1
|
Zimmerlin L, Angarita A, Park TS, Evans-Moses R, Thomas J, Yan S, Uribe I, Vegas I, Kochendoerfer C, Buys W, Leung AKL, Zambidis ET. Proteogenomic reprogramming to a functional human blastomere-like stem cell state via a PARP-DUX4 regulatory axis. Cell Rep 2025; 44:115671. [PMID: 40338744 DOI: 10.1016/j.celrep.2025.115671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 02/17/2025] [Accepted: 04/16/2025] [Indexed: 05/10/2025] Open
Abstract
Here, we show that conventional human pluripotent stem cells cultured with non-specific tankyrase-PARP1-inhibited conditions underwent proteogenomic reprogramming to functional blastomere-like tankyrase/PARP inhibitor-regulated naive stem cells (TIRN-SC). TIRN-SCs concurrently expressed hundreds of pioneer factors in hybrid 2C-8C-morula-ICM programs that were augmented by induced expression of DUX4. Injection of TIRN-SCs into 8C-staged murine embryos equipotently differentiated human cells to the extra-embryonic and embryonic compartments of chimeric blastocysts and fetuses. Ectopic expression of murine-E-Cadherin in TIRN-SCs further enhanced interspecific chimeric tissue targeting. TIRN-SC-derived trophoblast stem cells efficiently generated placental chimeras. Proteome-ubiquitinome analyses revealed increased TNKS and reduced PARP1 levels and an ADP-ribosylation-deficient, hyper-ubiquitinated proteome that impacted expression of both tankyrase and PARP1 substrates. ChIP-seq of NANOG-SOX2-OCT4 and PARP1 (NSOP) revealed genome-wide NSOP co-binding at DUX4-accessible enhancers of embryonic lineage factors; suggesting a DUX4-NSOP axis regulated TIRN-SC lineage plasticity. TIRN-SCs may serve as valuable models for studying the proteogenomic regulation of pre-lineage human embryogenesis. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ariana Angarita
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tea Soon Park
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rebecca Evans-Moses
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Justin Thomas
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sirui Yan
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Isabel Uribe
- Departments of Biochemistry and Molecular Biology, The Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Isabella Vegas
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Clara Kochendoerfer
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Willem Buys
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Anthony K L Leung
- Departments of Biochemistry and Molecular Biology, The Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Elias T Zambidis
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Parikh C, Glenn RA, Shi Y, Chatterjee K, Kasliwal K, Swanzey EE, Singer S, Do SC, Zhan Y, Furuta Y, Tahiliani M, Apostolou E, Polyzos A, Koche R, Mezey JG, Vierbuchen T, Stadtfeld M. Genetic variation modulates susceptibility to aberrant DNA hypomethylation and imprint deregulation in naive pluripotent stem cells. Stem Cell Reports 2025; 20:102450. [PMID: 40086447 PMCID: PMC12069886 DOI: 10.1016/j.stemcr.2025.102450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 03/16/2025] Open
Abstract
Naive pluripotent stem cells (nPSCs) frequently undergo pathological loss of DNA methylation at imprinted gene loci, posing a hurdle for biomedical applications and underscoring the need to identify underlying causes. We show that nPSCs from inbred mouse strains exhibit strain-specific susceptibility to locus-specific deregulation of imprinting marks during reprogramming and upon exposure to a mitogen-activated protein kinase (MAPK) inhibitor, a common approach to maintain naive pluripotency. Analysis of genetically diverse nPSCs from the Diversity Outbred (DO) stock confirms the impact of genetic variation on epigenome stability, which we leverage to identify trans-acting quantitative trait loci (QTLs) that modulate DNA methylation levels at specific targets or genome-wide. Analysis of multi-target QTLs on chromosomes 4 and 17 suggests candidate transcriptional regulators contributing to DNA methylation maintenance in nPSCs. We propose that genetic variants represent biomarkers to identify pluripotent cell lines with desirable properties and may allow the targeted engineering of nPSCs with stable epigenomes.
Collapse
Affiliation(s)
- C Parikh
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - R A Glenn
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cell and Developmental Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Y Shi
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
| | - K Chatterjee
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - K Kasliwal
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - E E Swanzey
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - S Singer
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - S C Do
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Y Zhan
- Mouse Genetics Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Y Furuta
- Mouse Genetics Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - M Tahiliani
- Department of Biology, New York University, New York, NY 10003, USA
| | - E Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - A Polyzos
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - R Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - J G Mezey
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA.
| | - T Vierbuchen
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - M Stadtfeld
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
3
|
Guo J, Lin R, Liu J, Liu R, Chen S, Zhang Z, Yang Y, Wang H, Wang L, Yu S, Zhou C, Xiao L, Luo R, Yu J, Zeng L, Zhang X, Li Y, Wu H, Wang T, Li Y, Kumar M, Zhu P, Liu J. Capture primed pluripotency in guinea pig. Stem Cell Reports 2025; 20:102388. [PMID: 39793577 PMCID: PMC11864139 DOI: 10.1016/j.stemcr.2024.102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 01/13/2025] Open
Abstract
Guinea pigs are valuable models for human disease research, yet the lack of established pluripotent stem cell lines has limited their utility. In this study, we isolate and characterize guinea pig epiblast stem cells (gpEpiSCs) from post-implantation embryos. These cells differentiate into the three germ layers, maintain normal karyotypes, and rely on FGF2 and ACTIVIN A signaling for self-renewal and pluripotency. Wingless/Integrated (WNT) signaling inhibition is also essential for their maintenance. GpEpiSCs express key pluripotency markers (OCT4, SOX2, NANOG) and share transcriptional similarities with human and mouse primed stem cells. While many genes are conserved between guinea pig and human primed stem cells, transcriptional analysis also reveals species-specific differences in pluripotency-related pathways. Epigenetic analysis highlights bivalent gene regulation, underscoring their developmental potential. This work demonstrates both the evolutionary conservation and divergence of primed pluripotent stem cells, providing a new tool for biomedical research and enhancing guinea pigs' utility in studying human diseases.
Collapse
Affiliation(s)
- Jing Guo
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Runxia Lin
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jinpeng Liu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Rongrong Liu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Shuyan Chen
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhen Zhang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Yongzheng Yang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Haiyun Wang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Luqin Wang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Shengyong Yu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Chunhua Zhou
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Lizhan Xiao
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Rongping Luo
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Jinjin Yu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Department of Pediatric Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lihua Zeng
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaoli Zhang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Yusha Li
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Haokaifeng Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Tao Wang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yi Li
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Manish Kumar
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China.
| | - Ping Zhu
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510100, China.
| | - Jing Liu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China.
