, Li J, Wang Y, Sun S, Li Y, Zhang Q, Cao Y, Li Q, Fei B, Huang Z. EXOSC8 promotes colorectal cancer tumorigenesis via regulating ribosome biogenesis-related processes. Oncogene 2022; 41:5397-5410. [PMID: 36348012 DOI: 10.1038/s41388-022-02530-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Extensive protein synthesis is necessary for uncontrolled cancer cell proliferation, requiring hyperactive ribosome biogenesis. Our previous Pan-cancer study has identified EXOSC8 as a potential copy number variation (CNV)-driven rRNA metabolism-related oncogene in colorectal cancer (CRC). Herein, we further investigated proliferation-prompting functions and mechanisms of EXOSC8 in CRC by performing in silico analyses and wet-lab experiments. We uncovered that increased EXOSC8 expression and CNV levels are strongly associated with ribosome biogenesis-related factor levels in CRC, including ribosome proteins (RPs), eukaryotic translation initiation factors and RNA polymerase I/III. EXOSC8 silence decreases nucleolar protein and proliferation marker levels, as well as rRNA/DNA and global protein syntheses. Clinically, EXOSC8 is upregulated across human cancers, particularly CNV-driven upregulation in CRC was markedly associated with poor clinical outcomes. Mechanistically, EXOSC8 knockdown increased p53 levels in CRC, and the oncogenic proliferation phenotypes of EXOSC8 depended on p53 in vitro and in vivo. We discovered that EXOSC8 knockdown in CRC cells triggers ribosomal stress, nucleolar RPL5/11 being released into the nucleoplasm and "hijacking" Mdm2 to block its E3 ubiquitin ligase function, thus releasing and activating p53. Furthermore, our therapeutic experiments provided initial evidence that EXOSC8 might serve as a potential therapeutic target in CRC. Our findings revealed, for the first time, that the RNA exosome gene (EXOSC8) promotes CRC tumorigenesis by regulating cancer-related ribosome biogenesis in CRC. This study further extends our previous Pan-cancer study of the rRNA metabolism-related genes. The inhibition of EXOSC8 is a novel therapeutic strategy for the RPs-Mdm2-p53 ribosome biogenesis surveillance pathway in CRC.
Collapse
Affiliation(s)
- Kaisa Cui
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China.
| | - Liang Gong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Han Zhang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Ying Chen
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Bingxin Liu
- The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Zhicheng Gong
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Jiuming Li
- Key Laboratory of Environment Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yuanben Wang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Shengbai Sun
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Yajun Li
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453000, China
| | - Qiang Zhang
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yulin Cao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Qilin Li
- Computer Vision Lab, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Bojian Fei
- Department of Surgical Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China.
| |
Collapse
|
31
|
Cañellas-Socias A, Cortina C, Hernando-Momblona X, Palomo-Ponce S, Mulholland EJ, Turon G, Mateo L, Conti S, Roman O, Sevillano M, Slebe F, Stork D, Caballé-Mestres A, Berenguer-Llergo A, Álvarez-Varela A, Fenderico N, Novellasdemunt L, Jiménez-Gracia L, Sipka T, Bardia L, Lorden P, Colombelli J, Heyn H, Trepat X, Tejpar S, Sancho E, Tauriello DVF, Leedham S, Attolini CSO, Batlle E. Metastatic recurrence in colorectal cancer arises from residual EMP1 + cells. Nature 2022; 611:603-613. [PMID: 36352230 PMCID: PMC7616986 DOI: 10.1038/s41586-022-05402-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/30/2022] [Indexed: 11/10/2022]
Abstract
Around 30-40% of patients with colorectal cancer (CRC) undergoing curative resection of the primary tumour will develop metastases in the subsequent years1. Therapies to prevent disease relapse remain an unmet medical need. Here we uncover the identity and features of the residual tumour cells responsible for CRC relapse. An analysis of single-cell transcriptomes of samples from patients with CRC revealed that the majority of genes associated with a poor prognosis are expressed by a unique tumour cell population that we named high-relapse cells (HRCs). We established a human-like mouse model of microsatellite-stable CRC that undergoes metastatic relapse after surgical resection of the primary tumour. Residual HRCs occult in mouse livers after primary CRC surgery gave rise to multiple cell types over time, including LGR5+ stem-like tumour cells2-4, and caused overt metastatic disease. Using Emp1 (encoding epithelial membrane protein 1) as a marker gene for HRCs, we tracked and selectively eliminated this cell population. Genetic ablation of EMP1high cells prevented metastatic recurrence and mice remained disease-free after surgery. We also found that HRC-rich micrometastases were infiltrated with T cells, yet became progressively immune-excluded during outgrowth. Treatment with neoadjuvant immunotherapy eliminated residual metastatic cells and prevented mice from relapsing after surgery. Together, our findings reveal the cell-state dynamics of residual disease in CRC and anticipate that therapies targeting HRCs may help to avoid metastatic relapse.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Colorectal Neoplasms/therapy
- Disease Progression
- Neoplasm Proteins/deficiency
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/prevention & control
- Neoplasm Recurrence, Local/therapy
- Neoplasm, Residual/genetics
- Neoplasm, Residual/pathology
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Neoplasm Metastasis/genetics
- Neoplasm Metastasis/pathology
- Neoplasm Metastasis/prevention & control
- Neoplasm Metastasis/therapy
- Disease Models, Animal
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Lymphocytes, Tumor-Infiltrating/cytology
- Lymphocytes, Tumor-Infiltrating/immunology
- Neoadjuvant Therapy
- Immunotherapy
Collapse
Affiliation(s)
- Adrià Cañellas-Socias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Carme Cortina
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Xavier Hernando-Momblona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Sergio Palomo-Ponce
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Eoghan J Mulholland
- Gastrointestinal Stem Cell Biology Lab, Wellcome Centre Human Genetics, University of Oxford, Oxford, UK
| | - Gemma Turon
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Lidia Mateo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sefora Conti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Olga Roman
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marta Sevillano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Felipe Slebe
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Diana Stork
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Adrià Caballé-Mestres
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Antonio Berenguer-Llergo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Adrián Álvarez-Varela
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Nicola Fenderico
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Laura Novellasdemunt
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Laura Jiménez-Gracia
- CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Tamara Sipka
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Lidia Bardia
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Patricia Lorden
- CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Julien Colombelli
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Sabine Tejpar
- Digestive Oncology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Daniele V F Tauriello
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Simon Leedham
- Gastrointestinal Stem Cell Biology Lab, Wellcome Centre Human Genetics, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Oxford National Institute for Health Research Biomedical Research Centre, Oxford, UK
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
32
|
Cao S, Wang JR, Ji S, Yang P, Dai Y, Guo S, Montierth MD, Shen JP, Zhao X, Chen J, Lee JJ, Guerrero PA, Spetsieris N, Engedal N, Taavitsainen S, Yu K, Livingstone J, Bhandari V, Hubert SM, Daw NC, Futreal PA, Efstathiou E, Lim B, Viale A, Zhang J, Nykter M, Czerniak BA, Brown PH, Swanton C, Msaouel P, Maitra A, Kopetz S, Campbell P, Speed TP, Boutros PC, Zhu H, Urbanucci A, Demeulemeester J, Van Loo P, Wang W. Estimation of tumor cell total mRNA expression in 15 cancer types predicts disease progression. Nat Biotechnol 2022; 40:1624-1633. [PMID: 35697807 PMCID: PMC9646498 DOI: 10.1038/s41587-022-01342-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 04/29/2022] [Indexed: 12/30/2022]
Abstract
Single-cell RNA sequencing studies have suggested that total mRNA content correlates with tumor phenotypes. Technical and analytical challenges, however, have so far impeded at-scale pan-cancer examination of total mRNA content. Here we present a method to quantify tumor-specific total mRNA expression (TmS) from bulk sequencing data, taking into account tumor transcript proportion, purity and ploidy, which are estimated through transcriptomic/genomic deconvolution. We estimate and validate TmS in 6,590 patient tumors across 15 cancer types, identifying significant inter-tumor variability. Across cancers, high TmS is associated with increased risk of disease progression and death. TmS is influenced by cancer-specific patterns of gene alteration and intra-tumor genetic heterogeneity as well as by pan-cancer trends in metabolic dysregulation. Taken together, our results indicate that measuring cell-type-specific total mRNA expression in tumor cells predicts tumor phenotypes and clinical outcomes.
