1
|
Gao F, Pan L, Liu W, Chen J, Wang Y, Li Y, Liu Y, Hua Y, Li R, Zhang T, Zhu T, Jin F, Gao Y. Idiopathic pulmonary fibrosis microenvironment: Novel mechanisms and research directions. Int Immunopharmacol 2025; 155:114653. [PMID: 40222273 DOI: 10.1016/j.intimp.2025.114653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a progressive interstitial lung disease marked by increasing dyspnea and respiratory failure. The underlying mechanisms remain poorly understood, given the complexity of its pathogenesis. This review investigates the microenvironment of IPF to identify novel mechanisms and therapeutic avenues. Studies have revealed that various cell types, including alveolar epithelial cells, fibroblasts, myofibroblasts, and immune cells, are integral to disease progression, engaging in cellular stress responses and inflammatory regulation via signaling pathways such as TGF-β, Wnt, mTOR, and ROS. Non-coding RNAs, particularly miRNAs, are critical in IPF and may serve as diagnostic and prognostic biomarkers. Regarding treatment, mesenchymal stem cells (MSCs) and their extracellular vesicles (EVs) or non-vesicular derivatives offer promise by modulating immune responses, enhancing tissue repair, and inhibiting fibrosis. Additionally, alterations in the lung microbiota are increasingly recognized as a contributing factor to IPF progression, offering fresh insights into potential treatments. Despite the encouraging results of MSC-based therapies, the precise mechanisms and clinical applications remain subjects of ongoing research. This review emphasizes the significance of the IPF microenvironment and highlights the need for further exploration to develop effective therapies that could enhance patient outcomes.
Collapse
Affiliation(s)
- Fuguo Gao
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Lei Pan
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Wei Liu
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Jian Chen
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yifeng Wang
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yan Li
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China; Department of Pulmonary and Critical Care Medicine, Shaanxi provincal people's hospital, Xi'an, 710068, China
| | - Yurou Liu
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yiying Hua
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Ruiqi Li
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Tongtong Zhang
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Ting Zhu
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Faguang Jin
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Yongheng Gao
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
2
|
Zhang S, Zhou M, Shao C, Zhao Y, Liu M, Ni L, Bao Z, Zhang Q, Zhang T, Luo Q, Qu J, Xu Z, Zuo W. Autologous P63+ lung progenitor cell transplantation in idiopathic pulmonary fibrosis: a phase 1 clinical trial. eLife 2025; 13:RP102451. [PMID: 40036154 PMCID: PMC11879106 DOI: 10.7554/elife.102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Background In idiopathic pulmonary fibrosis (IPF) patients, alveolar architectures are lost and gas transfer function would decline, which cannot be rescued by conventional anti-fibrotic therapy. P63+ lung basal progenitor cells are reported to have potential to repair damaged lung epithelium in animal models, which need further investigation in clinical trials. Methods We cloned and expanded P63+ progenitor cells from IPF patients to manufacture cell product REGEND001, which were further characterized by morphology and single-cell transcriptomic analysis. Subsequently, an open-label, dose-escalation autologous progenitor cell transplantation clinical trial was conducted. We treated 12 patients with ascending doses of cells: 0.6x, 1x, 2x and 3.3x106 cells/kg bodyweight. The primary outcome was the incidence and severity of cell therapy-related adverse events (AEs); secondary outcome included other safety and efficacy evaluations. Results P63+ basal progenitor cell was safe and tolerated at all doses, with no dose-limiting toxicity or cell therapy-related severe adverse events observed. Patients in three higher dose groups showed significant improvement of lung gas transfer function as well as exercise ability. Resolution of honeycomb lesion was observed in patients of higher dose groups. Conclusions REGEND001 has high safety profile and meanwhile encourages further efficacy exploration in IPF patients. Funding National High Level Hospital Clinical Research Funding (2022-PUMCH-B-108), National Key Research and Development Plan (2024YFA1108900, 2024YFA1108500), Jiangsu Province Science and Technology Special Project Funding (BE2023727), National Biopharmaceutical Technology Research Project Funding (NCTIB2023XB01011), Non-profit Central Research Institute Fund of Chinese Academy of Medical Science (2020-PT320-005), and Regend Therapeutics. Clinical trial number Chinese clinical trial registry: CTR20210349.
