1
|
De Los Angeles A. Safeguarding genomic imprints in naive human pluripotency. Stem Cell Reports 2025:102475. [PMID: 40250437 DOI: 10.1016/j.stemcr.2025.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/20/2025] Open
Abstract
Naive human pluripotent stem cells (hPSCs) closely mirror the pre-implantation epiblast but risk imprint erosion under strong MEK/ERK inhibition, jeopardizing disease modeling and regenerative applications. In Stem Cell Reports, Fischer et al. show that partial MEK/ERK inhibition plus ZFP57 overexpression crucially preserves parent-of-origin DNA methylation, thereby offering more faithful and stable naive hPSC models.
Collapse
Affiliation(s)
- Alejandro De Los Angeles
- Harvard Medical School, Boston, Massachusetts, USA; Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
| |
Collapse
|
2
|
Ho SY, Hu H, Ho DHH, Renom APS, Yeung SW, Boerner F, Weng M, Hutchins AP, Jauch R. An acidic residue within the OCT4 dimerization interface of SOX17 is necessary and sufficient to overcome its pluripotency-inducing activity. Stem Cell Reports 2025; 20:102398. [PMID: 39919754 PMCID: PMC11960519 DOI: 10.1016/j.stemcr.2025.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
SOX17 directs the differentiation toward endoderm and acts as a human germline specifier. We previously found that the replacement of glutamate at position 57 of the high-mobility group (HMG) box with the basic lysine residue in SOX2 alters interactions with OCT4 and turns SOX17 into a pluripotency factor. Here, we systematically interrogated how mutations at this critical position affect the cellular reprogramming activity of SOX17 in mouse and human. We found that most mutations turn SOX17 into a pluripotency factor regardless of their biophysical properties except for acidic residues and proline. The conservative mutation to an aspartate allows the SOX17E57D protein to maintain a self-renewing endodermal state. We showed that only the glutamate in the wild-type protein blocks the formation of an SOX17/OCT4 dimer at composite DNA elements in pluripotency enhancers. Insights into how modifications of an ultra-conserved residue affect functions of developmental transcription factors provide avenues to advance cell fate engineering.
Collapse
Affiliation(s)
- Sik Yin Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Laboratory for Primate Embryogenesis, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
| | - Haoqing Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Derek Hoi Hang Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Allan Patrick Stephane Renom
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Shi Wing Yeung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Freya Boerner
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Translational Stem Cell Biology, Hong Kong SAR, China; Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Mingxi Weng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Altos Labs, San Diego, CA 92122, USA
| | - Andrew Paul Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
| | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Translational Stem Cell Biology, Hong Kong SAR, China.
| |
Collapse
|
3
|
Mirizio G, Sampson S, Iwafuchi M. Interplay between pioneer transcription factors and epigenetic modifiers in cell reprogramming. Regen Ther 2025; 28:246-252. [PMID: 39834592 PMCID: PMC11745816 DOI: 10.1016/j.reth.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
The generation of induced pluripotent stem cells (iPSCs) from differentiated somatic cells by Yamanaka factors, including pioneer transcription factors (TFs), has greatly reshaped our traditional understanding of cell plasticity and demonstrated the remarkable potential of pioneer TFs. In addition to iPSC reprogramming, pioneer TFs are pivotal in direct reprogramming or transdifferentiation where somatic cells are converted into different cell types without passing through a pluripotent state. Pioneer TFs initiate a reprogramming process through chromatin opening, thereby establishing competence for new gene regulatory programs. The action of pioneer TFs is both influenced by and exerts influence on epigenetic regulation. Despite significant advances, many direct reprogramming processes remain inefficient, which limits their reliability for clinical applications. In this review, we discuss the molecular mechanisms underlying pioneer TF-driven reprogramming, with a focus on their interactions with epigenetic modifiers, including Polycomb repressive complexes (PRCs), nucleosome remodeling and deacetylase (NuRD) complexes, and the DNA methylation machinery. A deeper understanding of the dynamic interplay between pioneer TFs and epigenetic modifiers will be essential for advancing reprogramming technologies and unlocking their full clinical potential.