Collapse
Grants
- U01 CA196403 NCI NIH HHS
- P30 CA016672 NCI NIH HHS
- U01 CA224044 NCI NIH HHS
- R01 CA268380 NCI NIH HHS
- Department of Health
- FC001169 Cancer Research UK
- C416/A21999 Cancer Research UK
- MR/L016311/1 Medical Research Council
- R01 CA231465 NCI NIH HHS
- U01 CA256780 NCI NIH HHS
- R01 CA183793 NCI NIH HHS
- FC001202 Medical Research Council
- U01 CA200468 NCI NIH HHS
- FC001202 Wellcome Trust
- R01 CA234629 NCI NIH HHS
- U01 CA214194 NCI NIH HHS
- FC001202 Cancer Research UK
- P50 CA221707 NCI NIH HHS
- C11496/A17786 Cancer Research UK
- L30 CA171000 NCI NIH HHS
- FC001169 Wellcome Trust
- FC001169 Medical Research Council
- U24 CA248265 NCI NIH HHS
- K22 CA234406 NCI NIH HHS
- P30 CA016042 NCI NIH HHS
- C11496/A30025 Cancer Research UK
- U24 CA224020 NCI NIH HHS
- Norman Jaffe Professorship in Pediatrics Endowment Fund, MD Anderson Colorectal Cancer Moon Shot Program, and NIH R01CA183793
- American Thyroid Association (American Thyroid Association, lnc.)
- Mark Foundation for Cancer Research ASPIRE award
- Human Cell Atlas Seed Network - Breast, Chan Zuckerberg Institute, MD Anderson Colorectal Cancer Moon Shot Program, NIH R01CA183793
- NIH R01CA239342
- Cancer Prevention and Research Institute of Texas as a CPRIT Scholar in Cancer Research and by National Institutes of Health (K22CA234406)
- NIH R01CA158113
- NIH (T32CA009599)
- MD Anderson Pancreatic Cancer Moon Shot Program, the Khalifa Bin Zayed Al-Nahyan Foundation, and the National Institutes of Health (NIH U01CA196403, U01CA200468, U24CA224020, P50CA221707)
- Norwegian Cancer Society (grant number 198016-2018)
- Norman Jaffe Professorship in Pediatrics Endowment Fund
- the Welch Foundation, MEI Pharma, Inc., Cancer Research United Kingdom (CRUK), Kadoorie Charitable Foundation, NIH/NCI (U01 CA224044-01A1, 1R01CA231465-01A1)
- Career Development Award by the American Society of Clinical Oncology, a Research Award by KCCure, the MD Anderson Khalifa Scholar Award, and the MD Anderson Physician-Scientist Award
- NIH/NCI under awards number P30CA016042, 1U01CA214194-01 and 1U24CA248265-01
- the Medical Research Council (grant number MR/L016311/1), the European Union’s Horizon 2020 research and innovation program (Marie Skłodowska-Curie Grant Agreement No. 703594-DECODE) and the Research Foundation – Flanders (FWO, Grant No. 12J6916N)
- the Medical Research Council (grant number MR/L016311/1), Winton Charitable Foundation
- NIH R01CA183793
Collapse
Affiliation(s)
- Shaolong Cao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer R Wang
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shuangxi Ji
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peng Yang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Statistics, Rice University, Houston, TX, USA
| | - Yaoyi Dai
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | - Shuai Guo
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew D Montierth
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiao Zhao
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jingxiao Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaewon James Lee
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paola A Guerrero
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas Spetsieris
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nikolai Engedal
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Sinja Taavitsainen
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Kaixian Yu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Julie Livingstone
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Vinayak Bhandari
- Department of Medical Biophysics, University of Toronto, Toronto ON, Canada
| | - Shawna M Hubert
- Department of Thoracic Head Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Najat C Daw
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eleni Efstathiou
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bora Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrea Viale
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Zhang
- Department of Thoracic Head Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matti Nykter
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Bogdan A Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Powel H Brown
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Pavlos Msaouel
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Terence P Speed
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VC, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, VC, Australia
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medical Biophysics, University of Toronto, Toronto ON, Canada
| | - Hongtu Zhu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alfonso Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jonas Demeulemeester
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Peter Van Loo
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenyi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
33
|
Hsu JCC, Pawlak JB, Laurent-Rolle M, Cresswell P. Protocol for assessing translational regulation in mammalian cell lines by OP-Puro labeling. STAR Protoc 2022; 3:101654. [PMID: 36072758 PMCID: PMC9442383 DOI: 10.1016/j.xpro.2022.101654] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Translational regulation is a fundamental step in gene expression with critical roles in biological processes within a cell. Here, we describe a protocol to assess translation activity in mammalian cells by incorporation of O-propargyl-puromycin (OP-Puro). OP-Puro is a puromycin analog that is incorporated into newly synthesized proteins and is detected by click chemistry reaction. We use OP-Puro labeling to assess translation activity between different cell types or cells under different growth conditions by confocal microscopy and flow cytometry. For complete details on the use and execution of this protocol, please refer to Hsu et al. (2021) and Hsu et al. (2022).