Collapse
Affiliation(s)
- Shiyu Zhang
- Shanghai East Hospital, School of Medicine, Tongji UniversityShanghaiChina
- Tongji Stem Cell Center, Tongji UniversityShanghaiChina
| | - Min Zhou
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chi Shao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yu Zhao
- Shanghai East Hospital, School of Medicine, Tongji UniversityShanghaiChina
- Tongji Stem Cell Center, Tongji UniversityShanghaiChina
| | - Mingzhe Liu
- Shanghai East Hospital, School of Medicine, Tongji UniversityShanghaiChina
- Tongji Stem Cell Center, Tongji UniversityShanghaiChina
| | - Lei Ni
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhiyao Bao
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qiurui Zhang
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ting Zhang
- Super Organ R&D Center, Regend TherapeuticsShanghaiChina
| | - Qun Luo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Jieming Qu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zuojun Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Wei Zuo
- Shanghai East Hospital, School of Medicine, Tongji UniversityShanghaiChina
- Tongji Stem Cell Center, Tongji UniversityShanghaiChina
- Super Organ R&D Center, Regend TherapeuticsShanghaiChina
- Kiangnan Stem Cell InstituteZhejiangChina
| |
Collapse
|
3
|
Ma L, Thapa BR, Le Suer JA, Tilston-Lünel A, Herriges MJ, Wang F, Bawa PS, Varelas X, Hawkins FJ, Kotton DN. Life-long functional regeneration of in vivo airway epithelium by the engraftment of airway basal stem cells. Nat Protoc 2025; 20:810-842. [PMID: 39501108 DOI: 10.1038/s41596-024-01067-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/30/2024] [Indexed: 12/11/2024]
Abstract
Durable and functional regeneration of the airway epithelium in vivo with transplanted stem cells has the potential to reconstitute healthy tissue in diseased airways, such as in cystic fibrosis or primary ciliary dyskinesia. Here, we present detailed protocols for the preparation and culture expansion of murine primary and induced pluripotent stem cell-derived airway basal stem cells (iBCs) and methods for their intra-airway transplantation into polidocanol-conditioned murine recipients to achieve durable in vivo airway regeneration. Reconstitution of the airway tissue resident epithelial stem cell compartment of immunocompetent mice with syngeneic donor cells leverages the extensive self-renewal and multipotent differentiation properties of basal stem cells (BCs) to durably generate a broad diversity of mature airway epithelial lineages in vivo. Engrafted donor-derived cells re-establish planar cell polarity as well as functional ciliary transport. By using this same approach, human primary BCs or iBCs transplanted into NOD-SCID gamma recipient mice similarly display engraftment and multilineage airway epithelial differentiation in vivo. The time to generate mouse or human iBCs takes ~60 d, which can be reduced to ~20 d if previously differentiated cells are thawed from cryopreserved iBC archives. The tracheal conditioning regimen and cell transplantation procedure is completed in 1 d. A competent graduate student or postdoctoral trainee should be able to perform the procedures listed in this protocol.
Collapse
Grants
- R21 HD094012 NICHD NIH HHS
- R21HD094012 U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- P01HL170952 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HAWKIN20XX2 Cystic Fibrosis Foundation (CF Foundation)
- U01HL134766 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL139799 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL095993 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL139799 NHLBI NIH HHS
- R01HL124392 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL124392 NHLBI NIH HHS
- NO1: 75N92020C00005 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- PCTC Jumpstart Award U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U01HL148692 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Liang Ma
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Bibek R Thapa
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
| | - Jake A Le Suer
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Andrew Tilston-Lünel
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael J Herriges
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Feiya Wang
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
| | - Pushpinder S Bawa
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
| | - Xaralabos Varelas
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
- Department of Biochemistry and Cell Biology, Boston University School of Medicine, Boston, MA, USA
| | - Finn J Hawkins
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA.
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
4
|
Li Y, He Y, Zheng Q, Zhang J, Pan X, Zhang X, Yuan H, Wang G, Liu X, Zhou X, Zhu X, Ren T, Sui P. Mitochondrial pyruvate carriers control airway basal progenitor cell function through glycolytic-epigenetic reprogramming. Cell Stem Cell 2025; 32:105-120.e6. [PMID: 39426380 DOI: 10.1016/j.stem.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 05/14/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024]
Abstract
Basal cells (BCs) are the progenitor cells responsible for tracheal epithelium integrity. Here, we demonstrate that mitochondrial pyruvate carriers (MPCs) act as metabolic checkpoints that are essential for BC fate decision. Inhibition of MPCs enables long-term expansion of BCs from both mice and humans. Genetic inactivation of Mpc2 in mice leads to BC hyperplasia and reduced ciliated cells during homeostasis, as well as delayed epithelial regeneration and accumulation of intermediate cells following injury. Mechanistically, MPC2 links glycolysis to ATP citrate lyase (ACLY)-dependent cytosolic acetyl-coenzyme A (CoA) generation, which is required for the epigenetic control of differentiation-related gene transcription. Modulating this metabolic-epigenetic axis partially rescues Yes-associated protein (YAP)-dysfunction-induced changes in BCs. Importantly, exogenous citrate promotes the differentiation of BCs from chronic obstructive lung disease (COPD) patients. Thus, beyond demonstrating the role of pyruvate metabolism in BC fate decision, our study suggests that targeting pyruvate-citrate metabolism may serve as a potential strategy to rectify abnormal BC behavior in lung diseases.
