1
|
Wang Q, Long T, Tang P, Xu C, Wang L, Liu J. Metabolic reprogramming in cholangiocarcinoma cancer stem cells: Emerging therapeutic paradigms. Cancer Lett 2025; 622:217714. [PMID: 40209849 DOI: 10.1016/j.canlet.2025.217714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/12/2025]
Abstract
Cholangiocarcinoma (CCA) is an aggressive malignancy characterized by limited therapeutic options and poor prognosis, largely attributed to the presence of cancer stem cells (CSCs). These CSCs serve as pivotal drivers of tumor heterogeneity, chemotherapy resistance, and disease recurrence. CSCs in CCA exhibit remarkable plasticity, a characteristic sustained through metabolic state alterations and intricate interactions with the tumor microenvironment (TME), which collectively enhance their self-renewal and survival potential. While advancements have been made in understanding metabolic reprogramming of CCA CSCs, translating these findings into clinical applications encounters significant challenges, including insufficient target specificity, complex metabolic heterogeneity, and the profound complexity of the TME. This review provides a systematic evaluation of metabolic reprogramming mechanisms in CCA CSCs, with critical analysis of stemness-maintaining signaling pathways, oxidative phosphorylation (OXPHOS), nutrient utilization, metabolic crosstalk within the TME, autophagy regulation, and ferroptosis resistance. We emphasize emerging strategies to therapeutically target the interconnected metabolic networks essential for CSC functionality and survival, with the goal of establishing a theoretical basis for innovative precision therapies to enhance clinical outcomes for CCA patients.
Collapse
Affiliation(s)
- Qi Wang
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, 102218, Beijing, China; Key Laboratory of Digital Intelligence Hepatology, Ministry of Education, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, 102218, Beijing, China
| | - Tanqing Long
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, 102218, Beijing, China; School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Peijuan Tang
- Weifang Hospital of Traditional Chinese Medicine, Shandong Second Medical University, 261000, Weifang, Shandong Province, China
| | - Chuanrui Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Liang Wang
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, 102218, Beijing, China; Key Laboratory of Digital Intelligence Hepatology, Ministry of Education, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, 102218, Beijing, China.
| | - Juan Liu
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, 102218, Beijing, China; Key Laboratory of Digital Intelligence Hepatology, Ministry of Education, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, 102218, Beijing, China.
| |
Collapse
|
2
|
Gutierrez-Sandoval R, Gutiérrez-Castro F, Muñoz-Godoy N, Rivadeneira I, Sobarzo A, Iturra J, Krakowiak F, Alarcón L, Dorado W, Lagos A, Montenegro D, Muñoz I, Aguilera R, Toledo A. Beyond Exosomes: An Ultrapurified Phospholipoproteic Complex (PLPC) as a Scalable Immunomodulatory Platform for Reprogramming Immune Suppression in Metastatic Cancer. Cancers (Basel) 2025; 17:1658. [PMID: 40427155 PMCID: PMC12110133 DOI: 10.3390/cancers17101658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/06/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Dendritic-cell-derived exosomes (DEXs) have demonstrated immunostimulatory potential in cancer immunotherapy, yet their clinical application remains constrained by their cryodependence, compositional heterogeneity, and limited scalability. To address these limitations, we developed an ultrapurified phospholipoproteic complex (PLPC), a dendritic-secretome-derived formulation stabilized through ultracentrifugation and lyophilization that has been engineered to preserve its immunological function and structural integrity. Methods: Secretomes were processed under four conditions (fresh, concentrated, cryopreserved, and lyophilized PLPC) and compared through proteomic and functional profiling. Mass spectrometry (LC-MS/MS) analysis revealed that the PLPC retained a significantly enriched set of immunoregulatory proteins-including QSOX1, CCL22, and SDCBP-and exhibited superior preservation of post-translational modifications. Results: Ex vivo co-culture assays with human peripheral blood mononuclear cells (PBMCs) demonstrated that the PLPC induced robust secretion of IFN-γ, TNF-α, and IL-6 while concurrently suppressing IL-10, achieving an IFN-γ/IL-10 ratio exceeding 3.5. Flow cytometry confirmed the substantial activation of both CD4⁺ and CD8⁺ T cells, while apoptosis assays showed selective tumor cytotoxicity (>55% tumor apoptosis) with minimal impact on non-malignant cells (>92% viability). Conclusions: These findings establish the PLPC as a reproducible, Th1-polarizing immunomodulator with selective antitumor activity, ambient-temperature stability, and compatibility with non-invasive administration. Overall, the PLPC emerges as a scalable, cell-free immunotherapeutic platform with translational potential to reprogram immune suppression in metastatic therapy-resistant cancer settings.
Collapse
Affiliation(s)
| | - Francisco Gutiérrez-Castro
- Department of Cancer Research, Flowinmunocell-Bioexocell Group, 08028 Barcelona, Spain; (F.G.-C.); (N.M.-G.)
| | - Natalia Muñoz-Godoy
- Department of Cancer Research, Flowinmunocell-Bioexocell Group, 08028 Barcelona, Spain; (F.G.-C.); (N.M.-G.)
| | - Ider Rivadeneira
- Department of Outreach and Engagement Programs, OGRD Consortium, Charlestown KN0802, Saint Kitts and Nevis; (I.R.); (J.I.); (F.K.); (L.A.); (W.D.); (A.L.); (D.M.); (I.M.); (R.A.)
| | - Adolay Sobarzo
- Department of Biological and Chemistry Sciences, Faculty of Medicine and Science, San Sebastian University, Concepción 4080871, Chile;
| | - Jordan Iturra
- Department of Outreach and Engagement Programs, OGRD Consortium, Charlestown KN0802, Saint Kitts and Nevis; (I.R.); (J.I.); (F.K.); (L.A.); (W.D.); (A.L.); (D.M.); (I.M.); (R.A.)
| | - Francisco Krakowiak
- Department of Outreach and Engagement Programs, OGRD Consortium, Charlestown KN0802, Saint Kitts and Nevis; (I.R.); (J.I.); (F.K.); (L.A.); (W.D.); (A.L.); (D.M.); (I.M.); (R.A.)
- Department of Molecular Oncopathology, Bioclas, Concepción 4030000, Chile
| | - Luis Alarcón
- Department of Outreach and Engagement Programs, OGRD Consortium, Charlestown KN0802, Saint Kitts and Nevis; (I.R.); (J.I.); (F.K.); (L.A.); (W.D.); (A.L.); (D.M.); (I.M.); (R.A.)
| | - Wilson Dorado
- Department of Outreach and Engagement Programs, OGRD Consortium, Charlestown KN0802, Saint Kitts and Nevis; (I.R.); (J.I.); (F.K.); (L.A.); (W.D.); (A.L.); (D.M.); (I.M.); (R.A.)
| | - Andy Lagos
- Department of Outreach and Engagement Programs, OGRD Consortium, Charlestown KN0802, Saint Kitts and Nevis; (I.R.); (J.I.); (F.K.); (L.A.); (W.D.); (A.L.); (D.M.); (I.M.); (R.A.)
| | - Diego Montenegro
- Department of Outreach and Engagement Programs, OGRD Consortium, Charlestown KN0802, Saint Kitts and Nevis; (I.R.); (J.I.); (F.K.); (L.A.); (W.D.); (A.L.); (D.M.); (I.M.); (R.A.)
| | - Ignacio Muñoz
- Department of Outreach and Engagement Programs, OGRD Consortium, Charlestown KN0802, Saint Kitts and Nevis; (I.R.); (J.I.); (F.K.); (L.A.); (W.D.); (A.L.); (D.M.); (I.M.); (R.A.)