Collapse
Affiliation(s)
- Jack Chun-Chieh Hsu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Joanna B Pawlak
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Maudry Laurent-Rolle
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA; Center for Infection and Immunity, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
34
|
Álvarez-Varela A, Novellasdemunt L, Barriga FM, Hernando-Momblona X, Cañellas-Socias A, Cano-Crespo S, Sevillano M, Cortina C, Stork D, Morral C, Turon G, Slebe F, Jiménez-Gracia L, Caratù G, Jung P, Stassi G, Heyn H, Tauriello DVF, Mateo L, Tejpar S, Sancho E, Stephan-Otto Attolini C, Batlle E. Mex3a marks drug-tolerant persister colorectal cancer cells that mediate relapse after chemotherapy. NATURE CANCER 2022; 3:1052-1070. [PMID: 35773527 DOI: 10.1038/s43018-022-00402-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Colorectal cancer (CRC) patient-derived organoids predict responses to chemotherapy. Here we used them to investigate relapse after treatment. Patient-derived organoids expand from highly proliferative LGR5+ tumor cells; however, we discovered that lack of optimal growth conditions specifies a latent LGR5+ cell state. This cell population expressed the gene MEX3A, is chemoresistant and regenerated the organoid culture after treatment. In CRC mouse models, Mex3a+ cells contributed marginally to metastatic outgrowth; however, after chemotherapy, Mex3a+ cells produced large cell clones that regenerated the disease. Lineage-tracing analysis showed that persister Mex3a+ cells downregulate the WNT/stem cell gene program immediately after chemotherapy and adopt a transient state reminiscent to that of YAP+ fetal intestinal progenitors. In contrast, Mex3a-deficient cells differentiated toward a goblet cell-like phenotype and were unable to resist chemotherapy. Our findings reveal that adaptation of cancer stem cells to suboptimal niche environments protects them from chemotherapy and identify a candidate cell of origin of relapse after treatment in CRC.
Collapse
Affiliation(s)
- Adrián Álvarez-Varela
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Laura Novellasdemunt
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Francisco M Barriga
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xavier Hernando-Momblona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Adrià Cañellas-Socias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Sara Cano-Crespo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Sevillano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Carme Cortina
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Diana Stork
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Clara Morral
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Gemma Turon
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Felipe Slebe
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Laura Jiménez-Gracia
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ginevra Caratù
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Peter Jung
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner site Munich, Institute of Pathology, Ludwig Maximilian University, Munich, Germany
| | - Giorgio Stassi
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Daniele V F Tauriello
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lidia Mateo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sabine Tejpar
- Molecular Digestive Oncology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
35
|
Modeling Colorectal Cancer Progression Reveals Niche-Dependent Clonal Selection. Cancers (Basel) 2022; 14:cancers14174260. [PMID: 36077793 PMCID: PMC9454531 DOI: 10.3390/cancers14174260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is among the deadliest cancers worldwide, with metastasis being the main cause of patient mortality. During CRC progression the complex tumor ecosystem changes in its composition at virtually every stage. However, clonal dynamics and associated niche-dependencies at these stages are unknown. Hence, it is of importance to utilize models that faithfully recapitulate human CRC to define its clonal dynamics. We used an optical barcoding approach in mouse-derived organoids (MDOs) that revealed niche-dependent clonal selection. Our findings highlight that clonal selection is controlled by a site-specific niche, which critically contributes to cancer heterogeneity and has implications for therapeutic intervention.
Collapse
|
36
|
Vasquez EG, Nasreddin N, Valbuena GN, Mulholland EJ, Belnoue-Davis HL, Eggington HR, Schenck RO, Wouters VM, Wirapati P, Gilroy K, Lannagan TRM, Flanagan DJ, Najumudeen AK, Omwenga S, McCorry AMB, Easton A, Koelzer VH, East JE, Morton D, Trusolino L, Maughan T, Campbell AD, Loughrey MB, Dunne PD, Tsantoulis P, Huels DJ, Tejpar S, Sansom OJ, Leedham SJ. Dynamic and adaptive cancer stem cell population admixture in colorectal neoplasia. Cell Stem Cell 2022; 29:1213-1228.e8. [PMID: 35931031 PMCID: PMC9592560 DOI: 10.1016/j.stem.2022.07.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022]
Abstract
Intestinal homeostasis is underpinned by LGR5+ve crypt-base columnar stem cells (CBCs), but following injury, dedifferentiation results in the emergence of LGR5-ve regenerative stem cell populations (RSCs), characterized by fetal transcriptional profiles. Neoplasia hijacks regenerative signaling, so we assessed the distribution of CBCs and RSCs in mouse and human intestinal tumors. Using combined molecular-morphological analysis, we demonstrate variable expression of stem cell markers across a range of lesions. The degree of CBC-RSC admixture was associated with both epithelial mutation and microenvironmental signaling disruption and could be mapped across disease molecular subtypes. The CBC-RSC equilibrium was adaptive, with a dynamic response to acute selective pressure, and adaptability was associated with chemoresistance. We propose a fitness landscape model where individual tumors have equilibrated stem cell population distributions along a CBC-RSC phenotypic axis. Cellular plasticity is represented by position shift along this axis and is influenced by cell-intrinsic, extrinsic, and therapeutic selective pressures.
Collapse
Affiliation(s)
- Ester Gil Vasquez
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Nadia Nasreddin
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Gabriel N Valbuena
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Eoghan J Mulholland
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | | | - Holly R Eggington
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Ryan O Schenck
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Valérie M Wouters
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Meibergdreef 9, 1105 Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 Amsterdam, the Netherlands
| | - Pratyaksha Wirapati
- Swiss Institute for Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | - Sulochana Omwenga
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Amy M B McCorry
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Alistair Easton
- Department of Oncology, Old Road Campus Research Building, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Viktor H Koelzer
- Department of Pathology and Molecular Pathology, University and University Hospital Zürich, Rämistrasse 100, 8006 Zürich, Switzerland
| | - James E East
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, and Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Dion Morton
- Academic Department of Surgery, University of Birmingham, Birmingham, UK
| | - Livio Trusolino
- Candiolo Cancer Institute FPO IRCCS, 10060 Candiolo, Torino, Italy
| | - Timothy Maughan
- Department of Oncology, Old Road Campus Research Building, Roosevelt Drive, University of Oxford, Oxford, UK
| | | | - Maurice B Loughrey
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Philip D Dunne
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Petros Tsantoulis
- University of Geneva and Department of Oncology, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - David J Huels
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Meibergdreef 9, 1105 Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 Amsterdam, the Netherlands
| | - Sabine Tejpar
- Molecular Digestive Oncology Unit, KU Leuven, Leuven, Belgium
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK
| | - Simon J Leedham
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK; Department of Pathology and Molecular Pathology, University and University Hospital Zürich, Rämistrasse 100, 8006 Zürich, Switzerland.
