1
|
Hu H, Wang X, Yu H, Wang Z. Extracellular vesicular microRNAs and cardiac hypertrophy. Front Endocrinol (Lausanne) 2025; 15:1444940. [PMID: 39850481 PMCID: PMC11753959 DOI: 10.3389/fendo.2024.1444940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Cardiac hypertrophy is an adaptive response to pressure or volume overload such as hypertension and ischemic heart diseases. Sustained cardiac hypertrophy eventually leads to heart failure. The pathophysiological alterations of hypertrophy are complex, involving both cellular and molecular systems. Understanding the molecular events that inhibit or repress cardiac hypertrophy may help identify novel therapeutic strategies. Increasing evidence has indicated that extracellular vesicle (EV)-derived microRNAs (miRNAs) play a significant role in the development and progression of cardiac hypertrophy. In this review, we briefly review recent advancements in EV research, especially on biogenesis, cargoes and its role in cardiac hypertrophy. We then describe the latest findings regarding EV-derived miRNAs, highlighting their functions and regulatory mechanisms in cardiac hypertrophy. Finally, the potential role of EV-derived miRNAs as targets in the diagnosis and treatment of cardiac hypertrophy will be discussed.
Collapse
Affiliation(s)
- Hai Hu
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- School of Basic Medicine, Baotou Medical College, Baotou, China
| | - Xiulian Wang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
| | - Hui Yu
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- School of Basic Medicine, Baotou Medical College, Baotou, China
| | - Zhanli Wang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
| |
Collapse
|
2
|
Lin S, Yang Y, Zhou Z, Li W, Wang X, Liu Y, Bi Y, Mao J. Regulation mechanism of microRNAs in cardiac cells-derived exosomes in cell crosstalk. Front Pharmacol 2024; 15:1399850. [PMID: 39228519 PMCID: PMC11368792 DOI: 10.3389/fphar.2024.1399850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024] Open
Abstract
The heart is a multicellular system, and the intercellular crosstalk mechanism is very important for the growth and development of the heart and even the organs, tissues, and cells at a distance. As a kind of extracellular vesicle, exosomes are released by different types of cells and can carry specific genetic material, endosomal proteins, cytokines, etc., which are the main material basis for mediating cell crosstalk mechanism. Among them, microRNA carried by cardiac cells-derived exosomes have highly conserved sequences and play a key role in regulating the function of organs, tissues, and cells related to cardiovascular diseases and their complications and comorbidities, which have attracted extensive attention in the medical community in recent years. Following up on the latest research progress at home and abroad, this review systematically summarized the regulatory role of microRNA from cardiac cells-derived exosomes in various cell crosstalk, including not only cardiac cells (including cardiomyocytes, fibroblasts, myofibroblast, cardiac progenitor cells, cardiac microvascular endothelial cells, cardiosphere-derived cells, etc.) but also tumor cells, bone marrow progenitor cells, and other tissue cells, in order to provide a reference for the prevention and treatment of cardiovascular diseases and their complications and comorbidities.
Collapse
Affiliation(s)
- Shanshan Lin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuanjian Yang
- Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhou Zhou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wen Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yu Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingfei Bi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
3
|
Albericio G, Higuera M, Araque P, Sánchez C, Herrero D, García-Brenes MA, Formentini L, Torán JL, Mora C, Bernad A. Development of a Bmi1+ Cardiac Mouse Progenitor Immortalized Model to Unravel the Relationship with Its Protective Vascular Endothelial Niche. Int J Mol Sci 2024; 25:8815. [PMID: 39201501 PMCID: PMC11354400 DOI: 10.3390/ijms25168815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
The adult mammalian heart has been demonstrated to be endowed with low but real turnover capacity, especially for cardiomyocytes, the key functional cell type. The source, however, of that turnover capacity remains controversial. In this regard, we have defined and characterized a resident multipotent cardiac mouse progenitor population, Bmi1+DR (for Bmi1+ Damage-Responsive cells). Bmi1+DR is one of the cell types with the lowest ROS (Reactive Oxygen Species) levels in the adult heart, being particularly characterized by their close relationship with cardiac vessels, most probably involved in the regulation of proliferation/maintenance of Bmi1+DR. This was proposed to work as their endothelial niche. Due to the scarcity of Bmi1+DR cells in the adult mouse heart, we have generated an immortalization/dis-immortalization model using Simian Vacuolating Virus 40-Large Antigen T (SV40-T) to facilitate their in vitro characterization. We have obtained a heterogeneous population of immortalized Bmi1+DR cells (Bmi1+DRIMM) that was validated attending to different criteria, also showing a comparable sensitivity to strong oxidative damage. Then, we concluded that the Bmi1-DRIMM population is an appropriate model for primary Bmi1+DR in vitro studies. The co-culture of Bmi1+DRIMM cells with endothelial cells protects them against oxidative damage, showing a moderate depletion in non-canonical autophagy and also contributing with a modest metabolic regulation.