Collapse
Affiliation(s)
- Yawen Li
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yalin He
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Qi Zheng
- Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jiazhu Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinwen Pan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xi Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Huairui Yuan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Guangchuan Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Liu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaolong Zhou
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Xueliang Zhu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Tao Ren
- Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Pengfei Sui
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
5
|
Yang J, Li Y, Huang Y, Chen H, Sui P. Unlocking lung regeneration: insights into progenitor cell dynamics and metabolic control. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:31. [PMID: 39676102 PMCID: PMC11646969 DOI: 10.1186/s13619-024-00212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
Regenerative responses are particularly important in the lungs, which are critical for gas exchange and frequently challenged by environmental insults. The lung progenitor cells play a central role in the lung regeneration response, and their dysfunction is associated with various lung diseases. Understanding the mechanisms regulating lung progenitor cell function is essential for developing new therapeutic approaches to promote lung regeneration. This review summarizes recent advancements in the field of lung regeneration, focusing on the metabolic control of lung progenitor cell function. We discuss cell lineage plasticity and cell-cell signaling under different physiological conditions. Additionally, we highlight the connection between progenitor cell dysfunction and lung diseases, emphasizing the need to develop new therapeutic strategies in regenerative medicine to improve lung regenerative capacity.
Collapse
Affiliation(s)
- Jiaying Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yawen Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ying Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Huaiyong Chen
- Department of Basic Medicine, Tianjin University Haihe Hospital, Tianjin, 300350, China.
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China.
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China.
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China.
| | - Pengfei Sui
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
6
|
Kim SK, Sung E, Lim K. Recent advances and applications of human lung alveolar organoids. Mol Cells 2024; 47:100140. [PMID: 39490990 PMCID: PMC11629183 DOI: 10.1016/j.mocell.2024.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
The human lung alveolus is a well-structured and coordinated pulmonary unit, allowing them to perform diverse functions. While there has been significant progress in understanding the molecular and cellular mechanisms behind human alveolar development and pulmonary diseases, the underlying mechanisms of alveolar differentiation and disease development are still unclear, mainly due to the limited availability of human tissues and a lack of proper in vitro lung model systems mimicking human lung physiology. In this review, we summarize recent advances in creating human lung organoid models that mimic alveolar epithelial cell types. Moreover, we discuss how lung alveolar organoid systems are being applied to recent cutting-edge research on lung development, regeneration, and diseases.
Collapse
Affiliation(s)
- Sun Kyung Kim
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Eunho Sung
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Kyungtae Lim
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
7
|
Kohn A, Herriges MJ, Basak P, Ma L, Thapa BR, Kotton DN, Hawkins FJ. Targeted pre-conditioning and cell transplantation in the murine lower respiratory tract. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.622518. [PMID: 39605510 PMCID: PMC11601482 DOI: 10.1101/2024.11.12.622518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Transplantation of airway basal stem cells could achieve a durable cure for genetic diseases of the airway, such as cystic fibrosis and primary ciliary dyskinesia. Recent work demonstrated the potential of primary- and pluripotent stem cell (PSC)-derived basal cells to efficiently engrai into the mouse trachea aier injury. However, there are many hurdles to overcome in translating these approaches to humans including developing safe and efficient methods for delivery in larger animal models. We propose a model which targets preconditioning and cell-delivery to the intrapulmonary airways utilizing a micro- bronchoscope for delivery. The detergent polidocanol was adapted for distal lung pre-conditioning, inducing intrapulmonary airway epithelial denudation by 5 and 24-hours post-delivery. While initial re- epithelialization of airways occurred later than tracheas, complete repair was observed within 7-days. Both PSC-derived and primary basal cells delivered via micro-bronchoscope post-polidocanol injury engraied in tracheas and intrapulmonary airways, respectively. Transplanted cells differentiated into ciliated and secretory lineages while maintaining a population of basal cells. These findings demonstrate the utility of bronchoscopically targeted pre-conditioning and cell delivery to the conducting intra- pulmonary airways, providing an important framework for pre-clinical translation of approaches for engineered airway epithelial regeneration.