| | - Rodrigo Aguilera
- Department of Outreach and Engagement Programs, OGRD Consortium, Charlestown KN0802, Saint Kitts and Nevis; (I.R.); (J.I.); (F.K.); (L.A.); (W.D.); (A.L.); (D.M.); (I.M.); (R.A.)
| | - Andres Toledo
- Department of Oncopathology, OGRD Alliance, Lewes, DE 19958, USA;
| |
Collapse
|
3
|
Yao X, Yang H, Guo S, Liu Y, Zhang Q, Zhou Z, Li M, Luo Z. Radiation-triggerable bioreactors enable bioenergetic reprograming of cancer stem cell plasticity via targeted arginine metabolism disruption for augmented radio-immunotherapy. Biomaterials 2025; 322:123391. [PMID: 40344881 DOI: 10.1016/j.biomaterials.2025.123391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/23/2025] [Accepted: 05/04/2025] [Indexed: 05/11/2025]
Abstract
Cancer stem cells (CSCs) are a major cause for the insufficient tumor eradication in the clinic, which universally present enhanced mitochondrial oxidative phosphorylation (OXPHOS) to facilitate stemness maintenance and drive treatment resistance. Herein, we report a nanointegrative radiation-triggerable bioreactor (RTB) that selectively remodels CSC-intrinsic arginine metabolism to bioenergetically reprogram CSCs towards a therapeutically-vulnerable differentiated state, leading to durable radio-immunotherapeutic responses in vivo. The RTB nanosystem was developed through the supramolecular integration of radioresponsive iNOS-expressing genetic circuits (pDNAiNOS) and β-lapachone (LAP) into CSC-targeting cationic liposomes. Low-dose radiotherapy (LDR)-induced Nrf2 upregulation readily activates pDNAiNOS to express excessive iNOS, which then depletes CSC-intrinsic arginine while generating abundant nitric oxide (NO) for in-situ amplification of LDR-mediated cytotoxicity. Meanwhile, LDR also upregulates NQO1 expression to promote LAP-mediated ROS generation. These effects could act in a cooperative manner to potently damage CSC mitochondria, which not only blocks OXPHOS activity to drive the differentiation of CSCs for abolishing their self-renewal and resistance capability, but also enhances their propensity towards immunogenic necroptosis to elicit adaptive antitumor immunity, showing significant potential for treating therapy-persistent tumors.
Collapse
Affiliation(s)
- Xuemei Yao
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Huocheng Yang
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Sizhe Guo
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Ying Liu
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Qiqi Zhang
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Zao Zhou
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, China.
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
4
|
Qi X, Zhou J, Wang P, Li Y, Li H, Miao Y, Ma X, Luo X, Zhang Z, He Y, Shen W, Zhao W, Cui R, Li C, Zhu H, Lyu J. KLF7-regulated ITGA2 as a therapeutic target for inhibiting oral cancer stem cells. Cell Death Dis 2025; 16:354. [PMID: 40316546 PMCID: PMC12048542 DOI: 10.1038/s41419-025-07689-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/04/2025]
Abstract
Cancer stem cells (CSCs) play crucial roles in tumor metastasis, therapy resistance, and immune evasion. Identifying and understanding the factors that regulate the stemness of tumor cells presents promising opportunities for developing effective therapeutic strategies. In this study on oral squamous cell carcinoma (OSCC), we confirmed the key role of KLF7 in maintaining the stemness of OSCC. Using chromatin immunoprecipitation sequencing and dual-luciferase assays, we identified ITGA2, a membrane receptor, as a key downstream gene regulated by KLF7 in the maintenance of stemness. Tumor sphere formation assays, flow cytometry analyses, and in vivo limiting dilution tumorigenicity evaluations demonstrated that knocking down ITGA2 significantly impaired stemness. Upon binding to its extracellular matrix (ECM) ligand, type I collagen, ITGA2 activates stemness-associated signaling pathways, including PI3K-AKT, MAPK, and Hippo. TC-I 15, a small-molecule inhibitor of the ITGA2-collagen interaction, significantly sensitizes oral squamous cell carcinoma (OSCC) to cisplatin in xenograft models. In summary, we reveal that the KLF7/ITGA2 axis is a crucial modulator of stemness in OSCC. Our findings suggest that ITGA2 is a promising therapeutic target, offering a novel anti-CSC strategy.
Collapse
Affiliation(s)
- Xin Qi
- Zhejiang University, School of Medicine, First Affiliated Hospital, Hangzhou, Zhejiang, P. R. China
| | - Jiang Zhou
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER; Cancer Center of Zhejiang University, Hangzhou, China
| | - Pan Wang
- Department of Stomatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yunyan Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER; Cancer Center of Zhejiang University, Hangzhou, China
| | - Haoran Li
- Zhejiang University, School of Medicine, First Affiliated Hospital, Hangzhou, Zhejiang, P. R. China
| | - Yuwen Miao
- Zhejiang University, School of Medicine, Affiliated Stomatology Hospital, Hangzhou, Zhejiang, P. R. China
| | - XiaoQing Ma
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER; Cancer Center of Zhejiang University, Hangzhou, China
| | - Xiayan Luo
- Zhejiang University, School of Medicine, First Affiliated Hospital, Hangzhou, Zhejiang, P. R. China
| | - Zhiling Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER; Cancer Center of Zhejiang University, Hangzhou, China
| | - Yanling He
- Zhejiang University, School of Medicine, First Affiliated Hospital, Hangzhou, Zhejiang, P. R. China
| | - Wenyi Shen
- Zhejiang University, School of Medicine, First Affiliated Hospital, Hangzhou, Zhejiang, P. R. China
| | - Wenquan Zhao
- Zhejiang University, School of Medicine, First Affiliated Hospital, Hangzhou, Zhejiang, P. R. China
| | - Rutao Cui
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER; Cancer Center of Zhejiang University, Hangzhou, China
| | - Cang Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for CANCER; Cancer Center of Zhejiang University, Hangzhou, China.
| | - Huiyong Zhu
- Zhejiang University, School of Medicine, First Affiliated Hospital, Hangzhou, Zhejiang, P. R. China.
| | - Jiong Lyu
- Zhejiang University, School of Medicine, First Affiliated Hospital, Hangzhou, Zhejiang, P. R. China.
| |
Collapse
|
5
|
Bruschi A, Sambri A, Fiore M, Bubbico E, Scollo C, Pace A, Zunarelli R, Montanari A, Cappelli A, Di Prinzio L, De Paolis M. Inside a Metastatic Fracture: Molecular Bases and New Potential Therapeutic Targets. Cancer Med 2025; 14:e70901. [PMID: 40304052 PMCID: PMC12041892 DOI: 10.1002/cam4.70901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025] Open
Abstract
INTRODUCTION Bone metastases and pathological fractures significantly impact the prognosis and quality of life in cancer patients. However, clinical and radiological features alone have been shown to fail to predict skeletal related events of a bone metastasis (SREs). AIM This study focuses on key molecular players including Matrix Metalloproteinases (MMPs), Integrins, Bone Morphogenetic Proteins (BMPs), Parathormone-related Protein (PTHrP). RESULTS The RANK/RANKL/Osteoprotegerin (OPG) pathway, and N-terminal peptide (NTx), involved in the metastatic process and bone integrity disruption. Elevated levels of these molecules have been pointed out as potential biomarkers for predicting SREs, but they have been poorly investigated. Moreover, batimastat, marimastat, tanomastat, andecaliximab, and HIV protease targeting MMPs; Volociximab/M200, cilengitide, abituzumab, and FAK inhibitors targeting integrins; LDN193189, DMH1, and ISLR modulators targeting BMPs; and PTH (7-33)-CBD targeting PTHrP have shown promising results antagonizing these molecules, but no effect on preventing and managing metastatic fractures has been assessed yet. CONCLUSIONS This paper underscores the importance of advanced molecular biology and transcriptomics in identifying novel therapeutic targets. The integration of these biomarkers with clinical and radiological assessments using artificial intelligence tools could revolutionize the diagnostics and treatment strategies for patients with bone metastases.