| |
Collapse
|
4
|
Aydin S, Skelly DA, Dewey H, Mahoney JM, Choi T, Reinholdt LG, Baker CL, Munger SC. Cross cell-type systems genetics reveals the influence of eQTL at multiple points in the developmental trajectory of mouse neural progenitor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634514. [PMID: 39896448 PMCID: PMC11785210 DOI: 10.1101/2025.01.24.634514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Genetic variation leads to phenotypic variability in pluripotent stem cells that presents challenges for regenerative medicine. Although recent studies have investigated the impact of genetic variation on pluripotency maintenance and differentiation capacity, less is known about how genetic variants affecting the pluripotent state influence gene regulation in later stages of development. Here, we characterized expression of more than 12,000 genes in 127 donor-matched Diversity Outbred (DO) mouse embryonic stem cell (mESC) and neural progenitor cell (mNPC) lines. Quantitative trait locus (QTL) mapping identified 2,947 expression QTL (eQTL) unique to DO mNPCs and 1,113 eQTL observed in both mNPCs and mESCs with highly concordant allele effects. We mapped three eQTL hotspots on Chromosomes (Chrs) 1, 10, and 11 that were unique to mNPCs. Target genes of the Chr 1 hotspot were overrepresented for those involved in mRNA processing, DNA repair, chromatin organization, protein degradation, and cell cycle. Mediation analysis of the Chr 1 hotspot identified Rnf152 as the best candidate mediator expressed in mNPCs, while cross-cell type mediation using mESC gene expression along with partial correlation analysis strongly implicated genetic variant(s) affecting Pign expression in the mESC state as regulating the mNPC Chr 1 eQTL hotspot. Together these findings highlight that many local eQTL confer similar effects on gene expression in multiple cell states; distant eQTL in DO mNPCs are numerous and largely unique to that cell state, with many co-localizing to mNPC-specific hotspots; and mediation analysis across cell types suggests that expression of Pign early in development (mESCs) shapes the transcriptome of the more specialized mNPC state.
Collapse
Affiliation(s)
- Selcan Aydin
- The Jackson Laboratory, Bar Harbor, ME 04609 USA
| | | | - Hannah Dewey
- The Jackson Laboratory, Bar Harbor, ME 04609 USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111 USA
| | | | - Ted Choi
- Predictive Biology, Inc., Carlsbad, CA 92010 USA
| | - Laura G. Reinholdt
- The Jackson Laboratory, Bar Harbor, ME 04609 USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111 USA
| | - Christopher L. Baker
- The Jackson Laboratory, Bar Harbor, ME 04609 USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111 USA
| | - Steven C. Munger
- The Jackson Laboratory, Bar Harbor, ME 04609 USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111 USA
| |
Collapse
|
5
|
Fang Z, Peltz G. Twenty-first century mouse genetics is again at an inflection point. Lab Anim (NY) 2025; 54:9-15. [PMID: 39592878 PMCID: PMC11695262 DOI: 10.1038/s41684-024-01491-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/12/2024] [Indexed: 11/28/2024]
Abstract
The laboratory mouse has been the premier model organism for biomedical research owing to the availability of multiple well-characterized inbred strains, its mammalian physiology and its homozygous genome, and because experiments can be performed under conditions that control environmental variables. Moreover, its genome can be genetically modified to assess the impact of allelic variation on phenotype. Mouse models have been used to discover or test many therapies that are commonly used today. Mouse genetic discoveries are often made using genome-wide association study methods that compare allelic differences in panels of inbred mouse strains with their phenotypic responses. Here we examine changes in the methods used to analyze mouse genetic models of biomedical traits during the twenty-first century. To do this, we first examine where mouse genetics was before the first inflection point, which was just before the revolution in genome sequencing that occurred 20 years ago, and then describe the factors that have accelerated the pace of mouse genetic discovery. We focus on mouse genetic studies that have generated findings that either were translated to humans or could impact clinical medicine or drug development. We next explore how advances in computational capabilities and in DNA sequencing methodology during the past 20 years could enhance the ability of mouse genetics to produce solutions for twenty-first century public-health problems.
Collapse
Affiliation(s)
- Zhuoqing Fang
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Gary Peltz
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
6
|
Sapozhnikov DM, Szyf M. Genetic confounds of transgenerational epigenetic inheritance in mice. Epigenetics 2024; 19:2318519. [PMID: 38369744 PMCID: PMC10878023 DOI: 10.1080/15592294.2024.2318519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/07/2024] [Indexed: 02/20/2024] Open
Abstract
Transgenerational epigenetic inheritance in mammals remains a controversial phenomenon. A recent study by Takahashi et al. provides evidence for this mode of inheritance in mice by using a CRISPR/Cas9-based epigenetic editing technique to modify DNA methylation levels at specific promoters and then demonstrating the inheritance of the gain in methylation in offspring. In this technical commentary, we argue that the method used in the original study inherently amplifies the likelihood of genetic changes that thereafter lead to the heritability of epigenetic changes. We provide evidence that genetic changes from multiple sources do indeed occur in these experiments and explore several avenues by which these changes could be causal to the apparent inheritance of epigenetic changes. We conclude a genetic basis of inheritance cannot be ruled out and thus transgenerational epigenetic inheritance has not been adequately established by the original study.
Collapse
Affiliation(s)
- Daniel M. Sapozhnikov
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Simon NM, Kim Y, Gribnau J, Bautista DM, Dutton JR, Brem RB. Stem cell transcriptional profiles from mouse subspecies reveal cis-regulatory evolution at translation genes. Heredity (Edinb) 2024; 133:308-316. [PMID: 39164520 PMCID: PMC11527988 DOI: 10.1038/s41437-024-00715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
A key goal of evolutionary genomics is to harness molecular data to draw inferences about selective forces that have acted on genomes. The field progresses in large part through the development of advanced molecular-evolution analysis methods. Here we explored the intersection between classical sequence-based tests for selection and an empirical expression-based approach, using stem cells from Mus musculus subspecies as a model. Using a test of directional, cis-regulatory evolution across genes in pathways, we discovered a unique program of induction of translation genes in stem cells of the Southeast Asian mouse M. m. castaneus relative to its sister taxa. We then mined population-genomic sequences to pursue underlying regulatory mechanisms for this expression divergence, finding robust evidence for alleles unique to M. m. castaneus at the upstream regions of the translation genes. We interpret our data under a model of changes in lineage-specific pressures across Mus musculus in stem cells with high translational capacity. Our findings underscore the rigor of integrating expression and sequence-based methods to generate hypotheses about evolutionary events from long ago.
Collapse
Affiliation(s)
- Noah M Simon
- Biology of Aging Doctoral Program, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Yujin Kim
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joost Gribnau
- Department of Reproduction and Development, Erasmus MC, Rotterdam, PO Box 2040, CA, 3000, Netherlands
| | - Diana M Bautista
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - James R Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
8
|
Simon NM, Kim Y, Bautista DM, Dutton JR, Brem RB. Stem cell transcriptional profiles from mouse subspecies reveal cis -regulatory evolution at translation genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.18.549406. [PMID: 37503246 PMCID: PMC10370129 DOI: 10.1101/2023.07.18.549406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A key goal of evolutionary genomics is to harness molecular data to draw inferences about selective forces that have acted on genomes. The field progresses in large part through the development of advanced molecular-evolution analysis methods. Here we explored the intersection between classical sequence-based tests for selection and an empirical expression-based approach, using stem cells from Mus musculus subspecies as a model. Using a test of directional, cis -regulatory evolution across genes in pathways, we discovered a unique program of induction of translation genes in stem cells of the Southeast Asian mouse M. m. castaneus relative to its sister taxa. We then mined population-genomic sequences to pursue underlying regulatory mechanisms for this expression divergence, finding robust evidence for alleles unique to M. m. castaneus at the upstream regions of the translation genes. We interpret our data under a model of changes in lineage-specific pressures across Mus musculus in stem cells with high translational capacity. Our findings underscore the rigor of integrating expression and sequence-based methods to generate hypotheses about evolutionary events from long ago.