Collapse
|
8
|
Wang J, Peng X, Yuan N, Wang B, Chen S, Wang B, Xie L. Interplay between pulmonary epithelial stem cells and innate immune cells contribute to the repair and regeneration of ALI/ARDS. Transl Res 2024; 272:111-125. [PMID: 38897427 DOI: 10.1016/j.trsl.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Mammalian lung is the important organ for ventilation and exchange of air and blood. Fresh air and venous blood are constantly delivered through the airway and vascular tree to the alveolus. Based on this, the airways and alveolis are persistently exposed to the external environment and are easily suffered from toxins, irritants and pathogens. For example, acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a common cause of respiratory failure in critical patients, whose typical pathological characters are diffuse epithelial and endothelial damage resulting in excessive accumulation of inflammatory fluid in the alveolar cavity. The supportive treatment is the main current treatment for ALI/ARDS with the lack of targeted effective treatment strategies. However, ALI/ARDS needs more targeted treatment measures. Therefore, it is extremely urgent to understand the cellular and molecular mechanisms that maintain alveolar epithelial barrier and airway integrity. Previous researches have shown that the lung epithelial cells with tissue stem cell function have the ability to repair and regenerate after injury. Also, it is able to regulate the phenotype and function of innate immune cells involving in regeneration of tissue repair. Meanwhile, we emphasize that interaction between the lung epithelial cells and innate immune cells is more supportive to repair and regenerate in the lung epithelium following acute lung injury. We reviewed the recent advances in injury and repair of lung epithelial stem cells and innate immune cells in ALI/ARDS, concentrating on alveolar type 2 cells and alveolar macrophages and their contribution to post-injury repair behavior of ALI/ARDS through the latest potential molecular communication mechanisms. This will help to develop new research strategies and therapeutic targets for ALI/ARDS.
Collapse
Affiliation(s)
- Jiang Wang
- College of Pulmonary & Critical Care Medicine, the Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Xinyue Peng
- Fu Xing Hospital, Capital Medical University, Beijing 100038, China
| | - Na Yuan
- Department of Pulmonary & Critical Care Medicine, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Bin Wang
- Department of Thoracic Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Siyu Chen
- Department of Thoracic Surgery, the Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Bo Wang
- Department of Thoracic Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, the Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China; Medical School of Chinese PLA, Beijing 100853, China.
| |
Collapse
|
9
|
Predella C, Lapsley L, Ni K, Murray JW, Liu HY, Motelow JE, Snoeck HW, Glasser SW, Saqi A, Dorrello NV. Engraftment of wild-type alveolar type II epithelial cells in surfactant protein C deficient mice. RESEARCH SQUARE 2024:rs.3.rs-4673915. [PMID: 39315275 PMCID: PMC11419168 DOI: 10.21203/rs.3.rs-4673915/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Childhood interstitial lung disease (chILD) secondary to pulmonary surfactant deficiency is a devastating chronic lung disease in children. Clinical presentation includes mild to severe respiratory failure and fibrosis. There is no specific treatment, except lung transplantation, which is hampered by a severe shortage of donor organs, especially for young patients. Repair of lungs with chILD represents a longstanding therapeutic challenge but cell therapy is a promising strategy. As surfactant is produced by alveolar type II epithelial (ATII) cells, engraftment with normal or gene-corrected ATII cells might provide an avenue to cure. Here we used a chILD disease-like model, Sftpc -/- mice, to provide proof-of-principle for this approach. Sftpc -/- mice developed chronic interstitial lung disease with age and were hypersensitive to bleomycin. We could engraft wild-type ATII cells after low dose bleomycin conditioning. Transplanted ATII cells produced mature SPC and attenuated bleomycin-induced lung injury up to two months post-transplant. This study demonstrates that partial replacement of mutant ATII cells can promote lung repair in a mouse model of chILD-like disease.
