1
|
Zhang D, Zhu Y, Shen Z, Ma S, Liu S, Lu Z. Immunosenescence and immunotherapy in elderly patients with hepatocellular carcinoma. Semin Cancer Biol 2025; 111:60-75. [PMID: 40020977 DOI: 10.1016/j.semcancer.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 03/03/2025]
Abstract
Liver cancer, more specifically hepatocellular carcinoma (HCC), is a global health issue and one of the dominant causes of cancer death around the world. In the past few decades, remarkable advances have been achieved in the systemic therapy of HCC. Immune checkpoint inhibitors (ICIs) have become a therapy mainstay for advanced HCC and have shown promise in the neoadjuvant therapy before resection. Despite these significant advancements, the compositions and functions of the immune system occur various alterations with age, called "immunosenescence", which may affect the antitumor effects and safety of ICIs, thus raising concerns that immunosenescence may impair elderly patients' response to ICIs. Therefore, it is important to learn more about the immunosenescence characteristics of elderly patients. However, the real-world elderly HCC patients may be not accurately represented by the elderly patients included in the clinical trials, affecting the generalizability of the efficacy and safety profiles from the clinical trials to the real-world elderly patients. This review summarizes the characteristics of immunosenescence and its influence on HCC progression and immunotherapy efficacy as well as provides the latest progress in ICIs available for HCC and discusses their treatment efficacy and safety on elderly patients. In the future, more studies are needed to clarify the mechanisms of immunosenescence in HCC, and to find sensitive screening tools or biomarkers to identify the patients who may benefit from ICIs.
Collapse
Affiliation(s)
- Dengyong Zhang
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
| | - Yan Zhu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhengchao Shen
- Department of General Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Shuoshuo Ma
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
| | - Sihua Liu
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
| | - Zheng Lu
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China.
| |
Collapse
|
2
|
Freeman ML. Gastrointestinal acute radiation syndrome: current knowledge and perspectives. Cell Death Discov 2025; 11:235. [PMID: 40368913 PMCID: PMC12078527 DOI: 10.1038/s41420-025-02525-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/24/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025] Open
Abstract
Acute radiation gastrointestinal syndrome (GI-ARS) develops when the intestine is rapidly exposed to large doses of ionizing radiation. In humans, GI-ARS occurs at radiation doses of 6 Gy, with doses of ≥10 Gy typically resulting in death within 10 days. This condition can be caused by various factors, including war, terrorism, nuclear power plant accidents, and cancer therapy-associated adverse events. Developing effective approaches for treating GI-ARS requires a comprehensive understanding of the syndrome. This review summarizes the current body of literature that defines GI-ARS as a consequence of intestinal irradiation. It highlights the paradigm shift in understanding which intestinal stem cells contribute to homeostasis, the critical role of vascular injury in the development of GI-ARS, and recent advances in research on crypt-villus regeneration following radiation injury.
Collapse
Affiliation(s)
- Michael L Freeman
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
3
|
Fang X, Li J, Pang H, Zheng H, Shi X, Feng L, Hu K, Zhou T. Xingxiao pills suppresses lung adenocarcinoma progression by modulating lipid metabolism and inhibiting the PLA2G4A-GLI1-SOX2 Axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156826. [PMID: 40339555 DOI: 10.1016/j.phymed.2025.156826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/20/2025] [Accepted: 05/02/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) remains a leading cause of cancer mortality due to resistance, metastasis, and recurrence. Unlike conventional cytotoxic therapies, Xingxiao Pills (XXP), a classic traditional Chinese medicine formula, offers a complementary approach to treating LUAD, while its non-cytotoxic anti-cancer mechanisms remain unclear. PURPOSE To investigate the effect and mechanism of XXP on LUAD progression and stemness via lipid metabolism regulation. METHOD UHPLC-MS/MS was used to analyze the chemical constituents of XXP. The effects of XXP on LUAD cell proliferation, migration, invasion, and stemness were evaluated using CCK-8, Transwell, and tumor sphere assays. A LUAD xenograft model confirmed XXP's anti-tumor effects. Transcriptomics, metabolomics, ELISA, qRT-PCR, and Western blot were used to investigate the underlying mechanisms. Kaplan-Meier (KM) survival analysis and stemness index scores were performed for LUAD patients based on the TCGA dataset. Statistical analyses were performed using Student's t-test, ANOVA, and KM survival analysis (p< 0.05 considered significant). RESULTS XXP inhibits LUAD progression in mouse and cell models by targeting lipid metabolism reprogramming. It suppresses FA synthesis, elongation, oxidation, and glycerophospholipid (GPL) metabolism while upregulating arachidonic acid (AA) metabolism. Mechanistic studies revealed that XXP attenuates tumor stemness by inhibiting PLA2G4A (cPLA2), lowering AA release, and disrupting SMO/GLI1/SOX2 signaling, an effect also observed with the cPLA2 inhibitor AACOCF3. KM analysis showed that higher PLA2G4A expression correlated with a worse 5-year prognosis in LUAD (p = 0.0047). The low GPL/high AA group (consistent with XXP's metabolic pattern) had better survival (p = 0.0028) and a lower stemness index (p< 0.0001) than the high GPL/low AA unrelated group. CONCLUSION Xingxiao Pill modulates GPL and AA metabolism and downregulates the PLA2G4A (cPLA2)-AA/SMO/GLI1/SOX2 axis. Through this mechanism, XXP effectively inhibits tumor growth and stemness by targeting lipid metabolism.
Collapse
Affiliation(s)
- Xueni Fang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - JingHua Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - HaoYue Pang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Zheng
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang Shi
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Kaiwen Hu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Tian Zhou
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
4
|
Rahmawati FN, Takakura N. Development and aging of resident endothelial stem cells in pre-existing blood vessels. Exp Hematol 2025:104795. [PMID: 40311858 DOI: 10.1016/j.exphem.2025.104795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/09/2025] [Accepted: 04/13/2025] [Indexed: 05/03/2025]
Abstract
Organ-specific somatic stem cells play an important role in supporting tissue turnover and facilitating regeneration on injury. Hematopoietic stem cells are one of the most established organ-specific somatic cells that have been frequently used for transplantation therapy. Recently, there has been a growing interest in other organ-specific somatic cells, including vascular endothelial stem cells (VESCs). We have previously reported on the use of CD157 and CD200 as markers to isolate VESCs from adult mouse organs, particularly the liver. In this review, we aimed to summarize, based on our previous research, how CD157⁺CD200⁺ VESCs in the liver develop from the fetal stage to postnatal life, what transcriptional regulatory mechanisms govern them, and how VESCs change with aging.