Collapse
Affiliation(s)
- Alessandro Bruschi
- Orthopedic and Traumatology UnitIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Andrea Sambri
- Orthopedic and Traumatology UnitIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Michele Fiore
- Orthopedic and Traumatology UnitIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
- Department of Medical and Surgical SciencesAlma Mater Studiorum University of BolognaBolognaItaly
| | - Elisa Bubbico
- Orthopedic and Traumatology UnitIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Cristina Scollo
- Orthopedic and Traumatology UnitIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Andrea Pace
- Orthopedic and Traumatology UnitIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Renato Zunarelli
- Orthopedic and Traumatology UnitIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Andrea Montanari
- Orthopedic and Traumatology UnitIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Alberta Cappelli
- Department of RadiologyIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Lorenzo Di Prinzio
- Orthopedic and Traumatology UnitIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Massimiliano De Paolis
- Orthopedic and Traumatology UnitIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| |
Collapse
|
6
|
Zhou X, Zhang D, Han M, Ma Y, Li W, Yu N. Carbohydrate polymer-functionalized metal nanoparticles in cancer therapy: A review. Int J Biol Macromol 2025; 306:141235. [PMID: 39986501 DOI: 10.1016/j.ijbiomac.2025.141235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Metal nanoparticles have been emerged as promising candidates in cancer therapy because of their large surface area, optical properties and ROS generation. Therefore, these nanoparticles are able to mediate cell death through hyperthermia, photothermal therapy and ROS-triggered apoptosis. The various metal nanoparticles including gold, silver and iron oxide nanostructures have been exploited for the theranostic application. Moreover, precision oncology and off-targeting features can be improved by metal nanoparticles. The modification of metal nanoparticles with carbohydrate polymers including chitosan, hyaluronic acid, cellulose, agarose, starch and pectin, among others can significantly improve their anti-cancer activities. Carbohydrate polymers have been idea for the purpose of drug delivery due to their biocompatibility, biodegradability and increasing nanoparticle stability. In addition, carbohydrate polymers are able to improve drug delivery, cellular uptake and sustained release of cargo. Such nanoparticles are capable of responding to the specific stimuli in the tumor microenvironment including pH and light. Furthermore, the carbohydrate polymer-modified metal nanoparticles can be utilized for the combination of chemotherapy, phototherapy and immunotherapy. Since the biocompatibility and long-term safety are critical factors for the clinical translation of nanoparticles, the modification of metal nanoparticles with carbohydrate polymers can improve this way to the application in clinic.
Collapse
Affiliation(s)
- Xi Zhou
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China
| | - Dongbin Zhang
- Department of Anesthesiology, Affiliated Hospital Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Mingming Han
- Department of Pharmacy and Medical Devices, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China
| | - Yanhong Ma
- Department of Rehabilitation, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| | - Wentao Li
- Department of Traditional Chinese Medicine, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| | - Ning Yu
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| |
Collapse
|
7
|
Zhang CY, Gu K, Chi MY, Gao XY, Gao L, Zhang NN, Liu YX, Li TZ. The application progress of PAMAM dendrimer in cancer imaging and treatment. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-38. [PMID: 40293953 DOI: 10.1080/09205063.2025.2497623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/03/2024] [Indexed: 04/30/2025]
Abstract
Polyamidoamine dendrimer (PAMAM) are effective carriers that transport diagnostic imaging reagents and drugs to the tumor site. Their excellent bio-compatibility and bio-degradability reduce damage to healthy tissues, resulting in improved treatment efficacy. Dendrimer molecules are particularly useful in targeted drug delivery within malignant cells. This article reviews recent progress of PAMAM in imaging and treating breast cancer, lung cancer, hepatocellular cancer, colorectal cancer, gastric cancer, prostate cancer, and glioblastoma. This review aims to provide new and feasible ideas for cancer diagnosis imaging and treatment while also serving as a significant reference point for personalized tumor therapy based on PAMAM materials.
Collapse
Affiliation(s)
- Cong-Ying Zhang
- Key Laboratory of Research on Human Genetic Diseases at Universities of Inner Mongolia Autonomous Region, Chifeng University, Inner Mongolia, China
- Basic Medical College, Chifeng University, Inner Mongolia, China
- Key Laboratory of Mechanism and Evaluation of Traditional Chinese & Mongolian Medicine, Chifeng University, Inner Mongolia, China
| | - Kai Gu
- Basic Medical College, Chifeng University, Inner Mongolia, China
- Key Laboratory of Mechanism and Evaluation of Traditional Chinese & Mongolian Medicine, Chifeng University, Inner Mongolia, China
| | - Meng-Yi Chi
- Key Laboratory of Mechanism and Evaluation of Traditional Chinese & Mongolian Medicine, Chifeng University, Inner Mongolia, China
| | - Xiao-Yan Gao
- Key Laboratory of Research on Human Genetic Diseases at Universities of Inner Mongolia Autonomous Region, Chifeng University, Inner Mongolia, China
- Basic Medical College, Chifeng University, Inner Mongolia, China
- Key Laboratory of Mechanism and Evaluation of Traditional Chinese & Mongolian Medicine, Chifeng University, Inner Mongolia, China
| | - Ling Gao
- Basic Medical College, Chifeng University, Inner Mongolia, China
- Key Laboratory of Mechanism and Evaluation of Traditional Chinese & Mongolian Medicine, Chifeng University, Inner Mongolia, China
| | - Nan-Nan Zhang
- Key Laboratory of Research on Human Genetic Diseases at Universities of Inner Mongolia Autonomous Region, Chifeng University, Inner Mongolia, China
- Basic Medical College, Chifeng University, Inner Mongolia, China
- Key Laboratory of Mechanism and Evaluation of Traditional Chinese & Mongolian Medicine, Chifeng University, Inner Mongolia, China
| | - Yu-Xi Liu
- Shaanxi Academy of Traditional Chinese Medicine, Shaanxi, China
| | - Tian-Zhu Li
- Key Laboratory of Research on Human Genetic Diseases at Universities of Inner Mongolia Autonomous Region, Chifeng University, Inner Mongolia, China
- Basic Medical College, Chifeng University, Inner Mongolia, China
- Key Laboratory of Mechanism and Evaluation of Traditional Chinese & Mongolian Medicine, Chifeng University, Inner Mongolia, China
| |
Collapse
|
8
|
Zhou Z, Gu Y, Yi Z, Wang J, Xiong Z, Guo H, Du Y, Zhu X, He L, Ren W, Tian Y, Wang Y, Fan Z. SNORA74A Drives Self-Renewal of Liver Cancer Stem Cells and Hepatocarcinogenesis Through Activation of Notch3 Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2504054. [PMID: 40270470 DOI: 10.1002/advs.202504054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Indexed: 04/25/2025]
Abstract
Liver cancer stem cells (CSCs) account for tumor initiation, heterogeneity and therapy resistance. However, the role of small nucleolar RNAs (snoRNAs) in the regulation of liver CSCs remains largely unclear. Here, this work identifies a conserved H/ACA box snoRNA SNORA74A which is highly expressed in liver CSCs. SNORA74A deletion impaired the self-renewal of liver CSCs and suppressed hepatocarcinogenesis. Mechanistically, highly expressed SNORA74A in liver CSCs bound DCAF13 to prevent K48 linked ubiquitination of E2F2 for degradation. E2F2 induced NOTCH3 transcription to initiate Notch3 signaling activation, leading to self-renewal of liver CSCs and hepatocarcinogenesis. Moreover, expression levels of SNORA74A and NOTCH3 are positively related with severity and poor prognosis of hepatocellular carcinoma (HCC) patients. Of note, antisense oligonucleotides (ASOs) against SNORA74A showed effective efficacy for HCC tumors, suggesting SNORA74A might be a potential therapeutic target for HCC therapy by eliminating liver CSCs.