| |
Collapse
|
37
|
Hervieu C, Verdier M, Barthout E, Bégaud G, Christou N, Sage M, Pannequin J, Battu S, Mathonnet M. A Label-Free Cell Sorting Approach to Highlight the Impact of Intratumoral Cellular Heterogeneity and Cancer Stem Cells on Response to Therapies. Cells 2022; 11:2264. [PMID: 35892561 PMCID: PMC9332486 DOI: 10.3390/cells11152264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer stem cells play a crucial role in tumor initiation, metastasis, and resistance to treatment. Cellular heterogeneity and plasticity complicate the isolation of cancer stem cells. The impact of intra-tumor cellular heterogeneity using a label-free approach remains understudied in the context of treatment resistance. Here, we use the sedimentation field-flow fractionation technique to separate, without labeling, cell subpopulations of colorectal cancer cell lines and primary cultures according to their biophysical properties. One of the three sorted cell subpopulations exhibits characteristics of cancer stem cells, including high tumorigenicity in vivo and a higher frequency of tumor-initiating cells compared to the other subpopulations. Due to its chemoresistance, two- and three-dimensional in vitro chemosensitivity assays highlight the therapeutic relevance of this cancer stem cell subpopulation. Thus, our results reveal the major implication of intra-tumor cellular heterogeneity, including cancer stem cells in treatment resistance, thanks to our label-free cell sorting approach. This approach enables-by breaking down the tumor-the study the individualized response of each sorted tumor cell subpopulation and to identify chemoresistance, thus offering new perspectives for personalized therapy.
Collapse
Affiliation(s)
- Céline Hervieu
- UMR INSERM 1308-CAPTuR “Control of Cell Activation in Tumor Progression and Therapeutic Resistance”, Ω-Health Institute, Faculty of Medicine, University of Limoges, 87025 Limoges, France; (C.H.); (M.V.); (E.B.); (G.B.); (N.C.); (S.B.)
| | - Mireille Verdier
- UMR INSERM 1308-CAPTuR “Control of Cell Activation in Tumor Progression and Therapeutic Resistance”, Ω-Health Institute, Faculty of Medicine, University of Limoges, 87025 Limoges, France; (C.H.); (M.V.); (E.B.); (G.B.); (N.C.); (S.B.)
| | - Elodie Barthout
- UMR INSERM 1308-CAPTuR “Control of Cell Activation in Tumor Progression and Therapeutic Resistance”, Ω-Health Institute, Faculty of Medicine, University of Limoges, 87025 Limoges, France; (C.H.); (M.V.); (E.B.); (G.B.); (N.C.); (S.B.)
| | - Gaëlle Bégaud
- UMR INSERM 1308-CAPTuR “Control of Cell Activation in Tumor Progression and Therapeutic Resistance”, Ω-Health Institute, Faculty of Medicine, University of Limoges, 87025 Limoges, France; (C.H.); (M.V.); (E.B.); (G.B.); (N.C.); (S.B.)
| | - Niki Christou
- UMR INSERM 1308-CAPTuR “Control of Cell Activation in Tumor Progression and Therapeutic Resistance”, Ω-Health Institute, Faculty of Medicine, University of Limoges, 87025 Limoges, France; (C.H.); (M.V.); (E.B.); (G.B.); (N.C.); (S.B.)
- Department of General, Endocrine and Digestive Surgery, University Hospital of Limoges, 87025 Limoges, France
| | - Magali Sage
- BISCEm US42 INSERM-UAR 2015 CNRS “Integrative Biology Health Chemistry Environment”, Ω-Health Institute, 87025 Limoges, France;
| | - Julie Pannequin
- UMR 5203 CNRS-INSERM, Institute of Functional Genomics, University of Montpellier, 34094 Montpellier, France;
| | - Serge Battu
- UMR INSERM 1308-CAPTuR “Control of Cell Activation in Tumor Progression and Therapeutic Resistance”, Ω-Health Institute, Faculty of Medicine, University of Limoges, 87025 Limoges, France; (C.H.); (M.V.); (E.B.); (G.B.); (N.C.); (S.B.)
| | - Muriel Mathonnet
- UMR INSERM 1308-CAPTuR “Control of Cell Activation in Tumor Progression and Therapeutic Resistance”, Ω-Health Institute, Faculty of Medicine, University of Limoges, 87025 Limoges, France; (C.H.); (M.V.); (E.B.); (G.B.); (N.C.); (S.B.)
- Department of General, Endocrine and Digestive Surgery, University Hospital of Limoges, 87025 Limoges, France
| |
Collapse
|
38
|
Otto C, Kastner C, Schmidt S, Uttinger K, Baluapuri A, Denk S, Rosenfeldt MT, Rosenwald A, Roehrig F, Ade CP, Schuelein-Voelk C, Diefenbacher ME, Germer CT, Wolf E, Eilers M, Wiegering A. RNA polymerase I inhibition induces terminal differentiation, growth arrest, and vulnerability to senolytics in colorectal cancer cells. Mol Oncol 2022; 16:2788-2809. [PMID: 35673898 PMCID: PMC9348601 DOI: 10.1002/1878-0261.13265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
Ribosomal biogenesis and protein synthesis are deregulated in most cancers, suggesting that interfering with translation machinery may hold significant therapeutic potential. Here, we show that loss of the tumor suppressor adenomatous polyposis coli (APC), which constitutes the initiating event in the adenoma carcinoma sequence for colorectal cancer (CRC), induces the expression of RNA polymerase I (RNAPOL1) transcription machinery, and subsequently upregulates ribosomal DNA (rDNA) transcription. Targeting RNAPOL1 with a specific inhibitor, CX5461, disrupts nucleolar integrity, and induces a disbalance of ribosomal proteins. Surprisingly, CX5461-induced growth arrest is irreversible and exhibits features of senescence and terminal differentiation. Mechanistically, CX5461 promotes differentiation in an MYC-interacting zinc-finger protein 1 (MIZ1)- and retinoblastoma protein (Rb)-dependent manner. In addition, the inhibition of RNAPOL1 renders CRC cells vulnerable towards senolytic agents. We validated this therapeutic effect of CX5461 in murine- and patient-derived organoids, and in a xenograft mouse model. These results show that targeting ribosomal biogenesis together with targeting the consecutive, senescent phenotype using approved drugs is a new therapeutic approach, which can rapidly be transferred from bench to bedside.