Collapse
Affiliation(s)
- Camilla Predella
- Division of Pediatric Critical Care Medicine and Hospital Medicine, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico of Milan, Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico of Milan, Milan, Italy
| | - Lauren Lapsley
- Division of Pediatric Critical Care Medicine and Hospital Medicine, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Keyue Ni
- Division of Pediatric Critical Care Medicine and Hospital Medicine, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - John W. Murray
- Columbia Center for Human Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Hsiao-Yun Liu
- Columbia Center for Human Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Joshua E. Motelow
- Division of Pediatric Critical Care Medicine and Hospital Medicine, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Division of Pediatric Critical Care Medicine and Hospital Medicine, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Morgan Stanley Children’s Hospital, New York, NY, USA
| | - Hans-Willem Snoeck
- Columbia Center for Human Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephan W. Glasser
- Medical Sciences Program, Department of Medical Education, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Anjali Saqi
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian, New York, NY, USA
| | - N. Valerio Dorrello
- Division of Pediatric Critical Care Medicine and Hospital Medicine, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Division of Pediatric Critical Care Medicine and Hospital Medicine, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Morgan Stanley Children’s Hospital, New York, NY, USA
| |
Collapse
|
10
|
Milman Krentsis I, Zheng Y, Rosen C, Shin SY, Blagdon C, Shoshan E, Qi Y, Wang J, Yadav SK, Bachar Lustig E, Shetzen E, Dickey BF, Karmouty-Quintana H, Reisner Y. Lung cell transplantation for pulmonary fibrosis. SCIENCE ADVANCES 2024; 10:eadk2524. [PMID: 39178253 PMCID: PMC11343030 DOI: 10.1126/sciadv.adk2524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
Idiopathic pulmonary fibrosis is a major cause of death with few treatment options. Here, we demonstrate the therapeutic efficacy for lung fibrosis of adult lung cell transplantation using a single-cell suspension of the entire lung in two distinct mouse systems: bleomycin treatment and mice lacking telomeric repeat-binding factor 1 expression in alveolar type 2 (AT2) cells (SPC-Cre TRF1fl/fl), spontaneously developing fibrosis. In both models, the progression of fibrosis was associated with reduced levels of host lung progenitors, enabling engraftment of donor progenitors without any additional conditioning, in contrast to our previous studies. Two months after transplantation, engrafted progenitors expanded to form numerous donor-derived patches comprising AT1 and AT2 alveolar cells, as well as donor-derived mesenchymal and endothelial cells. This lung chimerism was associated with attenuation of fibrosis, as demonstrated histologically, biochemically, by computed tomography imaging, and by lung function measurements. Our study provides a strong rationale for the treatment of lung fibrosis using lung cell transplantation.
Collapse
Affiliation(s)
- Irit Milman Krentsis
- Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX, USA
| | - Yangxi Zheng
- Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX, USA
| | - Chava Rosen
- Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX, USA
- Department of Neonatology, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - Sarah Y. Shin
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christa Blagdon
- Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX, USA
| | - Einav Shoshan
- Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX, USA
| | - Yuan Qi
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer, Houston, TX, USA
| | - Sandeep K. Yadav
- Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX, USA
| | - Esther Bachar Lustig
- Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Shetzen
- Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX, USA
| | - Burton F. Dickey
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yair Reisner
- Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Adegunsoye A, Kropski JA, Behr J, Blackwell TS, Corte TJ, Cottin V, Glanville AR, Glassberg MK, Griese M, Hunninghake GM, Johannson KA, Keane MP, Kim JS, Kolb M, Maher TM, Oldham JM, Podolanczuk AJ, Rosas IO, Martinez FJ, Noth I, Schwartz DA. Genetics and Genomics of Pulmonary Fibrosis: Charting the Molecular Landscape and Shaping Precision Medicine. Am J Respir Crit Care Med 2024; 210:401-423. [PMID: 38573068 PMCID: PMC11351799 DOI: 10.1164/rccm.202401-0238so] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/04/2024] [Indexed: 04/05/2024] Open
Abstract
Recent genetic and genomic advancements have elucidated the complex etiology of idiopathic pulmonary fibrosis (IPF) and other progressive fibrotic interstitial lung diseases (ILDs), emphasizing the contribution of heritable factors. This state-of-the-art review synthesizes evidence on significant genetic contributors to pulmonary fibrosis (PF), including rare genetic variants and common SNPs. The MUC5B promoter variant is unusual, a common SNP that markedly elevates the risk of early and established PF. We address the utility of genetic variation in enhancing understanding of disease pathogenesis and clinical phenotypes, improving disease definitions, and informing prognosis and treatment response. Critical research gaps are highlighted, particularly the underrepresentation of non-European ancestries in PF genetic studies and the exploration of PF phenotypes beyond usual interstitial pneumonia/IPF. We discuss the role of telomere length, often critically short in PF, and its link to progression and mortality, underscoring the genetic complexity involving telomere biology genes (TERT, TERC) and others like SFTPC and MUC5B. In addition, we address the potential of gene-by-environment interactions to modulate disease manifestation, advocating for precision medicine in PF. Insights from gene expression profiling studies and multiomic analyses highlight the promise for understanding disease pathogenesis and offer new approaches to clinical care, therapeutic drug development, and biomarker discovery. Finally, we discuss the ethical, legal, and social implications of genomic research and therapies in PF, stressing the need for sound practices and informed clinical genetic discussions. Looking forward, we advocate for comprehensive genetic testing panels and polygenic risk scores to improve the management of PF and related ILDs across diverse populations.