Collapse
|
9
|
Parikh C, Glenn RA, Shi Y, Chatterjee K, Swanzey EE, Singer S, Do SC, Zhan Y, Furuta Y, Tahiliani M, Apostolou E, Polyzos A, Koche R, Mezey JG, Vierbuchen T, Stadtfeld M. Genetic variation modulates susceptibility to aberrant DNA hypomethylation and imprint deregulation in naïve pluripotent stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600805. [PMID: 38979237 PMCID: PMC11230387 DOI: 10.1101/2024.06.26.600805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Naïve pluripotent stem cells (nPSC) frequently undergo pathological and not readily reversible loss of DNA methylation marks at imprinted gene loci. This abnormality poses a hurdle for using pluripotent cell lines in biomedical applications and underscores the need to identify the causes of imprint instability in these cells. We show that nPSCs from inbred mouse strains exhibit pronounced strain-specific susceptibility to locus-specific deregulation of imprinting marks during reprogramming to pluripotency and upon culture with MAP kinase inhibitors, a common approach to maintain naïve pluripotency. Analysis of genetically highly diverse nPSCs from the Diversity Outbred (DO) stock confirms that genetic variation is a major determinant of epigenome stability in pluripotent cells. We leverage the variable DNA hypomethylation in DO lines to identify several trans-acting quantitative trait loci (QTLs) that determine epigenome stability at either specific target loci or genome-wide. Candidate factors encoded by two multi-target QTLs on chromosomes 4 and 17 suggest specific transcriptional regulators that contribute to DNA methylation maintenance in nPSCs. We propose that genetic variants represent candidate biomarkers to identify pluripotent cell lines with desirable properties and might serve as entry points for the targeted engineering of nPSCs with stable epigenomes. Highlights Naïve pluripotent stem cells from distinct inbred mouse strains exhibit variable DNA methylation levels at imprinted gene loci.The vulnerability of pluripotent stem cells to loss of genomic imprinting caused by MAP kinase inhibition strongly differs between inbred mouse strains.Genetically diverse pluripotent stem cell lines from Diversity Outbred mouse stock allow the identification of quantitative trait loci controlling DNA methylation stability.Genetic variants may serve as biomarkers to identify naïve pluripotent stem cell lines that are epigenetically stable in specific culture conditions.
Collapse
|
10
|
Glenn RA, Do SC, Guruvayurappan K, Corrigan EK, Santini L, Medina-Cano D, Singer S, Cho H, Liu J, Broman K, Czechanski A, Reinholdt L, Koche R, Furuta Y, Kunz M, Vierbuchen T. A PLURIPOTENT STEM CELL PLATFORM FOR IN VITRO SYSTEMS GENETICS STUDIES OF MOUSE DEVELOPMENT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597758. [PMID: 38895226 PMCID: PMC11185710 DOI: 10.1101/2024.06.06.597758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The directed differentiation of pluripotent stem cells (PSCs) from panels of genetically diverse individuals is emerging as a powerful experimental system for characterizing the impact of natural genetic variation on developing cell types and tissues. Here, we establish new PSC lines and experimental approaches for modeling embryonic development in a genetically diverse, outbred mouse stock (Diversity Outbred mice). We show that a range of inbred and outbred PSC lines can be stably maintained in the primed pluripotent state (epiblast stem cells -- EpiSCs) and establish the contribution of genetic variation to phenotypic differences in gene regulation and directed differentiation. Using pooled in vitro fertilization, we generate and characterize a genetic reference panel of Diversity Outbred PSCs (n = 230). Finally, we demonstrate the feasibility of pooled culture of Diversity Outbred EpiSCs as "cell villages", which can facilitate the differentiation of large numbers of EpiSC lines for forward genetic screens. These data can complement and inform similar efforts within the stem cell biology and human genetics communities to model the impact of natural genetic variation on phenotypic variation and disease-risk.
Collapse
Affiliation(s)
- Rachel A. Glenn
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell and Developmental Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Stephanie C. Do
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Emily K. Corrigan
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Present address: Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA and Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Laura Santini
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Medina-Cano
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarah Singer
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hyein Cho
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jing Liu
- Mouse Genetics Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karl Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI USA
| | | | | | - Richard Koche
- Center for Epigenetics Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yasuhide Furuta
- Mouse Genetics Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meik Kunz
- The Bioinformatics CRO, Sanford Florida, 32771 USA
| | - Thomas Vierbuchen
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
11
|
Kuffler L, Skelly DA, Czechanski A, Fortin HJ, Munger SC, Baker CL, Reinholdt LG, Carter GW. Imputation of 3D genome structure by genetic-epigenetic interaction modeling in mice. eLife 2024; 12:RP88222. [PMID: 38669177 PMCID: PMC11052574 DOI: 10.7554/elife.88222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
Gene expression is known to be affected by interactions between local genetic variation and DNA accessibility, with the latter organized into three-dimensional chromatin structures. Analyses of these interactions have previously been limited, obscuring their regulatory context, and the extent to which they occur throughout the genome. Here, we undertake a genome-scale analysis of these interactions in a genetically diverse population to systematically identify global genetic-epigenetic interaction, and reveal constraints imposed by chromatin structure. We establish the extent and structure of genotype-by-epigenotype interaction using embryonic stem cells derived from Diversity Outbred mice. This mouse population segregates millions of variants from eight inbred founders, enabling precision genetic mapping with extensive genotypic and phenotypic diversity. With 176 samples profiled for genotype, gene expression, and open chromatin, we used regression modeling to infer genetic-epigenetic interactions on a genome-wide scale. Our results demonstrate that statistical interactions between genetic variants and chromatin accessibility are common throughout the genome. We found that these interactions occur within the local area of the affected gene, and that this locality corresponds to topologically associated domains (TADs). The likelihood of interaction was most strongly defined by the three-dimensional (3D) domain structure rather than linear DNA sequence. We show that stable 3D genome structure is an effective tool to guide searches for regulatory elements and, conversely, that regulatory elements in genetically diverse populations provide a means to infer 3D genome structure. We confirmed this finding with CTCF ChIP-seq that revealed strain-specific binding in the inbred founder mice. In stem cells, open chromatin participating in the most significant regression models demonstrated an enrichment for developmental genes and the TAD-forming CTCF-binding complex, providing an opportunity for statistical inference of shifting TAD boundaries operating during early development. These findings provide evidence that genetic and epigenetic factors operate within the context of 3D chromatin structure.
Collapse
|
12
|
Cortes DE, Escudero M, Korgan AC, Mitra A, Edwards A, Aydin SC, Munger SC, Charland K, Zhang ZW, O'Connell KMS, Reinholdt LG, Pera MF. An in vitro neurogenetics platform for precision disease modeling in the mouse. SCIENCE ADVANCES 2024; 10:eadj9305. [PMID: 38569042 PMCID: PMC10990289 DOI: 10.1126/sciadv.adj9305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
The power and scope of disease modeling can be markedly enhanced through the incorporation of broad genetic diversity. The introduction of pathogenic mutations into a single inbred mouse strain sometimes fails to mimic human disease. We describe a cross-species precision disease modeling platform that exploits mouse genetic diversity to bridge cell-based modeling with whole organism analysis. We developed a universal protocol that permitted robust and reproducible neural differentiation of genetically diverse human and mouse pluripotent stem cell lines and then carried out a proof-of-concept study of the neurodevelopmental gene DYRK1A. Results in vitro reliably predicted the effects of genetic background on Dyrk1a loss-of-function phenotypes in vivo. Transcriptomic comparison of responsive and unresponsive strains identified molecular pathways conferring sensitivity or resilience to Dyrk1a1A loss and highlighted differential messenger RNA isoform usage as an important determinant of response. This cross-species strategy provides a powerful tool in the functional analysis of candidate disease variants identified through human genetic studies.