Collapse
Affiliation(s)
- Guillermo Albericio
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
- Molecular Biology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Marina Higuera
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
| | - Paula Araque
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
| | - Cristina Sánchez
- Molecular Biology Department, Molecular Biology Center Severo Ochoa (CBMSO), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Diego Herrero
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
| | - Miguel A. García-Brenes
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
| | - Laura Formentini
- Molecular Biology Department, Molecular Biology Center Severo Ochoa (CBMSO), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José Luis Torán
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
| | - Carmen Mora
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
| | - Antonio Bernad
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
| |
Collapse
|
4
|
Liu X, Sun H, Zheng L, Zhang J, Su H, Li B, Wu Q, Liu Y, Xu Y, Song X, Yu Y. Adipose-derived miRNAs as potential biomarkers for predicting adulthood obesity and its complications: A systematic review and bioinformatic analysis. Obes Rev 2024; 25:e13748. [PMID: 38590187 DOI: 10.1111/obr.13748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
Adipose tissue is the first and primary target organ of obesity and the main source of circulating miRNAs in patients with obesity. This systematic review aimed to analyze and summarize the generation and mechanisms of adipose-derived miRNAs and their role as early predictors of various obesity-related complications. Literature searches in the PubMed and Web of Science databases using terms related to miRNAs, obesity, and adipose tissue. Pre-miRNAs from the Human MicroRNA Disease Database, known to regulate obesity-related metabolic disorders, were combined for intersection processing. Validated miRNA targets were sorted through literature review, and enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes via the KOBAS online tool, disease analysis, and miRNA transcription factor prediction using the TransmiR v. 2.0 database were also performed. Thirty miRNAs were identified using both obesity and adipose secretion as criteria. Seventy-nine functionally validated targets associated with 30 comorbidities of these miRNAs were identified, implicating pathways such as autophagy, p53 pathways, and inflammation. The miRNA precursors were analyzed to predict their transcription factors and explore their biosynthesis mechanisms. Our findings offer potential insights into the epigenetic changes related to adipose-driven obesity-related comorbidities.
Collapse
Affiliation(s)
- Xiyan Liu
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
| | - Huayi Sun
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning, China
- Department of Colorectal Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lixia Zheng
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
| | - Jian Zhang
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, Liaoning, China
| | - Han Su
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
| | - Bingjie Li
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, Liaoning, China
| | - Qianhui Wu
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, Liaoning, China
| | - Yunchan Liu
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, Liaoning, China
| | - Yingxi Xu
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaoyu Song
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
| | - Yang Yu
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Olson SR, Tang WHW, Liu CF. Non-Coding Ribonucleic Acids as Diagnostic and Therapeutic Targets in Cardiac Fibrosis. Curr Heart Fail Rep 2024; 21:262-275. [PMID: 38485860 PMCID: PMC11090942 DOI: 10.1007/s11897-024-00653-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 05/14/2024]
Abstract
PURPOSE OF REVIEW Cardiac fibrosis is a crucial juncture following cardiac injury and a precursor for many clinical heart disease manifestations. Epigenetic modulators, particularly non-coding RNAs (ncRNAs), are gaining prominence as diagnostic and therapeutic tools. RECENT FINDINGS miRNAs are short linear RNA molecules involved in post-transcriptional regulation; lncRNAs and circRNAs are RNA sequences greater than 200 nucleotides that also play roles in regulating gene expression through a variety of mechanisms including miRNA sponging, direct interaction with mRNA, providing protein scaffolding, and encoding their own products. NcRNAs have the capacity to regulate one another and form sophisticated regulatory networks. The individual roles and disease relevance of miRNAs, lncRNAs, and circRNAs to cardiac fibrosis have been increasingly well described, though the complexity of their interrelationships, regulatory dynamics, and context-specific roles needs further elucidation. This review provides an overview of select ncRNAs relevant in cardiac fibrosis as a surrogate for many cardiac disease states with a focus on crosstalk and regulatory networks, variable actions among different disease states, and the clinical implications thereof. Further, the clinical feasibility of diagnostic and therapeutic applications as well as the strategies underway to advance ncRNA theranostics is explored.