Collapse
Affiliation(s)
- Fitriana N Rahmawati
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Immunology Frontier Research Center, Osaka University, Suita, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan.
| |
Collapse
|
5
|
Quero FB, Troncoso-Bravo T, Farías MA, Kalergis AM. Cell-Based Therapeutic Strategies for Autoimmune Diseases. Immunotargets Ther 2025; 14:501-514. [PMID: 40322732 PMCID: PMC12047289 DOI: 10.2147/itt.s513629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
Currently, the management of autoimmune disorders still being a challenge in terms of safety, efficiency, and specificity. Cell-based therapeutic strategies have emerged as a novel approach for autoimmune disease treatment, employing different cell therapy platforms, including tolerogenic dendritic cells, regulatory T cells, conventional and regulatory chimeric antigen receptor-T cells, mesenchymal and hematopoietic stem cells, each with their biological features. Here, we discuss the different cell therapy platforms, their immunological mechanisms of action, their therapeutic potential and benefits in autoimmune diseases, and challenges related to their production, scaling up, risks, and patient safety.
Collapse
Affiliation(s)
- Francisco B Quero
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tays Troncoso-Bravo
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
6
|
Milner AR, Johnson AC, Attipoe EM, Wu W, Challagundla L, Garrett MR. Methylseq, single-nuclei RNAseq, and discovery proteomics identify pathways associated with nephron-deficit CKD in the HSRA rat model. Am J Physiol Renal Physiol 2025; 328:F470-F488. [PMID: 39982494 DOI: 10.1152/ajprenal.00258.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/01/2024] [Accepted: 02/12/2025] [Indexed: 02/22/2025] Open
Abstract
Low nephron numbers are associated with an increased risk of developing chronic kidney disease (CKD) and hypertension, which are significant global health problems. To investigate the impact of nephron deficiency, our laboratory developed a novel inbred rat model (HSRA rat). In this model, ∼75% of offspring are born with a single kidney (HSRA-S), compared with two-kidney littermates (HSRA-C). HSRA-S rats show impaired kidney development, resulting in ∼20% fewer nephrons. Our previous data and current findings demonstrate that nephron deficit (failure of one kidney to form and altered development in the remaining kidney) predisposes HSRA-S to CKD late in life (with increased proteinuria by 18 mo of age in HSRA-S = 51 ± 3.4 vs. HSRA-C = 8 ± 1.5 mg/24 h). To understand early molecular mechanisms contributing to the increased predisposition to CKD, Methylseq using reduced representation bisulfite sequencing, single-nuclei (sn)RNAseq, and discovery proteomics were performed in kidneys of 4-wk-old HSRA rats. Methylation analysis revealed a small number of differences, including five differentially methylated cytosines and six differentially methylated regions between groups. The snRNAseq analysis identified differentially expressed genes in most kidney cell types, with several hundred genes dysregulated depending on the analysis method (Seurat vs. DESeq2). Notably, many genes are involved in kidney development. Discovery proteomic analysis identified 366 differentially expressed proteins. A key finding was dysregulation of Deptor/DEPTOR and Amdhd2/AMDHD2 across omics layers, suggesting a potential role in compensatory mechanisms or the genetic basis of altered kidney development. Further understanding of these mechanisms may guide interventions to preserve nephron health and slow kidney disease progression.NEW & NOTEWORTHY The HSRA rat is a novel model of nephron deficiency and provides a unique opportunity to study the association between nephron number and chronic kidney disease (CKD). Previous work characterized the impact of age, hypertension, and diabetes on the development of CKD in HSRA animals. This study examined early changes in epigenetics, cell-type specific transcriptome, and proteomic changes in the kidney that likely predispose the model to CKD with age.
Collapse
Affiliation(s)
- Andrew R Milner
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Ashley C Johnson
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Esinam M Attipoe
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Wenjie Wu
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lavanya Challagundla
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Michael R Garrett
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Department of Medicine (Nephrology), University of Mississippi Medical Center, Jackson, Mississippi, United States
- Department of Pediatrics (Genetics), University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
7
|
Kang J, Kanugovi A, Stella MPJ, Frimand Z, Farup J, Urtasun A, Liu S, Clausen AS, Ishak H, Bui S, Kim S, Ezran C, Botvinnik O, Porpiglia E, Krasnow M, de Morree A, Rando TA. In vivo self-renewal and expansion of quiescent stem cells from a non-human primate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645793. [PMID: 40196588 PMCID: PMC11974844 DOI: 10.1101/2025.03.27.645793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The development of non-human primate models is essential for the fields of developmental and regenerative biology because those models will more closely approximate human biology than do murine models. Based on single cell RNAseq and fluorescence-activated cell sorting, we report the identification and functional characterization of two quiescent stem cell populations (skeletal muscle stem cells (MuSCs) and mesenchymal stem cells termed fibro-adipogenic progenitors (FAPs)) in the non-human primate Microcebus murinus (the gray mouse lemur). We demonstrate in vivo proliferation, differentiation, and self-renewal of both MuSCs and FAPs. By combining cell phenotyping with cross-species molecular profiling and pharmacological interventions, we show that mouse lemur MuSCs and FAPs are more similar to human than to mouse counterparts. We identify unexpected gene targets involved in regulating primate MuSC proliferation and primate FAP adipogenic differentiation. Moreover, we find that the cellular composition of mouse lemur muscle better models human muscle than does macaque ( Macaca fascicularis ) muscle. Finally, we note that our approach presents as a generalizable pipeline for the identification, isolation, and characterization of stem cell populations in new animal models.