Collapse
Affiliation(s)
- Ziheng Zhou
- State Key Laboratory of RNA Science and Engineering, State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Gu
- State Key Laboratory of RNA Science and Engineering, State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhibin Yi
- State Key Laboratory of RNA Science and Engineering, State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianyi Wang
- State Key Laboratory of RNA Science and Engineering, State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Xiong
- State Key Laboratory of RNA Science and Engineering, State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hui Guo
- State Key Laboratory of RNA Science and Engineering, State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Du
- State Key Laboratory of RNA Science and Engineering, State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoxiao Zhu
- State Key Laboratory of RNA Science and Engineering, State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei He
- Department of Hepatobiliary Surgery, PLA General Hospital, Beijing, 100853, China
| | - Weizheng Ren
- Department of Hepatobiliary Surgery, PLA General Hospital, Beijing, 100853, China
| | - Yong Tian
- State Key Laboratory of RNA Science and Engineering, State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanying Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Regulation Biology, Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Zusen Fan
- State Key Laboratory of RNA Science and Engineering, State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Gao YX, Guo XJ, Lin B, Huang XB, Tu RH, Lin M, Cao LL, Chen QY, Wang JB, Xie JW, Li P, Zheng CH, Yang YH, Huang CM, Lin JX. Targeting LHPP in neoadjuvant chemotherapy resistance of gastric cancer: insights from single-cell and multi-omics data on tumor immune microenvironment and stemness characteristics. Cell Death Dis 2025; 16:306. [PMID: 40240758 PMCID: PMC12003742 DOI: 10.1038/s41419-025-07614-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
Gastric cancer (GC) is a highly heterogeneous and complex malignancy, often characterized by tumor stemness and immune evasion mechanisms, which contribute to a poor response to neoadjuvant chemotherapy (NAC) and treatment resistance. In this study, we performed a comprehensive analysis using single-cell and multi-omics approaches on 375 GC samples from The Cancer Genome Atlas database, along with 141 clinical samples from patients who underwent NAC. We identified key gene modules associated with stemness and immune traits, and developed a novel stem cell-immune risk score. This score effectively distinguished responders from non-responders to chemotherapy, and was significantly associated with overall survival. Through multi-omics analysis, we further elucidated the role of phospholysine phosphohistidine inorganic pyrophosphatase (LHPP) in the tumor immune microenvironment. Our findings showed that high LHPP expression was closely linked to the increased infiltration of antitumor immune cells, such as CD8+ T cells, and significantly suppressed the development of stemness characteristics in GC. Additionally, single-cell sequencing data revealed that tumor epithelial cells with low LHPP expression exhibited heightened stemness and demonstrated the strongest communication with CD8+-exhausted T cells. We also observed that LHPP inhibited stemness and chemotherapy resistance in GC cells by regulating the phosphorylation of GSK-3β. In conclusion, LHPP plays a critical regulatory role in the stemness features and tumor immune microenvironment of GC, presenting a promising biomarker and potential therapeutic target for personalized treatment of GC.
Collapse
Affiliation(s)
- You-Xin Gao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiao-Jing Guo
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Bin Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiao-Bo Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Ru-Hong Tu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Mi Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Ying-Hong Yang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China.
- Gastrointestinal Cancer Institute, Fujian Medical University, Fuzhou, 350001, China.
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China.
| | - Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
10
|
Zhao K, Chan ITC, Tse EHY, Xie Z, Cheung TH, Zeng YA. Autophagy in adult stem cell homeostasis, aging, and disease therapy. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:14. [PMID: 40208372 PMCID: PMC11985830 DOI: 10.1186/s13619-025-00224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/16/2025] [Accepted: 02/23/2025] [Indexed: 04/11/2025]
Abstract
Autophagy is a crucial cellular process that facilitates the degradation of damaged organelles and protein aggregates, and the recycling of cellular components for the energy production and macromolecule synthesis. It plays an indispensable role in maintaining cellular homeostasis. Over recent decades, research has increasingly focused on the role of autophagy in regulating adult stem cells (SCs). Studies suggest that autophagy modulates various cellular processes and states of adult SCs, including quiescence, proliferation, self-renewal, and differentiation. The primary role of autophagy in these contexts is to sustain homeostasis, withstand stressors, and supply energy. Notably, the dysfunction of adult SCs during aging is correlated with a decline in autophagic activity, suggesting that autophagy is also involved in SC- and aging-associated disorders. Given the diverse cellular processes mediated by autophagy and the intricate mechanisms governing adult SCs, further research is essential to elucidate both universal and cell type-specific regulatory pathways of autophagy. This review discusses the role of autophagy in regulating adult SCs during quiescence, proliferation, self-renewal, and differentiation. Additionally, it summarizes the relationship between SC aging and autophagy, providing therapeutical insights into treating and ameliorating aging-associated diseases and cancers, and ultimately promoting longevity.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Indigo T C Chan
- Division of Life Science, Center for Stem Cell Research, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, HKUST-Nan Fung Life Sciences Joint Laboratory, the Hong Kong University of Science and Technology, Hong Kong, China
| | - Erin H Y Tse
- Division of Life Science, Center for Stem Cell Research, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, HKUST-Nan Fung Life Sciences Joint Laboratory, the Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Zhiyao Xie
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, HKUST-Nan Fung Life Sciences Joint Laboratory, the Hong Kong University of Science and Technology, Hong Kong, China.
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China.
| | - Yi Arial Zeng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
11
|
Wu Y, Diao P, Peng Y, Yang Y, Wang Y, Lv P, Li J, Wang D, Cai T, Cheng J. A Hybrid Manganese Nanoparticle Simultaneously Eliminates Cancer Stem Cells and Activates STING Pathway to Potentiate Cancer Immunotherapy. ACS NANO 2025; 19:12237-12252. [PMID: 40116158 DOI: 10.1021/acsnano.5c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Current immunotherapies such as immune checkpoint blockades (ICBs) have revolutionized oncotherapy regime; however, their responsiveness and efficiencies among patients with head and neck squamous cell carcinoma (HNSCC) remain quite limited. The existence of therapeutic-refractory cancer stem cells (CSCs) and inadequate activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase/interferon gene stimulator (cGAS/STING) signaling pathway greatly contribute to immune evasion and immunotherapeutic resistance. Herein, we sought to develop a nanocomplex for HNSCC therapy by simultaneous CSCs eradication and STING activation. PTC209/MnO2@BSA (bovine serum albumin) nanoparticles (PMB NPs) synthesized via a facile and green process are reported, wherein the released manganese (Mn) ions under acidic tumor microenvironment significantly enhance cGAS-STING signals and facilitate the dendritic cells maturation to unleash the T-cell-mediated immune response. Meanwhile, PTC209 released from PMB NPs targets BMI1+ CSCs to suppress cancer stemness and epithelial-mesenchymal transition (EMT) and elicits apoptosis to further potentiate Mn-based metalloimmunotherapy. Both in vitro and in vivo experiments elucidate that PMB NPs function as designed, exerting powerful immunotherapeutic and chemotherapeutic impacts to impede HNSCC growth and metastasis as well as bolster anti-PD-1-based ICB. Collectively, our findings provide a promising therapeutic strategy against HNSCC by combinational CSCs elimination and STING activation via metalloimmunotherapy.