Collapse
Affiliation(s)
- Samuel R Olson
- Medicine Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - W H Wilson Tang
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
- Kaufman Center for Heart Failure Treatment and Recovery, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Chia-Feng Liu
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
6
|
Zhang L, Xie F, Zhang F, Lu B. The potential roles of exosomes in pathological cardiomyocyte hypertrophy mechanisms and therapy: A review. Medicine (Baltimore) 2024; 103:e37994. [PMID: 38669371 PMCID: PMC11049793 DOI: 10.1097/md.0000000000037994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Pathological cardiac hypertrophy, characterized by the enlargement of cardiac muscle cells, leads to serious cardiac conditions and stands as a major global health issue. Exosomes, comprising small lipid bilayer vesicles, are produced by various cell types and found in numerous bodily fluids. They play a pivotal role in intercellular communication by transferring bioactive cargos to recipient cells or activating signaling pathways in target cells. Exosomes from cardiomyocytes, endothelial cells, fibroblasts, and stem cells are key in regulating processes like cardiac hypertrophy, cardiomyocyte survival, apoptosis, fibrosis, and angiogenesis within the context of cardiovascular diseases. This review delves into exosomes' roles in pathological cardiac hypertrophy, first elucidating their impact on cell communication and signaling pathways. It then advances to discuss how exosomes affect key hypertrophic processes, including metabolism, fibrosis, oxidative stress, and angiogenesis. The review culminates by evaluating the potential of exosomes as biomarkers and their significance in targeted therapeutic strategies, thus emphasizing their critical role in the pathophysiology and management of cardiac hypertrophy.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Xie
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fengmei Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Beiyao Lu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Jiang J, Zhang X, Wang H, Spanos M, Jiang F, Ni L, Li J, Li G, Lin Y, Xiao J. Closer to The Heart: Harnessing the Power of Targeted Extracellular Vesicle Therapies. Adv Biol (Weinh) 2024; 8:e2300141. [PMID: 37953665 DOI: 10.1002/adbi.202300141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/08/2023] [Indexed: 11/14/2023]
Abstract
Extracellular vesicles (EVs) have emerged as novel diagnostic and therapeutic approaches for cardiovascular diseases. EVs derived from various origins exhibit distinct effects on the cardiovascular system. However, the application of native EVs is constrained due to their poor stabilities and limited targeting capabilities. Currently, targeted modification of EVs primarily involves genetic engineering, chemical modification (covalent, non-covalent), cell membrane modification, and biomaterial encapsulation. These techniques enhance the stability, biological activity, target-binding capacity, and controlled release of EVs at specific cells and tissues. The diverse origins of cardioprotective EVs are covered, and the applications of cardiac-targeting EV delivery systems in protecting against cardiovascular diseases are discussed. This review summarizes the current stage of research on the potential of EV-based targeted therapies for addressing cardiovascular disorders.
