1
|
García-García D, Knapp D, Kim M, Jamwal K, Fuqua H, Seaman RP, Grindle RE, Nowoshilow S, Novatchkova M, Kolling FW, Graber JH, Murawala P. The essential role of connective-tissue cells during axolotl limb regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.30.645595. [PMID: 40236065 PMCID: PMC11996436 DOI: 10.1101/2025.03.30.645595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Axolotls ( Ambystoma mexicanum ) are known for their remarkable limb-regeneration abilities, which involve the formation of the blastema, a specialized structure consisting of progenitor cells contributed by all major tissues of the limb. Lateral plate mesoderm (LPM)-derived connective tissue (CT) cells dedifferentiate and play a critical role in blastema formation and subsequent limb regeneration. However, the complexity of the blastema's cellular composition and the extent of CT participation and necessity have not been rigorously explored. To address this gap, we conducted spatial transcriptomics using a select array of probes, revealing that CT cells constitute up to 75% of the blastema cells at their peak. Genetic ablation of CT cells significantly delays or truncates limb regeneration, underscoring their necessity during this process. Finally, we analyzed the molecular profile of CT cells throughout the stages of blastema formation and made it accessible through an interactive web platform. Our work reaffirms the central role of CT cells in axolotl limb regeneration and lays the foundation for identifying molecular mechanisms that govern blastema formation during the initial phases of limb regeneration.
Collapse
|
2
|
Arbanas LI, Cura Costa E, Chara O, Otsuki L, Tanaka EM. Lineage tracing of Shh+ floor plate cells and dynamics of dorsal-ventral gene expression in the regenerating axolotl spinal cord. Dev Growth Differ 2024; 66:414-425. [PMID: 39387203 DOI: 10.1111/dgd.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/12/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Both development and regeneration depend on signaling centers, which are sources of locally secreted tissue-patterning molecules. As many signaling centers are decommissioned before the end of embryogenesis, a fundamental question is how signaling centers can be re-induced later in life to promote regeneration after injury. Here, we use the axolotl salamander model (Ambystoma mexicanum) to address how the floor plate is assembled for spinal cord regeneration. The floor plate is an archetypal vertebrate signaling center that secretes Shh ligand and patterns neural progenitor cells during embryogenesis. Unlike mammals, axolotls continue to express floor plate genes (including Shh) and downstream dorsal-ventral patterning genes in their spinal cord throughout life, including at steady state. The parsimonious hypothesis that Shh+ cells give rise to functional floor plate cells for regeneration had not been tested. Using HCR in situ hybridization and mathematical modeling, we first quantified the behaviors of dorsal-ventral spinal cord domains, identifying significant increases in gene expression level and floor plate size during regeneration. Next, we established a transgenic axolotl to specifically label and fate map Shh+ cells in vivo. We found that labeled Shh+ cells gave rise to regeneration floor plate, and not to other neural progenitor domains, after tail amputation. Thus, despite changes in domain size and downstream patterning gene expression, Shh+ cells retain their floor plate identity during regeneration, acting as a stable cellular source for this regeneration signaling center in the axolotl spinal cord.
Collapse
Affiliation(s)
- Laura I Arbanas
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Emanuel Cura Costa
- Institute of Physics of Liquids and Biological Systems (IFLYSIB), National Scientific and Technical Research Council (CONICET), University of La Plata, La Plata, Argentina
| | - Osvaldo Chara
- School of Biosciences, University of Nottingham, Nottingham, UK
- Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany
- Instituto de Tecnología, Universidad Argentina de la Empresa, Buenos Aires, Argentina
| | - Leo Otsuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Elly M Tanaka
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
3
|
Bhuiyan SA, Xu M, Yang L, Semizoglou E, Bhatia P, Pantaleo KI, Tochitsky I, Jain A, Erdogan B, Blair S, Cat V, Mwirigi JM, Sankaranarayanan I, Tavares-Ferreira D, Green U, McIlvried LA, Copits BA, Bertels Z, Del Rosario JS, Widman AJ, Slivicki RA, Yi J, Sharif-Naeini R, Woolf CJ, Lennerz JK, Whited JL, Price TJ, Gereau RW, Renthal W. Harmonized cross-species cell atlases of trigeminal and dorsal root ganglia. SCIENCE ADVANCES 2024; 10:eadj9173. [PMID: 38905344 PMCID: PMC11804847 DOI: 10.1126/sciadv.adj9173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 05/16/2024] [Indexed: 06/23/2024]
Abstract
Sensory neurons in the dorsal root ganglion (DRG) and trigeminal ganglion (TG) are specialized to detect and transduce diverse environmental stimuli to the central nervous system. Single-cell RNA sequencing has provided insights into the diversity of sensory ganglia cell types in rodents, nonhuman primates, and humans, but it remains difficult to compare cell types across studies and species. We thus constructed harmonized atlases of the DRG and TG that describe and facilitate comparison of 18 neuronal and 11 non-neuronal cell types across six species and 31 datasets. We then performed single-cell/nucleus RNA sequencing of DRG from both human and the highly regenerative axolotl and found that the harmonized atlas also improves cell type annotation, particularly of sparse neuronal subtypes. We observed that the transcriptomes of sensory neuron subtypes are broadly similar across vertebrates, but the expression of functionally important neuropeptides and channels can vary notably. The resources presented here can guide future studies in comparative transcriptomics, simplify cell-type nomenclature differences across studies, and help prioritize targets for future analgesic development.
Collapse
Affiliation(s)
- Shamsuddin A. Bhuiyan
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mengyi Xu
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Alan Edwards Center for Research on Pain and Department of Physiology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Lite Yang
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Evangelia Semizoglou
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Parth Bhatia
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Katerina I. Pantaleo
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ivan Tochitsky
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children’s Hospital and Harvard Medical School, 3 Blackfan Cir., Boston, MA 02115, USA
| | - Aakanksha Jain
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children’s Hospital and Harvard Medical School, 3 Blackfan Cir., Boston, MA 02115, USA
| | - Burcu Erdogan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Steven Blair
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Victor Cat
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Juliet M. Mwirigi
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Ursula Green
- Department of Pathology, Center for Integrated Diagnostics, Massachussetts General Hospital and Havard Medical School, Boston, MA 02114, USA
| | - Lisa A. McIlvried
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Bryan A. Copits
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Zachariah Bertels
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - John S. Del Rosario
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Allie J. Widman
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Richard A. Slivicki
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jiwon Yi
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Reza Sharif-Naeini
- Alan Edwards Center for Research on Pain and Department of Physiology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Clifford J. Woolf
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children’s Hospital and Harvard Medical School, 3 Blackfan Cir., Boston, MA 02115, USA
| | - Jochen K. Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachussetts General Hospital and Havard Medical School, Boston, MA 02114, USA
| | - Jessica L. Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Robert W. Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - William Renthal
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Riquelme-Guzmán C, Sandoval-Guzmán T. The salamander limb: a perfect model to understand imperfect integration during skeletal regeneration. Biol Open 2024; 13:bio060152. [PMID: 38319134 PMCID: PMC10868587 DOI: 10.1242/bio.060152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Limb regeneration in salamanders is achieved by a complex coordination of various biological processes and requires the proper integration of new tissue with old. Among the tissues found inside the limb, the skeleton is the most prominent component, which serves as a scaffold and provides support for locomotion in the animal. Throughout the years, researchers have studied the regeneration of the appendicular skeleton in salamanders both after limb amputation and as a result of fracture healing. The final outcome has been widely seen as a faithful re-establishment of the skeletal elements, characterised by a seamless integration into the mature tissue. The process of skeletal integration, however, is not well understood, and several works have recently provided evidence of commonly occurring flawed regenerates. In this Review, we take the reader on a journey through the course of bone formation and regeneration in salamanders, laying down a foundation for critically examining the mechanisms behind skeletal integration. Integration is a phenomenon that could be influenced at various steps of regeneration, and hence, we assess the current knowledge in the field and discuss how early events, such as tissue histolysis and patterning, influence the faithful regeneration of the appendicular skeleton.
Collapse
Affiliation(s)
- Camilo Riquelme-Guzmán
- Department of Internal Medicine 3, Center for Healthy Aging, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Tatiana Sandoval-Guzmán
- Department of Internal Medicine 3, Center for Healthy Aging, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
5
|
Bhuiyan SA, Xu M, Yang L, Semizoglou E, Bhatia P, Pantaleo KI, Tochitsky I, Jain A, Erdogan B, Blair S, Cat V, Mwirigi JM, Sankaranarayanan I, Tavares-Ferreira D, Green U, McIlvried LA, Copits BA, Bertels Z, Del Rosario JS, Widman AJ, Slivicki RA, Yi J, Woolf CJ, Lennerz JK, Whited JL, Price TJ, Gereau RW, Renthal W. Harmonized cross-species cell atlases of trigeminal and dorsal root ganglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547740. [PMID: 37461736 PMCID: PMC10350076 DOI: 10.1101/2023.07.04.547740] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Peripheral sensory neurons in the dorsal root ganglion (DRG) and trigeminal ganglion (TG) are specialized to detect and transduce diverse environmental stimuli including touch, temperature, and pain to the central nervous system. Recent advances in single-cell RNA-sequencing (scRNA-seq) have provided new insights into the diversity of sensory ganglia cell types in rodents, non-human primates, and humans, but it remains difficult to compare transcriptomically defined cell types across studies and species. Here, we built cross-species harmonized atlases of DRG and TG cell types that describe 18 neuronal and 11 non-neuronal cell types across 6 species and 19 studies. We then demonstrate the utility of this harmonized reference atlas by using it to annotate newly profiled DRG nuclei/cells from both human and the highly regenerative axolotl. We observe that the transcriptomic profiles of sensory neuron subtypes are broadly similar across vertebrates, but the expression of functionally important neuropeptides and channels can vary notably. The new resources and data presented here can guide future studies in comparative transcriptomics, simplify cell type nomenclature differences across studies, and help prioritize targets for future pain therapy development.