Collapse
|
8
|
Liu J, Yao L, Yang Y, Ma J, You R, Yu Z, Du P. A novel stemness-related lncRNA signature predicts prognosis, immune infiltration and drug sensitivity of clear cell renal cell carcinoma. J Transl Med 2025; 23:238. [PMID: 40016772 PMCID: PMC11869577 DOI: 10.1186/s12967-025-06251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 02/11/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is a prevalent urogenital malignancy characterized by heterogeneous patterns. Stemness is a pivotal factor in tumor progression, recurrence, and metastasis. Nevertheless, the impact of stemness-related long non-coding RNAs (SRlncRNAs) on the prognosis of ccRCC remains elusive. In this study, we aimed to delve into the SRlncRNAs of ccRCC and develop a signature for risk stratification and prognosis prediction. METHOD Gene-expression and clinical data were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. We calculated RNA stemness scores (RNAss) for the samples to evaluate their stemness. SRlncRNAs and stemness-related mRNAs (SRmRNAs) in ccRCC were identified through weighted correlation network analysis (WGCNA), which employed sophisticated statistical methodologies to identify interconnected modules of related genes. Enrichment analysis was performed to explore the potential functions of SRmRNAs. Multiple machine learning algorithms were employed to construct a prognostic signature. Samples from TCGA-KIRC and GSE29609 cohorts were designated as the training and validation cohorts, respectively. Based on their risk scores, samples were stratified into low- and high-risk groups. Prognosis analysis, immune infiltration assessment, drug sensitivity prediction, mutation landscape, and gene set enrichment analysis (GSEA) were conducted to investigate the distinct characteristics of the low- and high-risk groups. Additionally, a web-based calculator was developed to facilitate clinical application. Expression and effects of SRlncRNAs in ccRCC were further corroborated through the utilization of single-cell RNA-seq (scRNA-seq), as well as in vitro and in vivo experiments. RESULTS SRlncRNAs and SRmRNAs were identified based on RNAss and WGCNA. The least absolute shrinkage and selection operator (LASSO) in combination with multivariate Cox regression was selected as the optimal approach. Six SRlncRNAs were used to construct the prognostic signature. Samples in the low- and high-risk groups exhibited distinct characteristics in terms of prognosis, GSEA pathways, immune infiltration profiles, drug sensitivity, and mutation status. A nomogram and a web-based calculator were developed to facilitate the clinical application of the model. ScRNA-seq and RT-qPCR demonstrated the differential expression of SRlncRNAs between ccRCC tumors and normal tissues. In vitro and in vivo experiments demonstrated that downregulation of EMX2OS and LINC00944 affected the proliferation, migration, invasion, apoptosis, and metastasis of ccRCC cells. CONCLUSION We uncovered the crucial associations between SRlncRNAs and the prognosis of ccRCC. By leveraging these findings, we developed a novel SRlncRNA-related signature and a user-friendly web calculator. This signature holds great potential in facilitating risk stratification and guiding tailored treatment strategies for ccRCC patients. Both in vitro and in vivo experiments confirmed the role of SRlncRNAs in the progression of ccRCC.
Collapse
Affiliation(s)
- Jia Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Lin Yao
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Yong Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jinchao Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Ruijian You
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Ziyi Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Peng Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
9
|
Sartorelli V, Ciuffoli V. Metabolic regulation in adult and aging skeletal muscle stem cells. Genes Dev 2025; 39:186-208. [PMID: 39662967 PMCID: PMC11789647 DOI: 10.1101/gad.352277.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Adult stem cells maintain homeostasis and enable regeneration of most tissues. Quiescence, proliferation, and differentiation of stem cells and their progenitors are tightly regulated processes governed by dynamic transcriptional, epigenetic, and metabolic programs. Previously thought to merely reflect a cell's energy state, metabolism is now recognized for its critical regulatory functions, controlling not only energy and biomass production but also the cell's transcriptome and epigenome. In this review, we explore how metabolic pathways, metabolites, and transcriptional and epigenetic regulators are functionally interlinked in adult and aging skeletal muscle stem cells.
Collapse
Affiliation(s)
- Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Veronica Ciuffoli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
10
|
Eldridge-Thomas BL, Bohere JG, Roubinet C, Barthelemy A, Samuels TJ, Teixeira FK, Kolahgar G. The transmembrane protein Syndecan is required for stem cell survival and maintenance of their nuclear properties. PLoS Genet 2025; 21:e1011586. [PMID: 39913561 PMCID: PMC11819509 DOI: 10.1371/journal.pgen.1011586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 02/12/2025] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
Tissue maintenance is underpinned by resident stem cells whose activity is modulated by microenvironmental cues. Using Drosophila as a simple model to identify regulators of stem cell behaviour and survival in vivo, we have identified novel connections between the conserved transmembrane proteoglycan Syndecan, nuclear properties and stem cell function. In the Drosophila midgut, Syndecan depletion in intestinal stem cells results in their loss from the tissue, impairing tissue renewal. At the cellular level, Syndecan depletion alters cell and nuclear shape, and causes nuclear lamina invaginations and DNA damage. In a second tissue, the developing Drosophila brain, live imaging revealed that Syndecan depletion in neural stem cells results in nuclear envelope remodelling defects which arise upon cell division. Our findings reveal a new role for Syndecan in the maintenance of nuclear properties in diverse stem cell types.
Collapse
Affiliation(s)
- Buffy L. Eldridge-Thomas
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Jerome G. Bohere
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Chantal Roubinet
- Université de Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, ERL U1305, Rennes, France
| | - Alexandre Barthelemy
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Tamsin J. Samuels
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Felipe Karam Teixeira
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Golnar Kolahgar
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Langthasa J, Guan L, Jinagal SL, Le QT. Salivary gland stem/progenitor cells: advancing from basic science to clinical applications. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:4. [PMID: 39856475 PMCID: PMC11759724 DOI: 10.1186/s13619-025-00221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025]
Abstract
Salivary gland stem/progenitor cells (SSPCs) hold significant potential for regenerative medicine, especially for patients suffering from salivary gland dysfunction due to various causes such as radiation therapy, Sjögren's syndrome, and aging. This review provides a comprehensive overview of SSPCs, including their characteristics, isolation, culture techniques, differentiation pathways, and their role in tissue regeneration. Additionally, we highlight recent advances in cell- and tissue-based therapies, such as SSPC transplantation and bioengineered organ replacements. The challenges in translating SSPC research into effective clinical therapies are also discussed, alongside proposed solutions and future research directions.