Collapse
Affiliation(s)
| | | | | | - Arojit Mitra
- The Jackson Laboratory, Bar Harbor, ME 04660, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
O’Connor C, Keele GR, Martin W, Stodola T, Gatti D, Hoffman BR, Korstanje R, Churchill GA, Reinholdt LG. Unraveling the genetics of arsenic toxicity with cellular morphology QTL. PLoS Genet 2024; 20:e1011248. [PMID: 38662777 PMCID: PMC11075906 DOI: 10.1371/journal.pgen.1011248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/07/2024] [Accepted: 04/03/2024] [Indexed: 05/08/2024] Open
Abstract
The health risks that arise from environmental exposures vary widely within and across human populations, and these differences are largely determined by genetic variation and gene-by-environment (gene-environment) interactions. However, risk assessment in laboratory mice typically involves isogenic strains and therefore, does not account for these known genetic effects. In this context, genetically heterogenous cell lines from laboratory mice are promising tools for population-based screening because they provide a way to introduce genetic variation in risk assessment without increasing animal use. Cell lines from genetic reference populations of laboratory mice offer genetic diversity, power for genetic mapping, and potentially, predictive value for in vivo experimentation in genetically matched individuals. To explore this further, we derived a panel of fibroblast lines from a genetic reference population of laboratory mice (the Diversity Outbred, DO). We then used high-content imaging to capture hundreds of cell morphology traits in cells exposed to the oxidative stress-inducing arsenic metabolite monomethylarsonous acid (MMAIII). We employed dose-response modeling to capture latent parameters of response and we then used these parameters to identify several hundred cell morphology quantitative trait loci (cmQTL). Response cmQTL encompass genes with established associations with cellular responses to arsenic exposure, including Abcc4 and Txnrd1, as well as novel gene candidates like Xrcc2. Moreover, baseline trait cmQTL highlight the influence of natural variation on fundamental aspects of nuclear morphology. We show that the natural variants influencing response include both coding and non-coding variation, and that cmQTL haplotypes can be used to predict response in orthogonal cell lines. Our study sheds light on the major molecular initiating events of oxidative stress that are under genetic regulation, including the NRF2-mediated antioxidant response, cellular detoxification pathways, DNA damage repair response, and cell death trajectories.
Collapse
Affiliation(s)
- Callan O’Connor
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Gregory R. Keele
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- RTI International, Research Triangle Park, Durham, North Carolina, United States of America
| | - Whitney Martin
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Timothy Stodola
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Daniel Gatti
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Brian R. Hoffman
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Ron Korstanje
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Gary A. Churchill
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Laura G. Reinholdt
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| |
Collapse
|
14
|
Du P, Wu J. Hallmarks of totipotent and pluripotent stem cell states. Cell Stem Cell 2024; 31:312-333. [PMID: 38382531 PMCID: PMC10939785 DOI: 10.1016/j.stem.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
Though totipotency and pluripotency are transient during early embryogenesis, they establish the foundation for the development of all mammals. Studying these in vivo has been challenging due to limited access and ethical constraints, particularly in humans. Recent progress has led to diverse culture adaptations of epiblast cells in vitro in the form of totipotent and pluripotent stem cells, which not only deepen our understanding of embryonic development but also serve as invaluable resources for animal reproduction and regenerative medicine. This review delves into the hallmarks of totipotent and pluripotent stem cells, shedding light on their key molecular and functional features.
Collapse
Affiliation(s)
- Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
15
|
O'Connor C, Keele GR, Martin W, Stodola T, Gatti D, Hoffman BR, Korstanje R, Churchill GA, Reinholdt LG. Cell morphology QTL reveal gene by environment interactions in a genetically diverse cell population. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.18.567597. [PMID: 38014303 PMCID: PMC10680806 DOI: 10.1101/2023.11.18.567597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Genetically heterogenous cell lines from laboratory mice are promising tools for population-based screening as they offer power for genetic mapping, and potentially, predictive value for in vivo experimentation in genetically matched individuals. To explore this further, we derived a panel of fibroblast lines from a genetic reference population of laboratory mice (the Diversity Outbred, DO). We then used high-content imaging to capture hundreds of cell morphology traits in cells exposed to the oxidative stress-inducing arsenic metabolite monomethylarsonous acid (MMAIII). We employed dose-response modeling to capture latent parameters of response and we then used these parameters to identify several hundred cell morphology quantitative trait loci (cmQTL). Response cmQTL encompass genes with established associations with cellular responses to arsenic exposure, including Abcc4 and Txnrd1, as well as novel gene candidates like Xrcc2. Moreover, baseline trait cmQTL highlight the influence of natural variation on fundamental aspects of nuclear morphology. We show that the natural variants influencing response include both coding and non-coding variation, and that cmQTL haplotypes can be used to predict response in orthogonal cell lines. Our study sheds light on the major molecular initiating events of oxidative stress that are under genetic regulation, including the NRF2-mediated antioxidant response, cellular detoxification pathways, DNA damage repair response, and cell death trajectories.
Collapse
Affiliation(s)
- Callan O'Connor
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Gregory R Keele
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- RTI International, RTP, NC 27709, USA
| | | | | | - Daniel Gatti
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | | | - Laura G Reinholdt
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
16
|
Allayee H, Farber CR, Seldin MM, Williams EG, James DE, Lusis AJ. Systems genetics approaches for understanding complex traits with relevance for human disease. eLife 2023; 12:e91004. [PMID: 37962168 PMCID: PMC10645424 DOI: 10.7554/elife.91004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Abstract
Quantitative traits are often complex because of the contribution of many loci, with further complexity added by environmental factors. In medical research, systems genetics is a powerful approach for the study of complex traits, as it integrates intermediate phenotypes, such as RNA, protein, and metabolite levels, to understand molecular and physiological phenotypes linking discrete DNA sequence variation to complex clinical and physiological traits. The primary purpose of this review is to describe some of the resources and tools of systems genetics in humans and rodent models, so that researchers in many areas of biology and medicine can make use of the data.