Collapse
Affiliation(s)
- Gerardo Mirizio
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, OH, 45229, USA
| | - Samuel Sampson
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, OH, 45229, USA
| | - Makiko Iwafuchi
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, OH, 45229, USA
| |
Collapse
|
4
|
Hou Y, Nie Z, Jiang Q, Velychko S, Heising S, Bedzhov I, Wu G, Adachi K, Scholer HR. Emerging cooperativity between Oct4 and Sox2 governs the pluripotency network in early mouse embryos. eLife 2025; 13:RP100735. [PMID: 40014376 DOI: 10.7554/elife.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025] Open
Abstract
During the first lineage segregation, mammalian embryos generate the inner cell mass (ICM) and trophectoderm (TE). ICM gives rise to the epiblast (EPI) that forms all cell types of the body, an ability referred to as pluripotency. The molecular mechanisms that induce pluripotency in embryos remain incompletely elucidated. Using knockout (KO) mouse models in conjunction with low-input ATAC-seq and RNA-seq, we found that Oct4 and Sox2 gradually come into play in the early ICM, coinciding with the initiation of Sox2 expression. Oct4 and Sox2 activate the pluripotency-related genes through the putative OCT-SOX enhancers in the early ICM. Furthermore, we observed a substantial reorganization of chromatin landscape and transcriptome from the morula to the early ICM stages, which was partially driven by Oct4 and Sox2, highlighting their pivotal role in promoting the developmental trajectory toward the ICM. Our study provides new insights into the establishment of the pluripotency network in mouse preimplantation embryos.
Collapse
Affiliation(s)
- Yanlin Hou
- Cell and Developmental Biology Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Zhengwen Nie
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Qi Jiang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Sergiy Velychko
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Sandra Heising
- Cell and Developmental Biology Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ivan Bedzhov
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Guangming Wu
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Kenjiro Adachi
- Cell and Developmental Biology Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hans R Scholer
- Cell and Developmental Biology Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
5
|
Pierson Smela M, Kramme CC, Fortuna PRJ, Wolf B, Goel S, Adams J, Ma C, Velychko S, Widocki U, Srikar Kavirayuni V, Chen T, Vincoff S, Dong E, Kohman RE, Kobayashi M, Shioda T, Church GM, Chatterjee P. Rapid human oogonia-like cell specification via transcription factor-directed differentiation. EMBO Rep 2025; 26:1114-1143. [PMID: 39849206 PMCID: PMC11850904 DOI: 10.1038/s44319-025-00371-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025] Open
Abstract
The generation of germline cells from human induced pluripotent stem cells (hiPSCs) represents a milestone toward in vitro gametogenesis. Methods to recapitulate germline development beyond primordial germ cells in vitro have relied on long-term cell culture, such as 3-dimensional organoid co-culture for ~four months. Using a pipeline with highly parallelized screening, this study identifies combinations of TFs that directly and rapidly convert hiPSCs to induced oogonia-like cells (iOLCs). We demonstrate that co-expression of five TFs - namely, ZNF281, LHX8, SOHLH1, ZGLP1, and ANHX, induces high efficiency DDX4-positive iOLCs in only four days in a feeder-free monolayer culture condition. We also show improved production of human primordial germ cell-like cells (hPGCLCs) from hiPSCs by expression of DLX5, HHEX, and FIGLA. We characterize these TF-based iOLCs and hPGCLCs via gene and protein expression analyses and demonstrate their similarity to in vivo and in vitro-derived oogonia and primordial germ cells. Together, these results identify new regulatory factors that enhance human germ cell specification in vitro, and further establish unique computational and experimental tools for human in vitro oogenesis research.