Collapse
Affiliation(s)
- Jizong Jiang
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xinxin Zhang
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Hongyun Wang
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Fei Jiang
- Department of Nursing, Union Hospital, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Lingyan Ni
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jin Li
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Yanjuan Lin
- Department of Nursing, Union Hospital, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Junjie Xiao
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
8
|
Amirabbas Rostami, Torabi SM, Masoumi S, Poudineh M, Poudineh S, Rabori VS. The Crosstalk between Coronary Artery Bypass Grafting and miRNAs. BIOL BULL+ 2023; 50:1167-1171. [DOI: 10.1134/s1062359023602082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 12/05/2024]
|
9
|
Salvatori F, D’Aversa E, Serino ML, Singh AV, Secchiero P, Zauli G, Tisato V, Gemmati D. miRNAs Epigenetic Tuning of Wall Remodeling in the Early Phase after Myocardial Infarction: A Novel Epidrug Approach. Int J Mol Sci 2023; 24:13268. [PMID: 37686073 PMCID: PMC10487654 DOI: 10.3390/ijms241713268] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of death in Western countries. An early diagnosis decreases subsequent severe complications such as wall remodeling or heart failure and improves treatments and interventions. Novel therapeutic targets have been recognized and, together with the development of direct and indirect epidrugs, the role of non-coding RNAs (ncRNAs) yields great expectancy. ncRNAs are a group of RNAs not translated into a product and, among them, microRNAs (miRNAs) are the most investigated subgroup since they are involved in several pathological processes related to MI and post-MI phases such as inflammation, apoptosis, angiogenesis, and fibrosis. These processes and pathways are finely tuned by miRNAs via complex mechanisms. We are at the beginning of the investigation and the main paths are still underexplored. In this review, we provide a comprehensive discussion of the recent findings on epigenetic changes involved in the first phases after MI as well as on the role of the several miRNAs. We focused on miRNAs function and on their relationship with key molecules and cells involved in healing processes after an ischemic accident, while also giving insight into the discrepancy between males and females in the prognosis of cardiovascular diseases.
Collapse
Affiliation(s)
- Francesca Salvatori
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.S.)
| | - Elisabetta D’Aversa
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.S.)
| | - Maria Luisa Serino
- Centre Haemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.S.)
| | - Giorgio Zauli
- Department of Environmental Science and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.S.)
- LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
- University Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.S.)
- Centre Haemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
- University Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
10
|
Reinal I, Ontoria-Oviedo I, Selva M, Casini M, Peiró-Molina E, Fambuena-Santos C, Climent AM, Balaguer J, Cañete A, Mora J, Raya Á, Sepúlveda P. Modeling Cardiotoxicity in Pediatric Oncology Patients Using Patient-Specific iPSC-Derived Cardiomyocytes Reveals Downregulation of Cardioprotective microRNAs. Antioxidants (Basel) 2023; 12:1378. [PMID: 37507917 PMCID: PMC10376252 DOI: 10.3390/antiox12071378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Anthracyclines are widely used in the treatment of many solid cancers, but their efficacy is limited by cardiotoxicity. As the number of pediatric cancer survivors continues to rise, there has been a concomitant increase in people living with anthracycline-induced cardiotoxicity. Accordingly, there is an ongoing need for new models to better understand the pathophysiological mechanisms of anthracycline-induced cardiac damage. Here we generated induced pluripotent stem cells (iPSCs) from two pediatric oncology patients with acute cardiotoxicity induced by anthracyclines and differentiated them to ventricular cardiomyocytes (hiPSC-CMs). Comparative analysis of these cells (CTX hiPSC-CMs) and control hiPSC-CMs revealed that the former were significantly more sensitive to cell injury and death from the anthracycline doxorubicin (DOX), as measured by viability analysis, cleaved caspase 3 expression, oxidative stress, genomic and mitochondrial damage and sarcomeric disorganization. The expression of several mRNAs involved in structural integrity and inflammatory response were also differentially affected by DOX. Functionally, optical mapping analysis revealed higher arrythmia complexity after DOX treatment in CTX iPSC-CMs. Finally, using a panel of previously identified microRNAs associated with cardioprotection, we identified lower levels of miR-22-3p, miR-30b-5p, miR-90b-3p and miR-4732-3p in CTX iPSC-CMs under basal conditions. Our study provides valuable phenotype information for cellular models of cardiotoxicity and highlights the significance of using patient-derived cardiomyocytes for studying the associated pathogenic mechanisms.