Collapse
Affiliation(s)
- Shamsuddin A Bhuiyan
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mengyi Xu
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Alan Edwards Center for Research on Pain and Department of Physiology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Lite Yang
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Evangelia Semizoglou
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Parth Bhatia
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Katerina I Pantaleo
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ivan Tochitsky
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children's Hospital and Harvard Medical School, 3 Blackfan Cir. Boston, MA 02115
| | - Aakanksha Jain
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children's Hospital and Harvard Medical School, 3 Blackfan Cir. Boston, MA 02115
| | - Burcu Erdogan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Steven Blair
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Victor Cat
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Juliet M Mwirigi
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080
| | - Ursula Green
- Department of Pathology, Center for Integrated Diagnostics, Massachussetts General Hospital and Havard Medical School, Boston, MA 02114
| | - Lisa A McIlvried
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Bryan A Copits
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Zachariah Bertels
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - John S Del Rosario
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Allie J Widman
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Richard A Slivicki
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Jiwon Yi
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children's Hospital and Harvard Medical School, 3 Blackfan Cir. Boston, MA 02115
| | - Jochen K Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachussetts General Hospital and Havard Medical School, Boston, MA 02114
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080
| | - Robert W Gereau
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - William Renthal
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Min S, Whited JL. Limb blastema formation: How much do we know at a genetic and epigenetic level? J Biol Chem 2023; 299:102858. [PMID: 36596359 PMCID: PMC9898764 DOI: 10.1016/j.jbc.2022.102858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 01/02/2023] Open
Abstract
Regeneration of missing body parts is an incredible ability which is present in a wide number of species. However, this regenerative capability varies among different organisms. Urodeles (salamanders) are able to completely regenerate limbs after amputation through the essential process of blastema formation. The blastema is a collection of relatively undifferentiated progenitor cells that proliferate and repattern to form the internal tissues of a regenerated limb. Understanding blastema formation in salamanders may enable comparative studies with other animals, including mammals, with more limited regenerative abilities and may inspire future therapeutic approaches in humans. This review focuses on the current state of knowledge about how limb blastemas form in salamanders, highlighting both the possible roles of epigenetic controls in this process as well as limitations to scientific understanding that present opportunities for research.
Collapse
Affiliation(s)
- Sangwon Min
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
7
|
Schuez M, Sandoval-Guzmán T. Axolotl Transgenesis via Injection of I-SceI Meganuclease or Tol2 Transposon System. Methods Mol Biol 2023; 2562:321-333. [PMID: 36272085 DOI: 10.1007/978-1-0716-2659-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The axolotl (Ambystoma mexicanum ) has been widely used as an animal model for studying development and regeneration. In recent decades, the use of genetic engineering to alter gene expression has advanced our knowledge on the fundamental molecular and cellular mechanisms, pointing us to potential therapeutic targets. We present a detailed, step-by-step protocol for axolotl transgenesis using either I-SceI meganuclease or the mini Tol2 transposon system, by injection of purified DNA into one-cell stage eggs. We add useful tips on the site of injection and the viability of the eggs.
Collapse
Affiliation(s)
- Maritta Schuez
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Tatiana Sandoval-Guzmán
- Medical Faculty: Department of Internal Medicine 3, Center for Healthy Aging, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
8
|
Fu S, Peng C, Zeng YY, Qiu Y, Liu Y, Fei JF. Establishing an Efficient Electroporation-Based Method to Manipulate Target Gene Expression in the Axolotl Brain. Cell Transplant 2023; 32:9636897231200059. [PMID: 37724837 PMCID: PMC10510365 DOI: 10.1177/09636897231200059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023] Open
Abstract
The tetrapod salamander species axolotl (Ambystoma mexicanum) is capable of regenerating injured brain. For better understanding the mechanisms of brain regeneration, it is very necessary to establish a rapid and efficient gain-of-function and loss-of-function approaches to study gene function in the axolotl brain. Here, we establish and optimize an electroporation-based method to overexpress or knockout/knockdown target gene in ependymal glial cells (EGCs) in the axolotl telencephalon. By orientating the electrodes, we were able to achieve specific expression of EGFP in EGCs located in dorsal, ventral, medial, or lateral ventricular zones. We then studied the role of Cdc42 in brain regeneration by introducing Cdc42 into EGCs through electroporation, followed by brain injury. Our findings showed that overexpression of Cdc42 in EGCs did not significantly affect EGC proliferation and production of newly born neurons, but it disrupted their apical polarity, as indicated by the loss of the ZO-1 tight junction marker. This disruption led to a ventricular accumulation of newly born neurons, which are failed to migrate into the neuronal layer where they could mature, thus resulted in a delayed brain regeneration phenotype. Furthermore, when electroporating CAS9-gRNA protein complexes against TnC (Tenascin-C) into EGCs of the brain, we achieved an efficient knockdown of TnC. In the electroporation-targeted area, TnC expression is dramatically reduced at both mRNA and protein levels. Overall, this study established a rapid and efficient electroporation-based gene manipulation approach allowing for investigation of gene function in the process of axolotl brain regeneration.
Collapse
Affiliation(s)
- Sulei Fu
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Cheng Peng
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yan-Yun Zeng
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuanhui Qiu
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Ji-Feng Fei
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Wang L, Zeng YY, Liu Y, Fei JF. Applying a Knock-In Strategy to Create Reporter-Tagged Knockout Alleles in Axolotls. Methods Mol Biol 2023; 2562:351-368. [PMID: 36272087 DOI: 10.1007/978-1-0716-2659-7_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tetrapod species axolotls exhibit the powerful capacity to fully regenerate their tail and limbs upon injury, hence serving as an excellent model organism in regenerative biology research. Developing proper molecular and genetic tools in axolotls is an absolute necessity for deep dissection of tissue regeneration mechanisms. Previously, CRISPR-/Cas9-based knockout and targeted gene knock-in approaches have been established in axolotls, allowing genetically deciphering gene function, labeling, and tracing particular types of cells. Here, we further extend the CRISPR/Cas9 technology application and describe a method to create reporter-tagged knockout allele in axolotls. This method combines gene knockout and knock-in and achieves loss of function of a given gene and simultaneous labeling of cells expressing this particular gene, that allows identification, tracking of the "knocking out" cells. Our method offers a useful gene function analysis tool to the field of axolotl developmental and regenerative research.
Collapse
Affiliation(s)
- Liqun Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education; Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yan-Yun Zeng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education; Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education; Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China.
| | - Ji-Feng Fei
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
10
|
Bölük A, Yavuz M, Demircan T. Axolotl: A resourceful vertebrate model for regeneration and beyond. Dev Dyn 2022; 251:1914-1933. [PMID: 35906989 DOI: 10.1002/dvdy.520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/04/2022] [Accepted: 07/21/2022] [Indexed: 01/30/2023] Open
Abstract
The regenerative capacity varies significantly among the animal kingdom. Successful regeneration program in some animals results in the functional restoration of tissues and lost structures. Among the highly regenerative animals, axolotl provides multiple experimental advantages with its many extraordinary characteristics. It has been positioned as a regeneration model organism due to its exceptional renewal capacity, including the internal organs, central nervous system, and appendages, in a scar-free manner. In addition to this unique regeneration ability, the observed low cancer incidence, its resistance to carcinogens, and the reversing effect of its cell extract on neoplasms strongly suggest its usability in cancer research. Axolotl's longevity and efficient utilization of several anti-aging mechanisms underline its potential to be employed in aging studies.
Collapse
Affiliation(s)
- Aydın Bölük
- School of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Mervenur Yavuz
- Institute of Health Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Turan Demircan
- Department of Medical Biology, School of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
11
|
Lin TY, Taniguchi-Sugiura Y, Murawala P, Hermann S, Tanaka EM. Inducible and tissue-specific cell labeling in Cre-ER T2 transgenic Xenopus lines. Dev Growth Differ 2022; 64:243-253. [PMID: 35581155 PMCID: PMC9328194 DOI: 10.1111/dgd.12791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
Investigating cell lineage requires genetic tools that label cells in a temporal and tissue‐specific manner. The bacteriophage‐derived Cre‐ERT2/loxP system has been developed as a genetic tool for lineage tracing in many organisms. We recently reported a stable transgenic Xenopus line with a Cre‐ERT2/loxP system driven by the mouse Prrx1 (mPrrx1) enhancer to trace limb fibroblasts during the regeneration process (Prrx1:CreER line). Here we describe the detailed technological development and characterization of such line. Transgenic lines carrying a CAG promoter‐driven Cre‐ERT2/loxP system showed conditional labeling of muscle, epidermal, and interstitial cells in both the tadpole tail and the froglet leg upon 4‐hydroxytamoxifen (4OHT) treatment. We further improved the labeling efficiency in the Prrx1:CreER lines from 12.0% to 32.9% using the optimized 4OHT treatment regime. Careful histological examination showed that Prrx1:CreER lines also sparsely labeled cells in the brain, spinal cord, head dermis, and fibroblasts in the tail. This work provides the first demonstration of conditional, tissue‐specific cell labeling with the Cre‐ERT2/loxP system in stable transgenic Xenopus lines.