Collapse
Affiliation(s)
- Merrick Pierson Smela
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Christian C Kramme
- Wyss Institute, Harvard Medical School, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Patrick R J Fortuna
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Bennett Wolf
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Shrey Goel
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jessica Adams
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Carl Ma
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Sergiy Velychko
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | | | - Tianlai Chen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sophia Vincoff
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Edward Dong
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Richie E Kohman
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Mutsumi Kobayashi
- Department of Obstetrics and Gynaecology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Toshi Shioda
- Massachusetts General Hospital Krantz Family Center for Cancer Research, Harvard Medical School, Boston, MA, USA
| | - George M Church
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Pranam Chatterjee
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Computer Science, Duke University, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| |
Collapse
|
6
|
Marx V. Can stem cells save the animals? Nat Methods 2025; 22:8-12. [PMID: 39806061 DOI: 10.1038/s41592-024-02577-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
|
7
|
Jauch R, Lopes M, Pereira CF. Reprogramming Stars #19: Upgrading Cell Fate Conversions with Engineered Reprogramming Factors-An Interview with Dr. Ralf Jauch. Cell Reprogram 2024; 26:147-152. [PMID: 39602217 DOI: 10.1089/cell.2024.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Affiliation(s)
- Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Mariana Lopes
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carlos-Filipe Pereira
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Gao Y, Tan DS, Girbig M, Hu H, Zhou X, Xie Q, Yeung SW, Lee KS, Ho SY, Cojocaru V, Yan J, Hochberg GKA, de Mendoza A, Jauch R. The emergence of Sox and POU transcription factors predates the origins of animal stem cells. Nat Commun 2024; 15:9868. [PMID: 39543096 PMCID: PMC11564870 DOI: 10.1038/s41467-024-54152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Stem cells are a hallmark of animal multicellularity. Sox and POU transcription factors are associated with stemness and were believed to be animal innovations, reported absent in their unicellular relatives. Here we describe unicellular Sox and POU factors. Choanoflagellate and filasterean Sox proteins have DNA-binding specificity similar to mammalian Sox2. Choanoflagellate-but not filasterean-Sox can replace Sox2 to reprogram mouse somatic cells into induced pluripotent stem cells (iPSCs) through interacting with the mouse POU member Oct4. In contrast, choanoflagellate POU has a distinct DNA-binding profile and cannot generate iPSCs. Ancestrally reconstructed Sox proteins indicate that iPSC formation capacity is pervasive among resurrected sequences, thus loss of Sox2-like properties fostered Sox family subfunctionalization. Our findings imply that the evolution of animal stem cells might have involved the exaptation of a pre-existing set of transcription factors, where pre-animal Sox was biochemically similar to extant Sox, whilst POU factors required evolutionary innovations.
Collapse
Affiliation(s)
- Ya Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Daisylyn Senna Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Mathias Girbig
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Haoqing Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Xiaomin Zhou
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Qianwen Xie
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- School of Medicine, Northwest University, Xi'an, China
| | - Shi Wing Yeung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Kin Shing Lee
- Transgenic Core Facility of the Centre for Comparative Medicine Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sik Yin Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory for Primate Embryogenesis, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
| | - Vlad Cojocaru
- STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania
- Computational Structural Biology Group, Utrecht University, Utrecht, The Netherlands
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Jian Yan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- School of Medicine, Northwest University, Xi'an, China
| | - Georg K A Hochberg
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University, Marburg, Germany
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
- Centre for Epigenetics, Queen Mary University of London, Lodon, UK.
| | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Centre for Translational Stem Cell Biology, Hong Kong SAR, China.
| |
Collapse
|
9
|
Hutchinson AM, Appeltant R, Burdon T, Bao Q, Bargaje R, Bodnar A, Chambers S, Comizzoli P, Cook L, Endo Y, Harman B, Hayashi K, Hildebrandt T, Korody ML, Lakshmipathy U, Loring JF, Munger C, Ng AHM, Novak B, Onuma M, Ord S, Paris M, Pask AJ, Pelegri F, Pera M, Phelan R, Rosental B, Ryder OA, Sukparangsi W, Sullivan G, Tay NL, Traylor-Knowles N, Walker S, Weberling A, Whitworth DJ, Williams SA, Wojtusik J, Wu J, Ying QL, Zwaka TP, Kohler TN. Advancing stem cell technologies for conservation of wildlife biodiversity. Development 2024; 151:dev203116. [PMID: 39382939 PMCID: PMC11491813 DOI: 10.1242/dev.203116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Wildlife biodiversity is essential for healthy, resilient and sustainable ecosystems. For biologists, this diversity also represents a treasure trove of genetic, molecular and developmental mechanisms that deepen our understanding of the origins and rules of life. However, the rapid decline in biodiversity reported recently foreshadows a potentially catastrophic collapse of many important ecosystems and the associated irreversible loss of many forms of life on our planet. Immediate action by conservationists of all stripes is required to avert this disaster. In this Spotlight, we draw together insights and proposals discussed at a recent workshop hosted by Revive & Restore, which gathered experts to discuss how stem cell technologies can support traditional conservation techniques and help protect animal biodiversity. We discuss reprogramming, in vitro gametogenesis, disease modelling and embryo modelling, and we highlight the prospects for leveraging stem cell technologies beyond mammalian species.