Collapse
Affiliation(s)
- Ayodeji Adegunsoye
- Pulmonary/Critical Care, and
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Juergen Behr
- Department of Medicine V, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Comprehensive Pneumology Center Munich, member of the German Center for Lung Research (DZL), Munich, Germany
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Tamera J. Corte
- Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases (OrphaLung), Louis Pradel Hospital, Hospices Civils de Lyon, ERN-LUNG (European Reference Network on Rare Respiratory Diseases), Lyon, France
- Claude Bernard University Lyon, Lyon, France
| | - Allan R. Glanville
- Lung Transplant Unit, St. Vincent’s Hospital Sydney, Sydney, New South Wales, Australia
| | - Marilyn K. Glassberg
- Department of Medicine, Loyola Chicago Stritch School of Medicine, Chicago, Illinois
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, German Center for Lung Research, Munich, Germany
| | - Gary M. Hunninghake
- Harvard Medical School, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Michael P. Keane
- Department of Respiratory Medicine, St. Vincent’s University Hospital and School of Medicine, University College Dublin, Dublin, Ireland
| | - John S. Kim
- Department of Medicine, School of Medicine, and
| | - Martin Kolb
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Toby M. Maher
- Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Justin M. Oldham
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | | | | | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York; and
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - David A. Schwartz
- Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
12
|
Yang X, Chen Y, Yang Y, Li S, Mi P, Jing N. The molecular and cellular choreography of early mammalian lung development. MEDICAL REVIEW (2021) 2024; 4:192-206. [PMID: 38919401 PMCID: PMC11195428 DOI: 10.1515/mr-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/08/2024] [Indexed: 06/27/2024]
Abstract
Mammalian lung development starts from a specific cluster of endodermal cells situated within the ventral foregut region. With the orchestrating of delicate choreography of transcription factors, signaling pathways, and cell-cell communications, the endodermal diverticulum extends into the surrounding mesenchyme, and builds the cellular and structural basis of the complex respiratory system. This review provides a comprehensive overview of the current molecular insights of mammalian lung development, with a particular focus on the early stage of lung cell fate differentiation and spatial patterning. Furthermore, we explore the implications of several congenital respiratory diseases and the relevance to early organogenesis. Finally, we summarize the unprecedented knowledge concerning lung cell compositions, regulatory networks as well as the promising prospect for gaining an unbiased understanding of lung development and lung malformations through state-of-the-art single-cell omics.
Collapse
Affiliation(s)
- Xianfa Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| | - Yingying Chen
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| | - Yun Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shiting Li
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan Province, China
| | - Panpan Mi
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Naihe Jing
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| |
Collapse
|
13
|
Burgess CL, Huang J, Bawa PS, Alysandratos KD, Minakin K, Ayers LJ, Morley MP, Babu A, Villacorta-Martin C, Yampolskaya M, Hinds A, Thapa BR, Wang F, Matschulat A, Mehta P, Morrisey EE, Varelas X, Kotton DN. Generation of human alveolar epithelial type I cells from pluripotent stem cells. Cell Stem Cell 2024; 31:657-675.e8. [PMID: 38642558 PMCID: PMC11147407 DOI: 10.1016/j.stem.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/31/2024] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
Alveolar epithelial type I cells (AT1s) line the gas exchange barrier of the distal lung and have been historically challenging to isolate or maintain in cell culture. Here, we engineer a human in vitro AT1 model system via directed differentiation of induced pluripotent stem cells (iPSCs). We use primary adult AT1 global transcriptomes to suggest benchmarks and pathways, such as Hippo-LATS-YAP/TAZ signaling, enriched in these cells. Next, we generate iPSC-derived alveolar epithelial type II cells (AT2s) and find that nuclear YAP signaling is sufficient to promote a broad transcriptomic shift from AT2 to AT1 gene programs. The resulting cells express a molecular, morphologic, and functional phenotype reminiscent of human AT1 cells, including the capacity to form a flat epithelial barrier producing characteristic extracellular matrix molecules and secreted ligands. Our results provide an in vitro model of human alveolar epithelial differentiation and a potential source of human AT1s.
Collapse
Affiliation(s)
- Claire L Burgess
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jessie Huang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Pushpinder S Bawa
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Kasey Minakin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Lauren J Ayers
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Michael P Morley
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Apoorva Babu
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | | | - Anne Hinds
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Bibek R Thapa
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Feiya Wang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Adeline Matschulat
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA 02215, USA
| | - Edward E Morrisey
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xaralabos Varelas
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
14
|
Goecke T, Ius F, Ruhparwar A, Martin U. Unlocking the Future: Pluripotent Stem Cell-Based Lung Repair. Cells 2024; 13:635. [PMID: 38607074 PMCID: PMC11012168 DOI: 10.3390/cells13070635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
The human respiratory system is susceptible to a variety of diseases, ranging from chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis to acute respiratory distress syndrome (ARDS). Today, lung diseases represent one of the major challenges to the health care sector and represent one of the leading causes of death worldwide. Current treatment options often focus on managing symptoms rather than addressing the underlying cause of the disease. The limitations of conventional therapies highlight the urgent clinical need for innovative solutions capable of repairing damaged lung tissue at a fundamental level. Pluripotent stem cell technologies have now reached clinical maturity and hold immense potential to revolutionize the landscape of lung repair and regenerative medicine. Meanwhile, human embryonic (HESCs) and human-induced pluripotent stem cells (hiPSCs) can be coaxed to differentiate into lung-specific cell types such as bronchial and alveolar epithelial cells, or pulmonary endothelial cells. This holds the promise of regenerating damaged lung tissue and restoring normal respiratory function. While methods for targeted genetic engineering of hPSCs and lung cell differentiation have substantially advanced, the required GMP-grade clinical-scale production technologies as well as the development of suitable preclinical animal models and cell application strategies are less advanced. This review provides an overview of current perspectives on PSC-based therapies for lung repair, explores key advances, and envisions future directions in this dynamic field.