Collapse
Affiliation(s)
- Tzi-Yang Lin
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Yuka Taniguchi-Sugiura
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Prayag Murawala
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.,MDI Biological Laboratory, Bar Harbor, Maine, USA.,Clinic for Kidney and Hypertension Diseases, Hannover Medical School, Hannover, Germany
| | - Sarah Hermann
- DFG Research Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Elly M Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
12
|
Tilley L, Papadopoulos SC, Pende M, Fei JF, Murawala P. The use of transgenics in the laboratory axolotl. Dev Dyn 2022; 251:942-956. [PMID: 33949035 PMCID: PMC8568732 DOI: 10.1002/dvdy.357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/10/2021] [Accepted: 04/29/2021] [Indexed: 11/09/2022] Open
Abstract
The ability to generate transgenic animals sparked a wave of research committed to implementing such technology in a wide variety of model organisms. Building a solid base of ubiquitous and tissue-specific reporter lines has set the stage for later interrogations of individual cells or genetic elements. Compared to other widely used model organisms such as mice, zebrafish and fruit flies, there are only a few transgenic lines available in the laboratory axolotl (Ambystoma mexicanum), although their number is steadily expanding. In this review, we discuss a brief history of the transgenic methodologies in axolotl and their advantages and disadvantages. Next, we discuss available transgenic lines and insights we have been able to glean from them. Finally, we list challenges when developing transgenic axolotl, and where further work is needed in order to improve their standing as both a developmental and regenerative model.
Collapse
Affiliation(s)
- Lydia Tilley
- Mount Desert Island Biological Laboratory (MDIBL), Salisbury Cove, Maine
| | - Sofia-Christina Papadopoulos
- Mount Desert Island Biological Laboratory (MDIBL), Salisbury Cove, Maine
- Clinic for Kidney and Hypertension Diseases, Hannover Medical School, Hannover, Germany
| | - Marko Pende
- Mount Desert Island Biological Laboratory (MDIBL), Salisbury Cove, Maine
| | - Ji-Feng Fei
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Prayag Murawala
- Mount Desert Island Biological Laboratory (MDIBL), Salisbury Cove, Maine
- Clinic for Kidney and Hypertension Diseases, Hannover Medical School, Hannover, Germany
| |
Collapse
|
13
|
Duerr TJ, Jeon EK, Wells KM, Villanueva A, Seifert AW, McCusker CD, Monaghan JR. A constitutively expressed fluorescent ubiquitination-based cell-cycle indicator (FUCCI) in axolotls for studying tissue regeneration. Development 2022; 149:dev199637. [PMID: 35266986 PMCID: PMC8977096 DOI: 10.1242/dev.199637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 02/18/2022] [Indexed: 01/29/2023]
Abstract
Regulation of cell cycle progression is essential for cell proliferation during regeneration following injury. After appendage amputation, the axolotl (Ambystoma mexicanum) regenerates missing structures through an accumulation of proliferating cells known as the blastema. To study cell division during blastema growth, we generated a transgenic line of axolotls that ubiquitously expresses a bicistronic version of the fluorescent ubiquitination-based cell-cycle indicator (FUCCI). We demonstrate near-ubiquitous FUCCI expression in developing and adult tissues, and validate these expression patterns with DNA synthesis and mitosis phase markers. We demonstrate the utility of FUCCI for live and whole-mount imaging, showing the predominantly local contribution of cells during limb and tail regeneration. We also show that spinal cord amputation results in increased proliferation at least 5 mm from the site of injury. Finally, we use multimodal staining to provide cell type information for cycling cells by combining fluorescence in situ hybridization, EdU click-chemistry and immunohistochemistry on a single FUCCI tissue section. This new line of animals will be useful for studying cell cycle dynamics using in situ endpoint assays and in vivo imaging in developing and regenerating animals.
Collapse
Affiliation(s)
- Timothy J. Duerr
- Northeastern University, Department of Biology, Boston, MA 02115, USA
| | - Eun Kyung Jeon
- Northeastern University, Department of Biology, Boston, MA 02115, USA
| | - Kaylee M. Wells
- University of Massachusetts Boston, Department of Biology, Boston, MA 02125, USA
| | | | - Ashley W. Seifert
- University of Kentucky, Department of Biology, Lexington, KY 40506, USA
| | | | - James R. Monaghan
- Northeastern University, Department of Biology, Boston, MA 02115, USA
| |
Collapse
|
14
|
Leigh ND, Currie JD. Re-building limbs, one cell at a time. Dev Dyn 2022; 251:1389-1403. [PMID: 35170828 PMCID: PMC9545806 DOI: 10.1002/dvdy.463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
New techniques for visualizing and interrogating single cells hold the key to unlocking the underlying mechanisms of salamander limb regeneration.
Collapse
Affiliation(s)
- Nicholas D Leigh
- Molecular Medicine and Gene Therapy, Wallenberg Centre for Molecular Medicine, Lund Stem Cell Center, Lund University, Sweden
| | - Joshua D Currie
- Department of Biology, Wake Forest University, 455 Vine Street, Winston-Salem, USA
| |
Collapse
|
15
|
Abstract
The salamander Ambystoma mexicanum, commonly called "the axolotl" has a long, illustrious history as a model organism, perhaps with one of the longest track records as a laboratory-bred vertebrate, yet it also holds a prominent place among the emerging model organisms. Or rather it is by now an "emerged" model organism, boasting a full cohort molecular genetic tools that allows an expanding community of researchers in the field to explore the remarkable traits of this animal including regeneration, at cellular and molecular precision-which had been a dream for researchers over the years. This chapter describes the journey to this status, that could be helpful for those developing their respective animal or plant models.
Collapse
Affiliation(s)
- Karen Echeverri
- Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Jifeng Fei
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Elly M Tanaka
- Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
16
|
Savage AM, Alberio R, Johnson AD. Germline competent mesoderm: the substrate for vertebrate germline and somatic stem cells? Biol Open 2021; 10:272478. [PMID: 34648017 PMCID: PMC8524722 DOI: 10.1242/bio.058890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In vitro production of tissue-specific stem cells [e.g. haematopoietic stem cells (HSCs)] is a key goal of regenerative medicine. However, recent efforts to produce fully functional tissue-specific stem cells have fallen short. One possible cause of shortcomings may be that model organisms used to characterize basic vertebrate embryology (Xenopus, zebrafish, chick) may employ molecular mechanisms for stem cell specification that are not conserved in humans, a prominent example being the specification of primordial germ cells (PGCs). Germ plasm irreversibly specifies PGCs in many models; however, it is not conserved in humans, which produce PGCs from tissue termed germline-competent mesoderm (GLCM). GLCM is not conserved in organisms containing germ plasm, or even in mice, but understanding its developmental potential could unlock successful production of other stem cell types. GLCM was first discovered in embryos from the axolotl and its conservation has since been demonstrated in pigs, which develop from a flat-disc embryo like humans. Together these findings suggest that GLCM is a conserved basal trait of vertebrate embryos. Moreover, the immortal nature of germ cells suggests that immortality is retained during GLCM specification; here we suggest that the demonstrated pluripotency of GLCM accounts for retention of immortality in somatic stem cell types as well. This article has an associated Future Leaders to Watch interview with the author of the paper. Summary: Recent findings that germline and stem cell specification may differ between species may have important implications for regenerative medicine and the future of stem cell biology.
Collapse
Affiliation(s)
- Aaron M Savage
- School of Pharmacy, Division of Stem Cell and Regenerative Medicine, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ramiro Alberio
- School of Biosciences, Stem Cell Biology, Reprogramming and Pluripotency, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Andrew D Johnson
- School of Life Sciences, Division of Cells, Organisms and Molecular Genetics, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| |
Collapse
|
17
|
Hincapie Agudelo M, Carbonell Medina BA, Arenas Gómez CM, Delgado JP. Ambystoma mexicanum, a model organism in developmental biology and regeneration: a colombian experience. ACTA BIOLÓGICA COLOMBIANA 2021. [DOI: 10.15446/abc.v27n1.88309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Ambystoma mexicanum is a urodele amphibian endemic to Xochimilco Lake in Mexico, it belongs to the salamander family Ambystomatidae. This species has frequently been used as model organism in developmental biology and regeneration laboratories around the world due to its broad regenerative capacities and adaptability to laboratory conditions. In this review we describe the establishment of the first colony of axolotls in Colombia to study tissue regeneration and our perspectives on the use A. mexicanum as a model organism in Colombia are discussed emphasizing its possible uses in regeneration and developmental biology
Collapse
|
18
|
Riquelme-Guzmán C, Schuez M, Böhm A, Knapp D, Edwards-Jorquera S, Ceccarelli AS, Chara O, Rauner M, Sandoval-Guzmán T. Postembryonic development and aging of the appendicular skeleton in Ambystoma mexicanum. Dev Dyn 2021; 251:1015-1034. [PMID: 34322944 DOI: 10.1002/dvdy.407] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/27/2021] [Accepted: 07/13/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The axolotl is a key model to study appendicular regeneration. The limb complexity resembles that of humans in structure and tissue components; however, axolotl limbs develop postembryonically. In this work, we evaluated the postembryonic development of the appendicular skeleton and its changes with aging. RESULTS The juvenile limb skeleton is formed mostly by Sox9/Col1a2 cartilage cells. Ossification of the appendicular skeleton starts when animals reach a length of 10 cm, and cartilage cells are replaced by a primary ossification center, consisting of cortical bone and an adipocyte-filled marrow cavity. Vascularization is associated with the ossification center and the marrow cavity formation. We identified the contribution of Col1a2-descendants to bone and adipocytes. Moreover, ossification progresses with age toward the epiphyses of long bones. Axolotls are neotenic salamanders, and still ossification remains responsive to l-thyroxine, increasing the rate of bone formation. CONCLUSIONS In axolotls, bone maturation is a continuous process that extends throughout their life. Ossification of the appendicular bones is slow and continues until the complete element is ossified. The cellular components of the appendicular skeleton change accordingly during ossification, creating a heterogenous landscape in each element. The continuous maturation of the bone is accompanied by a continuous body growth.