Collapse
Affiliation(s)
- Jimpi Langthasa
- Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Dr Clinic D, Stanford, CA, MC 584794305, USA
| | - Li Guan
- Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Dr Clinic D, Stanford, CA, MC 584794305, USA
| | | | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Dr Clinic D, Stanford, CA, MC 584794305, USA.
| |
Collapse
|
12
|
Watt SM, Roubelakis MG. Deciphering the Complexities of Adult Human Steady State and Stress-Induced Hematopoiesis: Progress and Challenges. Int J Mol Sci 2025; 26:671. [PMID: 39859383 PMCID: PMC11766050 DOI: 10.3390/ijms26020671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Human hematopoietic stem cells (HSCs) have traditionally been viewed as self-renewing, multipotent cells with enormous potential in sustaining essential steady state blood and immune cell production throughout life. Indeed, around 86% (1011-1012) of new cells generated daily in a healthy young human adult are of hematopoietic origin. Therapeutically, human HSCs have contributed to over 1.5 million hematopoietic cell transplants (HCTs) globally, making this the most successful regenerative therapy to date. We will commence this review by briefly highlighting selected key achievements (from 1868 to the end of the 20th century) that have contributed to this accomplishment. Much of our knowledge of hematopoiesis is based on small animal models that, despite their enormous importance, do not always recapitulate human hematopoiesis. Given this, we will critically review the progress and challenges faced in identifying adult human HSCs and tracing their lineage differentiation trajectories, referring to murine studies as needed. Moving forward and given that human hematopoiesis is dynamic and can readily adjust to a variety of stressors, we will then discuss recent research advances contributing to understanding (i) which HSPCs maintain daily steady state human hematopoiesis, (ii) where these are located, and (iii) which mechanisms come into play when homeostatic hematopoiesis switches to stress-induced or emergency hematopoiesis.
Collapse
Affiliation(s)
- Suzanne M. Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9BQ, UK
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5005, Australia
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide 5001, Australia
| | - Maria G. Roubelakis
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece;
- Cell and Gene Therapy Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| |
Collapse
|
13
|
Sarkar H, Lee E, Lopez-Darwin SL, Kang Y. Deciphering normal and cancer stem cell niches by spatial transcriptomics: opportunities and challenges. Genes Dev 2025; 39:64-85. [PMID: 39496456 PMCID: PMC11789490 DOI: 10.1101/gad.351956.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Cancer stem cells (CSCs) often exhibit stem-like attributes that depend on an intricate stemness-promoting cellular ecosystem within their niche. The interplay between CSCs and their niche has been implicated in tumor heterogeneity and therapeutic resistance. Normal stem cells (NSCs) and CSCs share stemness features and common microenvironmental components, displaying significant phenotypic and functional plasticity. Investigating these properties across diverse organs during normal development and tumorigenesis is of paramount research interest and translational potential. Advancements in next-generation sequencing (NGS), single-cell transcriptomics, and spatial transcriptomics have ushered in a new era in cancer research, providing high-resolution and comprehensive molecular maps of diseased tissues. Various spatial technologies, with their unique ability to measure the location and molecular profile of a cell within tissue, have enabled studies on intratumoral architecture and cellular cross-talk within the specific niches. Moreover, delineation of spatial patterns for niche-specific properties such as hypoxia, glucose deprivation, and other microenvironmental remodeling are revealed through multilevel spatial sequencing. This tremendous progress in technology has also been paired with the advent of computational tools to mitigate technology-specific bottlenecks. Here we discuss how different spatial technologies are used to identify NSCs and CSCs, as well as their associated niches. Additionally, by exploring related public data sets, we review the current challenges in characterizing such niches, which are often hindered by technological limitations, and the computational solutions used to address them.
Collapse
Affiliation(s)
- Hirak Sarkar
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, New Jersey 08544, USA
- Department of Computer Science, Princeton, New Jersey 08544, USA
| | - Eunmi Lee
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Sereno L Lopez-Darwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA;
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, New Jersey 08544, USA
- Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA
| |
Collapse
|
14
|
Zhu S, Liao X, Xu Y, Zhou N, Pan Y, Song J, Zheng T, Zhang L, Bai L, Wang Y, Zhou X, Gou M, Tao J, Liu R. 3D bioprinting of high-performance hydrogel with in-situ birth of stem cell spheroids. Bioact Mater 2025; 43:392-405. [PMID: 39399841 PMCID: PMC11470575 DOI: 10.1016/j.bioactmat.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Digital light processing (DLP)-based bioprinting technology holds immense promise for the advancement of hydrogel constructs in biomedical applications. However, creating high-performance hydrogel constructs with this method is still a challenge, as it requires balancing the physicochemical properties of the matrix while also retaining the cellular activity of the encapsulated cells. Herein, we propose a facile and practical strategy for the 3D bioprinting of high-performance hydrogel constructs through the in-situ birth of stem cell spheroids. The strategy is achieved by loading the cell/dextran microdroplets within gelatin methacryloyl (GelMA) emulsion, where dextran functions as a decoy to capture and aggregate the cells for bioprinting while GelMA enables the mechanical support without losing the structural complexity and fidelity. Post-bioprinting, the leaching of dextran results in a smooth curved surface that promotes in-situ birth of spheroids within hydrogel constructs. This process significant enhances differentiation potential of encapsulated stem cells. As a proof-of-concept, we encapsulate dental pulp stem cells (DPSCs) within hydrogel constructs, showcasing their regenerative capabilities in dentin and neovascular-like structures in vivo. The strategy in our study enables high-performance hydrogel tissue construct fabrication with DLP-based bioprinting, which is anticipated to pave a promising way for diverse biomedical applications.
Collapse
Affiliation(s)
- Shunyao Zhu
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Xueyuan Liao
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Yue Xu
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Nazi Zhou
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Yingzi Pan
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Taijing Zheng
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Lin Zhang
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Liyun Bai
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Yu Wang
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Xia Zhou
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400042, China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610065, China
| | - Jie Tao
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Rui Liu
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| |
Collapse
|
15
|
Williams EC, Shibata M. Prostate Luminal Cell Plasticity and Cancer. Cancer Lett 2024:217430. [PMID: 39730086 DOI: 10.1016/j.canlet.2024.217430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/24/2024] [Accepted: 12/24/2024] [Indexed: 12/29/2024]
Abstract
Cellular plasticity in prostate cancer promotes treatment resistance. Several independent studies have used mouse models, single-cell RNA sequencing, and genetic lineage tracing approaches to characterize cellular differentiation and plasticity during prostate organogenesis, homeostasis and androgen-mediated tissue regeneration. We review these findings and recent work using immune-competent genetically-engineered mouse models to characterize cellular plasticity and clonal dynamic changes during prostate cancer progression. Collectively these studies highlight the influence of the tumor microenvironment and the function of epigenetic regulators in promoting cellular plasticity. How the epigenetic alternations that promote cell plasticity affect tumor immunogenicity remains an active area of research with implications for disease treatment.