Collapse
Affiliation(s)
- Yaping Wu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Pengfei Diao
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Yayun Peng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics and Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yuhan Yang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics and Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yuhan Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Pin Lv
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Jin Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Dongmiao Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Ting Cai
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics and Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jie Cheng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, P. R. China
| |
Collapse
|
12
|
Shang T, Jia Z, Li J, Cao H, Xu H, Cong L, Ma D, Wang X, Liu J. Unraveling the triad of hypoxia, cancer cell stemness, and drug resistance. J Hematol Oncol 2025; 18:32. [PMID: 40102937 PMCID: PMC11921735 DOI: 10.1186/s13045-025-01684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
In the domain of addressing cancer resistance, challenges such as limited effectiveness and treatment resistance remain persistent. Hypoxia is a key feature of solid tumors and is strongly associated with poor prognosis in cancer patients. Another significant portion of the development of acquired drug resistance is attributed to tumor stemness. Cancer stem cells (CSCs), a small tumor cell subset with self-renewal and proliferative abilities, are crucial for tumor initiation, metastasis, and intra-tumoral heterogeneity. Studies have shown a significant association between hypoxia and CSCs in the context of tumor resistance. Recent studies reveal a strong link between hypoxia and tumor stemness, which together promote tumor survival and progression during treatment. This review elucidates the interplay between hypoxia and CSCs, as well as their correlation with resistance to therapeutic drugs. Targeting pivotal genes associated with hypoxia and stemness holds promise for the development of novel therapeutics to combat tumor resistance.
Collapse
Affiliation(s)
- Tongxuan Shang
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Ziqi Jia
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiayi Li
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Heng Cao
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hengyi Xu
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Cong
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Dongxu Ma
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiang Wang
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jiaqi Liu
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
13
|
Youssef E, Palmer D, Fletcher B, Vaughn R. Exosomes in Precision Oncology and Beyond: From Bench to Bedside in Diagnostics and Therapeutics. Cancers (Basel) 2025; 17:940. [PMID: 40149276 PMCID: PMC11940788 DOI: 10.3390/cancers17060940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Exosomes have emerged as pivotal players in precision oncology, offering innovative solutions to longstanding challenges such as metastasis, therapeutic resistance, and immune evasion. These nanoscale extracellular vesicles facilitate intercellular communication by transferring bioactive molecules that mirror the biological state of their parent cells, positioning them as transformative tools for cancer diagnostics and therapeutics. Recent advancements in exosome engineering, artificial intelligence (AI)-driven analytics, and isolation technologies are breaking barriers in scalability, reproducibility, and clinical application. Bioengineered exosomes are being leveraged for CRISPR-Cas9 delivery, while AI models are enhancing biomarker discovery and liquid biopsy accuracy. Despite these advancements, key obstacles such as heterogeneity in exosome populations and the lack of standardized isolation protocols persist. This review synthesizes pioneering research on exosome biology, molecular engineering, and clinical translation, emphasizing their dual roles as both mediators of tumor progression and tools for intervention. It also explores emerging areas, including microbiome-exosome interactions and the integration of machine learning in exosome-based precision medicine. By bridging innovation with translational strategies, this work charts a forward-looking path for integrating exosomes into next-generation cancer care, setting it apart as a comprehensive guide to overcoming clinical and technological hurdles in this rapidly evolving field.
Collapse
|
14
|
Berens EB, Khou S, Huang E, Hoffman A, Johnson B, Kirchberger N, Sivagnanam S, Calistri NL, Derrick D, Liby TA, McLean IC, Alanizi AA, Ozmen F, Ozmen TY, Mills GB, Shelley Hwang E, Schedin PJ, Gonzalez H, Werb Z, Heiser LM, Coussens LM. Neoplastic immune mimicry potentiates breast tumor progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633673. [PMID: 39896558 PMCID: PMC11785120 DOI: 10.1101/2025.01.17.633673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Dedifferentiation programs are commonly enacted during breast cancer progression to enhance tumor cell fitness. Increased cellular plasticity within the neoplastic compartment of tumors correlates with disease aggressiveness, often culminating in greater resistance to cytotoxic therapies or augmented metastatic potential. Here we report that subpopulations of dedifferentiated neoplastic breast epithelial cells express canonical leukocyte cell surface receptor proteins and have thus named this cellular program "immune mimicry." We document neoplastic cells engaging in immune mimicry within public human breast tumor single-cell RNA-seq datasets, histopathological breast tumor specimens, breast cancer cell lines, as well as in murine transgenic and cell line-derived mammary cancer models. Immune-mimicked neoplastic cells harbor hallmarks of dedifferentiation and are enriched in treatment-resistant and high-grade breast tumors. We corroborated these observations in aggressive breast cancer cell lines where anti-proliferative cytotoxic chemotherapies drove epithelial cells toward immune mimicry. Moreover, in subsequent proof-of-concept studies, we demonstrate that expression of the CD69 leukocyte activation protein by neoplastic cells confers a proliferative advantage that facilitates early tumor growth and therefore conclude that neoplastic breast epithelial cells upregulating leukocyte surface receptors potentiate malignancy. Moving forward, neoplastic immune mimicry should be evaluated for prognostic utility in breast cancer to determine stratification potential for patients with increased risks of tumor recurrence, metastasis, and therapeutic resistance. Statement of Significance Neoplastic breast epithelial cells express surface receptors canonically attributed to leukocytes and are associated with therapy resistance and aggressive tumor behavior.
Collapse
|
15
|
Zhan Y, Zhou Z, Zhu Z, Zhang L, Yu S, Liu Y, Zhang X. Exosome-transmitted LUCAT1 promotes stemness transformation and chemoresistance in bladder cancer by binding to IGF2BP2. J Exp Clin Cancer Res 2025; 44:80. [PMID: 40025525 PMCID: PMC11874664 DOI: 10.1186/s13046-025-03330-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/17/2025] [Indexed: 03/04/2025] Open
Abstract
The chemotherapy resistance is an awkward challenge in management of bladder cancer (BC). Cancer organoid model is an effective preclinical tumor model that could faithfully represent clinical manifestations and simulate the biological processes of chemoresistance. Recent studies have revealed that cancer stem cells (CSCs) play a significant role in the development of chemoresistance in cancer. Exosomes act as essential intercellular messengers and participate in controlling the conversion of distinct cell characteristics, including chemoresistance. However, the role of exosome-transmitted lncRNAs in bladder cancer chemoresistance has rarely been reported. In this study, cancer organoid models were developed from urothelial carcinomas to explore the pathophysiology mechanism of BC chemoresistance, and RNA-seq was performed to screen for lncRNAs involved in chemoresistance of BC. We found chemotherapy enriches stem-like cells in BC, and significant upregulation of Lung Cancer Associated Transcript 1 (LUCAT1) occurs in chemotherapy-resistant organoids and correlated with chemotherapy response. Further experimental results demonstrated that LUCAT1 promotes chemoresistance in bladder cancer by enhancing the stemness phenotype of BC cells in vivo and in vitro. Moreover, exosomes derived from bladder cancer stem cells can enhance the stemness phenotype and chemoresistance of BC cells by delivering LUCAT1. Mechanistically, LUCAT1 could significantly enhance the mRNA stability of HMGA1 via binding to IGF2BP2 in an m6A-dependent manner. The study demonstrates an important role for exosome-transmitted LUCAT1 in chemoresistance and LUCAT1 has the potential to function as both a diagnostic biomarker and therapeutic target for BC.