Collapse
Affiliation(s)
- Camilo Riquelme-Guzmán
- CRTD/Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Dresden, Germany
| | - Maritta Schuez
- CRTD/Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Dresden, Germany
| | - Alexander Böhm
- CRTD/Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Dresden, Germany
| | - Dunja Knapp
- CRTD/Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Dresden, Germany
| | - Sandra Edwards-Jorquera
- CRTD/Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Dresden, Germany
| | - Alberto S Ceccarelli
- System Biology Group (SysBio), Institute of Physics of Liquids and Biological Systems (IFLySiB), National Scientific and Technical Research Council (CONICET) and University of La Plata, La Plata, Argentina
| | - Osvaldo Chara
- System Biology Group (SysBio), Institute of Physics of Liquids and Biological Systems (IFLySiB), National Scientific and Technical Research Council (CONICET) and University of La Plata, La Plata, Argentina.,Instituto de Tecnología, Universidad Argentina de la Empresa (UADE), Buenos Aires, Argentina.,Center for Information Services and High Performance Computing (ZIH), Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III, Universitätsklinikum Dresden, Dresden, Germany.,Center for Healthy Aging, Universitätsklinikum Dresden, Dresden, Germany
| | - Tatiana Sandoval-Guzmán
- CRTD/Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Universitätsklinikum Dresden, Dresden, Germany
| |
Collapse
|
19
|
Yun MH. Salamander Insights Into Ageing and Rejuvenation. Front Cell Dev Biol 2021; 9:689062. [PMID: 34164403 PMCID: PMC8215543 DOI: 10.3389/fcell.2021.689062] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/12/2021] [Indexed: 02/01/2023] Open
Abstract
Exhibiting extreme regenerative abilities which extend to complex organs and entire limbs, salamanders have long served as research models for understanding the basis of vertebrate regeneration. Yet these organisms display additional noteworthy traits, namely extraordinary longevity, indefinite regenerative potential and apparent lack of traditional signs of age-related decay or “negligible senescence.” Here, I examine existing studies addressing these features, highlight outstanding questions, and argue that salamanders constitute valuable models for addressing the nature of organismal senescence and the interplay between regeneration and ageing.
Collapse
Affiliation(s)
- Maximina H Yun
- CRTD/Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
20
|
Fibroblast dedifferentiation as a determinant of successful regeneration. Dev Cell 2021; 56:1541-1551.e6. [PMID: 34004152 PMCID: PMC8140481 DOI: 10.1016/j.devcel.2021.04.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/03/2021] [Accepted: 04/16/2021] [Indexed: 12/31/2022]
Abstract
Limb regeneration, while observed lifelong in salamanders, is restricted in post-metamorphic Xenopus laevis frogs. Whether this loss is due to systemic factors or an intrinsic incapability of cells to form competent stem cells has been unclear. Here, we use genetic fate mapping to establish that connective tissue (CT) cells form the post-metamorphic frog blastema, as in the case of axolotls. Using heterochronic transplantation into the limb bud and single-cell transcriptomic profiling, we show that axolotl CT cells dedifferentiate and integrate to form lineages, including cartilage. In contrast, frog blastema CT cells do not fully re-express the limb bud progenitor program, even when transplanted into the limb bud. Correspondingly, transplanted cells contribute to extraskeletal CT, but not to the developing cartilage. Furthermore, using single-cell RNA-seq analysis we find that embryonic and adult frog cartilage differentiation programs are molecularly distinct. This work defines intrinsic restrictions in CT dedifferentiation as a limitation in adult regeneration. Fibroblast-derived Prrx1+ cells are the main constituent of a frog limb blastema Frog fibroblasts only undergo partial dedifferentiation due to intrinsic limitations Adult chondrogenesis is distinct from the embryonic program
Collapse
|
21
|
Arenas Gómez CM, Echeverri K. Salamanders: The molecular basis of tissue regeneration and its relevance to human disease. Curr Top Dev Biol 2021; 145:235-275. [PMID: 34074531 PMCID: PMC8186737 DOI: 10.1016/bs.ctdb.2020.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Salamanders are recognized for their ability to regenerate a broad range of tissues. They have also have been used for hundreds of years for classical developmental biology studies because of their large accessible embryos. The range of tissues these animals can regenerate is fascinating, from full limbs to parts of the brain or heart, a potential that is missing in humans. Many promising research efforts are working to decipher the molecular blueprints shared across the organisms that naturally have the capacity to regenerate different tissues and organs. Salamanders are an excellent example of a vertebrate that can functionally regenerate a wide range of tissue types. In this review, we outline some of the significant insights that have been made that are aiding in understanding the cellular and molecular mechanisms of tissue regeneration in salamanders and discuss why salamanders are a worthy model in which to study regenerative biology and how this may benefit research fields like regenerative medicine to develop therapies for humans in the future.
Collapse
Affiliation(s)
- Claudia Marcela Arenas Gómez
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, University of Chicago, Woods Hole, MA, United States
| | - Karen Echeverri
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, University of Chicago, Woods Hole, MA, United States.
| |
Collapse
|
22
|
Dwaraka VB, Voss SR. Towards comparative analyses of salamander limb regeneration. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:129-144. [PMID: 31584252 PMCID: PMC8908358 DOI: 10.1002/jez.b.22902] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/13/2019] [Accepted: 08/31/2019] [Indexed: 08/29/2023]
Abstract
Among tetrapods, only salamanders can regenerate their limbs and tails throughout life. This amazing regenerative ability has attracted the attention of scientists for hundreds of years. Now that large, salamander genomes are beginning to be sequenced for the first time, omics tools and approaches can be used to integrate new perspectives into the study of tissue regeneration. Here we argue the need to move beyond the primary salamander models to investigate regeneration in other species. Salamanders at first glance come across as a phylogenetically conservative group that has not diverged greatly from their ancestors. While salamanders do present ancestral characteristics of basal tetrapods, including the ability to regenerate limbs, data from fossils and data from studies that have tested for species differences suggest there may be considerable variation in how salamanders develop and regenerate their limbs. We review the case for expanded studies of salamander tissue regeneration and identify questions and approaches that are most likely to reveal commonalities and differences in regeneration among species. We also address challenges that confront such an initiative, some of which are regulatory and not scientific. The time is right to gain evolutionary perspective about mechanisms of tissue regeneration from comparative studies of salamander species.
Collapse
Affiliation(s)
- Varun B. Dwaraka
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky
- Department of Biology, University of Kentucky, Lexington, Kentucky
| | - S. Randal Voss
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
23
|
Subiran Adrados C, Yu Q, Bolaños Castro LA, Rodriguez Cabrera LA, Yun MH. Salamander-Eci: An optical clearing protocol for the three-dimensional exploration of regeneration. Dev Dyn 2020; 250:902-915. [PMID: 33084146 DOI: 10.1002/dvdy.264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/07/2020] [Accepted: 10/11/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Salamander limb regeneration is a complex biological process that entails the orchestration of multiple cellular and molecular mechanisms in a three-dimensional space. Hence, a comprehensive understanding of this process requires whole-structure level explorations. Recent advances in imaging and optical clearing methods have transformed the study of regenerative phenomena, allowing the three-dimensional visualization of structures and entire organisms. RESULTS Here we introduce Salamander-Eci, a rapid and robust optical clearing protocol optimized for the widely used axolotl model, which allows simultaneous immunohistochemistry and Click-chemistry detection with minimal volume disruption. We provide examples of its application, from whole larva to adult limbs and organs, and complement it with an image analysis pipeline for volumetric cell quantification. Further, we offer a detailed 3D quantitation of cell proliferation throughout axolotl limb regeneration. CONCLUSIONS Salamander-Eci enables the comprehensive volumetric analysis of regenerative phenomena at both local and systemic levels.
Collapse
Affiliation(s)
| | - Qinghao Yu
- CRTD/Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | | | - Luis Alberto Rodriguez Cabrera
- CRTD/Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany.,Department of Pediatrics, Neonatology and Pediatric Critical Care Medicine, Technische Universität Dresden, University Hospital and Medical Faculty Carl Gustav Carus, Dresden, Germany
| | - Maximina Hee Yun
- CRTD/Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany.,Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
24
|
Makanae A, Tajika Y, Nishimura K, Saito N, Tanaka JI, Satoh A. Neural regulation in tooth regeneration of Ambystoma mexicanum. Sci Rep 2020; 10:9323. [PMID: 32518359 PMCID: PMC7283310 DOI: 10.1038/s41598-020-66142-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/15/2020] [Indexed: 12/03/2022] Open
Abstract
The presence of nerves is an important factor in successful organ regeneration in amphibians. The Mexican salamander, Ambystoma mexicanum, is able to regenerate limbs, tail, and gills when nerves are present. However, the nerve-dependency of tooth regeneration has not been evaluated. Here, we reevaluated tooth regeneration processes in axolotls using a three-dimensional reconstitution method called CoMBI and found that tooth regeneration is nerve-dependent although the dentary bone is independent of nerve presence. The induction and invagination of the dental lamina were delayed by denervation. Exogenous Fgf2, Fgf8, and Bmp7 expression could induce tooth placodes even in the denervated mandible. Our results suggest that the role of nerves is conserved and that Fgf+Bmp signals play key roles in axolotl organ-level regeneration. The presence of nerves is an important factor in successful organ regeneration in amphibians. The Mexican salamander, Ambystoma mexicanum, is able to regenerate limbs, tail, and gills when nerves are present. However, the nervedependency of tooth regeneration has not been evaluated. Here, we reevaluated tooth regeneration processes in axolotls using a three-dimensional reconstitution method called CoMBI and found that tooth regeneration is nerve-dependent although the dentary bone is independent of nerve presence. The induction and invagination of the dental lamina were delayed by denervation. Exogenous Fgf2, Fgf8, and Bmp7 expression could induce tooth placodes even in the denervated mandible. Our results suggest that the role of nerves is conserved and that Fgf+Bmp signals play key roles in axolotl organ-level regeneration.