Collapse
Affiliation(s)
- Christoph Otto
- Experimental Visceral Surgery, Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery (Department of Surgery I), University Hospital Würzburg, Germany
| | - Carolin Kastner
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Germany.,Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery (Department of Surgery I), University Hospital Würzburg, Germany
| | - Stefanie Schmidt
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Germany.,Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery (Department of Surgery I), University Hospital Würzburg, Germany
| | - Konstantin Uttinger
- Experimental Visceral Surgery, Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery (Department of Surgery I), University Hospital Würzburg, Germany
| | - Apoorva Baluapuri
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Germany
| | - Sarah Denk
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Germany.,Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery (Department of Surgery I), University Hospital Würzburg, Germany
| | | | | | - Florian Roehrig
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Germany
| | - Carsten P Ade
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Germany
| | | | - Markus E Diefenbacher
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Germany
| | - Christoph-Thomas Germer
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery (Department of Surgery I), University Hospital Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University of Würzburg, Germany
| | - Elmar Wolf
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Germany
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University of Würzburg, Germany
| | - Armin Wiegering
- Experimental Visceral Surgery, Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery (Department of Surgery I), University Hospital Würzburg, Germany.,Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Germany.,Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery (Department of Surgery I), University Hospital Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University of Würzburg, Germany
| |
Collapse
|
39
|
p53 wild-type colorectal cancer cells that express a fetal gene signature are associated with metastasis and poor prognosis. Nat Commun 2022; 13:2866. [PMID: 35606354 PMCID: PMC9126967 DOI: 10.1038/s41467-022-30382-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/29/2022] [Indexed: 12/14/2022] Open
Abstract
Current therapy against colorectal cancer (CRC) is based on DNA-damaging agents that remain ineffective in a proportion of patients. Whether and how non-curative DNA damage-based treatment affects tumor cell behavior and patient outcome is primarily unstudied. Using CRC patient-derived organoids (PDO)s, we show that sublethal doses of chemotherapy (CT) does not select previously resistant tumor populations but induces a quiescent state specifically to TP53 wildtype (WT) cancer cells, which is linked to the acquisition of a YAP1-dependent fetal phenotype. Cells displaying this phenotype exhibit high tumor-initiating and metastatic activity. Nuclear YAP1 and fetal traits are present in a proportion of tumors at diagnosis and predict poor prognosis in patients carrying TP53 WT CRC tumors. We provide data indicating the higher efficacy of CT together with YAP1 inhibitors for eradication of therapy resistant TP53 WT cancer cells. Together these results identify fetal conversion as a useful biomarker for patient prognosis and therapy prescription. The failure of chemotherapy in colorectal cancer is currently unclear. Here, the authors show that upon sub-lethal dose of chemotherapy wild-type p53 colorectal cancers acquire a quiescence-like phenotype and a YAP-dependent fetal-like intestinal stem cell state associated with a higher metastatic activity and poor prognosis in patients.
Collapse
|
40
|
Okamoto T, Natsume Y, Doi M, Nosato H, Iwaki T, Yamanaka H, Yamamoto M, Kawachi H, Noda T, Nagayama S, Sakanashi H, Yao R. Integration of human inspection and AI-based morphological typing of PDOs reveals inter-patient heterogeneity of colorectal cancer. Cancer Sci 2022; 113:2693-2703. [PMID: 35585758 PMCID: PMC9357621 DOI: 10.1111/cas.15396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogenous disease, and patients have differences in therapeutic response. However, the mechanisms underlying inter-patient heterogeneity in the response to chemotherapeutic agents remain to be elucidated, and molecular tumor characteristics are required to select patients for specific therapies. Patient-derived organoids (PDOs) established from CRCs recapitulate various biological characteristics of tumor tissues, including cellular heterogeneity and the response to chemotherapy. PDOs established from CRCs exhibit various morphologies, but there are no criteria for defining these morphologies, which hampers the analysis of their biological significance. Here, we developed an artificial intelligence (AI)-based classifier to categorize PDOs based on microscopic images according to their similarity in appearance and classified tubular adenocarcinoma-derived PDOs into six types. Transcriptome analysis identified differential expression of genes related to cell adhesion in some of the morphological types. Genes involved in ribosome biogenesis were also differentially expressed and were most highly expressed in morphological types exhibiting CRC stem cell properties. We identified an RNA polymerase I inhibitor, CX-5641, to be an upstream regulator of these type-specific gene sets. Notably, PDO types with increased expression of genes involved in ribosome biogenesis were resistant to CX-5461 treatment. Taken together, these results uncover the biological significance of the morphology of PDOs and provide novel indicators by which to categorize CRCs. Therefore, the AI-based classifier is a useful tool to support PDO-based cancer research.
Collapse
Affiliation(s)
- Takuya Okamoto
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuko Natsume
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Motomichi Doi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Hirokazu Nosato
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Toshiyuki Iwaki
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Hitomi Yamanaka
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Mayuko Yamamoto
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Hiroshi Kawachi
- Division of Pathology, Cancer Institute; Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tetsuo Noda
- Director's office, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoshi Nagayama
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Surgery, Uji-Tokushukai Medical Center, Kyoto, Japan
| | - Hidenori Sakanashi
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Ryoji Yao
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| |
Collapse
|
41
|
Heinz MC, Peters NA, Oost KC, Lindeboom RG, van Voorthuijsen L, Fumagalli A, van der Net MC, de Medeiros G, Hageman JH, Verlaan-Klink I, Borel Rinkes IH, Liberali P, Gloerich M, van Rheenen J, Vermeulen M, Kranenburg O, Snippert HJ. Liver Colonization by Colorectal Cancer Metastases Requires YAP-Controlled Plasticity at the Micrometastatic Stage. Cancer Res 2022; 82:1953-1968. [PMID: 35570706 PMCID: PMC9381095 DOI: 10.1158/0008-5472.can-21-0933] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 12/02/2021] [Accepted: 02/18/2022] [Indexed: 01/07/2023]
Abstract
Micrometastases of colorectal cancer can remain dormant for years prior to the formation of actively growing, clinically detectable lesions (i.e., colonization). A better understanding of this step in the metastatic cascade could help improve metastasis prevention and treatment. Here we analyzed liver specimens of patients with colorectal cancer and monitored real-time metastasis formation in mouse livers using intravital microscopy to reveal that micrometastatic lesions are devoid of cancer stem cells (CSC). However, lesions that grow into overt metastases demonstrated appearance of de novo CSCs through cellular plasticity at a multicellular stage. Clonal outgrowth of patient-derived colorectal cancer organoids phenocopied the cellular and transcriptomic changes observed during in vivo metastasis formation. First, formation of mature CSCs occurred at a multicellular stage and promoted growth. Conversely, failure of immature CSCs to generate more differentiated cells arrested growth, implying that cellular heterogeneity is required for continuous growth. Second, early-stage YAP activity was required for the survival of organoid-forming cells. However, subsequent attenuation of early-stage YAP activity was essential to allow for the formation of cell type heterogeneity, while persistent YAP signaling locked micro-organoids in a cellularly homogenous and growth-stalled state. Analysis of metastasis formation in mouse livers using single-cell RNA sequencing confirmed the transient presence of early-stage YAP activity, followed by emergence of CSC and non-CSC phenotypes, irrespective of the initial phenotype of the metastatic cell of origin. Thus, establishment of cellular heterogeneity after an initial YAP-controlled outgrowth phase marks the transition to continuously growing macrometastases. SIGNIFICANCE Characterization of the cell type dynamics, composition, and transcriptome of early colorectal cancer liver metastases reveals that failure to establish cellular heterogeneity through YAP-controlled epithelial self-organization prohibits the outgrowth of micrometastases. See related commentary by LeBleu, p. 1870.