Collapse
Affiliation(s)
- Emily C Williams
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA; The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Maho Shibata
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA; The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
16
|
Henriquez JI, Richman JM. Resilience of the replacing dentition in adult reptiles. Dev Biol 2024; 516:71-81. [PMID: 39059678 PMCID: PMC11458058 DOI: 10.1016/j.ydbio.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
The dentition is critical to animal survival and teeth are present in modern vertebrates including teleost fish, sharks, amphibians, mammals and reptiles. The developmental processes that give rise to teeth are not just preserved through evolution but also share high level of similarity with the embryogenesis of other ectodermal organs. In this review we go beyond the embryonic phase of tooth development to life-long tooth replacement. We will address the origins of successional teeth, the location of putative tissue-resident stem cells, how de novo tooth formation continues throughout life and how teeth are shed in a spatially and temporally controlled manner. We review the evidence that the dental epithelium, which is the earliest recognizable dental structure in the reptilian dentition, serves as a putative niche for tissue-resident epithelial stem cells and recent molecular findings from transcriptomics carried out in reptilian dentitions. We discuss how odontoclasts resorb the primary tooth allowing eruption of the successional tooth. The reptiles, particularly lizards, are emerging as some of the most accessible animals to study tooth replacement which has relevance to evolution of the dentition and human dental disorders.
Collapse
Affiliation(s)
- Joaquin I Henriquez
- Life Sciences Institute and Faculty of Dentistry, University of British Columbia, Canada
| | - Joy M Richman
- Life Sciences Institute and Faculty of Dentistry, University of British Columbia, Canada.
| |
Collapse
|
17
|
Galassi C, Esteller M, Vitale I, Galluzzi L. Epigenetic control of immunoevasion in cancer stem cells. Trends Cancer 2024; 10:1052-1071. [PMID: 39244477 DOI: 10.1016/j.trecan.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/24/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
Cancer stem cells (CSCs) are a poorly differentiated population of malignant cells that (at least in some neoplasms) is responsible for tumor progression, resistance to therapy, and disease relapse. According to a widely accepted model, all stages of cancer progression involve the ability of neoplastic cells to evade recognition or elimination by the host immune system. In line with this notion, CSCs are not only able to cope with environmental and therapy-elicited stress better than their more differentiated counterparts but also appear to better evade tumor-targeting immune responses. We summarize epigenetic modifications of DNA and histones through which CSCs evade immune recognition or elimination, and propose that such alterations constitute promising therapeutic targets to increase the sensitivity of some malignancies to immunotherapy.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Ilio Vitale
- Italian Institute for Genomic Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) Candiolo, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
18
|
Lush ME, Tsai YY, Chen S, Münch D, Peloggia J, Sandler JE, Piotrowski T. Stem and progenitor cell proliferation are independently regulated by cell type-specific cyclinD genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619490. [PMID: 39484411 PMCID: PMC11526906 DOI: 10.1101/2024.10.21.619490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Regeneration and homeostatic turnover of solid tissues depend on the proliferation of symmetrically dividing adult stem cells, which either remain stem cells or differentiate based on their niche position. Here we demonstrate that in zebrafish lateral line sensory organs, stem and progenitor cell proliferation are independently regulated by two cyclinD genes. Loss of ccnd2a impairs stem cell proliferation during development, while loss of ccndx disrupts hair cell progenitor proliferation but allows normal differentiation. Notably, ccnd2a can functionally replace ccndx, indicating that the respective effects of these Cyclins on proliferation are due to cell type-specific expression. However, even though hair cell progenitors differentiate normally in ccndx mutants, they are mispolarized due to hes2 and Emx2 downregulation. Thus, regulated proliferation ensures that equal numbers of hair cells are polarized in opposite directions. Our study reveals cell type-specific roles for cyclinD genes in regulating the different populations of symmetrically dividing cells governing organ development and regeneration, with implications for regenerative medicine and disease.
Collapse
Affiliation(s)
- Mark E. Lush
- Stowers Institute for Medical Research, Kansas City, MO. USA
| | - Ya-Yin Tsai
- Stowers Institute for Medical Research, Kansas City, MO. USA
| | - Shiyuan Chen
- Stowers Institute for Medical Research, Kansas City, MO. USA
| | - Daniela Münch
- Stowers Institute for Medical Research, Kansas City, MO. USA
| | - Julia Peloggia
- Stowers Institute for Medical Research, Kansas City, MO. USA
| | | | - Tatjana Piotrowski
- Stowers Institute for Medical Research, Kansas City, MO. USA
- Lead contact
| |
Collapse
|
19
|
Ojo BA, Heo L, Fox SR, Waddell A, Moreno-Fernandez ME, Gibson M, Tran T, Dunn AL, Elknawy EIA, Saini N, López-Rivera JA, Divanovic S, de Jesus Perez VA, Rosen MJ. Patient-derived colon epithelial organoids reveal lipid-related metabolic dysfunction in pediatric ulcerative colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609271. [PMID: 39229116 PMCID: PMC11370613 DOI: 10.1101/2024.08.22.609271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Background & Aims Ulcerative colitis (UC) is associated with epithelial metabolic derangements which exacerbate gut inflammation. Patient-derived organoids recapitulate complexities of the parent tissue in health and disease; however, whether colon organoids (colonoids) model metabolic impairments in the pediatric UC epithelium is unclear. This study determined the functional metabolic differences in the colon epithelia using epithelial colonoids from pediatric patients. Methods We developed biopsy-derived colonoids from pediatric patients with endoscopically active UC, inactive UC, and those without endoscopic or histologic evidence of colon inflammation (non-IBD controls). We extensively interrogated metabolic dysregulation through extracellular flux analyses and tested potential therapies that recapitulate or ameliorate such metabolic dysfunction. Results Epithelial colonoids from active UC patients exhibit elevated oxygen consumption and proton leak supported by enhanced glycolytic capacity and dysregulated lipid metabolism. The hypermetabolic features in active UC colonoids were associated with increased cellular stress and chemokine secretion, specifically during differentiation. Transcriptomic and pathway analyses indicated a role for PPAR-α in lipid-induced hypermetabolism in active UC colonoids, which was validated by PPAR-α activation in non-IBD colonoids. Accordingly, limiting neutral lipid accumulation in active UC colonoids through pharmacological inhibition of PPAR-α induced a metabolic shift towards glucose consumption, suppressed hypermetabolism and chemokine secretion, and improved cellular stress markers. Control and inactive UC colonoids had similar metabolic and transcriptomic profiles. Conclusions Our pediatric colonoids revealed significant lipid-related metabolic dysregulation in the pediatric UC epithelium that may be alleviated by PPAR-α inhibition. This study supports the advancement of colonoids as a preclinical human model for testing epithelial-directed therapies against such metabolic dysfunction. What You Need to Know Background and Context: Colon mucosa healing in pediatric UC requires reinstating normal epithelial function but a lack of human preclinical models of the diseased epithelium hinders the development of epithelial-directed interventions. New Findings Using colon biopsy-derived epithelial organoids, samples from pediatric patients with active UC show hyperactive metabolic function largely driven by enhanced lipid metabolism. Pharmacologic inhibition of lipid metabolism alleviates metabolic dysfunction, cellular stress, and chemokine production. Limitations Though our epithelial colon organoids from active UC patients show targetable metabolic and molecular features from non-IBD controls, they were cultured under sterile conditions, which may not fully capture any potential real-time contributions of the complex inflammatory milieu typically present in the disease. Clinical Research Relevance Current therapies for pediatric UC mainly target the immune system despite the need for epithelial healing to sustain remission. We identified a pharmacologic target that regulates epithelial metabolism and can be developed for epithelial-directed therapy in UC.Basic Research Relevance: Pediatric UC patient tissue adult stem cell-derived colon epithelial organoids retain disease-associated metabolic pathology and can serve as preclinical human models of disease. Excess reliance on lipids as an energy source leads to oxidative and inflammatory dysfunction in pediatric UC colon organoids. Preprint: This manuscript is currently on bioRxiv. doi: https://doi.org/10.1101/2024.08.22.609271 Lay Summary: Using patient tissue-derived colon epithelial organoids, the investigators identified epithelial metabolic dysfunction and inflammation in pediatric ulcerative colitis that can be alleviated by PPAR-a inhibition.