Collapse
Affiliation(s)
- Hooman Allayee
- Departments of Population & Public Health Sciences, University of Southern CaliforniaLos AngelesUnited States
- Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Charles R Farber
- Center for Public Health Genomics, University of Virginia School of MedicineCharlottesvilleUnited States
- Departments of Biochemistry & Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
- Public Health Sciences, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Marcus M Seldin
- Department of Biological Chemistry, University of California, IrvineIrvineUnited States
| | - Evan Graehl Williams
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgLuxembourgLuxembourg
| | - David E James
- School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
- Faculty of Medicine and Health, University of SydneyCamperdownAustralia
- Charles Perkins Centre, University of SydneyCamperdownAustralia
| | - Aldons J Lusis
- Departments of Human Genetics, University of California, Los AngelesLos AngelesUnited States
- Medicine, University of California, Los AngelesLos AngelesUnited States
- Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLALos AngelesUnited States
| |
Collapse
|
17
|
Meade RK, Long JE, Jinich A, Rhee KY, Ashbrook DG, Williams RW, Sassetti CM, Smith CM. Genome-wide screen identifies host loci that modulate Mycobacterium tuberculosis fitness in immunodivergent mice. G3 (BETHESDA, MD.) 2023; 13:jkad147. [PMID: 37405387 PMCID: PMC10468300 DOI: 10.1093/g3journal/jkad147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/05/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023]
Abstract
Genetic differences among mammalian hosts and among strains of Mycobacterium tuberculosis (Mtb) are well-established determinants of tuberculosis (TB) patient outcomes. The advent of recombinant inbred mouse panels and next-generation transposon mutagenesis and sequencing approaches has enabled dissection of complex host-pathogen interactions. To identify host and pathogen genetic determinants of Mtb pathogenesis, we infected members of the highly diverse BXD family of strains with a comprehensive library of Mtb transposon mutants (TnSeq). Members of the BXD family segregate for Mtb-resistant C57BL/6J (B6 or B) and Mtb-susceptible DBA/2J (D2 or D) haplotypes. The survival of each bacterial mutant was quantified within each BXD host, and we identified those bacterial genes that were differentially required for Mtb fitness across BXD genotypes. Mutants that varied in survival among the host family of strains were leveraged as reporters of "endophenotypes," each bacterial fitness profile directly probing specific components of the infection microenvironment. We conducted quantitative trait loci (QTL) mapping of these bacterial fitness endophenotypes and identified 140 host-pathogen QTL (hpQTL). We located a QTL hotspot on chromosome 6 (75.97-88.58 Mb) associated with the genetic requirement of multiple Mtb genes: Rv0127 (mak), Rv0359 (rip2), Rv0955 (perM), and Rv3849 (espR). Together, this screen reinforces the utility of bacterial mutant libraries as precise reporters of the host immunological microenvironment during infection and highlights specific host-pathogen genetic interactions for further investigation. To enable downstream follow-up for both bacterial and mammalian genetic research communities, all bacterial fitness profiles have been deposited into GeneNetwork.org and added into the comprehensive collection of TnSeq libraries in MtbTnDB.
Collapse
Affiliation(s)
- Rachel K Meade
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA
| | - Jarukit E Long
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01655, USA
- Research Animal Diagnostic Services, Charles River Laboratories, Wilmington, MA 01887, USA
| | - Adrian Jinich
- Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10021, USA
| | - Kyu Y Rhee
- Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10021, USA
| | - David G Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Clare M Smith
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA
| |
Collapse
|
18
|
Philip VM, He H, Saul MC, Dickson PE, Bubier JA, Chesler EJ. Gene expression genetics of the striatum of Diversity Outbred mice. Sci Data 2023; 10:522. [PMID: 37543624 PMCID: PMC10404230 DOI: 10.1038/s41597-023-02426-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023] Open
Abstract
Brain transcriptional variation is a heritable trait that mediates complex behaviors, including addiction. Expression quantitative trait locus (eQTL) mapping reveals genomic regions harboring genetic variants that influence transcript abundance. In this study, we profiled transcript abundance in the striatum of 386 Diversity Outbred (J:DO) mice of both sexes using RNA-Seq. All mice were characterized using a behavioral battery of widely-used exploratory and risk-taking assays prior to transcriptional profiling. We performed eQTL mapping, incorporated the results into a browser-based eQTL viewer, and deposited co-expression network members in GeneWeaver. The eQTL viewer allows researchers to query specific genes to obtain allelic effect plots, analyze SNP associations, assess gene expression correlations, and apply mediation analysis to evaluate whether the regulatory variant is acting through the expression of another gene. GeneWeaver allows multi-species comparison of gene sets using statistical and combinatorial tools. This data resource allows users to find genetic variants that regulate differentially expressed transcripts and place them in the context of other studies of striatal gene expression and function in addiction-related behavior.
Collapse
Affiliation(s)
- Vivek M Philip
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, 04605, USA
| | - Hao He
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Michael C Saul
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, 04605, USA
| | - Price E Dickson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine Marshall University, Huntington, WV, 25703, USA
| | - Jason A Bubier
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, 04605, USA
| | - Elissa J Chesler
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, 04605, USA.
| |
Collapse
|
19
|
Buckberry S, Liu X, Poppe D, Tan JP, Sun G, Chen J, Nguyen TV, de Mendoza A, Pflueger J, Frazer T, Vargas-Landín DB, Paynter JM, Smits N, Liu N, Ouyang JF, Rossello FJ, Chy HS, Rackham OJL, Laslett AL, Breen J, Faulkner GJ, Nefzger CM, Polo JM, Lister R. Transient naive reprogramming corrects hiPS cells functionally and epigenetically. Nature 2023; 620:863-872. [PMID: 37587336 PMCID: PMC10447250 DOI: 10.1038/s41586-023-06424-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/11/2023] [Indexed: 08/18/2023]
Abstract
Cells undergo a major epigenome reconfiguration when reprogrammed to human induced pluripotent stem cells (hiPS cells). However, the epigenomes of hiPS cells and human embryonic stem (hES) cells differ significantly, which affects hiPS cell function1-8. These differences include epigenetic memory and aberrations that emerge during reprogramming, for which the mechanisms remain unknown. Here we characterized the persistence and emergence of these epigenetic differences by performing genome-wide DNA methylation profiling throughout primed and naive reprogramming of human somatic cells to hiPS cells. We found that reprogramming-induced epigenetic aberrations emerge midway through primed reprogramming, whereas DNA demethylation begins early in naive reprogramming. Using this knowledge, we developed a transient-naive-treatment (TNT) reprogramming strategy that emulates the embryonic epigenetic reset. We show that the epigenetic memory in hiPS cells is concentrated in cell of origin-dependent repressive chromatin marked by H3K9me3, lamin-B1 and aberrant CpH methylation. TNT reprogramming reconfigures these domains to a hES cell-like state and does not disrupt genomic imprinting. Using an isogenic system, we demonstrate that TNT reprogramming can correct the transposable element overexpression and differential gene expression seen in conventional hiPS cells, and that TNT-reprogrammed hiPS and hES cells show similar differentiation efficiencies. Moreover, TNT reprogramming enhances the differentiation of hiPS cells derived from multiple cell types. Thus, TNT reprogramming corrects epigenetic memory and aberrations, producing hiPS cells that are molecularly and functionally more similar to hES cells than conventional hiPS cells. We foresee TNT reprogramming becoming a new standard for biomedical and therapeutic applications and providing a novel system for studying epigenetic memory.