Collapse
Affiliation(s)
- Maria C. Heinz
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.,Oncode Institute, the Netherlands
| | - Niek A. Peters
- Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Koen C. Oost
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.,Oncode Institute, the Netherlands
| | - Rik G.H. Lindeboom
- Oncode Institute, the Netherlands.,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Lisa van Voorthuijsen
- Oncode Institute, the Netherlands.,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Arianna Fumagalli
- Oncode Institute, the Netherlands.,Department of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mirjam C. van der Net
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gustavo de Medeiros
- Quantitative Biology, Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Joris H. Hageman
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.,Oncode Institute, the Netherlands
| | - Ingrid Verlaan-Klink
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.,Oncode Institute, the Netherlands
| | | | - Prisca Liberali
- Quantitative Biology, Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Martijn Gloerich
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jacco van Rheenen
- Oncode Institute, the Netherlands.,Department of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Michiel Vermeulen
- Oncode Institute, the Netherlands.,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Onno Kranenburg
- Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, the Netherlands.,Corresponding Authors: Onno Kranenburg, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands. Phone: 318-8755-9632; E-mail: ; and Hugo J.G. Snippert, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands. Phone: 318-8756-8959; E-mail:
| | - Hugo J.G. Snippert
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.,Oncode Institute, the Netherlands.,Corresponding Authors: Onno Kranenburg, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands. Phone: 318-8755-9632; E-mail: ; and Hugo J.G. Snippert, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands. Phone: 318-8756-8959; E-mail:
| |
Collapse
|
42
|
Herpers B, Eppink B, James MI, Cortina C, Cañellas-Socias A, Boj SF, Hernando-Momblona X, Glodzik D, Roovers RC, van de Wetering M, Bartelink-Clements C, Zondag-van der Zande V, Mateos JG, Yan K, Salinaro L, Basmeleh A, Fatrai S, Maussang D, Lammerts van Bueren JJ, Chicote I, Serna G, Cabellos L, Ramírez L, Nuciforo P, Salazar R, Santos C, Villanueva A, Stephan-Otto Attolini C, Sancho E, Palmer HG, Tabernero J, Stratton MR, de Kruif J, Logtenberg T, Clevers H, Price LS, Vries RGJ, Batlle E, Throsby M. Functional patient-derived organoid screenings identify MCLA-158 as a therapeutic EGFR × LGR5 bispecific antibody with efficacy in epithelial tumors. NATURE CANCER 2022; 3:418-436. [PMID: 35469014 DOI: 10.1038/s43018-022-00359-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/04/2022] [Indexed: 12/19/2022]
Abstract
Patient-derived organoids (PDOs) recapitulate tumor architecture, contain cancer stem cells and have predictive value supporting personalized medicine. Here we describe a large-scale functional screen of dual-targeting bispecific antibodies (bAbs) on a heterogeneous colorectal cancer PDO biobank and paired healthy colonic mucosa samples. More than 500 therapeutic bAbs generated against Wingless-related integration site (WNT) and receptor tyrosine kinase (RTK) targets were functionally evaluated by high-content imaging to capture the complexity of PDO responses. Our drug discovery strategy resulted in the generation of MCLA-158, a bAb that specifically triggers epidermal growth factor receptor degradation in leucine-rich repeat-containing G-protein-coupled receptor 5-positive (LGR5+) cancer stem cells but shows minimal toxicity toward healthy LGR5+ colon stem cells. MCLA-158 exhibits therapeutic properties such as growth inhibition of KRAS-mutant colorectal cancers, blockade of metastasis initiation and suppression of tumor outgrowth in preclinical models for several epithelial cancer types.
Collapse
Affiliation(s)
- Bram Herpers
- OcellO BV, Leiden, The Netherlands
- Crown Bioscience Netherlands BV, Leiden, The Netherlands
| | | | - Mark I James
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carme Cortina
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
- CIBERONC, Madrid, Spain
| | - Adrià Cañellas-Socias
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
- CIBERONC, Madrid, Spain
| | - Sylvia F Boj
- Hubrecht Organoid Technology (HUB), Utrecht, the Netherlands
| | - Xavier Hernando-Momblona
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
- CIBERONC, Madrid, Spain
| | - Dominik Glodzik
- Wellcome Sanger Institute, Hinxton, UK
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | | | - Marc van de Wetering
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | | | | | - Jara García Mateos
- OcellO BV, Leiden, The Netherlands
- Crown Bioscience Netherlands BV, Leiden, The Netherlands
| | - Kuan Yan
- OcellO BV, Leiden, The Netherlands
- Crown Bioscience Netherlands BV, Leiden, The Netherlands
| | | | | | | | | | | | - Irene Chicote
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Garazi Serna
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Laia Cabellos
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Barcelona, Spain
| | - Lorena Ramírez
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Barcelona, Spain
| | - Paolo Nuciforo
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ramon Salazar
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)-CIBERONC, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Cristina Santos
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)-CIBERONC, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alberto Villanueva
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
- Xenopat SL, Parc Cientific de Barcelona (PCB), Barcelona, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
- CIBERONC, Madrid, Spain
| | - Hector G Palmer
- CIBERONC, Madrid, Spain
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Barcelona, Spain
| | - Josep Tabernero
- CIBERONC, Madrid, Spain
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Barcelona, Spain
| | | | | | | | - Hans Clevers
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Leo S Price
- OcellO BV, Leiden, The Netherlands
- Crown Bioscience Netherlands BV, Leiden, The Netherlands
| | | | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain.