Collapse
Affiliation(s)
- Tobias Goecke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Fabio Ius
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Arjang Ruhparwar
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
15
|
Basil MC, Alysandratos KD, Kotton DN, Morrisey EE. Lung repair and regeneration: Advanced models and insights into human disease. Cell Stem Cell 2024; 31:439-454. [PMID: 38492572 PMCID: PMC11070171 DOI: 10.1016/j.stem.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
The respiratory system acts as both the primary site of gas exchange and an important sensor and barrier to the external environment. The increase in incidences of respiratory disease over the past decades has highlighted the importance of developing improved therapeutic approaches. This review will summarize recent research on the cellular complexity of the mammalian respiratory system with a focus on gas exchange and immunological defense functions of the lung. Different models of repair and regeneration will be discussed to help interpret human and animal data and spur the investigation of models and assays for future drug development.
Collapse
Affiliation(s)
- Maria C Basil
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn, Children's Hospital of Philadelphia (CHOP) Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| | - Edward E Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn, Children's Hospital of Philadelphia (CHOP) Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Crist SB, Azzag K, Kiley J, Coleman I, Magli A, Perlingeiro RCR. The adult environment promotes the transcriptional maturation of human iPSC-derived muscle grafts. NPJ Regen Med 2024; 9:16. [PMID: 38575647 PMCID: PMC10994941 DOI: 10.1038/s41536-024-00360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
Pluripotent stem cell (PSC)-based cell therapy is an attractive option for the treatment of multiple human disorders, including muscular dystrophies. While in vitro differentiating PSCs can generate large numbers of human lineage-specific tissue, multiple studies evidenced that these cell populations mostly display embryonic/fetal features. We previously demonstrated that transplantation of PSC-derived myogenic progenitors provides long-term engraftment and functional improvement in several dystrophic mouse models, but it remained unknown whether donor-derived myofibers mature to match adult tissue. Here, we transplanted iPAX7 myogenic progenitors into muscles of non-dystrophic and dystrophic mice and compared the transcriptional landscape of human grafts with respective in vitro-differentiated iPAX7 myotubes as well as human skeletal muscle biospecimens. Pairing bulk RNA sequencing with computational deconvolution of human reads, we were able to pinpoint key myogenic changes that occur during the in vitro-to-in vivo transition, confirm developmental maturity, and consequently evaluate their applicability for cell-based therapies.
Collapse
Affiliation(s)
- Sarah B Crist
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Karim Azzag
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - James Kiley
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Ilsa Coleman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Alessandro Magli
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
- Sanofi, Genomic Medicine Unit, 225 2nd Ave, Waltham, MA, 02451, USA.
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
17
|
Sinenko SA, Tomilin AN. Metabolic control of induced pluripotency. Front Cell Dev Biol 2024; 11:1328522. [PMID: 38274274 PMCID: PMC10808704 DOI: 10.3389/fcell.2023.1328522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Pluripotent stem cells of the mammalian epiblast and their cultured counterparts-embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs)-have the capacity to differentiate in all cell types of adult organisms. An artificial process of reactivation of the pluripotency program in terminally differentiated cells was established in 2006, which allowed for the generation of induced pluripotent stem cells (iPSCs). This iPSC technology has become an invaluable tool in investigating the molecular mechanisms of human diseases and therapeutic drug development, and it also holds tremendous promise for iPSC applications in regenerative medicine. Since the process of induced reprogramming of differentiated cells to a pluripotent state was discovered, many questions about the molecular mechanisms involved in this process have been clarified. Studies conducted over the past 2 decades have established that metabolic pathways and retrograde mitochondrial signals are involved in the regulation of various aspects of stem cell biology, including differentiation, pluripotency acquisition, and maintenance. During the reprogramming process, cells undergo major transformations, progressing through three distinct stages that are regulated by different signaling pathways, transcription factor networks, and inputs from metabolic pathways. Among the main metabolic features of this process, representing a switch from the dominance of oxidative phosphorylation to aerobic glycolysis and anabolic processes, are many critical stage-specific metabolic signals that control the path of differentiated cells toward a pluripotent state. In this review, we discuss the achievements in the current understanding of the molecular mechanisms of processes controlled by metabolic pathways, and vice versa, during the reprogramming process.