Collapse
Affiliation(s)
| | - Ruth Appeltant
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Tom Burdon
- The Roslin Institute, RDSVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Qiuye Bao
- IMCB-ESCAR, A*STAR, 61 Biopolis Drive, Proteos, 138673Singapore
| | | | - Andrea Bodnar
- Gloucester Marine Genomics Institute, 417 Main St, Gloucester, MA 01930, USA
| | - Stuart Chambers
- Brightfield Therapeutics, South San Francisco, CA 94080, USA
| | - Pierre Comizzoli
- Smithsonian National Zoo and Conservation Biology Institute, 3001 Connecticut Ave., NW Washington, DC 20008, USA
| | - Laura Cook
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Yoshinori Endo
- University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Bob Harman
- Vet-Stem Inc. & Personalized Stem Cells, Inc., 14261 Danielson Street, Poway, CA 92064, USA
| | | | - Thomas Hildebrandt
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Marisa L. Korody
- San Diego Zoo Wildlife Alliance, 2920 Zoo Dr, San Diego, CA 92101, USA
| | - Uma Lakshmipathy
- Thermo Fisher Scientific, 168 Third Avenue, Waltham, MA 02451, USA
| | - Jeanne F. Loring
- The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Clara Munger
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Alex H. M. Ng
- GC Therapeutics, 610 Main St., North Cambridge, MA 02139, USA
| | - Ben Novak
- Revive & Restore, 1505 Bridgeway, Suite 203, Sausalito, CA 94965, USA
| | - Manabu Onuma
- National Institute for Environmental Studies, 16-2 Onogawa, City of Tsukuba, Ibaraki 305-8506, Japan
| | - Sara Ord
- Colossal Biosciences, 1401 Lavaca St, Unit #155 Austin, TX 78701, USA
| | - Monique Paris
- IBREAM (Institute for Breeding Rare and Endangered African Mammals), Edinburgh EH3 6AT, UK
| | | | - Francisco Pelegri
- University of Wisconsin-Madison, 500 Lincoln Dr, Madison, WI 53706, USA
| | - Martin Pera
- Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Ryan Phelan
- Revive & Restore, 1505 Bridgeway, Suite 203, Sausalito, CA 94965, USA
| | - Benyamin Rosental
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Center for Regenerative Medicine and Stem Cells, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Oliver A. Ryder
- San Diego Zoo Wildlife Alliance, 2920 Zoo Dr, San Diego, CA 92101, USA
| | - Woranop Sukparangsi
- Department of Biology, Faculty of Science, Burapha University, 169 Long-Had Bangsaen Rd, Saen Suk, Chon Buri District, Chon Buri 20131, Thailand
| | - Gareth Sullivan
- Department of Pediatric Research, Oslo University Hospital, P.O. Box 4950 Nydalen, N-0424 Oslo, Norway
- School of Medicine, University of St Andrews, North Haugh, St Andrews KY16 9TF, UK
| | | | - Nikki Traylor-Knowles
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami,4600, Rickenbacker Cswy, Key Biscayne, FL 33149, USA
| | - Shawn Walker
- ViaGen Pets & Equine, PO Box 1119, Cedar Park, TX 78613, USA
| | | | - Deanne J. Whitworth
- University of Queensland, Sir Fred Schonell Drive, Brisbane, Queensland, 4072, Australia
| | | | - Jessye Wojtusik
- Omaha's Henry Doorly Zoo & Aquarium, 3701 S 10th St, Omaha, NE 68107, USA
| | - Jun Wu
- University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Qi-Long Ying
- Keck School of Medicine of University of Southern California, 1975 Zonal Ave, Los Angeles, CA 90033, USA
| | - Thomas P. Zwaka
- Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Timo N. Kohler
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
10
|
Huang T, Liu D, Wang X, Kuang J, Wu M, Wang B, Liang Z, Fan Y, Chen B, Ma Z, Fu Y, Zhang W, Ming J, Qin Y, Zhao C, Wang B, Pei D. Engineering mouse cell fate controller by rational design. Nat Commun 2024; 15:6200. [PMID: 39043686 PMCID: PMC11266670 DOI: 10.1038/s41467-024-50551-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