- CIBERONC, Madrid, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | | |
Collapse
|
43
|
Ruan H, Leibowitz BJ, Peng Y, Shen L, Chen L, Kuang C, Schoen RE, Lu X, Zhang L, Yu J. Targeting Myc-driven stress vulnerability in mutant KRAS colorectal cancer. MOLECULAR BIOMEDICINE 2022; 3:10. [PMID: 35307764 PMCID: PMC8934835 DOI: 10.1186/s43556-022-00070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/21/2022] [Indexed: 12/16/2022] Open
Abstract
Mutant KRAS is a key driver in colorectal cancer (CRC) and promotes Myc translation and Myc-dependent stress adaptation and proliferation. Here, we report that the combination of two FDA-approved drugs Bortezomib and Everolimus (RAD001) (BR) is highly efficacious against mutant KRAS CRC cells. Mechanistically, the combination, not single agent, rapidly depletes Myc protein, not mRNA, and leads to GCN2- and p-eIF2α-dependent cell death through the activation of extrinsic and intrinsic apoptotic pathways. Cell death is selectively induced in mutant KRAS CRC cells with elevated basal Myc and p-eIF2α and is characterized by CHOP induction and transcriptional signatures in proteotoxicity, oxidative stress, metabolic inhibition, and immune activation. BR-induced p-GCN2/p-eIF2α elevation and cell death are strongly attenuated by MYC knockdown and enhanced by MYC overexpression. The BR combination is efficacious against mutant KRAS patient derived organoids (PDO) and xenografts (PDX) by inducing p-eIF2α/CHOP and cell death. Interestingly, an elevated four-gene (DDIT3, GADD45B, CRYBA4 and HSPA1L) stress signature is linked to shortened overall survival in CRC patients. These data support that Myc-dependent stress adaptation drives the progression of mutant KRAS CRC and serves as a therapeutic vulnerability, which can be targeted using dual translational inhibitors.
Collapse
Affiliation(s)
- Hang Ruan
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Brian J. Leibowitz
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Yingpeng Peng
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Lin Shen
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ,grid.452223.00000 0004 1757 7615Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 P.R. China
| | - Lujia Chen
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Medical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232 USA
| | - Charlie Kuang
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Robert E. Schoen
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Epidemiology, University of Pittsburgh School of Public Health Pittsburgh, Pittsburgh, PA 15213 USA
| | - Xinghua Lu
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Medical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232 USA
| | - Lin Zhang
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Jian Yu
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| |
Collapse
|
44
|
Ramadan R, van Driel MS, Vermeulen L, van Neerven SM. Intestinal stem cell dynamics in homeostasis and cancer. Trends Cancer 2022; 8:416-425. [DOI: 10.1016/j.trecan.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 12/31/2022]
|
45
|
Cook DR, Kang M, Martin TD, Galanko JA, Loeza GH, Trembath DG, Justilien V, Pickering KA, Vincent DF, Jarosch A, Jurmeister P, Waters AM, Hibshman PS, Campbell AD, Ford CA, Keku TO, Yeh JJ, Lee MS, Cox AD, Fields AP, Sandler RS, Sansom OJ, Sers C, Schaefer A, Der CJ. Aberrant Expression and Subcellular Localization of ECT2 Drives Colorectal Cancer Progression and Growth. Cancer Res 2022; 82:90-104. [PMID: 34737214 PMCID: PMC9056178 DOI: 10.1158/0008-5472.can-20-4218] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 09/20/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
ECT2 is an activator of RHO GTPases that is essential for cytokinesis. In addition, ECT2 was identified as an oncoprotein when expressed ectopically in NIH/3T3 fibroblasts. However, oncogenic activation of ECT2 resulted from N-terminal truncation, and such truncated ECT2 proteins have not been found in patients with cancer. In this study, we observed elevated expression of full-length ECT2 protein in preneoplastic colon adenomas, driven by increased ECT2 mRNA abundance and associated with APC tumor-suppressor loss. Elevated ECT2 levels were detected in the cytoplasm and nucleus of colorectal cancer tissue, suggesting cytoplasmic mislocalization as one mechanism of early oncogenic ECT2 activation. Importantly, elevated nuclear ECT2 correlated with poorly differentiated tumors, and a low cytoplasmic:nuclear ratio of ECT2 protein correlated with poor patient survival, suggesting that nuclear and cytoplasmic ECT2 play distinct roles in colorectal cancer. Depletion of ECT2 reduced anchorage-independent cancer cell growth and invasion independent of its function in cytokinesis, and loss of Ect2 extended survival in a Kras G12D Apc-null colon cancer mouse model. Expression of ECT2 variants with impaired nuclear localization or guanine nucleotide exchange catalytic activity failed to restore cancer cell growth or invasion, indicating that active, nuclear ECT2 is required to support tumor progression. Nuclear ECT2 promoted ribosomal DNA transcription and ribosome biogenesis in colorectal cancer. These results support a driver role for both cytoplasmic and nuclear ECT2 overexpression in colorectal cancer and emphasize the critical role of precise subcellular localization in dictating ECT2 function in neoplastic cells. SIGNIFICANCE: ECT2 overexpression and mislocalization support its role as a driver in colon cancer that is independent from its function in normal cell cytokinesis.
Collapse
Affiliation(s)
- Danielle R Cook
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Melissa Kang
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Timothy D Martin
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Joseph A Galanko
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gabriela H Loeza
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Dimitri G Trembath
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Verline Justilien
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida
| | | | - David F Vincent
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Armin Jarosch
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
| | - Philipp Jurmeister
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
| | - Andrew M Waters
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Priya S Hibshman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Catriona A Ford
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jen Jen Yeh
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael S Lee
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Adrienne D Cox
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alan P Fields
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida
| | - Robert S Sandler
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christine Sers
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Antje Schaefer
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Channing J Der
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
| |
Collapse
|
46
|
Colorectal Cancer Stem Cells: An Overview of Evolving Methods and Concepts. Cancers (Basel) 2021; 13:cancers13235910. [PMID: 34885020 PMCID: PMC8657142 DOI: 10.3390/cancers13235910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary In recent years, colorectal cancer stem cells (cCSCs) have been the object of intense investigation for their promise to disclose new aspects of colorectal cancer cell biology, as well as to devise new treatment strategies for colorectal cancer (CRC). However, accumulating studies on cCSCs by complementary technologies have progressively disclosed their plastic nature, i.e., their capability to acquire different phenotypes and/or functions under different circumstances in response to both intrinsic and extrinsic signals. In this review, we aim to recapitulate how a progressive methodological development has contributed to deepening and remodeling the concept of cCSCs over time, up to the present. Abstract Colorectal cancer (CRC) represents one of the most deadly cancers worldwide. Colorectal cancer stem cells (cCSCs) are the driving units of CRC initiation and development. After the concept of cCSC was first formulated in 2007, a huge bulk of research has contributed to expanding its definition, from a cell subpopulation defined by a fixed phenotype in a plastic entity modulated by complex interactions with the tumor microenvironment, in which cell position and niche-driven signals hold a prominent role. The wide development of cellular and molecular technologies recent years has been a main driver of advancements in cCSCs research. Here, we will give an overview of the parallel role of technological progress and of theoretical evolution in shaping the concept of cCSCs.