Collapse
Affiliation(s)
- Yonghao Zhan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Zhenzhen Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Zhaowei Zhu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Lianghao Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Shuanbao Yu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Yuchen Liu
- Shenzhen Institute of Translational Medicine, Health Science Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.
| | - Xuepei Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
16
|
Tang L, Peng S, Zhuang X, He Y, Song Y, Nie H, Zheng C, Pan Z, Lam AK, He M, Shi X, Li B, Xu WW. Tumor Metastasis: Mechanistic Insights and Therapeutic Intervention. MEDCOMM – ONCOLOGY 2025; 4. [DOI: 10.1002/mog2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/10/2025] [Indexed: 03/04/2025]
Abstract
ABSTRACTMetastasis remains a leading cause of cancer‐related deaths, defined by a complex, multi‐step process in which tumor cells spread and form secondary growths in distant tissues. Despite substantial progress in understanding metastasis, the molecular mechanisms driving this process and the development of effective therapies remain incompletely understood. Elucidating the molecular pathways governing metastasis is essential for the discovery of innovative therapeutic targets. The rapid advancements in sequencing technologies and the expansion of biological databases have significantly deepened our understanding of the molecular drivers of metastasis and associated drug resistance. This review focuses on the molecular drivers of metastasis, particularly the roles of genetic mutations, epigenetic changes, and post‐translational modifications in metastasis progression. We also examine how the tumor microenvironment influences metastatic behavior and explore emerging therapeutic strategies, including targeted therapies and immunotherapies. Finally, we discuss future research directions, stressing the importance of novel treatment approaches and personalized strategies to overcome metastasis and improve patient outcomes. By integrating contemporary insights into the molecular basis of metastasis and therapeutic innovation, this review provides a comprehensive framework to guide future research and clinical advancements in metastatic cancer.
Collapse
Affiliation(s)
- Lin Tang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Shao‐Cong Peng
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Xiao‐Wan Zhuang
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Yan He
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Yu‐Xiang Song
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Hao Nie
- Department of Radiation Oncology, The Fifth Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Can‐Can Zheng
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Zhen‐Yu Pan
- Department of Radiation Oncology, The Affiliated Huizhou Hospital Guangzhou Medical University Huizhou China
| | - Alfred King‐Yin Lam
- Cancer Molecular Pathology and Griffith Medical School Griffith University Gold Coast Queensland Australia
| | - Ming‐Liang He
- Department of Biomedical Sciences City University of Hong Kong Hong Kong China
| | - Xing‐Yuan Shi
- Department of Radiation Oncology, The Fifth Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Bin Li
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Wen Wen Xu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| |
Collapse
|
17
|
Pan Y, Yuan C, Zeng C, Sun C, Xia L, Wang G, Chen X, Zhang B, Liu J, Ding ZY. Cancer stem cells and niches: challenges in immunotherapy resistance. Mol Cancer 2025; 24:52. [PMID: 39994696 PMCID: PMC11852583 DOI: 10.1186/s12943-025-02265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Cancer stem cells (CSCs) are central to tumor progression, metastasis, immune evasion, and therapeutic resistance. Characterized by remarkable self-renewal and adaptability, CSCs can transition dynamically between stem-like and differentiated states in response to external stimuli, a process termed "CSC plasticity." This adaptability underpins their resilience to therapies, including immune checkpoint inhibitors and adoptive cell therapies (ACT). Beyond intrinsic properties, CSCs reside in a specialized microenvironment-the CSC niche-which provides immune-privileged protection, sustains their stemness, and fosters immune suppression. This review highlights the critical role of CSCs and their niche in driving immunotherapy resistance, emphasizing the need for integrative approaches to overcome these challenges.
Collapse
Affiliation(s)
- Yonglong Pan
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Cellular Signaling laboratory, Key laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chaoyi Yuan
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chenglong Zeng
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chaoyang Sun
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center, Key Laboratory of the MOE, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Limin Xia
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guihua Wang
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Tongji Hospital, GI Cancer Research Institute, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jianfeng Liu
- Cellular Signaling laboratory, Key laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Ze-Yang Ding
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
18
|
Zhu Y, Chen S, Su H, Meng Y, Zang C, Ning P, Hu L, Shao H. CPT1A-mediated MFF succinylation promotes stemness maintenance in ovarian cancer stem cells. Commun Biol 2025; 8:250. [PMID: 39956875 PMCID: PMC11830779 DOI: 10.1038/s42003-025-07720-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/11/2025] [Indexed: 02/18/2025] Open
Abstract
Cancer stem cells (CSCs) play crucial roles in cancer progression, immune evasion, drug resistance, and recurrence. Understanding the mechanisms behind CSCs generation and stemness maintenance is vital for early cancer diagnosis and treatment. Here, we unveil that carnitine palmitoyltransferase 1A (CPT1A) is highly expressed in ovarian cancer stem cells (OCSCs) and is essential for maintaining stemness by regulating lipid desaturation. Studies confirmed that CPT1A enhances SREBP1 activation, upregulating SCD1 expression, and promoting lipid desaturation in OCSCs. Mechanistic studies reveal that CPT1A promotes succinylation of mitochondrial fission factor (MFF) through its lysine succinyltransferase (LSTase) activity, crucial for mitochondria-associated membranes formation and SREBP1 activation. Inhibiting CPT1A's LSTase activity with Glyburide reduces OCSCs' stemness and enhances cisplatin's anti-tumor effects against ovarian cancer in vitro and in vivo. Together, our studies highlight the significance of CPT1A's LSTase activity in maintaining OCSCs' stemness, offering potential targets and therapeutic strategies for ovarian cancer treatment.
Collapse
Affiliation(s)
- Yaqin Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Shuting Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Hong Su
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yaning Meng
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Chen Zang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Panjiao Ning
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Lele Hu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Huanjie Shao
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
19
|
Mao G, Liu J. CALML3-AS1 enhances malignancies and stemness of small cell lung cancer cells through interacting with DAXX protein and promoting GLUT4-mediated aerobic glycolysis. Toxicol Appl Pharmacol 2025; 495:117177. [PMID: 39617259 DOI: 10.1016/j.taap.2024.117177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
The lncRNA CALML3 antisense RNA 1 (CALML3-AS1) is a biomarker for various cancers, including non-small cell lung cancer (NSCLC). However, the role of CALM3-AS1 in small cell lung cancer (SCLC) is still unclear. Here, we found that the CALML3-AS1 was upregulated in SCLC tissues and cells. SCLC cells (NCI-H69 and NCI-H466 cells) were transfected with small interfering RNA of CALML-AS1 (si-CALML3-AS1) and Death domain-associated protein (DAXX) (si-DAXX) or an overexpression vector of CALML-AS1 (dCas9-CALML3-AS1) and DAXX (dCas9-DAXX). The results showed that silencing CALML3-AS1 inhibited SCLC cell proliferation, colony formation, migration, invasion, and spheroid formation, and reduced the expression of stemness marker proteins (Nanog. Oct4, and Lin28). Moreover, silencing CALML3-AS1 reduced glycolysis rate, glucose utilization, and lactate production, and decreased the levels of key glycolytic regulatory proteins (GLUT1, GLUT4, HK2, and PKM2) in SCLC cells, while overexpression of CALML3-AS1 promoted malignant growth and stemness and enhanced glucose transporters type 4 (GLUT4)-mediated aerobic glycolysis by interacting with DAXX in NCI-H69 and NCI-H466 cells. Silencing DAXX or GLUT4, or treatment with 2-Deoxy-d-glucose (2-DG, a glycolysis inhibitor) reversed the effects of CALML3-AS1 overexpression on aerobic glycolysis, malignant growth, and stemness of SCLC cells. Finally, NCI-H69 cells transfected with CALML3-AS1, sh-CALML3-AS1, and sh-DAXX lentiviral vectors were subcutaneously injected into nude mice to construct xenograft models. Knockdown of CALML3-AS1 or DAXX inhibited tumor growth in SCLC in vivo. In conclusion, CALML3-AS1, an oncogene, promotes the malignancy and stemness of SCLC cells by interacting with DAXX to enhance GLUT4-mediated aerobic glycolysis, thereby promoting SCLC progression.