Cell fate is likely regulated by a common machinery, while components of this machine remain to be identified. Here we report the design and testing of engineered cell fate controller NanogBiD, fusing BiD or BRG1 interacting domain of SS18 with Nanog. NanogBiD promotes mouse somatic cell reprogramming efficiently in contrast to the ineffective native protein under multiple testing conditions. Mechanistic studies further reveal that it facilitates cell fate transition by recruiting the intended Brg/Brahma-associated factor (BAF) complex to modulate chromatin accessibility and reorganize cell state specific enhancers known to be occupied by canonical Nanog, resulting in precocious activation of multiple genes including Sall4, miR-302, Dppa5a and Sox15 towards pluripotency. Although we have yet to test our approach in other species, our findings suggest that engineered chromatin regulators may provide much needed tools to engineer cell fate in the cells as drugs era.
Collapse
Affiliation(s)
- Tao Huang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Dong Liu
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiaomin Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Junqi Kuang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Manqi Wu
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Beibei Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Zechuan Liang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yixin Fan
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Chen
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Zhaoyi Ma
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yu Fu
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Wenhui Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jin Ming
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yue Qin
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Chengchen Zhao
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Key Laboratory of Biomedical Intelligent Computing Technology of Zhejiang Province, Hangzhou, China.
| | - Bo Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
- Key Laboratory of Biomedical Intelligent Computing Technology of Zhejiang Province, Hangzhou, China.
- Zhejiang University of Science and Technology School of Information and Electronic Engineering, Hangzhou, China.
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
11
|
Schock EN, York JR, Li AP, Tu AY, LaBonne C. SoxB1 transcription factors are essential for initiating and maintaining neural plate border gene expression. Development 2024; 151:dev202693. [PMID: 38940470 PMCID: PMC11369808 DOI: 10.1242/dev.202693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
SoxB1 transcription factors (Sox2/3) are well known for their role in early neural fate specification in the embryo, but little is known about functional roles for SoxB1 factors in non-neural ectodermal cell types, such as the neural plate border (NPB). Using Xenopus laevis, we set out to determine whether SoxB1 transcription factors have a regulatory function in NPB formation. Here, we show that SoxB1 factors are necessary for NPB formation, and that prolonged SoxB1 factor activity blocks the transition from a NPB to a neural crest state. Using ChIP-seq, we demonstrate that Sox3 is enriched upstream of NPB genes in early NPB cells and in blastula stem cells. Depletion of SoxB1 factors in blastula stem cells results in downregulation of NPB genes. Finally, we identify Pou5f3 factors as potential Sox3 partners in regulating the formation of the NPB and show that their combined activity is needed for normal NPB gene expression. Together, these data identify a role for SoxB1 factors in the establishment and maintenance of the NPB, in part through partnership with Pou5f3 factors.