Collapse
Affiliation(s)
- Ignacio Reinal
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital la Fe, 46026 Valencia, Spain
| | - Imelda Ontoria-Oviedo
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital la Fe, 46026 Valencia, Spain
| | - Marta Selva
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital la Fe, 46026 Valencia, Spain
| | - Marilù Casini
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital la Fe, 46026 Valencia, Spain
| | - Esteban Peiró-Molina
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital la Fe, 46026 Valencia, Spain
- Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | | | - Andreu M Climent
- ITACA Institute, Universitat Politècnica de València, 46026 Valencia, Spain
| | - Julia Balaguer
- Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
- Transtational Research in Cancer Unit-Pediatric Oncology, Health Research Institute Hospital La Fe, 46026 Valencia, Spain
| | - Adela Cañete
- Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
- Transtational Research in Cancer Unit-Pediatric Oncology, Health Research Institute Hospital La Fe, 46026 Valencia, Spain
- Department of Pediatrics, University of Valencia, 46010 Valencia, Spain
| | - Jaume Mora
- Oncology Service, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Ángel Raya
- Regenerative Medicine Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
- Program for Clinical Translation of Regenerative Medicine in Catalonia-P-[CMRC], L'Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carlos III Institute of Health, 28029 Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital la Fe, 46026 Valencia, Spain
- Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Carlos III Institute of Health, 28029 Madrid, Spain
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
11
|
Raffee LA, Alawneh KZ, Alshehabat MAM, Haddad H, Jaradat SA. MicroRNA profiling in dogs undergoing induced ischemic heart infarction: An experimental study. Vet World 2023; 16:1319-1324. [PMID: 37577186 PMCID: PMC10421551 DOI: 10.14202/vetworld.2023.1319-1324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/08/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim MicroRNAs (miRNAs) play an important role in various biological functions. According to many studies, miRNA expression is tissue-specific, strongly controlled throughout embryogenesis, and over- or under-expressed in numerous disorders, including cardiovascular pathologies. This study aimed to screen, characterize, and profile many induced biomarkers (miRNAs) in dog serum before and after experimentally inducing a regional myocardial infarction (MI) by occluding the coronary arteries under general anesthesia. Materials and Methods A preclinical experimental animal study recruited 12 healthy canine dogs. The selected canine dogs were anesthetized with 1 mg/kg xylazine and 15 mg/kg ketamine before undergoing femoral arterial catheterization under fluoroscopic supervision. Commercial assay kits were used to purify total RNA and miRNA before the occlusion and 2 h after the occlusion according to the manufacturer's guidelines, and the samples were stored in RNase/DNase-free water at -80°C. Data were analyzed by GraphPad Prism 5.0 software (GraphPad Prism, San Diego, CA) SPSS, and GenEx software (www.multid.se) or (REST V3). Results Among 325 transcribed genes, 20 were identified in 2 h. After MI, 14 biomarkers were negative, indicating downregulation, and 6 (3-F08, 3-B10, 4-A11, 1-A06, 2-E01, 3-F10) were positive, indicating upregulation. Polymerase chain reaction assay results showed a normalized fold-change in gene expression in the test sample. Fold values >1 represented a biologically significant change. Conclusion Profiling of miRNAs before and after MI in a dog model revealed upregulation of six previously unidentified biomarkers (3-F08, 3-B10, 4-A11, 1-A06, 2-E01, and 3-F10), indicating various miRNA regulatory patterns.