Collapse
Affiliation(s)
- Guangxian Mao
- Peking University Shenzhen Hospital Medical College, Anhui Medical University, Shenzhen 518036, People's Republic of China; Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China
| | - Jixian Liu
- Peking University Shenzhen Hospital Medical College, Anhui Medical University, Shenzhen 518036, People's Republic of China; Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China.
| |
Collapse
|
20
|
Saw PE, Song E. The 'inflammazone' in chronic inflammatory diseases: psoriasis and sarcoidosis. Trends Immunol 2025; 46:121-137. [PMID: 39875239 DOI: 10.1016/j.it.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
Chronic inflammatory diseases show significant heterogeneity in their phenotypes, with diverse immune cells and mediators interacting in response to various stimuli. This review proposes the concept of the 'inflammazone' framework - which maps the distribution of immune components driving disease pathogenesis - using sarcoidosis and psoriasis as examples. Sarcoidosis features granulomatous inflammation with macrophages and CD4+ T cells, which can spread to lymph nodes and other organs. Psoriasis, affecting primarily the skin, involves Th1, Th17, and Th22 pathways with CD8+ T cells and dendritic cells. Human sarcoidosis exhibits geographic and racial variability, while psoriasis shows varying morphologies and disease courses. Sarcoidosis has more extensive distal immune signaling, whereas psoriasis remains more localized. Understanding the inflammazone is crucial for advancing personalized treatments for inflammatory diseases.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan, China; Department of General Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Zenith Institute of Medical Sciences, Guangzhou 510120, China.
| |
Collapse
|
21
|
Yaremenko AV, Khan MM, Zhen X, Tang Y, Tao W. Clinical advances of mRNA vaccines for cancer immunotherapy. MED 2025; 6:100562. [PMID: 39798545 DOI: 10.1016/j.medj.2024.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 01/15/2025]
Abstract
The development of mRNA vaccines represents a significant advancement in cancer treatment, with more than 120 clinical trials to date demonstrating their potential across various malignancies, including lung, breast, prostate, melanoma, and more challenging cancers such as pancreatic and brain tumors. These vaccines work by encoding tumor-specific antigens and immune-stimulating molecules, effectively activating the immune system to target and eliminate cancer cells. Despite these promising advancements, significant challenges remain, particularly in achieving efficient delivery and precise regulation of the immune response. This review provides a comprehensive overview of recent clinical progress in mRNA cancer vaccines, discusses the innovative strategies being employed to overcome existing hurdles, and explores future directions, including the integration of CRISPR-Cas9 technology and advancements in mRNA design. Our aim is to provide insights into the ongoing research and clinical trials, highlighting the transformative potential of mRNA vaccines in advancing oncology and improving patient outcomes.
Collapse
Affiliation(s)
- Alexey V Yaremenko
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Muhammad Muzamil Khan
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xueyan Zhen
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yan Tang
- Pulmonary and Critical Care Medicine, Development of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Wei Tao
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Bian X, Yu X, Lu S, Jia L, Li P, Yin J, Tan S. Chitosan-based nanoarchitectures for siRNA delivery in cancer therapy: A review of pre-clinical and clinical importance. Int J Biol Macromol 2025; 284:137708. [PMID: 39571854 DOI: 10.1016/j.ijbiomac.2024.137708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024]
Abstract
The gene therapy has been developed into a new cancer treatment option. Now that we know which molecular components contribute to carcinogenesis, we may use gene therapy to target particular signalling pathways in cancer treatment. Problems with gene therapy include genetic tool degradation in blood, off-targeting features, and inadequate tumor site accumulation; new delivery mechanisms are needed to address these issues. A polysaccharide made from chitin, chitosan has found extensive use in the creation of nanoparticles. The delivery of genes in the treatment of illnesses, particularly cancer, has made use of nanostructures modified with chitosan. Topics covered in this review center on cancer treatment using chitosan-based polymers for siRNA delivery. This study aims to assess the potential of chitosan nanoparticles for the simultaneous administration of siRNA and anti-cancer medications. In cancer treatment, these nanoparticles can transport phytochemicals or chemotherapeutics together with siRNA. In addition, chitosan nanoparticles loaded with siRNA can inhibit the growth and spread of human malignancies by delivering siRNA that targets particular genes. Chitosan nanoparticles loaded with siRNA can heighten the responsiveness of cancer cells. Future therapeutic applications of chitosan nanoparticles may open the path for cancer treatment, thanks to their biocompatibility and biosafety.
Collapse
Affiliation(s)
- Xiaobo Bian
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaopeng Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shiyang Lu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Linan Jia
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ping Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Jianqiao Yin
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Shutao Tan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
23
|
Agudo J, Miao Y. Stemness in solid malignancies: coping with immune attack. Nat Rev Cancer 2025; 25:27-40. [PMID: 39455862 DOI: 10.1038/s41568-024-00760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/28/2024]
Abstract
Immunotherapy has become a key new pillar of cancer treatment, and this has sparked interest in understanding mechanisms of cancer immune evasion. It has long been appreciated that cancers are constituted by heterogeneous populations of tumour cells. This feature is often fuelled by specialized cells that have molecular programs resembling tissue stem cells. Although these cancer stem cells (CSCs) have capacity for unlimited self-renewal and differentiation, it is increasingly evident that some CSCs are capable of achieving remarkable immune resistance. Given that most immunotherapy regiments have overlooked CSC-specific immune-evasive mechanisms, many current treatment strategies often lead to cancer relapse. This Review focuses on advancements in understanding how CSCs in solid tumours achieve their unique immune-evasive properties, enabling them to drive tumour regrowth. Moreover, as cancers often arise from tissue stem cells that acquired oncogenic mutations, we discuss how tissue stem cells undergoing malignant transformation activate intrinsic immune-evasive mechanisms and establish close interactions with suppressive immune cells to escape immune surveillance. In addition, we summarize how in advanced disease stages, CSCs often hijack features of normal stem cells to resist antitumour immunity. Finally, we provide insights in how to design a new generation of cancer immunotherapies to ensure elimination of CSCs.
Collapse
Affiliation(s)
- Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
- Ludwig Center at Harvard, Boston, MA, USA.
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA, USA.
- New York Stem Cell Foundation, Robertson Investigator, New York, NY, USA.
| | - Yuxuan Miao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, USA.