Collapse
Affiliation(s)
- Sam Buckberry
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Telethon Kids Institute, Perth, Western Australia, Australia
- John Curtin School of Medical Research, College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Xiaodong Liu
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
- School of Life Sciences, Westlake University, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Westlake Institute for Advanced Study, Hangzhou, China
| | - Daniel Poppe
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jia Ping Tan
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Guizhi Sun
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Joseph Chen
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Trung Viet Nguyen
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Alex de Mendoza
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Jahnvi Pflueger
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Thomas Frazer
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Dulce B Vargas-Landín
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jacob M Paynter
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Nathan Smits
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Ning Liu
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - John F Ouyang
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Fernando J Rossello
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Hun S Chy
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Melbourne, Victoria, Australia
| | - Owen J L Rackham
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore, Singapore
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Andrew L Laslett
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Melbourne, Victoria, Australia
| | - James Breen
- John Curtin School of Medical Research, College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Christian M Nefzger
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, Victoria, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, Victoria, Australia.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia.
- Adelaide Centre for Epigenetics, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
- The South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Ryan Lister
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia.
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
20
|
Philip VM, He H, Saul MC, Dickson PE, Bubier JA, Chesler EJ. Gene expression genetics of the striatum of Diversity Outbred mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540390. [PMID: 37214980 PMCID: PMC10197688 DOI: 10.1101/2023.05.11.540390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Brain transcriptional variation is a heritable trait that mediates complex behaviors, including addiction. Expression quantitative trait locus (eQTL) mapping reveals genomic regions harboring genetic variants that influence transcript abundance. In this study, we profiled transcript abundance in the striatum of 386 Diversity Outbred (J:DO) mice of both sexes using RNA-Seq. All mice were characterized using a behavioral battery of widely-used exploratory and risk-taking assays prior to transcriptional profiling. We performed eQTL mapping, incorporated the results into a browser-based eQTL viewer, and deposited co-expression network members in GeneWeaver. The eQTL viewer allows researchers to query specific genes to obtain allelic effect plots, analyze SNP associations, assess gene expression correlations, and apply mediation analysis to evaluate whether the regulatory variant is acting through the expression of another gene. GeneWeaver allows multi-species comparison of gene sets using statistical and combinatorial tools. This data resource allows users to find genetic variants that regulate differentially expressed transcripts and place them in the context of other studies of striatal gene expression and function in addiction-related behavior.
Collapse
Affiliation(s)
- Vivek M. Philip
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME 04605
| | - Hao He
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032
| | - Michael C. Saul
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME 04605
| | - Price E. Dickson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine Marshall University, 1700 3rd Ave. Huntington, WV 25703
| | - Jason A. Bubier
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME 04605
| | | |
Collapse
|
21
|
Ferraj A, Audano PA, Balachandran P, Czechanski A, Flores JI, Radecki AA, Mosur V, Gordon DS, Walawalkar IA, Eichler EE, Reinholdt LG, Beck CR. Resolution of structural variation in diverse mouse genomes reveals chromatin remodeling due to transposable elements. CELL GENOMICS 2023; 3:100291. [PMID: 37228752 PMCID: PMC10203049 DOI: 10.1016/j.xgen.2023.100291] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/03/2023] [Accepted: 03/10/2023] [Indexed: 05/25/2023]
Abstract
Diverse inbred mouse strains are important biomedical research models, yet genome characterization of many strains is fundamentally lacking in comparison with humans. In particular, catalogs of structural variants (SVs) (variants ≥ 50 bp) are incomplete, limiting the discovery of causative alleles for phenotypic variation. Here, we resolve genome-wide SVs in 20 genetically distinct inbred mice with long-read sequencing. We report 413,758 site-specific SVs affecting 13% (356 Mbp) of the mouse reference assembly, including 510 previously unannotated coding variants. We substantially improve the Mus musculus transposable element (TE) callset, and we find that TEs comprise 39% of SVs and account for 75% of altered bases. We further utilize this callset to investigate how TE heterogeneity affects mouse embryonic stem cells and find multiple TE classes that influence chromatin accessibility. Our work provides a comprehensive analysis of SVs found in diverse mouse genomes and illustrates the role of TEs in epigenetic differences.
Collapse
Affiliation(s)
- Ardian Ferraj
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Peter A. Audano
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | | | | | - Jacob I. Flores
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Alexander A. Radecki
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Varun Mosur
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - David S. Gordon
- Howard Hughes Medical Institute and Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Isha A. Walawalkar
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Evan E. Eichler
- Howard Hughes Medical Institute and Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Christine R. Beck
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
22
|
Aydin S, Pham DT, Zhang T, Keele GR, Skelly DA, Paulo JA, Pankratz M, Choi T, Gygi SP, Reinholdt LG, Baker CL, Churchill GA, Munger SC. Genetic dissection of the pluripotent proteome through multi-omics data integration. CELL GENOMICS 2023; 3:100283. [PMID: 37082146 PMCID: PMC10112288 DOI: 10.1016/j.xgen.2023.100283] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/12/2022] [Accepted: 02/27/2023] [Indexed: 04/22/2023]
Abstract
Genetic background drives phenotypic variability in pluripotent stem cells (PSCs). Most studies to date have used transcript abundance as the primary molecular readout of cell state in PSCs. We performed a comprehensive proteogenomics analysis of 190 genetically diverse mouse embryonic stem cell (mESC) lines. The quantitative proteome is highly variable across lines, and we identified pluripotency-associated pathways that were differentially activated in the proteomics data that were not evident in transcriptome data from the same lines. Integration of protein abundance to transcript levels and chromatin accessibility revealed broad co-variation across molecular layers as well as shared and unique drivers of quantitative variation in pluripotency-associated pathways. Quantitative trait locus (QTL) mapping localized the drivers of these multi-omic signatures to genomic hotspots. This study reveals post-transcriptional mechanisms and genetic interactions that underlie quantitative variability in the pluripotent proteome and provides a regulatory map for mESCs that can provide a basis for future mechanistic studies.
Collapse
Affiliation(s)
- Selcan Aydin
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Duy T. Pham
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Tian Zhang
- Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | - Ted Choi
- Predictive Biology, Inc., Carlsbad, CA 92010, USA
| | | | - Laura G. Reinholdt
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Christopher L. Baker
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Gary A. Churchill
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Steven C. Munger
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
23
|
Keele GR. Which mouse multiparental population is right for your study? The Collaborative Cross inbred strains, their F1 hybrids, or the Diversity Outbred population. G3 (BETHESDA, MD.) 2023; 13:jkad027. [PMID: 36735601 PMCID: PMC10085760 DOI: 10.1093/g3journal/jkad027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
Multiparental populations (MPPs) encompass greater genetic diversity than traditional experimental crosses of two inbred strains, enabling broader surveys of genetic variation underlying complex traits. Two such mouse MPPs are the Collaborative Cross (CC) inbred panel and the Diversity Outbred (DO) population, which are descended from the same eight inbred strains. Additionally, the F1 intercrosses of CC strains (CC-RIX) have been used and enable study designs with replicate outbred mice. Genetic analyses commonly used by researchers to investigate complex traits in these populations include characterizing how heritable a trait is, i.e. its heritability, and mapping its underlying genetic loci, i.e. its quantitative trait loci (QTLs). Here we evaluate the relative merits of these populations for these tasks through simulation, as well as provide recommendations for performing the quantitative genetic analyses. We find that sample populations that include replicate animals, as possible with the CC and CC-RIX, provide more efficient and precise estimates of heritability. We report QTL mapping power curves for the CC, CC-RIX, and DO across a range of QTL effect sizes and polygenic backgrounds for samples of 174 and 500 mice. The utility of replicate animals in the CC and CC-RIX for mapping QTLs rapidly decreased as traits became more polygenic. Only large sample populations of 500 DO mice were well-powered to detect smaller effect loci (7.5-10%) for highly complex traits (80% polygenic background). All results were generated with our R package musppr, which we developed to simulate data from these MPPs and evaluate genetic analyses from user-provided genotypes.