Collapse
Affiliation(s)
- Elizabeth N. Schock
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Joshua R. York
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Austin P. Li
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Ashlyn Y. Tu
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Carole LaBonne
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons National Institute for Theory and Mathematics in Biology, 875 N Michigan Avenue, Chicago, IL 60611, USA
| |
Collapse
|
12
|
Neira JA, Conrad JV, Rusteika M, Chu LF. The progress of induced pluripotent stem cells derived from pigs: a mini review of recent advances. Front Cell Dev Biol 2024; 12:1371240. [PMID: 38979033 PMCID: PMC11228285 DOI: 10.3389/fcell.2024.1371240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/10/2024] [Indexed: 07/10/2024] Open
Abstract
Pigs (Sus scrofa) are widely acknowledged as an important large mammalian animal model due to their similarity to human physiology, genetics, and immunology. Leveraging the full potential of this model presents significant opportunities for major advancements in the fields of comparative biology, disease modeling, and regenerative medicine. Thus, the derivation of pluripotent stem cells from this species can offer new tools for disease modeling and serve as a stepping stone to test future autologous or allogeneic cell-based therapies. Over the past few decades, great progress has been made in establishing porcine pluripotent stem cells (pPSCs), including embryonic stem cells (pESCs) derived from pre- and peri-implantation embryos, and porcine induced pluripotent stem cells (piPSCs) using a variety of cellular reprogramming strategies. However, the stabilization of pPSCs was not as straightforward as directly applying the culture conditions developed and optimized for murine or primate PSCs. Therefore, it has historically been challenging to establish stable pPSC lines that could pass stringent pluripotency tests. Here, we review recent advances in the establishment of stable porcine PSCs. We focus on the evolving derivation methods that eventually led to the establishment of pESCs and transgene-free piPSCs, as well as current challenges and opportunities in this rapidly advancing field.
Collapse
Affiliation(s)
- Jaime A Neira
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - J Vanessa Conrad
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Margaret Rusteika
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Li-Fang Chu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| |
Collapse
|
13
|
Orsetti A, van Oosten D, Vasarhelyi RG, Dănescu TM, Huertas J, van Ingen H, Cojocaru V. Structural dynamics in chromatin unraveling by pioneer transcription factors. Biophys Rev 2024; 16:365-382. [PMID: 39099839 PMCID: PMC11297019 DOI: 10.1007/s12551-024-01205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/18/2024] [Indexed: 08/06/2024] Open
Abstract
Pioneer transcription factors are proteins with a dual function. First, they regulate transcription by binding to nucleosome-free DNA regulatory elements. Second, they bind to DNA while wrapped around histone proteins in the chromatin and mediate chromatin opening. The molecular mechanisms that connect the two functions are yet to be discovered. In recent years, pioneer factors received increased attention mainly because of their crucial role in promoting cell fate transitions that could be used for regenerative therapies. For example, the three factors required to induce pluripotency in somatic cells, Oct4, Sox2, and Klf4 were classified as pioneer factors and studied extensively. With this increased attention, several structures of complexes between pioneer factors and chromatin structural units (nucleosomes) have been resolved experimentally. Furthermore, experimental and computational approaches have been designed to study two unresolved, key scientific questions: First, do pioneer factors induce directly local opening of nucleosomes and chromatin fibers upon binding? And second, how do the unstructured tails of the histones impact the structural dynamics involved in such conformational transitions? Here we review the current knowledge about transcription factor-induced nucleosome dynamics and the role of the histone tails in this process. We discuss what is needed to bridge the gap between the static views obtained from the experimental structures and the key structural dynamic events in chromatin opening. Finally, we propose that integrating nuclear magnetic resonance spectroscopy with molecular dynamics simulations is a powerful approach to studying pioneer factor-mediated dynamics of nucleosomes and perhaps small chromatin fibers using native DNA sequences.