Collapse
|
20
|
Lee H, Yang S, Lee KJ, Kim SN, Jeong JS, Kim KY, Jung CR, Jeon S, Kwon D, Lee S, Lee H, Park C, Ahn SJ, Yoo J, Son MY. Standardization and quality assessment for human intestinal organoids. Front Cell Dev Biol 2024; 12:1383893. [PMID: 39329062 PMCID: PMC11424408 DOI: 10.3389/fcell.2024.1383893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/02/2024] [Indexed: 09/28/2024] Open
Abstract
To enhance the practical application of intestinal organoids, it is imperative to establish standardized guidelines. This proposed standardization outlines a comprehensive framework to ensure consistency and reliability in the development, characterization, and application of intestinal organoids. The recommended guidelines encompass crucial parameters, including culture conditions, critical quality attributes, quality control measures, and functional assessments, aimed at fostering a standardized approach across diverse research initiatives. The implementation of these guidelines is anticipated to significantly contribute to the reproducibility and comparability of results in the burgeoning field of intestinal organoid research.
Collapse
Affiliation(s)
- Hana Lee
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Organoid Standards Initiative (OSI), Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seunghye Yang
- Organoid Standards Initiative (OSI), Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- ORGANOIDSCIENCES, Seongnam-si, Republic of Korea
| | - Kyung Jin Lee
- Organoid Standards Initiative (OSI), Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- ORGANOIDSCIENCES, Seongnam-si, Republic of Korea
| | - Si-Na Kim
- ORGANOIDSCIENCES, Seongnam-si, Republic of Korea
| | - Ji-Seon Jeong
- Organoid Standards Initiative (OSI), Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
| | - Ki Young Kim
- Organoid Standards Initiative (OSI), Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Cho-Rok Jung
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Organoid Standards Initiative (OSI), Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Sooyeon Jeon
- Digital Health Laboratory, Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Dayeon Kwon
- Digital Health Laboratory, Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sungin Lee
- Digital Health Laboratory, Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hanbyeol Lee
- Digital Health Laboratory, Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Chihye Park
- Digital Health Laboratory, Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sun-Ju Ahn
- Organoid Standards Initiative (OSI), Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Digital Health Laboratory, Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jongman Yoo
- Organoid Standards Initiative (OSI), Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- ORGANOIDSCIENCES, Seongnam-si, Republic of Korea
- Department of Microbiology, CHA University School of Medicine, Seongnam-si, Republic of Korea
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Organoid Standards Initiative (OSI), Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
- Department of Biological Science, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
21
|
Liu Y, Sheng Z, Sun L. Exosomes derived from hTERT-immortalized cells delay cellular senescence of human fibroblasts. Exp Gerontol 2024; 194:112508. [PMID: 38986855 DOI: 10.1016/j.exger.2024.112508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
hTERT gene therapies hold significant promise for treating age-related diseases. However, further research is required to address the challenges of delivery and ethical considerations. We hypothesized that exosomes derived from hTERT-immortalized cells could function similarly to hTERT gene therapies by maintaining telomere length and attenuating cellular senescence biomarkers. In this study, we overexpressed the hTERT gene in Human Foreskin Fibroblast-1 cells (HFF cells) to produce hTERT-immortalized HFF cells (hT-HFF cells). We then used exosomes derived from these hT-HFF cells to treat human fibroblasts, HFF cells. Our results demonstrated that these exosomes effectively attenuated biomarkers of cellular senescence in HFF cells. Furthermore, analysis revealed that hTERT mRNA was indeed packaged into the exosomes from hT-HFF cells. This mRNA was capable of elongating telomeres and delaying cellular senescence in HFF cells. Therefore, exosomes from hT-HFF cells show potential as a treatment for age-related diseases.