- The University of Chicago Comprehensive Cancer Center, Chicago, IL, USA.
| |
Collapse
|
24
|
Yang C, Geng H, Yang X, Ji S, Liu Z, Feng H, Li Q, Zhang T, Zhang S, Ma X, Zhu C, Xu N, Xia Y, Li Y, Wang H, Yu C, Du S, Miao B, Xu L, Wang H, Cao Y, Li B, Zhu L, Tang X, Zhang H, Zhu C, Huang Z, Leng C, Hu H, Chen X, Yuan S, Jin G, Bernards R, Sun C, Zheng Q, Qin W, Gao Q, Wang C. Targeting the immune privilege of tumor-initiating cells to enhance cancer immunotherapy. Cancer Cell 2024; 42:2064-2081.e19. [PMID: 39515328 DOI: 10.1016/j.ccell.2024.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/09/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Tumor-initiating cells (TICs) possess the ability to evade anti-tumor immunity, potentially explaining many failures of cancer immunotherapy. Here, we identify CD49f as a prominent marker for discerning TICs in hepatocellular carcinoma (HCC), outperforming other commonly used TIC markers. CD49f-high TICs specifically recruit tumor-promoting neutrophils via the CXCL2-CXCR2 axis and create an immunosuppressive milieu in the tumor microenvironment (TME). Reciprocally, the neutrophils reprogram nearby tumor cells toward a TIC phenotype via secreting CCL4. These cells can evade CD8+ T cell-mediated killing through CCL4/STAT3-induced and CD49f-stabilized CD155 expression. Notably, while aberrant CD155 expression contributes to immune suppression, it also represents a TIC-specific vulnerability. We demonstrate that either CD155 deletion or antibody blockade significantly enhances sensitivity to anti-PD-1 therapy in preclinical HCC models. Our findings reveal a new mechanism of tumor immune evasion and provide a rationale for combining CD155 blockade with anti-PD-1/PD-L1 therapy in HCC.
Collapse
Affiliation(s)
- Chen Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Haigang Geng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xupeng Yang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China
| | - Shuyi Ji
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China; Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhicheng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Feng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Li
- Department of Oncology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tangansu Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuhui Ma
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuchen Zhu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nuo Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Xia
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hongye Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chune Yu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shangce Du
- Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Beiping Miao
- Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lei Xu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Cao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Botai Li
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Zhu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyu Tang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Leng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyan Hu
- Department of Oncology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengxian Yuan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Guangzhi Jin
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Chong Sun
- Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Quan Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China.
| | - Cun Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
25
|
Li Q, He G, Yu Y, Li X, Peng X, Yang L. Exosome crosstalk between cancer stem cells and tumor microenvironment: cancer progression and therapeutic strategies. Stem Cell Res Ther 2024; 15:449. [PMID: 39578849 PMCID: PMC11583673 DOI: 10.1186/s13287-024-04061-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024] Open
Abstract
Cancer stem cells (CSCs) represent a small yet pivotal subset of tumor cells endowed with self-renewal capabilities. These cells are intricately linked to tumor progression and are central to drug resistance, metastasis, and recurrence. The tumor microenvironment (TME) encompasses the cancer cells and their surrounding milieu, including immune and inflammatory cells, cancer-associated fibroblasts, adjacent stromal tissues, tumor vasculature, and a variety of cytokines and chemokines. Within the TME, cells such as immune and inflammatory cells, endothelial cells, adipocytes, and fibroblasts release growth factors, cytokines, chemokines, and exosomes, which can either sustain or disrupt CSCs, thereby influencing tumor progression. Conversely, CSCs can also secrete cytokines, chemokines, and exosomes, affecting various components of the TME. Exosomes, a subset of extracellular vesicles (EVs), carry a complex cargo of nucleic acids, proteins, and lipids, playing a crucial role in the communication between CSCs and the TME. This review primarily focuses on the impact of exosomes secreted by CSCs (CSC-exo) on tumor progression, including their roles in maintaining stemness, promoting angiogenesis, facilitating metastasis, inducing immune suppression, and contributing to drug resistance. Additionally, we discuss how exosomes secreted by different cells within the TME affect CSCs. Finally, we explore the potential of utilizing exosomes to mitigate the detrimental effects of CSCs or to target and eliminate them. A thorough understanding of the exosome-mediated crosstalk between CSCs and the TME could provide valuable insights for developing targeted therapies against CSCs.
Collapse
Affiliation(s)
- Qi Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Guangpeng He
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Yifan Yu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
26
|
Galassi C, Chan TA, Vitale I, Galluzzi L. The hallmarks of cancer immune evasion. Cancer Cell 2024; 42:1825-1863. [PMID: 39393356 DOI: 10.1016/j.ccell.2024.09.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
According to the widely accepted "three Es" model, the host immune system eliminates malignant cell precursors and contains microscopic neoplasms in a dynamic equilibrium, preventing cancer outgrowth until neoplastic cells acquire genetic or epigenetic alterations that enable immune escape. This immunoevasive phenotype originates from various mechanisms that can be classified under a novel "three Cs" conceptual framework: (1) camouflage, which hides cancer cells from immune recognition, (2) coercion, which directly or indirectly interferes with immune effector cells, and (3) cytoprotection, which shields malignant cells from immune cytotoxicity. Blocking the ability of neoplastic cells to evade the host immune system is crucial for increasing the efficacy of modern immunotherapy and conventional therapeutic strategies that ultimately activate anticancer immunosurveillance. Here, we review key hallmarks of cancer immune evasion under the "three Cs" framework and discuss promising strategies targeting such immunoevasive mechanisms.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA; Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Ilio Vitale
- Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Wei JR, Zhang B, Zhang Y, Chen WM, Zhang XP, Zeng TT, Li Y, Zhu YH, Guan XY, Li L. QSOX1 facilitates dormant esophageal cancer stem cells to evade immune elimination via PD-L1 upregulation and CD8 T cell exclusion. Proc Natl Acad Sci U S A 2024; 121:e2407506121. [PMID: 39432781 PMCID: PMC11536095 DOI: 10.1073/pnas.2407506121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/12/2024] [Indexed: 10/23/2024] Open
Abstract
Dormant cancer stem cells (DCSCs) exhibit characteristics of chemotherapy resistance and immune escape, and they are a crucial source of tumor recurrence and metastasis. However, the underlying mechanisms remain unrevealed. We demonstrate that enriched Gzmk+ CD8+ T cells within the niche of esophageal DCSCs restrict the outgrowth of tumor mass. Nonetheless, DCSCs can escape immune elimination by enhancing PD-L1 signaling, thereby maintaining immune equilibrium. Quiescent fibroblast-derived quiescin sulfhydryl oxidase 1 (QSOX1) promotes the expression of PD-L1 and its own expression in DCSCs by elevating the level of reactive oxygen species. Additionally, high QSOX1 in the dormant tumor niche contributes to the exclusion of CD8+ T cells. Conversely, blocking QSOX1 with Ebselen in combination with anti-PD-1 and chemotherapy can effectively eradicate residual DCSCs by reducing PD-L1 expression and promoting CD8+ T cell infiltration. Clinically, high expression of QSOX1 predicts a poor response to anti-PD-1 treatment in patients with esophageal cancer. Thus, our findings reveal a mechanism whereby QSOX1 promotes PD-L1 upregulation and T cell exclusion, facilitating the immune escape of DCSCs, and QSOX1 inhibition, combined with immunotherapy and chemotherapy, represents a promising therapeutic approach for eliminating DCSCs and preventing recurrence.
Collapse
Affiliation(s)
- Jia-Ru Wei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou510120, People’s Republic of China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan528200, People’s Republic of China
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou510120, People’s Republic of China
| | - Baifeng Zhang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong00852, People’s Republic of China
| | - Yu Zhang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
| | - Wo-Ming Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou510120, People’s Republic of China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan528200, People’s Republic of China
| | - Xiao-Ping Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou510120, People’s Republic of China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan528200, People’s Republic of China
| | - Ting-Ting Zeng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
| | - Yan Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
| | - Ying-Hui Zhu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong00852, People’s Republic of China
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
- Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen518000, People’s Republic of China
| | - Lei Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou510120, People’s Republic of China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan528200, People’s Republic of China
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
| |
Collapse
|