Collapse
Affiliation(s)
- Andrea Orsetti
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Daphne van Oosten
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | | | - Theodor-Marian Dănescu
- Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Jan Huertas
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, England
| | - Hugo van Ingen
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Vlad Cojocaru
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
14
|
Conrad JV, Neira JA, Rusteika M, Meyer S, Clegg DO, Chu LF. Establishment of Transgene-Free Porcine Induced Pluripotent Stem Cells. Curr Protoc 2024; 4:e1012. [PMID: 38712688 DOI: 10.1002/cpz1.1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Although protocols to generate authentic transgene-free mouse and human induced pluripotent stem cells (iPSCs) are now well established, standard methods for reprogramming porcine somatic cells still suffer from low efficiency and transgene retention. The Basic Protocol describes reprogramming procedures to establish transgene-free porcine iPSCs (PiPSCs) from porcine fibroblasts. This method uses episomal plasmids encoding POU5F1, SOX2, NANOG, KLF4, SV40LT, c-MYC, LIN28A, and microRNA-302/367, combined with an optimized medium, to establish PiPSC lines. Support protocols describe the establishment and characterization of clonal PiPSC lines, as well as the preparation of feeder cells and EBNA1 mRNA. This optimized, step-by-step approach tailored to this species enables the efficient derivation of PiPSCs in ∼4 weeks. The establishment of transgene-free PiPSCs provides a new and valuable model for studies of larger mammalian species' development, disease, and regenerative biology. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Reprogramming of porcine fibroblasts with episomal plasmids Support Protocol 1: Preparation of mouse embryonic fibroblasts for feeder layer Support Protocol 2: Preparation of in vitro-transcribed EBNA1 mRNA Support Protocol 3: Establishment of clonal porcine induced pluripotent stem cell (PiPSC) lines Support Protocol 4: PiPSC characterization: Genomic DNA PCR and RT-PCR Support Protocol 5: PiPSC characterization: Immunostaining.
Collapse
Affiliation(s)
- J Vanessa Conrad
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Jaime A Neira
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology Graduate Program, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Margaret Rusteika
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada
| | - Susanne Meyer
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California
| | - Dennis O Clegg
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California
- Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, Santa Barbara, California
| | - Li-Fang Chu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology Graduate Program, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
15
|
Umeyama T, Matsuda T, Nakashima K. Lineage Reprogramming: Genetic, Chemical, and Physical Cues for Cell Fate Conversion with a Focus on Neuronal Direct Reprogramming and Pluripotency Reprogramming. Cells 2024; 13:707. [PMID: 38667322 PMCID: PMC11049106 DOI: 10.3390/cells13080707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Although lineage reprogramming from one cell type to another is becoming a breakthrough technology for cell-based therapy, several limitations remain to be overcome, including the low conversion efficiency and subtype specificity. To address these, many studies have been conducted using genetics, chemistry, physics, and cell biology to control transcriptional networks, signaling cascades, and epigenetic modifications during reprogramming. Here, we summarize recent advances in cellular reprogramming and discuss future directions.
Collapse
Affiliation(s)
- Taichi Umeyama
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | | |
Collapse
|
16
|
De Los Angeles A, Hug CB, Gladyshev VN, Church GM, Velychko S. Sendai virus persistence questions the transient naive reprogramming method for iPSC generation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583804. [PMID: 38559172 PMCID: PMC10979911 DOI: 10.1101/2024.03.07.583804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Since the revolutionary discovery of induced pluripotent stem cells (iPSCs) by Shinya Yamanaka, the comparison between iPSCs and embryonic stem cells (ESCs) has revealed significant differences in their epigenetic states and developmental potential. A recent compelling study published in Nature by Buckberry et al.1 demonstrated that a transient-naive-treatment (TNT) could facilitate epigenetic reprogramming and improve the developmental potential of human iPSCs (hiPSCs). However, the study characterized bulk hiPSCs instead of isolating clonal lines and overlooked the persistent expression of Sendai virus carrying exogenous Yamanaka factors. Our analyses revealed that Sendai genes were expressed in most control PSC samples, including hESCs, which were not intentionally infected. The highest levels of Sendai expression were detected in samples continuously treated with naive media, where it led to overexpression of exogenous MYC, SOX2, and KLF4, altering both the expression levels and ratios of reprogramming factors. Our findings call for further research to verify the effectiveness of the TNT method in the context of delivery methods that ensure prompt elimination of exogenous factors, leading to the generation of bona fide transgene-independent iPSCs.
Collapse
Affiliation(s)
| | - Clemens B. Hug
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute, Harvard University, Boston, MA, USA
| | - Sergiy Velychko
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute, Harvard University, Boston, MA, USA
| |
Collapse
|