Collapse
Affiliation(s)
- Sergey A. Sinenko
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | | |
Collapse
|
18
|
Kiley JP, Brown MK, Freemer M, Lin S, Stefan M, Noel P. Research Accomplishments in Pulmonary, Critical Care, and Sleep: A Retrospective Review. Am J Respir Crit Care Med 2023; 208:1268-1270. [PMID: 37966304 PMCID: PMC10765391 DOI: 10.1164/rccm.202311-2047pp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023] Open
Affiliation(s)
- James P Kiley
- Division of Lung Diseases, NHLBI, Bethesda, Maryland
| | | | | | - Sara Lin
- Division of Lung Diseases, NHLBI, Bethesda, Maryland
| | | | - Patricia Noel
- Division of Lung Diseases, NHLBI, Bethesda, Maryland
| |
Collapse
|
19
|
Petrella F, Cassina EM, Libretti L, Pirondini E, Raveglia F, Tuoro A. Mesenchymal Stromal Cell Therapy for Thoracic Surgeons: An Update. J Pers Med 2023; 13:1632. [PMID: 38138859 PMCID: PMC10744666 DOI: 10.3390/jpm13121632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Stem cells are undifferentiated cells presenting extensive self-renewal features and the ability to differentiate "in vitro" and "in vivo" into a range of lineage cells, like chondrogenic, osteogenic and adipogenic lineages when cultured in specific inducing media. Two major domains of clinical applications of stem cells in thoracic surgery have been investigated: regenerative medicine, which is a section of translational research in tissue engineering focusing on the replacement, renewal or regeneration of cells, tissues and organs to re-establish damaged physiologic functions; drug loading and delivery, representing a new branch proposing stem cells as carriers to provide selected districts with anti-cancer agents for targeted treatments.
Collapse
Affiliation(s)
- Francesco Petrella
- Department of Thoracic Surgery, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (E.M.C.); (L.L.); (E.P.); (F.R.); (A.T.)
| | | | | | | | | | | |
Collapse
|
20
|
Yampolskaya M, Herriges MJ, Ikonomou L, Kotton DN, Mehta P. scTOP: physics-inspired order parameters for cellular identification and visualization. Development 2023; 150:dev201873. [PMID: 37756586 PMCID: PMC10629677 DOI: 10.1242/dev.201873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Advances in single-cell RNA sequencing provide an unprecedented window into cellular identity. The abundance of data requires new theoretical and computational frameworks to analyze the dynamics of differentiation and integrate knowledge from cell atlases. We present 'single-cell Type Order Parameters' (scTOP): a statistical, physics-inspired approach for quantifying cell identity given a reference basis of cell types. scTOP can accurately classify cells, visualize developmental trajectories and assess the fidelity of engineered cells. Importantly, scTOP does this without feature selection, statistical fitting or dimensional reduction (e.g. uniform manifold approximation and projection, principle components analysis, etc.). We illustrate the power of scTOP using human and mouse datasets. By reanalyzing mouse lung data, we characterize a transient hybrid alveolar type 1/alveolar type 2 cell population. Visualizations of lineage tracing hematopoiesis data using scTOP confirm that a single clone can give rise to multiple mature cell types. We assess the transcriptional similarity between endogenous and donor-derived cells in the context of murine pulmonary cell transplantation. Our results suggest that physics-inspired order parameters can be an important tool for understanding differentiation and characterizing engineered cells. scTOP is available as an easy-to-use Python package.
Collapse
Affiliation(s)
| | - Michael J. Herriges
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Laertis Ikonomou
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, NY 14215, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14215, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA 02215, USA
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- Faculty of Computing and Data Science, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
21
|
Xu L, Sun X. Lung repair empowered by exogenous cells taking residence. Cell Stem Cell 2023; 30:1127-1129. [PMID: 37683601 DOI: 10.1016/j.stem.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023]
Abstract
Stem cell therapy uses transplantation of exogenous stem cells to repair damaged tissues. In this issue of Cell Stem Cell, Ma et al. and Herriges et al. reported durable engraftment of pluripotent stem cell (PSC)-derived airway and alveolar epithelial progenitor cells, respectively, in the mouse lung.
Collapse
Affiliation(s)
- Le Xu
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xin Sun
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|