Collapse
Affiliation(s)
- Gregory R Keele
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| |
Collapse
|
24
|
Meade RK, Long JE, Jinich A, Rhee KY, Ashbrook DG, Williams RW, Sassetti CM, Smith CM. Genome-wide screen identifies host loci that modulate M. tuberculosis fitness in immunodivergent mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.05.528534. [PMID: 36945430 PMCID: PMC10028809 DOI: 10.1101/2023.03.05.528534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Genetic differences among mammalian hosts and Mycobacterium tuberculosis ( Mtb ) strains determine diverse tuberculosis (TB) patient outcomes. The advent of recombinant inbred mouse panels and next-generation transposon mutagenesis and sequencing approaches has enabled dissection of complex host- pathogen interactions. To identify host and pathogen genetic determinants of Mtb pathogenesis, we infected members of the BXD family of mouse strains with a comprehensive library of Mtb transposon mutants (TnSeq). Members of the BXD family segregate for Mtb -resistant C57BL/6J (B6 or B ) and Mtb -susceptible DBA/2J (D2 or D ) haplotypes. The survival of each bacterial mutant was quantified within each BXD host, and we identified those bacterial genes that were differentially required for Mtb fitness across BXD genotypes. Mutants that varied in survival among the host family of strains were leveraged as reporters for "endophenotypes", each bacterial fitness profile directly probing specific components of the infection microenvironment. We conducted QTL mapping of these bacterial fitness endophenotypes and identified 140 h ost- p athogen quantitative trait loci ( hp QTL). We identified a QTL hotspot on chromosome 6 (75.97-88.58 Mb) associated with the genetic requirement of multiple Mtb genes; Rv0127 ( mak ), Rv0359 ( rip2 ), Rv0955 ( perM ), and Rv3849 ( espR ). Together, this screen reinforces the utility of bacterial mutant libraries as precise reporters of the host immunological microenvironment during infection and highlights specific host-pathogen genetic interactions for further investigation. To enable downstream follow-up for both bacterial and mammalian genetic research communities, all bacterial fitness profiles have been deposited into GeneNetwork.org and added into the comprehensive collection of TnSeq libraries in MtbTnDB.
Collapse
Affiliation(s)
- Rachel K. Meade
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Jarukit E. Long
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
- Charles River Laboratories, Research Animal Diagnostic Services, Wilmington, MA, USA
| | - Adrian Jinich
- Division of Infectious Diseases, Weill Cornell Medical College, NY, USA
| | - Kyu Y. Rhee
- Division of Infectious Diseases, Weill Cornell Medical College, NY, USA
| | - David G. Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | - Clare M. Smith
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| |
Collapse
|
25
|
Byers C, Spruce C, Fortin HJ, Hartig EI, Czechanski A, Munger SC, Reinholdt LG, Skelly DA, Baker CL. Genetic control of the pluripotency epigenome determines differentiation bias in mouse embryonic stem cells. EMBO J 2022; 41:e109445. [PMID: 34931323 PMCID: PMC8762565 DOI: 10.15252/embj.2021109445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023] Open
Abstract
Genetically diverse pluripotent stem cells display varied, heritable responses to differentiation cues. Here, we harnessed these disparities through derivation of mouse embryonic stem cells from the BXD genetic reference panel, along with C57BL/6J (B6) and DBA/2J (D2) parental strains, to identify loci regulating cell state transitions. Upon transition to formative pluripotency, B6 stem cells quickly dissolved naïve networks adopting gene expression modules indicative of neuroectoderm lineages, whereas D2 retained aspects of naïve pluripotency. Spontaneous formation of embryoid bodies identified divergent differentiation where B6 showed a propensity toward neuroectoderm and D2 toward definitive endoderm. Genetic mapping identified major trans-acting loci co-regulating chromatin accessibility and gene expression in both naïve and formative pluripotency. These loci distally modulated occupancy of pluripotency factors at hundreds of regulatory elements. One trans-acting locus on Chr 12 primarily impacted chromatin accessibility in embryonic stem cells, while in epiblast-like cells, the same locus subsequently influenced expression of genes enriched for neurogenesis, suggesting early chromatin priming. These results demonstrate genetically determined biases in lineage commitment and identify major regulators of the pluripotency epigenome.
Collapse
Affiliation(s)
- Candice Byers
- The Jackson LaboratoryBar HarborMEUSA
- Graduate School of Biomedical SciencesTufts UniversityBostonMAUSA
| | | | - Haley J Fortin
- The Jackson LaboratoryBar HarborMEUSA
- Graduate School of Biomedical SciencesTufts UniversityBostonMAUSA
| | - Ellen I Hartig
- The Jackson LaboratoryBar HarborMEUSA
- Graduate School of Biomedical SciencesTufts UniversityBostonMAUSA
| | | | - Steven C Munger
- The Jackson LaboratoryBar HarborMEUSA
- Graduate School of Biomedical SciencesTufts UniversityBostonMAUSA
| | | | | | - Christopher L Baker
- The Jackson LaboratoryBar HarborMEUSA
- Graduate School of Biomedical SciencesTufts UniversityBostonMAUSA
| |
Collapse
|
26
|
Medina-Cano D, Corrigan EK, Glenn RA, Islam MT, Lin Y, Kim J, Cho H, Vierbuchen T. Rapid and robust directed differentiation of mouse epiblast stem cells into definitive endoderm and forebrain organoids. Development 2022; 149:dev200561. [PMID: 35899604 PMCID: PMC10655922 DOI: 10.1242/dev.200561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022]
Abstract
Directed differentiation of pluripotent stem cells (PSCs) is a powerful model system for deconstructing embryonic development. Although mice are the most advanced mammalian model system for genetic studies of embryonic development, state-of-the-art protocols for directed differentiation of mouse PSCs into defined lineages require additional steps and generates target cell types with lower purity than analogous protocols for human PSCs, limiting their application as models for mechanistic studies of development. Here, we examine the potential of mouse epiblast stem cells cultured in media containing Wnt pathway inhibitors as a starting point for directed differentiation. As a proof of concept, we focused our efforts on two specific cell/tissue types that have proven difficult to generate efficiently and reproducibly from mouse embryonic stem cells: definitive endoderm and neural organoids. We present new protocols for rapid generation of nearly pure definitive endoderm and forebrain-patterned neural organoids that model the development of prethalamic and hippocampal neurons. These differentiation models present new possibilities for combining mouse genetic tools with in vitro differentiation to characterize molecular and cellular mechanisms of embryonic development.