Collapse
Affiliation(s)
- Yang Liu
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang, China
| | - Zhaoying Sheng
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang, China
| | - Linlin Sun
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang, China.
| |
Collapse
|
22
|
Peng J, Cao S, Hu Z, Zhu J, Zhu Y, Sheng X, Cai Z, Bai R, Xiong X, Sheng J. Heterogeneity effects of bisphenol A and its substitute, fluorene-9-bisphenol, on intestinal homeostasis. ENVIRONMENT INTERNATIONAL 2024; 191:108948. [PMID: 39167857 DOI: 10.1016/j.envint.2024.108948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/15/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Bisphenol A (BPA) and its substitute fluorene-9-bisphenol (BHPF) are used in consumer products; however, their toxic effects on intestinal epithelium remain largely unknown. In this study, we combined intestinal organoids and single-cell RNA sequencing to investigate the impact of BPA and BHPF exposure on intestinal cell composition, differentiation, and function. Both compounds inhibited the growth of small intestinal organoids, with BHPF exhibiting a more potent inhibitory effect. BPA and BHPF did not significantly alter the overall cell type composition; however, they led to different alterations in cell-cell communications. Gene Ontology enrichment analysis showed that BPA and BHPF exposures affected various biological processes, such as glutathione transferase activity, antioxidant activity, and lipid metabolism, in cell type-specific and compound-dependent manners. Trajectory analysis demonstrated that BPA and BHPF altered the differentiation trajectory of the intestinal cells. To further connect the cellular mechanism to the phenotypic impact in vivo, we constructed a mouse model exposed to BPA or BHPF and observed significant alterations in intestinal morphology, including reduced crypt depth and villus length and impaired stem cell proliferation and self-renewal. These results provide novel insights into the cell type-specific effects of BPA and BHPF on the intestinal epithelium and highlight the potential risks of exposure to these compounds. Our findings underscore the importance of evaluating the safety of BPA substitutes and contribute to a better understanding of the effects of environmental chemicals on gut health.
Collapse
Affiliation(s)
- Junxuan Peng
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Shengda Cao
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Zhen Hu
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Jiayi Zhu
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Yi Zhu
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Xiaole Sheng
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zuchao Cai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, 310000, China
| | - Rongpan Bai
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xushen Xiong
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Jinghao Sheng
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Ciwinska M, Messal HA, Hristova HR, Lutz C, Bornes L, Chalkiadakis T, Harkes R, Langedijk NSM, Hutten SJ, Menezes RX, Jonkers J, Prekovic S, Simons BD, Scheele CLGJ, van Rheenen J. Mechanisms that clear mutations drive field cancerization in mammary tissue. Nature 2024; 633:198-206. [PMID: 39232148 PMCID: PMC11374684 DOI: 10.1038/s41586-024-07882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/26/2024] [Indexed: 09/06/2024]
Abstract
Oncogenic mutations are abundant in the tissues of healthy individuals, but rarely form tumours1-3. Yet, the underlying protection mechanisms are largely unknown. To resolve these mechanisms in mouse mammary tissue, we use lineage tracing to map the fate of wild-type and Brca1-/-;Trp53-/- cells, and find that both follow a similar pattern of loss and spread within ducts. Clonal analysis reveals that ducts consist of small repetitive units of self-renewing cells that give rise to short-lived descendants. This offers a first layer of protection as any descendants, including oncogenic mutant cells, are constantly lost, thereby limiting the spread of mutations to a single stem cell-descendant unit. Local tissue remodelling during consecutive oestrous cycles leads to the cooperative and stochastic loss and replacement of self-renewing cells. This process provides a second layer of protection, leading to the elimination of most mutant clones while enabling the minority that by chance survive to expand beyond the stem cell-descendant unit. This leads to fields of mutant cells spanning large parts of the epithelial network, predisposing it for transformation. Eventually, clone expansion becomes restrained by the geometry of the ducts, providing a third layer of protection. Together, these mechanisms act to eliminate most cells that acquire somatic mutations at the expense of driving the accelerated expansion of a minority of cells, which can colonize large areas, leading to field cancerization.
Collapse
Affiliation(s)
- Marta Ciwinska
- VIB-KULeuven Centre for Cancer Biology, Department of Oncology, Leuven, Belgium
| | - Hendrik A Messal
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Hristina R Hristova
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Laura Bornes
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Rolf Harkes
- Bioimaging Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Nathalia S M Langedijk
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Stefan J Hutten
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Renée X Menezes
- Biostatistics Centre and Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Stefan Prekovic
- Centre for Molecular Medicine, UMC Utrecht, Utrecht, the Netherlands
| | - Benjamin D Simons
- Gurdon Institute, University of Cambridge, Cambridge, UK.
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK.
| | | | - Jacco van Rheenen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
24
|
Albericio G, Higuera M, Araque P, Sánchez C, Herrero D, García-Brenes MA, Formentini L, Torán JL, Mora C, Bernad A. Development of a Bmi1+ Cardiac Mouse Progenitor Immortalized Model to Unravel the Relationship with Its Protective Vascular Endothelial Niche. Int J Mol Sci 2024; 25:8815. [PMID: 39201501 PMCID: PMC11354400 DOI: 10.3390/ijms25168815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
The adult mammalian heart has been demonstrated to be endowed with low but real turnover capacity, especially for cardiomyocytes, the key functional cell type. The source, however, of that turnover capacity remains controversial. In this regard, we have defined and characterized a resident multipotent cardiac mouse progenitor population, Bmi1+DR (for Bmi1+ Damage-Responsive cells). Bmi1+DR is one of the cell types with the lowest ROS (Reactive Oxygen Species) levels in the adult heart, being particularly characterized by their close relationship with cardiac vessels, most probably involved in the regulation of proliferation/maintenance of Bmi1+DR. This was proposed to work as their endothelial niche. Due to the scarcity of Bmi1+DR cells in the adult mouse heart, we have generated an immortalization/dis-immortalization model using Simian Vacuolating Virus 40-Large Antigen T (SV40-T) to facilitate their in vitro characterization. We have obtained a heterogeneous population of immortalized Bmi1+DR cells (Bmi1+DRIMM) that was validated attending to different criteria, also showing a comparable sensitivity to strong oxidative damage. Then, we concluded that the Bmi1-DRIMM population is an appropriate model for primary Bmi1+DR in vitro studies. The co-culture of Bmi1+DRIMM cells with endothelial cells protects them against oxidative damage, showing a moderate depletion in non-canonical autophagy and also contributing with a modest metabolic regulation.