Collapse
Affiliation(s)
- Aki Makanae
- Okayama University Research Core for Interdisciplinary Sciences (RCIS), 3-1-1, Tsushimanaka, Kitaku, Okayama, 700-8530, Japan
| | - Yuki Tajika
- Gunma University, Department of Anatomy, Graduate School of Medicine 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Koki Nishimura
- Okayama University Research Core for Interdisciplinary Sciences (RCIS), 3-1-1, Tsushimanaka, Kitaku, Okayama, 700-8530, Japan
| | - Nanami Saito
- Okayama University Research Core for Interdisciplinary Sciences (RCIS), 3-1-1, Tsushimanaka, Kitaku, Okayama, 700-8530, Japan
| | - Jun-Ichi Tanaka
- Okayama University Research Core for Interdisciplinary Sciences (RCIS), 3-1-1, Tsushimanaka, Kitaku, Okayama, 700-8530, Japan
| | - Akira Satoh
- Okayama University Research Core for Interdisciplinary Sciences (RCIS), 3-1-1, Tsushimanaka, Kitaku, Okayama, 700-8530, Japan.
| |
Collapse
|
25
|
Vieira WA, Wells KM, McCusker CD. Advancements to the Axolotl Model for Regeneration and Aging. Gerontology 2019; 66:212-222. [PMID: 31779024 PMCID: PMC7214127 DOI: 10.1159/000504294] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
Loss of regenerative capacity is a normal part of aging. However, some organisms, such as the Mexican axolotl, retain striking regenerative capacity throughout their lives. Moreover, the development of age-related diseases is rare in this organism. In this review, we will explore how axolotls are used as a model system to study regenerative processes, the exciting new technological advancements now available for this model, and how we can apply the lessons we learn from studying regeneration in the axolotl to understand, and potentially treat, age-related decline in humans.
Collapse
Affiliation(s)
- Warren A Vieira
- Department of Biology, University of Massachusetts, Boston, Massachusetts, USA
| | - Kaylee M Wells
- Department of Biology, University of Massachusetts, Boston, Massachusetts, USA
| | | |
Collapse
|
26
|
Rhinn M, Ritschka B, Keyes WM. Cellular senescence in development, regeneration and disease. Development 2019; 146:146/20/dev151837. [DOI: 10.1242/dev.151837] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT
Cellular senescence is a state comprising an essentially irreversible proliferative arrest combined with phenotypic changes and pronounced secretory activity. Although senescence has long been linked with aging, recent studies have uncovered functional roles for senescence in embryonic development, regeneration and reprogramming, and have helped to advance our understanding of this process as a highly coordinated and programmed cellular state. In this Primer article, we summarize some of the key findings in the field and attempt to explain them in a simple model that reconciles the normal and pathological roles for senescence. We discuss how a primary role of cellular senescence is to contribute to normal development, cell plasticity and tissue repair, as a dynamic and tightly regulated cellular program. However, when this process is perturbed, the beneficial effects turn detrimental and can contribute to disease and aging.
Collapse
Affiliation(s)
- Muriel Rhinn
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67404, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), Illkirch, France UMR7104
- Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch, France U1258
- Université de Strasbourg, Illkirch, France
| | - Birgit Ritschka
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67404, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), Illkirch, France UMR7104
- Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch, France U1258
- Université de Strasbourg, Illkirch, France
| | - William M. Keyes
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67404, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), Illkirch, France UMR7104
- Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch, France U1258
- Université de Strasbourg, Illkirch, France
| |
Collapse
|
27
|
Lust K, Tanaka EM. A Comparative Perspective on Brain Regeneration in Amphibians and Teleost Fish. Dev Neurobiol 2019; 79:424-436. [PMID: 30600647 PMCID: PMC6618004 DOI: 10.1002/dneu.22665] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 01/16/2023]
Abstract
Regeneration of lost cells in the central nervous system, especially the brain, is present to varying degrees in different species. In mammals, neuronal cell death often leads to glial cell hypertrophy, restricted proliferation, and formation of a gliotic scar, which prevents neuronal regeneration. Conversely, amphibians such as frogs and salamanders and teleost fish possess the astonishing capacity to regenerate lost cells in several regions of their brains. While frogs lose their regenerative abilities after metamorphosis, teleost fish and salamanders are known to possess regenerative competence even throughout adulthood. In the last decades, substantial progress has been made in our understanding of the cellular and molecular mechanisms of brain regeneration in amphibians and fish. But how similar are the means of brain regeneration in these different species? In this review, we provide an overview of common and distinct aspects of brain regeneration in frog, salamander, and teleost fish species: from the origin of regenerated cells to the functional recovery of behaviors.
Collapse
Affiliation(s)
- Katharina Lust
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
| | - Elly M. Tanaka
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
| |
Collapse
|
28
|
Freitas PD, Yandulskaya AS, Monaghan JR. Spinal Cord Regeneration in Amphibians: A Historical Perspective. Dev Neurobiol 2019; 79:437-452. [PMID: 30725532 DOI: 10.1002/dneu.22669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/11/2022]
Abstract
In some vertebrates, a grave injury to the central nervous system (CNS) results in functional restoration, rather than in permanent incapacitation. Understanding how these animals mount a regenerative response by activating resident CNS stem cell populations is of critical importance in regenerative biology. Amphibians are of a particular interest in the field because the regenerative ability is present throughout life in urodele species, but in anuran species it is lost during development. Studying amphibians, who transition from a regenerative to a nonregenerative state, could give insight into the loss of ability to recover from CNS damage in mammals. Here, we highlight the current knowledge of spinal cord regeneration across vertebrates and identify commonalities and differences in spinal cord regeneration between amphibians.
Collapse
Affiliation(s)
- Polina D Freitas
- Department of Biology, Northeastern University, 360 Huntington Ave., 134 Mugar Hall, Boston, Massachusetts, 02115
| | - Anastasia S Yandulskaya
- Department of Biology, Northeastern University, 360 Huntington Ave., 134 Mugar Hall, Boston, Massachusetts, 02115
| | - James R Monaghan
- Department of Biology, Northeastern University, 360 Huntington Ave., 134 Mugar Hall, Boston, Massachusetts, 02115
| |
Collapse
|
29
|
Masselink W, Reumann D, Murawala P, Pasierbek P, Taniguchi Y, Bonnay F, Meixner K, Knoblich JA, Tanaka EM. Broad applicability of a streamlined ethyl cinnamate-based clearing procedure. Development 2019; 146:dev166884. [PMID: 30665888 PMCID: PMC7115989 DOI: 10.1242/dev.166884] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/09/2019] [Indexed: 12/21/2022]
Abstract
Turbidity and opaqueness are inherent properties of tissues that limit the capacity to acquire microscopic images through large tissues. Creating a uniform refractive index, known as tissue clearing, overcomes most of these issues. These methods have enabled researchers to image large and complex 3D structures with unprecedented depth and resolution. However, tissue clearing has been adopted to a limited extent due to a combination of cost, time, complexity of existing methods and potential negative impact on fluorescence signal. Here, we describe 2Eci (2nd generation ethyl cinnamate-based clearing), which can be used to clear a wide range of tissues in several species, including human organoids, Drosophila melanogaster, zebrafish, axolotl and Xenopus laevis, in as little as 1-5 days, while preserving a broad range of fluorescent proteins, including GFP, mCherry, Brainbow and Alexa-conjugated fluorophores. Ethyl cinnamate is non-toxic and can easily be used in multi-user microscope facilities. This method opens up tissue clearing to a much broader group of researchers due to its ease of use, the non-toxic nature of ethyl cinnamate and broad applicability.
Collapse
Affiliation(s)
- Wouter Masselink
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
| | - Daniel Reumann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Prayag Murawala
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
| | - Pawel Pasierbek
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Yuka Taniguchi
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
| | - François Bonnay
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Katharina Meixner
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Elly M Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
| |
Collapse
|
30
|
Mokalled MH, Poss KD. A Regeneration Toolkit. Dev Cell 2019; 47:267-280. [PMID: 30399333 DOI: 10.1016/j.devcel.2018.10.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/13/2022]
Abstract
The ability of animals to replace injured body parts has been a subject of fascination for centuries. The emerging importance of regenerative medicine has reinvigorated investigations of innate tissue regeneration, and the development of powerful genetic tools has fueled discoveries into how tissue regeneration occurs. Here, we present an overview of the armamentarium employed to probe regeneration in vertebrates, highlighting areas where further methodology advancement will deepen mechanistic findings.
Collapse
Affiliation(s)
- Mayssa H Mokalled
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
31
|
Leigh ND, Dunlap GS, Johnson K, Mariano R, Oshiro R, Wong AY, Bryant DM, Miller BM, Ratner A, Chen A, Ye WW, Haas BJ, Whited JL. Transcriptomic landscape of the blastema niche in regenerating adult axolotl limbs at single-cell resolution. Nat Commun 2018; 9:5153. [PMID: 30514844 PMCID: PMC6279788 DOI: 10.1038/s41467-018-07604-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022] Open
Abstract
Regeneration of complex multi-tissue structures, such as limbs, requires the coordinated effort of multiple cell types. In axolotl limb regeneration, the wound epidermis and blastema have been extensively studied via histology, grafting, and bulk-tissue RNA-sequencing. However, defining the contributions of these tissues is hindered due to limited information regarding the molecular identity of the cell types in regenerating limbs. Here we report unbiased single-cell RNA-sequencing on over 25,000 cells from axolotl limbs and identify a plethora of cellular diversity within epidermal, mesenchymal, and hematopoietic lineages in homeostatic and regenerating limbs. We identify regeneration-induced genes, develop putative trajectories for blastema cell differentiation, and propose the molecular identity of fibroblast-like blastema progenitor cells. This work will enable application of molecular techniques to assess the contribution of these populations to limb regeneration. Overall, these data allow for establishment of a putative framework for adult axolotl limb regeneration. Limb regeneration requires a blastema with progenitor cells, immune cells, and an overlying wound epidermis, but molecular identities of these populations are unclear. Here, the authors use single-cell RNA-sequencing to identify transcriptionally distinct cell populations in adult axolotl limb blastemas.