Collapse
Affiliation(s)
- Daniel Medina-Cano
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Emily K. Corrigan
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Rachel A. Glenn
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Cell and Developmental Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Mohammed T. Islam
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Yuan Lin
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Juliet Kim
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Hyunwoo Cho
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Thomas Vierbuchen
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| |
Collapse
|
27
|
Yeh CY, Huang WH, Chen HC, Meir YJJ. Capturing Pluripotency and Beyond. Cells 2021; 10:cells10123558. [PMID: 34944066 PMCID: PMC8700150 DOI: 10.3390/cells10123558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
During the development of a multicellular organism, the specification of different cell lineages originates in a small group of pluripotent cells, the epiblasts, formed in the preimplantation embryo. The pluripotent epiblast is protected from premature differentiation until exposure to inductive cues in strictly controlled spatially and temporally organized patterns guiding fetus formation. Epiblasts cultured in vitro are embryonic stem cells (ESCs), which recapitulate the self-renewal and lineage specification properties of their endogenous counterparts. The characteristics of totipotency, although less understood than pluripotency, are becoming clearer. Recent studies have shown that a minor ESC subpopulation exhibits expanded developmental potential beyond pluripotency, displaying a characteristic reminiscent of two-cell embryo blastomeres (2CLCs). In addition, reprogramming both mouse and human ESCs in defined media can produce expanded/extended pluripotent stem cells (EPSCs) similar to but different from 2CLCs. Further, the molecular roadmaps driving the transition of various potency states have been clarified. These recent key findings will allow us to understand eutherian mammalian development by comparing the underlying differences between potency network components during development. Using the mouse as a paradigm and recent progress in human PSCs, we review the epiblast's identity acquisition during embryogenesis and their ESC counterparts regarding their pluripotent fates and beyond.
Collapse
Affiliation(s)
- Chih-Yu Yeh
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.Y.); (W.-H.H.)
| | - Wei-Han Huang
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.Y.); (W.-H.H.)
| | - Hung-Chi Chen
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.Y.); (W.-H.H.)
- Limbal Stem Cell Laboratory, Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Correspondence: (H.-C.C.); (Y.-J.J.M.)
| | - Yaa-Jyuhn James Meir
- Limbal Stem Cell Laboratory, Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: (H.-C.C.); (Y.-J.J.M.)
| |
Collapse
|
28
|
Inherent genomic properties underlie the epigenomic heterogeneity of human induced pluripotent stem cells. Cell Rep 2021; 37:109909. [PMID: 34731633 DOI: 10.1016/j.celrep.2021.109909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/24/2021] [Accepted: 10/08/2021] [Indexed: 01/13/2023] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) show variable differentiation potential due to their epigenomic heterogeneity, whose extent/attributes remain unclear, except for well-studied elements/chromosomes such as imprints and the X chromosomes. Here, we show that seven hiPSC lines with variable germline potential exhibit substantial epigenomic heterogeneity, despite their uniform transcriptomes. Nearly a quarter of autosomal regions bear potentially differential chromatin modifications, with promoters/CpG islands for H3K27me3/H2AK119ub1 and evolutionarily young retrotransposons for H3K4me3. We identify 145 large autosomal blocks (≥100 kb) with differential H3K9me3 enrichment, many of which are lamina-associated domains (LADs) in somatic but not in embryonic stem cells. A majority of these epigenomic heterogeneities are independent of genetic variations. We identify an X chromosome state with chromosome-wide H3K9me3 that stably prevents X chromosome erosion. Importantly, the germline potential of female hiPSCs correlates with X chromosome inactivation. We propose that inherent genomic properties, including CpG density, transposons, and LADs, engender epigenomic heterogeneity in hiPSCs.
Collapse
|
29
|
Swanzey E, O'Connor C, Reinholdt LG. Mouse Genetic Reference Populations: Cellular Platforms for Integrative Systems Genetics. Trends Genet 2021; 37:251-265. [PMID: 33010949 PMCID: PMC7889615 DOI: 10.1016/j.tig.2020.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
Interrogation of disease-relevant cellular and molecular traits exhibited by genetically diverse cell populations enables in vitro systems genetics approaches for uncovering the basic properties of cellular function and identity. Primary cells, stem cells, and organoids derived from genetically diverse mouse strains, such as Collaborative Cross and Diversity Outbred populations, offer the opportunity for parallel in vitro/in vivo screening. These panels provide genetic resolution for variant discovery and functional characterization, as well as disease modeling and in vivo validation capabilities. Here we review mouse cellular systems genetics approaches for characterizing the influence of genetic variation on signaling networks and phenotypic diversity, and we discuss approaches for data integration and cross-species validation.
Collapse
Affiliation(s)
| | - Callan O'Connor
- The Jackson Laboratory, Bar Harbor, ME, USA; Tufts Graduate School of Biomedical Sciences, Boston, MA, USA
| | | |
Collapse
|
30
|
D'Antonio M, D'Antonio-Chronowska A, Frazer KA. Revealing Instability: Genetic Variation Underlies Variability in mESC Pluripotency. Cell Stem Cell 2021; 27:347-349. [PMID: 32888420 DOI: 10.1016/j.stem.2020.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
mESCs can self-renew indefinitely in vitro. However, depending on culture conditions some strains are more unstable than others. In this issue of Cell Stem Cell, Skelly et al. (2020) and Ortmann et al. (2020) shed light into the role genetic variation plays in control of ground state pluripotency.
Collapse
Affiliation(s)
- Matteo D'Antonio
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Kelly A Frazer
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
31
|
Ortmann D, Brown S, Czechanski A, Aydin S, Muraro D, Huang Y, Tomaz RA, Osnato A, Canu G, Wesley BT, Skelly DA, Stegle O, Choi T, Churchill GA, Baker CL, Rugg-Gunn PJ, Munger SC, Reinholdt LG, Vallier L. Naive Pluripotent Stem Cells Exhibit Phenotypic Variability that Is Driven by Genetic Variation. Cell Stem Cell 2020; 27:470-481.e6. [PMID: 32795399 PMCID: PMC7487768 DOI: 10.1016/j.stem.2020.07.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/10/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
Abstract
Variability among pluripotent stem cell (PSC) lines is a prevailing issue that hampers not only experimental reproducibility but also large-scale applications and personalized cell-based therapy. This variability could result from epigenetic and genetic factors that influence stem cell behavior. Naive culture conditions minimize epigenetic fluctuation, potentially overcoming differences in PSC line differentiation potential. Here we derived PSCs from distinct mouse strains under naive conditions and show that lines from distinct genetic backgrounds have divergent differentiation capacity, confirming a major role for genetics in PSC phenotypic variability. This is explained in part through inconsistent activity of extra-cellular signaling, including the Wnt pathway, which is modulated by specific genetic variants. Overall, this study shows that genetic background plays a dominant role in driving phenotypic variability of PSCs.
Collapse
Affiliation(s)
- Daniel Ortmann
- Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge, Cambridge, UK.
| | - Stephanie Brown
- Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge, Cambridge, UK
| | | | | | - Daniele Muraro
- Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge, Cambridge, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Yuanhua Huang
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Rute A Tomaz
- Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge, Cambridge, UK
| | - Anna Osnato
- Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge, Cambridge, UK
| | - Giovanni Canu
- Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge, Cambridge, UK
| | - Brandon T Wesley
- Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge, Cambridge, UK
| | | | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK; European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany; Division of Computational Genomics and Systems Genetics, German Cancer Research, Center (DKFZ), Heidelberg, Germany
| | - Ted Choi
- Jackson Laboratory, Bar Harbor, ME, USA
| | | | | | - Peter J Rugg-Gunn
- Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Epigenetics Programme, Babraham Institute, Cambridge, UK
| | | | | | - Ludovic Vallier
- Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge, Cambridge, UK.
| |
Collapse
|