Collapse
Affiliation(s)
- Guillermo Albericio
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
- Molecular Biology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Marina Higuera
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
| | - Paula Araque
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
| | - Cristina Sánchez
- Molecular Biology Department, Molecular Biology Center Severo Ochoa (CBMSO), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Diego Herrero
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
| | - Miguel A. García-Brenes
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
| | - Laura Formentini
- Molecular Biology Department, Molecular Biology Center Severo Ochoa (CBMSO), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José Luis Torán
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
| | - Carmen Mora
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
| | - Antonio Bernad
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
| |
Collapse
|
25
|
Chen HF, Wu KJ. LncRNAs and asymmetric cell division: The epigenetic mechanisms. Biomed J 2024; 48:100774. [PMID: 39059582 PMCID: PMC12001117 DOI: 10.1016/j.bj.2024.100774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024] Open
Abstract
Asymmetric cell division (ACD) plays a pivotal role in development, tissue homeostasis, and stem cell maintenance. Emerging evidence suggests that long non-coding RNAs (lncRNAs) are key regulators of ACD, orchestrating the intricate molecular machinery that governs cell fate determination. This review summarizes current literature to elucidate the diverse roles of lncRNAs in modulating ACD across various biological contexts. The regulatory mechanisms of asymmetric cell division mediated by lncRNAs, including their interactions with protein effectors, epigenetic regulation, and subcellular localization are explored. Additionally, we discuss the implications of dysregulated lncRNAs in mediating ACD that lead to tumorigenesis. By integrating findings from diverse experimental models and cell types, this review provides insights into the multifaceted roles of lncRNAs in governing asymmetric cell division, shedding light on fundamental biological processes. Further research in this area may lead to the development of novel therapies targeting dysregulated lncRNAs to restore proper cell division and function. The knowledge of lncRNAs regulating ACD could potentially revolutionize the field of regenerative medicine and cancer therapy by targeting specific lncRNAs involved in ACD. By unraveling the complex interactions between lncRNAs and cellular processes, the potential novel opportunities for precision medicine approaches may be uncovered.
Collapse
Affiliation(s)
- Hsiao-Fan Chen
- Graduate Institutes of Biomedical Sciences, China Medical University, Taichung, Taiwan; Graduate Institutes of Cell Biology, China Medical University, Taichung, Taiwan.
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
26
|
Liberali P, Schier AF. The evolution of developmental biology through conceptual and technological revolutions. Cell 2024; 187:3461-3495. [PMID: 38906136 DOI: 10.1016/j.cell.2024.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Developmental biology-the study of the processes by which cells, tissues, and organisms develop and change over time-has entered a new golden age. After the molecular genetics revolution in the 80s and 90s and the diversification of the field in the early 21st century, we have entered a phase when powerful technologies provide new approaches and open unexplored avenues. Progress in the field has been accelerated by advances in genomics, imaging, engineering, and computational biology and by emerging model systems ranging from tardigrades to organoids. We summarize how revolutionary technologies have led to remarkable progress in understanding animal development. We describe how classic questions in gene regulation, pattern formation, morphogenesis, organogenesis, and stem cell biology are being revisited. We discuss the connections of development with evolution, self-organization, metabolism, time, and ecology. We speculate how developmental biology might evolve in an era of synthetic biology, artificial intelligence, and human engineering.
Collapse
Affiliation(s)
- Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | | |
Collapse
|
27
|
Chinnapaka S, Malekzadeh H, Tirmizi Z, Ejaz A. Caloric restriction mitigates age-associated senescence characteristics in subcutaneous adipose tissue-derived stem cells. Aging (Albany NY) 2024; 16:7535-7552. [PMID: 38728252 PMCID: PMC11131987 DOI: 10.18632/aging.205812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/27/2024] [Indexed: 05/12/2024]
Abstract
Adipose tissue regulates metabolic balance, but aging disrupts it, shifting fat from insulin-sensitive subcutaneous to insulin-resistant visceral depots, impacting overall metabolic health. Adipose-derived stem cells (ASCs) are crucial for tissue regeneration, but aging diminishes their stemness and regeneration potential. Our findings reveal that aging is associated with a decrease in subcutaneous adipose tissue mass and an increase in the visceral fat depots mass. Aging is associated with increase in adipose tissue fibrosis but no significant change in adipocyte size was observed with age. Long term caloric restriction failed to prevent fibrotic changes but resulted in significant decrease in adipocytes size. Aged subcutaneous ASCs displayed an increased production of ROS. Using mitochondrial membrane activity as an indicator of stem cell quiescence and senescence, we observed a significant decrease in quiescence ASCs with age exclusively in subcutaneous adipose depot. In addition, aged subcutaneous adipose tissue accumulated more senescent ASCs having defective autophagy activity. However, long-term caloric restriction leads to a reduction in mitochondrial activity in ASCs. Furthermore, caloric restriction prevents the accumulation of senescent cells and helps retain autophagy activity in aging ASCs. These results suggest that caloric restriction and caloric restriction mimetics hold promise as a potential strategy to rejuvenate the stemness of aged ASCs. Further investigations, including in vivo evaluations using controlled interventions in animals and human studies, will be necessary to validate these findings and establish the clinical potential of this well-established approach for enhancing the stemness of aged stem cells.
Collapse
Affiliation(s)
- Somaiah Chinnapaka
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hamid Malekzadeh
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Zayaan Tirmizi
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Asim Ejaz
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
28
|
Restifo NP, Gattinoni L. Synthetic soldiers: Turning T cells into immortal warriors. J Exp Med 2024; 221:e20240258. [PMID: 38634804 PMCID: PMC11032022 DOI: 10.1084/jem.20240258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
The creation of synthetic T cell states has captivated the field of cell-based therapies. Wang et al. (https://doi.org/10.1084/jem.20232368) describe how disruption of BCOR and ZC3H12A unleashes anti-tumor T cells with unprecedented lifespan and killer instinct. Are we witnessing the birth of immortal super-soldiers in medicine?
Collapse
Affiliation(s)
- Nicholas P. Restifo
- Marble Therapeutics, Boston, MA, USA
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Luca Gattinoni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
- University of Regensburg, Regensburg, Germany
- Center for Immunomedicine in Transplantation and Oncology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
29
|
Loh JJ, Ma S. Hallmarks of cancer stemness. Cell Stem Cell 2024; 31:617-639. [PMID: 38701757 DOI: 10.1016/j.stem.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Cancer stemness is recognized as a key component of tumor development. Previously coined "cancer stem cells" (CSCs) and believed to be a rare population with rigid hierarchical organization, there is good evidence to suggest that these cells exhibit a plastic cellular state influenced by dynamic CSC-niche interplay. This revelation underscores the need to reevaluate the hallmarks of cancer stemness. Herein, we summarize the techniques used to identify and characterize the state of these cells and discuss their defining and emerging hallmarks, along with their enabling and associated features. We also highlight potential future directions in this field of research.
Collapse
Affiliation(s)
- Jia-Jian Loh
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR, China; Laboratory of Synthetic Chemistry and Chemical Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China; Centre for Translational and Stem Cell Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China.
| |
Collapse
|