Collapse
Affiliation(s)
- Nicholas D Leigh
- Department of Orthopedic Surgery, Harvard Medical School, The Harvard Stem Cell Institute, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA, 02142, USA
| | - Garrett S Dunlap
- Department of Orthopedic Surgery, Harvard Medical School, The Harvard Stem Cell Institute, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA, 02142, USA
| | - Kimberly Johnson
- Department of Orthopedic Surgery, Harvard Medical School, The Harvard Stem Cell Institute, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA, 02142, USA
| | - Rachelle Mariano
- Department of Orthopedic Surgery, Harvard Medical School, The Harvard Stem Cell Institute, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Rachel Oshiro
- Department of Orthopedic Surgery, Harvard Medical School, The Harvard Stem Cell Institute, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Alan Y Wong
- Department of Orthopedic Surgery, Harvard Medical School, The Harvard Stem Cell Institute, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Donald M Bryant
- Department of Orthopedic Surgery, Harvard Medical School, The Harvard Stem Cell Institute, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Bess M Miller
- Department of Orthopedic Surgery, Harvard Medical School, The Harvard Stem Cell Institute, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA, 02142, USA
| | - Alex Ratner
- ICCB-L Single Cell Core, Harvard Medical School, 200 Longwood Avenue, Boston, MA, 02115, USA
| | - Andy Chen
- Department of Orthopedic Surgery, Harvard Medical School, The Harvard Stem Cell Institute, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA
| | - William W Ye
- Department of Orthopedic Surgery, Harvard Medical School, The Harvard Stem Cell Institute, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Brian J Haas
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA, 02142, USA
| | - Jessica L Whited
- Department of Orthopedic Surgery, Harvard Medical School, The Harvard Stem Cell Institute, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA. .,Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA, 02142, USA. .,Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA.
| |
Collapse
|
32
|
Fei JF, Lou WPK, Knapp D, Murawala P, Gerber T, Taniguchi Y, Nowoshilow S, Khattak S, Tanaka EM. Application and optimization of CRISPR-Cas9-mediated genome engineering in axolotl (Ambystoma mexicanum). Nat Protoc 2018; 13:2908-2943. [PMID: 30429597 DOI: 10.1038/s41596-018-0071-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Genomic manipulation is essential to the use of model organisms to understand development, regeneration and adult physiology. The axolotl (Ambystoma mexicanum), a type of salamander, exhibits an unparalleled regenerative capability in a spectrum of complex tissues and organs, and therefore serves as a powerful animal model for dissecting mechanisms of regeneration. We describe here an optimized stepwise protocol to create genetically modified axolotls using the CRISPR-Cas9 system. The protocol, which takes 7-8 weeks to complete, describes generation of targeted gene knockouts and knock-ins and includes site-specific integration of large targeting constructs. The direct use of purified CAS9-NLS (CAS9 containing a C-terminal nuclear localization signal) protein allows the prompt formation of guide RNA (gRNA)-CAS9-NLS ribonucleoprotein (RNP) complexes, which accelerates the creation of double-strand breaks (DSBs) at targeted genomic loci in single-cell-stage axolotl eggs. With this protocol, a substantial number of F0 individuals harboring a homozygous-type frameshift mutation can be obtained, allowing phenotype analysis in this generation. In the presence of targeting constructs, insertions of exogenous genes into targeted axolotl genomic loci can be achieved at efficiencies of up to 15% in a non-homologous end joining (NHEJ) manner. Our protocol bypasses the long generation time of axolotls and allows direct functional analysis in F0 genetically manipulated axolotls. This protocol can be potentially applied to other animal models, especially to organisms with a well-characterized transcriptome but lacking a well-characterized genome.
Collapse
Affiliation(s)
- Ji-Feng Fei
- Institute for Brain Research and Rehabilitation (IBRR), Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| | - Wilson Pak-Kin Lou
- School of Life Sciences, South China Normal University, Guangzhou, China
- The Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Dunja Knapp
- DFG Center for Regenerative Therapies, Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Prayag Murawala
- The Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Tobias Gerber
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Yuka Taniguchi
- The Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Sergej Nowoshilow
- The Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Shahryar Khattak
- DFG Center for Regenerative Therapies, Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Elly M Tanaka
- The Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
33
|
Joven A, Simon A. Homeostatic and regenerative neurogenesis in salamanders. Prog Neurobiol 2018; 170:81-98. [PMID: 29654836 DOI: 10.1016/j.pneurobio.2018.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/20/2018] [Accepted: 04/07/2018] [Indexed: 01/02/2023]
Abstract
Large-scale regeneration in the adult central nervous system is a unique capacity of salamanders among tetrapods. Salamanders can replace neuronal populations, repair damaged nerve fibers and restore tissue architecture in retina, brain and spinal cord, leading to functional recovery. The underlying mechanisms have long been difficult to study due to the paucity of available genomic tools. Recent technological progress, such as genome sequencing, transgenesis and genome editing provide new momentum for systematic interrogation of regenerative processes in the salamander central nervous system. Understanding central nervous system regeneration also entails designing the appropriate molecular, cellular, and behavioral assays. Here we outline the organization of salamander brain structures. With special focus on ependymoglial cells, we integrate cellular and molecular processes of neurogenesis during developmental and adult homeostasis as well as in various injury models. Wherever possible, we correlate developmental and regenerative neurogenesis to the acquisition and recovery of behaviors. Throughout the review we place the findings into an evolutionary context for inter-species comparisons.
Collapse
Affiliation(s)
- Alberto Joven
- Department of Cell and Molecular Biology, Karolinska Institute, Berzelius väg 35, 17177, Stockholm, Sweden.
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institute, Berzelius väg 35, 17177, Stockholm, Sweden.
| |
Collapse
|
34
|
Simkin J, Seifert AW. Concise Review: Translating Regenerative Biology into Clinically Relevant Therapies: Are We on the Right Path? Stem Cells Transl Med 2017; 7:220-231. [PMID: 29271610 PMCID: PMC5788874 DOI: 10.1002/sctm.17-0213] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023] Open
Abstract
Despite approaches in regenerative medicine using stem cells, bio‐engineered scaffolds, and targeted drug delivery to enhance human tissue repair, clinicians remain unable to regenerate large‐scale, multi‐tissue defects in situ. The study of regenerative biology using mammalian models of complex tissue regeneration offers an opportunity to discover key factors that stimulate a regenerative rather than fibrotic response to injury. For example, although primates and rodents can regenerate their distal digit tips, they heal more proximal amputations with scar tissue. Rabbits and African spiny mice re‐grow tissue to fill large musculoskeletal defects through their ear pinna, while other mammals fail to regenerate identical defects and instead heal ear holes through fibrotic repair. This Review explores the utility of these comparative healing models using the spiny mouse ear pinna and the mouse digit tip to consider how mechanistic insight into reparative regeneration might serve to advance regenerative medicine. Specifically, we consider how inflammation and immunity, extracellular matrix composition, and controlled cell proliferation intersect to establish a pro‐regenerative microenvironment in response to injuries. Understanding how some mammals naturally regenerate complex tissue can provide a blueprint for how we might manipulate the injury microenvironment to enhance regenerative abilities in humans. Stem Cells Translational Medicine2018;7:220–231
Collapse
Affiliation(s)
- Jennifer Simkin
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
35
|
Fei JF, Schuez M, Knapp D, Taniguchi Y, Drechsel DN, Tanaka EM. Efficient gene knockin in axolotl and its use to test the role of satellite cells in limb regeneration. Proc Natl Acad Sci U S A 2017; 114:12501-12506. [PMID: 29087939 PMCID: PMC5703281 DOI: 10.1073/pnas.1706855114] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Salamanders exhibit extensive regenerative capacities and serve as a unique model in regeneration research. However, due to the lack of targeted gene knockin approaches, it has been difficult to label and manipulate some of the cell populations that are crucial for understanding the mechanisms underlying regeneration. Here we have established highly efficient gene knockin approaches in the axolotl (Ambystoma mexicanum) based on the CRISPR/Cas9 technology. Using a homology-independent method, we successfully inserted both the Cherry reporter gene and a larger membrane-tagged Cherry-ERT2-Cre-ERT2 (∼5-kb) cassette into axolotl Sox2 and Pax7 genomic loci. Depending on the size of the DNA fragments for integration, 5-15% of the F0 transgenic axolotl are positive for the transgene. Using these techniques, we have labeled and traced the PAX7-positive satellite cells as a major source contributing to myogenesis during axolotl limb regeneration. Our work brings a key genetic tool to molecular and cellular studies of axolotl regeneration.
Collapse
Affiliation(s)
- Ji-Feng Fei
- Deutsche Forschungsgemeinschaft (DFG)-Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany;
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Maritta Schuez
- Deutsche Forschungsgemeinschaft (DFG)-Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Dunja Knapp
- Deutsche Forschungsgemeinschaft (DFG)-Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Yuka Taniguchi
- Deutsche Forschungsgemeinschaft (DFG)-Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - David N Drechsel
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
- Protein Expression Facility, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Elly M Tanaka
- Deutsche Forschungsgemeinschaft (DFG)-Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany;
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| |
Collapse
|
36
|
Suppressing mosaicism by Au nanowire injector-driven direct delivery of plasmids into mouse embryos. Biomaterials 2017; 138:169-178. [DOI: 10.1016/j.biomaterials.2017.05.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 12/12/2022]
|
37
|
Russell JJ, Theriot JA, Sood P, Marshall WF, Landweber LF, Fritz-Laylin L, Polka JK, Oliferenko S, Gerbich T, Gladfelter A, Umen J, Bezanilla M, Lancaster MA, He S, Gibson MC, Goldstein B, Tanaka EM, Hu CK, Brunet A. Non-model model organisms. BMC Biol 2017; 15:55. [PMID: 28662661 PMCID: PMC5492503 DOI: 10.1186/s12915-017-0391-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Model organisms are widely used in research as accessible and convenient systems to study a particular area or question in biology. Traditionally only a handful of organisms have been widely studied, but modern research tools are enabling researchers to extend the set of model organisms to include less-studied and more unusual systems. This Forum highlights a range of 'non-model model organisms' as emerging systems for tackling questions across the whole spectrum of biology (and beyond), the opportunities and challenges, and the outlook for the future.