Collapse
Affiliation(s)
- Liqaa A. Raffee
- Department of Accident and Emergency Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Khaled Z. Alawneh
- Department of Diagnostic Radiology and Nuclear Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Musa Ahmed Mohammed Alshehabat
- Department of Clinical Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Hazem Haddad
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Saied A. Jaradat
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
12
|
Ceja L, Escopete SS, Hughes L, Lopez LV, Camberos V, Vallejos P, Wall NR, Kearns-Jonker M. Neonatal Cardiovascular-Progenitor-Cell-Derived Extracellular Vesicles Activate YAP1 in Adult Cardiac Progenitor Cells. Int J Mol Sci 2023; 24:ijms24098088. [PMID: 37175796 PMCID: PMC10179407 DOI: 10.3390/ijms24098088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
New stem cell and extracellular-vesicle-based therapies have the potential to improve outcomes for the increasing number of patients with heart failure. Since neonates have a significantly enhanced regenerative ability, we hypothesized that extracellular vesicles isolated from Islet-1+ expressing neonatal human cardiovascular progenitors (CPCs) will induce transcriptomic changes associated with improved regenerative capability when co-cultured with CPCs derived from adult humans. In order to test this hypothesis, we isolated extracellular vesicles from human neonatal Islet-1+ CPCs, analyzed the extracellular vesicle content using RNAseq, and treated adult CPCs with extracellular vesicles derived from neonatal CPCs to assess their functional effect. AKT, ERBB, and YAP1 transcripts were elevated in adult CPCs treated with neonatal CPC-derived extracellular vesicles. YAP1 is lost after the neonatal period but can stimulate cardiac regeneration. Our results demonstrate that YAP1 and additional transcripts associated with improved cardiovascular regeneration, as well as the activation of the cell cycle, can be achieved by the treatment of adult CPCs with neonatal CPC-derived extracellular vesicles. Progenitor cells derived from neonates secrete extracellular vesicles with the potential to stimulate and potentially improve functional effects in adult CPCs used for cardiovascular repair.
Collapse
Affiliation(s)
- Lourdes Ceja
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Sean S Escopete
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lorelei Hughes
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Larry V Lopez
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Victor Camberos
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Paul Vallejos
- Division of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Nathan R Wall
- Division of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Mary Kearns-Jonker
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
13
|
Shintani-Ishida K, Tsurumi R, Ikegaya H. Decrease in the expression of muscle-specific miRNAs, miR-133a and miR-1, in myoblasts with replicative senescence. PLoS One 2023; 18:e0280527. [PMID: 36649291 PMCID: PMC9844915 DOI: 10.1371/journal.pone.0280527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
Muscles that are injured or atrophied by aging undergo myogenic regeneration. Although myoblasts play a pivotal role in myogenic regeneration, their function is impaired with aging. MicroRNAs (miRNAs) are also involved in myogenic regeneration. MiRNA (miR)-1 and miR-133a are muscle-specific miRNAs that control the proliferation and differentiation of myoblasts. In this study, we determined whether miR-1 and miR-133a expression in myoblasts is altered with cellular senescence and involved in senescence-impaired myogenic differentiation. C2C12 murine skeletal myoblasts were converted to a replicative senescent state by culturing to a high passage number. Although miR-1 and miR-133a expression was largely induced during myogenic differentiation, expression was suppressed in cells at high passage numbers (passage 10 and/or passage 20). Although the senescent myoblasts exhibited a deterioration of myogenic differentiation, transfection of miR-1 or miR-133a into myoblasts ameliorated cell fusion. Treatment with the glutaminase 1 inhibitor, BPTES, removed senescent cells from C2C12 myoblasts with a high passage number, whereas myotube formation and miR-133a expression was increased. In addition, primary cultured myoblasts prepared from aged C57BL/6J male mice (20 months old) exhibited a decrease in miR-1 and miR-133a levels compared with younger mice (3 months old). The results suggest that replicative senescence suppresses muscle-specific miRNA expression in myoblasts, which contributes to the senescence-related dysfunction of myogenic regeneration.