Collapse
|
47
|
Saba JA, Liakath-Ali K, Green R, Watt FM. Translational control of stem cell function. Nat Rev Mol Cell Biol 2021; 22:671-690. [PMID: 34272502 DOI: 10.1038/s41580-021-00386-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/22/2022]
Abstract
Stem cells are characterized by their ability to self-renew and differentiate into many different cell types. Research has focused primarily on how these processes are regulated at a transcriptional level. However, recent studies have indicated that stem cell behaviour is strongly coupled to the regulation of protein synthesis by the ribosome. In this Review, we discuss how different translation mechanisms control the function of adult and embryonic stem cells. Stem cells are characterized by low global translation rates despite high levels of ribosome biogenesis. The maintenance of pluripotency, the commitment to a specific cell fate and the switch to cell differentiation depend on the tight regulation of protein synthesis and ribosome biogenesis. Translation regulatory mechanisms that impact on stem cell function include mTOR signalling, ribosome levels, and mRNA and tRNA features and amounts. Understanding these mechanisms important for stem cell self-renewal and differentiation may also guide our understanding of cancer grade and metastasis.
Collapse
Affiliation(s)
- James A Saba
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kifayathullah Liakath-Ali
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, London, UK.
| |
Collapse
|
48
|
Bornes L, Belthier G, van Rheenen J. Epithelial-to-Mesenchymal Transition in the Light of Plasticity and Hybrid E/M States. J Clin Med 2021; 10:jcm10112403. [PMID: 34072345 PMCID: PMC8197992 DOI: 10.3390/jcm10112403] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a cellular program which leads to cells losing epithelial features, including cell polarity, cell-cell adhesion and attachment to the basement membrane, while gaining mesenchymal characteristics, such as invasive properties and stemness. This program is involved in embryogenesis, wound healing and cancer progression. Over the years, the role of EMT in cancer progression has been heavily debated, and the requirement of this process in metastasis even has been disputed. In this review, we discuss previous discrepancies in the light of recent findings on EMT, plasticity and hybrid E/M states. Moreover, we highlight various tumor microenvironmental cues and cell intrinsic signaling pathways that induce and sustain EMT programs, plasticity and hybrid E/M states. Lastly, we discuss how recent findings on plasticity, especially on those that enable cells to switch between hybrid E/M states, have changed our understanding on the role of EMT in cancer metastasis, stemness and therapy resistance.
Collapse
|
49
|
van’t Sant LJ, White JJ, Hoeijmakers JHJ, Vermeij WP, Jaarsma D. In vivo 5-ethynyluridine (EU) labelling detects reduced transcription in Purkinje cell degeneration mouse mutants, but can itself induce neurodegeneration. Acta Neuropathol Commun 2021; 9:94. [PMID: 34020718 PMCID: PMC8139001 DOI: 10.1186/s40478-021-01200-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/12/2021] [Indexed: 12/20/2022] Open
Abstract
Fluorescent staining of newly transcribed RNA via metabolic labelling with 5-ethynyluridine (EU) and click chemistry enables visualisation of changes in transcription, such as in conditions of cellular stress. Here, we tested whether EU labelling can be used to examine transcription in vivo in mouse models of nervous system disorders. We show that injection of EU directly into the cerebellum results in reproducible labelling of newly transcribed RNA in cerebellar neurons and glia, with cell type-specific differences in relative labelling intensities, such as Purkinje cells exhibiting the highest levels. We also observed EU-labelling accumulating into cytoplasmic inclusions, indicating that EU, like other modified uridines, may introduce non-physiological properties in labelled RNAs. Additionally, we found that EU induces Purkinje cell degeneration nine days after EU injection, suggesting that EU incorporation not only results in abnormal RNA transcripts, but also eventually becomes neurotoxic in highly transcriptionally-active neurons. However, short post-injection intervals of EU labelling in both a Purkinje cell-specific DNA repair-deficient mouse model and a mouse model of spinocerebellar ataxia 1 revealed reduced transcription in Purkinje cells compared to controls. We combined EU labelling with immunohistology to correlate altered EU staining with pathological markers, such as genotoxic signalling factors. These data indicate that the EU-labelling method provided here can be used to identify changes in transcription in vivo in nervous system disease models.
Collapse
|
50
|
Massagué J, Ganesh K. Metastasis-Initiating Cells and Ecosystems. Cancer Discov 2021; 11:971-994. [PMID: 33811127 PMCID: PMC8030695 DOI: 10.1158/2159-8290.cd-21-0010] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022]
Abstract
Metastasis is initiated and sustained through therapy by cancer cells with stem-like and immune-evasive properties, termed metastasis-initiating cells (MIC). Recent progress suggests that MICs result from the adoption of a normal regenerative progenitor phenotype by malignant cells, a phenotype with intrinsic programs to survive the stresses of the metastatic process, undergo epithelial-mesenchymal transitions, enter slow-cycling states for dormancy, evade immune surveillance, establish supportive interactions with organ-specific niches, and co-opt systemic factors for growth and recurrence after therapy. Mechanistic understanding of the molecular mediators of MIC phenotypes and host tissue ecosystems could yield cancer therapeutics to improve patient outcomes. SIGNIFICANCE: Understanding the origins, traits, and vulnerabilities of progenitor cancer cells with the capacity to initiate metastasis in distant organs, and the host microenvironments that support the ability of these cells to evade immune surveillance and regenerate the tumor, is critical for developing strategies to improve the prevention and treatment of advanced cancer. Leveraging recent progress in our understanding of the metastatic process, here we review the nature of MICs and their ecosystems and offer a perspective on how this knowledge is informing innovative treatments of metastatic cancers.
Collapse
Affiliation(s)
- Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, New York.
| | - Karuna Ganesh
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York.
- Department of Medicine, Memorial Hospital, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|