Collapse
Affiliation(s)
- James J Russell
- Department of Biology, Howard Hughes Medical Institute Stanford University, Stanford, CA, 94305, USA
| | - Julie A Theriot
- Departments of Biochemistry and of Microbiology & Immunology, Howard Hughes Medical Institute Stanford University, Stanford, CA, 94305, USA.
| | - Pranidhi Sood
- Department of Biochemistry & Biophysics, University of California San Francisco, 600 16th St, San Francisco, CA, 94158, USA
| | - Wallace F Marshall
- Department of Biochemistry & Biophysics, University of California San Francisco, 600 16th St, San Francisco, CA, 94158, USA.
| | - Laura F Landweber
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY, 10032, USA
| | | | - Jessica K Polka
- Visiting Scholar, Whitehead Institute, 9 Cambridge Center, Cambridge, MA, 02142, USA
| | - Snezhana Oliferenko
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Therese Gerbich
- 516 Fordham Hall, University of North Carolina Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Amy Gladfelter
- 516 Fordham Hall, University of North Carolina Chapel Hill, Chapel Hill, NC, 27514, USA
| | - James Umen
- Donald Danforth Plant Science Center, 975 N. Warson Rd, St. Louis, MO, 63132, USA
| | | | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, CB2 0QH, Cambridge, UK
| | - Shuonan He
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
- Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Bob Goldstein
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Elly M Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria
| | - Chi-Kuo Hu
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Glenn Laboratories for the Biology of Aging at Stanford, Stanford, CA, 94305, USA
| |
Collapse
|
38
|
Boilly B, Faulkner S, Jobling P, Hondermarck H. Nerve Dependence: From Regeneration to Cancer. Cancer Cell 2017; 31:342-354. [PMID: 28292437 DOI: 10.1016/j.ccell.2017.02.005] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/07/2016] [Accepted: 02/08/2017] [Indexed: 02/06/2023]
Abstract
Nerve dependence has long been described in animal regeneration, where the outgrowth of axons is necessary to the reconstitution of lost body parts and tissue remodeling in various species. Recent discoveries have demonstrated that denervation can suppress tumor growth and metastasis, pointing to nerve dependence in cancer. Regeneration and cancer share similarities in regard to the stimulatory role of nerves, and there are indications that the stem cell compartment is a preferred target of innervation. Thus, the neurobiology of cancer is an emerging discipline that opens new perspectives in oncology.
Collapse
Affiliation(s)
- Benoni Boilly
- UFR de Biologie, Université de Lille, 59655 Villeneuve d'Ascq, France
| | - Sam Faulkner
- School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Phillip Jobling
- School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
39
|
Taniguchi Y, Kurth T, Weiche S, Reichelt S, Tazaki A, Perike S, Kappert V, Epperlein HH. The posterior neural plate in axolotl gives rise to neural tube or turns anteriorly to form somites of the tail and posterior trunk. Dev Biol 2017; 422:155-170. [DOI: 10.1016/j.ydbio.2016.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 11/28/2022]
|
40
|
Woodcock MR, Vaughn-Wolfe J, Elias A, Kump DK, Kendall KD, Timoshevskaya N, Timoshevskiy V, Perry DW, Smith JJ, Spiewak JE, Parichy DM, Voss SR. Identification of Mutant Genes and Introgressed Tiger Salamander DNA in the Laboratory Axolotl, Ambystoma mexicanum. Sci Rep 2017; 7:6. [PMID: 28127056 PMCID: PMC5428337 DOI: 10.1038/s41598-017-00059-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/19/2016] [Indexed: 01/04/2023] Open
Abstract
The molecular genetic toolkit of the Mexican axolotl, a classic model organism, has matured to the point where it is now possible to identify genes for mutant phenotypes. We used a positional cloning-candidate gene approach to identify molecular bases for two historic axolotl pigment phenotypes: white and albino. White (d/d) mutants have defects in pigment cell morphogenesis and differentiation, whereas albino (a/a) mutants lack melanin. We identified in white mutants a transcriptional defect in endothelin 3 (edn3), encoding a peptide factor that promotes pigment cell migration and differentiation in other vertebrates. Transgenic restoration of Edn3 expression rescued the homozygous white mutant phenotype. We mapped the albino locus to tyrosinase (tyr) and identified polymorphisms shared between the albino allele (tyr a ) and tyr alleles in a Minnesota population of tiger salamanders from which the albino trait was introgressed. tyr a has a 142 bp deletion and similar engineered alleles recapitulated the albino phenotype. Finally, we show that historical introgression of tyr a significantly altered genomic composition of the laboratory axolotl, yielding a distinct, hybrid strain of ambystomatid salamander. Our results demonstrate the feasibility of identifying genes for traits in the laboratory Mexican axolotl.
Collapse
Affiliation(s)
- M. Ryan Woodcock
- Department of Biology, University of Kentucky, Lexington, KY 40506 USA
| | | | | | - D. Kevin Kump
- Department of Biology, University of Kentucky, Lexington, KY 40506 USA
| | - Katharina Denise Kendall
- Department of Biology, University of Kentucky, Lexington, KY 40506 USA
- School of Integrative Biology, University of Illinois, Urbana-Champaign, Urbana IL 61801 USA
| | | | | | - Dustin W. Perry
- Transposagen Biopharmaceuticals, 535 W 2nd Suite l0, Lexington, KY 40508 USA
| | - Jeramiah J. Smith
- Department of Biology, University of Kentucky, Lexington, KY 40506 USA
| | | | - David M. Parichy
- Department of Biology, University of Washington, Seattle, WA 98195 USA
- Department of Biology, University of Virginia, Charlottesville, VA 22903 USA
| | - S. Randal Voss
- Department of Biology, University of Kentucky, Lexington, KY 40506 USA
| |
Collapse
|
41
|
Tanaka EM. The Molecular and Cellular Choreography of Appendage Regeneration. Cell 2017; 165:1598-1608. [PMID: 27315477 DOI: 10.1016/j.cell.2016.05.038] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/02/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
Abstract
Recent advances in limb regeneration are revealing the molecular events that integrate growth control, cell fate programming, and positional information to yield the exquisite replacement of the amputated limb. Parallel progress in several invertebrate and vertebrate models has provided a broader context for understanding the mechanisms and the evolution of regeneration. Together, these discoveries provide a foundation for describing the principles underlying regeneration of complex, multi-tissue structures. As such these findings should provide a wealth of ideas for engineers seeking to reconstitute regeneration from constituent parts or to elicit full regeneration from partial regeneration events.
Collapse
Affiliation(s)
- Elly M Tanaka
- DFG Research Center for Regenerative Therapies, Technische Universität Dresden Fetscherstrasse 105, 01307 Dresden, GERMANY.
| |
Collapse
|
42
|
Joven A, Wang H, Pinheiro T, Hameed LS, Belnoue L, Simon A. Cellular basis of brain maturation and acquisition of complex behaviors in salamanders. Development 2017; 145:dev.160051. [DOI: 10.1242/dev.160051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022]
Abstract
The overall bauplan of the tetrapod brain is highly conserved, yet significant variations exist among species in terms of brain size, structural composition and cellular diversity. Understanding processes underlying neural and behavioral development in a wide range of species is important both from an evolutionary developmental perspective as well as for the identification of cell sources with post-developmental neurogenic potential. Here we characterize germinal processes in the brain of Notophthalmus viridescens and Pleurodeles waltl during both development and adulthood. Using a combination of cell tracking tools, including clonal analyses in new transgenic salamander lines we examine the origin of neural stem and progenitor cells found in the adult brain, determine regional variability in cell cycle length of progenitor cells, and show spatio-temporally orchestrated neurogenesis. We analyze how maturation of different brain regions and neuronal subpopulations are linked to the acquisition of complex behaviors, and how these behaviors are altered upon chemical ablation of dopamine neurons. Our data analyzed from an evolutionary perspective reveal both common and species-specific processes in tetrapod brain formation and function.
Collapse
Affiliation(s)
- Alberto Joven
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Heng Wang
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tiago Pinheiro
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - L. Shahul Hameed
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Laure Belnoue
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
43
|
Currie JD, Kawaguchi A, Traspas RM, Schuez M, Chara O, Tanaka EM. Live Imaging of Axolotl Digit Regeneration Reveals Spatiotemporal Choreography of Diverse Connective Tissue Progenitor Pools. Dev Cell 2016; 39:411-423. [PMID: 27840105 PMCID: PMC5127896 DOI: 10.1016/j.devcel.2016.10.013] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/30/2016] [Accepted: 10/17/2016] [Indexed: 01/05/2023]
Abstract
Connective tissues-skeleton, dermis, pericytes, fascia-are a key cell source for regenerating the patterned skeleton during axolotl appendage regeneration. This complexity has made it difficult to identify the cells that regenerate skeletal tissue. Inability to identify these cells has impeded a mechanistic understanding of blastema formation. By tracing cells during digit tip regeneration using brainbow transgenic axolotls, we show that cells from each connective tissue compartment have distinct spatial and temporal profiles of proliferation, migration, and differentiation. Chondrocytes proliferate but do not migrate into the regenerate. In contrast, pericytes proliferate, then migrate into the blastema and give rise solely to pericytes. Periskeletal cells and fibroblasts contribute the bulk of digit blastema cells and acquire diverse fates according to successive waves of migration that choreograph their proximal-distal and tissue contributions. We further show that platelet-derived growth factor signaling is a potent inducer of fibroblast migration, which is required to form the blastema.