Collapse
Affiliation(s)
- Kaori Shintani-Ishida
- Department of Forensic Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Riko Tsurumi
- Department of Forensic Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroshi Ikegaya
- Department of Forensic Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
14
|
Gao R, Li X. Extracellular Vesicles and Pathological Cardiac Hypertrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:17-31. [PMID: 37603270 DOI: 10.1007/978-981-99-1443-2_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Pathological cardiac hypertrophy is a well-recognized risk factor for cardiovascular diseases (CVDs). Although lots of efforts have been made to illustrate the underlying molecular mechanisms, many issues remain undiscovered. Recently, intercellular communication by delivering small molecules between different cell types in the progression of cardiac hypertrophy has been reported, including bioactive nucleic acids or proteins. These extracellular vesicles (EVs) may act in an autocrine or paracrine manner between cardiomyocytes and noncardiomyocytes to provoke or inhibit cardiac remodeling and hypertrophy. Besides, EVs can be used as novel diagnostic or prognostic biomarkers in cardiac hypertrophy and also may serve as potential therapeutic targets due to its biocompatible nature and low immunogenicity. In this chapter, we will first summarize the current knowledge about EVs from different cells in pathological cardiac hypertrophy. Then, we will focus on the value of EVs as therapeutic agents and biomarkers for pathological myocardial hypertrophy.
Collapse
Affiliation(s)
- Rongrong Gao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Machado HC, Bispo S, Dallagiovanna B. miR-6087 Might Regulate Cell Cycle–Related mRNAs During Cardiomyogenesis of hESCs. Bioinform Biol Insights 2023; 17:11779322231161918. [PMID: 37020502 PMCID: PMC10069004 DOI: 10.1177/11779322231161918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/16/2023] [Indexed: 04/03/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that act as negative regulators of gene expression at the post-transcriptional level, promoting mRNA degradation or translation repression. Despite the well-described presence of miRNAs in various human tissues, there is still a lack of information about the relationship between miRNAs and the translation regulation in human embryonic stem cells (hESCs) during cardiomyogenesis. Here, we investigate RNA-seq data from hESCs, focusing on distinct stages of cardiomyogenesis and searching for polysome-bound miRNAs that could be involved in translational regulation. We identify miR-6087 as a differentially expressed miRNA at latest steps of cardiomyocyte differentiation. We analyzed the coexpression pattern between the differentially expressed mRNAs and miR-6087, evaluating whether they are predicted targets of the miRNA. We arranged the genes into an interaction network and identified BLM, RFC4, RFC3, and CCNA2 as key genes of the network. A post hoc analysis of the key genes suggests that miR-6087 could act as a regulator of the cell cycle in hESC during cardiomyogenesis.
Collapse
Affiliation(s)
- Hellen Cristine Machado
- Laboratory of Basic Stem-Cell Biology,
Instituto Carlos Chagas – FIOCRUZ-PR, Curitiba, Brazil
| | - Saloe Bispo
- Laboratory of Molecular and Systems
Biology of Trypanosomatids, Instituto Carlos Chagas – FIOCRUZ-PR, Curitiba,
Brazil
| | - Bruno Dallagiovanna
- Laboratory of Basic Stem-Cell Biology,
Instituto Carlos Chagas – FIOCRUZ-PR, Curitiba, Brazil
- Bruno Dallagiovanna, Laboratory of Basic
Stem-Cell Biology, Instituto Carlos Chagas – FIOCRUZ-PR, Rua Professor Algacyr
Munhoz Mader, 3775, Curitiba 81350-010, Brazil.