Collapse
Affiliation(s)
- Joshua D Currie
- DFG Research Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauserstrasse 108, 01307 Dresden, Germany.
| | - Akane Kawaguchi
- DFG Research Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Ricardo Moreno Traspas
- DFG Research Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Maritta Schuez
- DFG Research Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Osvaldo Chara
- Center for Information Services and High Performance Computing (ZIH), Technische Universität Dresden, 01062 Dresden, Germany; Systems Biology Group (SysBio), Instituto de Física de Líquidos y Sistemas Biológicos (IFLySIB), CONICET, Universidad Nacional de La Plata (UNLP), B1900BTE La Plata, Buenos Aires, Argentina
| | - Elly M Tanaka
- DFG Research Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauserstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
44
|
Abstract
A small transparent crustacean called Parhyale hawaiensis has become a powerful model system for the study of limb and appendage regeneration.
Collapse
Affiliation(s)
- Enrique Amaya
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
45
|
Grillo M, Konstantinides N, Averof M. Old questions, new models: unraveling complex organ regeneration with new experimental approaches. Curr Opin Genet Dev 2016; 40:23-31. [DOI: 10.1016/j.gde.2016.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
|
46
|
Sugiura T, Wang H, Barsacchi R, Simon A, Tanaka EM. MARCKS-like protein is an initiating molecule in axolotl appendage regeneration. Nature 2016; 531:237-40. [PMID: 26934225 PMCID: PMC4795554 DOI: 10.1038/nature16974] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 01/07/2016] [Indexed: 12/14/2022]
Abstract
Identifying key molecules that launch regeneration has been a long-sought goal. Multiple regenerative animals show an initial wound-associated proliferative response that transits into sustained proliferation if a considerable portion of the body part has been removed. In the axolotl, appendage amputation initiates a round of wound-associated cell cycle induction followed by continued proliferation that is dependent on nerve-derived signals. A wound-associated molecule that triggers the initial proliferative response to launch regeneration has remained obscure. Here, using an expression cloning strategy followed by in vivo gain- and loss-of-function assays, we identified axolotl MARCKS-like protein (MLP) as an extracellularly released factor that induces the initial cell cycle response during axolotl appendage regeneration. The identification of a regeneration-initiating molecule opens the possibility of understanding how to elicit regeneration in other animals.
Collapse
Affiliation(s)
- Takuji Sugiura
- DFG Research Center for Regenerative Therapies (CRTD), Technische Universität Dresden
- Max Planck Institute for Molecular Cell Biology and Genetics
| | - Heng Wang
- Karolinska Institute, Department of Cell and Molecular Biology, Centre of Developmental Biology for Regenerative Medicine
| | - Rico Barsacchi
- Max Planck Institute for Molecular Cell Biology and Genetics
| | - Andras Simon
- Karolinska Institute, Department of Cell and Molecular Biology, Centre of Developmental Biology for Regenerative Medicine
| | - Elly M. Tanaka
- DFG Research Center for Regenerative Therapies (CRTD), Technische Universität Dresden
- Max Planck Institute for Molecular Cell Biology and Genetics
| |
Collapse
|
47
|
Keinath MC, Timoshevskiy VA, Timoshevskaya NY, Tsonis PA, Voss SR, Smith JJ. Initial characterization of the large genome of the salamander Ambystoma mexicanum using shotgun and laser capture chromosome sequencing. Sci Rep 2015; 5:16413. [PMID: 26553646 PMCID: PMC4639759 DOI: 10.1038/srep16413] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/14/2015] [Indexed: 12/22/2022] Open
Abstract
Vertebrates exhibit substantial diversity in genome size, and some of the largest genomes exist in species that uniquely inform diverse areas of basic and biomedical research. For example, the salamander Ambystoma mexicanum (the Mexican axolotl) is a model organism for studies of regeneration, development and genome evolution, yet its genome is ~10× larger than the human genome. As part of a hierarchical approach toward improving genome resources for the species, we generated 600 Gb of shotgun sequence data and developed methods for sequencing individual laser-captured chromosomes. Based on these data, we estimate that the A. mexicanum genome is ~32 Gb. Notably, as much as 19 Gb of the A. mexicanum genome can potentially be considered single copy, which presumably reflects the evolutionary diversification of mobile elements that accumulated during an ancient episode of genome expansion. Chromosome-targeted sequencing permitted the development of assemblies within the constraints of modern computational platforms, allowed us to place 2062 genes on the two smallest A. mexicanum chromosomes and resolves key events in the history of vertebrate genome evolution. Our analyses show that the capture and sequencing of individual chromosomes is likely to provide valuable information for the systematic sequencing, assembly and scaffolding of large genomes.
Collapse
Affiliation(s)
- Melissa C Keinath
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | | | | | | | - S Randal Voss
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA.,Spinal Cord and Brain and Injury Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|
48
|
Kuo TH, Kowalko JE, DiTommaso T, Nyambi M, Montoro DT, Essner JJ, Whited JL. TALEN-mediated gene editing of the thrombospondin-1 locus in axolotl. ACTA ACUST UNITED AC 2015; 2:37-43. [PMID: 27499866 PMCID: PMC4895330 DOI: 10.1002/reg2.29] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 01/14/2015] [Accepted: 01/20/2015] [Indexed: 12/26/2022]
Abstract
Loss-of-function genetics provides strong evidence for a gene's function in a wild-type context. In many model systems, this approach has been invaluable for discovering the function of genes in diverse biological processes. Axolotls are urodele amphibians (salamanders) with astonishing regenerative abilities, capable of regenerating entire limbs, portions of the tail (including spinal cord), heart, and brain into adulthood. With their relatively short generation time among salamanders, they offer an outstanding opportunity to interrogate natural mechanisms for appendage and organ regeneration provided that the tools are developed to address these long-standing questions. Here we demonstrate targeted modification of the thrombospondin-1 (tsp-1) locus using transcription-activator-like effector nucleases (TALENs) and identify a role of tsp-1 in recruitment of myeloid cells during limb regeneration. We find that while tsp-1-edited mosaic animals still regenerate limbs, they exhibit a reduced subepidermal collagen layer in limbs and an increased number of myeloid cells within blastemas. This work presents a protocol for generating and genotyping mosaic axolotls with TALEN-mediated gene edits.
Collapse
Affiliation(s)
- Tzu-Hsing Kuo
- Brigham Regenerative Medicine Center and Department of Orthopedic Surgery Brigham and Women's Hospital Harvard Medical School Harvard Stem Cell Institute Cambridge Massachusetts 02139 USA
| | - Johanna E Kowalko
- Department of Genetics Development and Cell Biology Iowa State University Ames Iowa 50011 USA
| | - Tia DiTommaso
- Brigham Regenerative Medicine Center and Department of Orthopedic Surgery Brigham and Women's Hospital Harvard Medical School Harvard Stem Cell Institute Cambridge Massachusetts 02139 USA
| | - Mandi Nyambi
- Brigham Regenerative Medicine Center and Department of Orthopedic Surgery Brigham and Women's Hospital Harvard Medical School Harvard Stem Cell Institute Cambridge Massachusetts 02139 USA
| | - Daniel T Montoro
- Brigham Regenerative Medicine Center and Department of Orthopedic Surgery Brigham and Women's Hospital Harvard Medical School Harvard Stem Cell Institute Cambridge Massachusetts 02139 USA
| | - Jeffrey J Essner
- Department of Genetics Development and Cell Biology Iowa State University Ames Iowa 50011 USA
| | - Jessica L Whited
- Brigham Regenerative Medicine Center and Department of Orthopedic Surgery Brigham and Women's Hospital Harvard Medical School Harvard Stem Cell Institute Cambridge Massachusetts 02139 USA
| |
Collapse
|
49
|
Rodrigo Albors A, Tanaka EM. High-efficiency electroporation of the spinal cord in larval axolotl. Methods Mol Biol 2015; 1290:115-125. [PMID: 25740481 DOI: 10.1007/978-1-4939-2495-0_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Axolotls are well known for their remarkable ability to regenerate complex body parts and structures throughout life, including the entire limb and tail. Particularly fascinating is their ability to regenerate a fully functional spinal cord after losing the tail. Electroporation of DNA plasmids or morpholinos is a valuable tool to gain mechanistic insight into the cellular and molecular basis of regeneration. It provides among other advantages a simple and fast method to test gene function in a temporally and spatially controlled manner. Some classic drawbacks of the method, such as low transfection efficiency and damage to the tissue, had hindered our understanding of the contribution of different signaling pathways to regeneration. Here, we describe a comprehensive protocol for electroporation of the axolotl spinal cord that overcomes this limitations using a combination of high-voltage and short-length pulses followed by lower-voltage and longer-length pulses. Our approach yields highly efficient transfection of spinal cord cells with minimal tissue damage, which now allows the molecular dissection of spinal cord regeneration.
Collapse
Affiliation(s)
- Aida Rodrigo Albors
- DFG Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, 01307, Dresden, Germany
| | | |
Collapse
|
50
|
Abstract
The ability to introduce DNA elements into host cells and analyze the effects has revolutionized modern biology. Here we describe a protocol to generate Moloney murine leukemia virus (MMLV)-based, replication-incompetent pseudotyped retrovirus capable of infecting axolotls and incorporating genetic information into their genome. When pseudotyped with vesicular stomatitis virus (VSV)-G glycoprotein, the retroviruses can infect a broad range of proliferative axolotl cell types. However, if the retrovirus is pseudotyped with an avian sarcoma leukosis virus (ASLV)-A envelope protein, only axolotl cells experimentally manipulated to express the cognate tumor virus A (TVA) receptor can be targeted by infections. These strategies enable robust transgene expression over many cell divisions, cell lineage tracing, and cell subtype targeting for gene expression.
Collapse
|