| |
Collapse
|
16
|
Lopez LV, Camberos V, Bailey LL, Hasaniya N, Ramos C, Hughes L, Knox C, Kearns-Jonker MK. MicroRNA Expression in the Infarcted Heart Following Neonatal Cardiovascular Progenitor Cell Transplantation in a Sheep Model of Stem Cell-Based Repair. Cell Transplant 2022; 31:9636897221136787. [PMID: 36564913 PMCID: PMC9793054 DOI: 10.1177/09636897221136787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Myocardial infarctions affect approximately 735,000 people annually in the United States and have a substantial impact on quality of life. Neonates have an enhanced capability of repairing cardiovascular damage, while adults do not. The mechanistic basis for this age-dependent difference in regenerative capacity remains unknown. Recent studies have shown that microRNAs (miRNAs) play a significant role in regulating the regenerative ability of cardiovascular cells. This report defines the alterations in miRNA expression within the cardiovascular repair zone of infarcted sheep hearts following intracardiac injection of neonatal islet-1+ cardiovascular progenitor cells. Sheep were infarcted via left anterior descending coronary artery ligation. After 3 to 4 weeks of infarction, sheep neonatal islet-1+ cardiovascular progenitor cells were injected into the infarcted area for repair. Cell-treated sheep were euthanized 2 months following cell injection, and their hearts were harvested for the analysis of miRNA and gene expression within the cardiovascular repair zone. Ten miRNAs were differentially regulated in vivo, including miR-99, miR-100, miR-302a, miR-208a, miR-665, miR-1, miR-499a, miR-34a, miR-133a, and miR-199a. These miRNAs promote stemness, cell division, and survival. Several signaling pathways are regulated by these miRNAs, including Hippo, Wnt, and Erythroblastic Leukemia Viral Oncogene B (ERBB). Transcripts encoding Wnt, ERBB, and Neuregulin 1 (NRG1) were elevated in vivo in the infarct repair zone. Wnt5a signaling and ERBB/NRG1 transcripts contribute to activation of Yes-Associated Protein 1. MiRNAs that impact proliferation, cell survival, and signaling pathways that promote regeneration were induced during cardiovascular repair in the sheep model. This information can be used to design new approaches for the optimization of miRNA-based treatments for the heart.
Collapse
Affiliation(s)
- Larry V. Lopez
- Department of Pathology and Human
Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Victor Camberos
- Department of Pathology and Human
Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Leonard L. Bailey
- Department of Cardiovascular and
Thoracic Surgery, Loma Linda University School of Medicine, Loma Linda, CA,
USA
| | - Nahidh Hasaniya
- Department of Cardiovascular and
Thoracic Surgery, Loma Linda University School of Medicine, Loma Linda, CA,
USA
| | - Christopher Ramos
- Department of Pathology and Human
Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lorelei Hughes
- Department of Pathology and Human
Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Cole Knox
- Department of Pathology and Human
Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Mary K. Kearns-Jonker
- Department of Pathology and Human
Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA,Mary K. Kearns-Jonker, Department of
Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma
Linda, CA 92350, USA.
| |
Collapse
|
17
|
An Z, Tian J, Liu Y, Zhao X, Yang X, Yong J, Liu L, Zhang L, Jiang W, Song X, Zhang H. Exosomes as a Cell-free Therapy for Myocardial Injury Following Acute Myocardial Infarction or Ischemic Reperfusion. Aging Dis 2022; 13:1770-1786. [PMID: 36465167 PMCID: PMC9662265 DOI: 10.14336/ad.2022.0416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/16/2022] [Indexed: 08/13/2023] Open
Abstract
Exosomes, which contain miRNA, have been receiving growing attention in cardiovascular therapy because of their role in mediating cell-cell communication, autophagy, apoptosis, inflammation, and angiogenesis. Several studies have suggested that miRNA derived from exosomes can be used to detect myocardial infarctions (MI) in patients. Basic research also suggests that exosomes could serve as a potential therapeutic target for treating acute myocardial infarction. Ischemia/reperfusion (IR) injury is associated with adverse cardiac events after acute MI. We aim to review the potential benefits and mechanisms of exosomes in treating MI and IR injury.
Collapse
Affiliation(s)
- Ziyu An
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Jinfan Tian
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Yue Liu
- Cardiovascular disease center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Xueyao Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Jingwen Yong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Libo Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Lijun Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Wenjian Jiang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Hongjia Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
18
|
Cagnin S, Brugnaro M, Millino C, Pacchioni B, Troiano C, Di Sante M, Kaludercic N. Monoamine Oxidase-Dependent Pro-Survival Signaling in Diabetic Hearts Is Mediated by miRNAs. Cells 2022; 11:2697. [PMID: 36078109 PMCID: PMC9454570 DOI: 10.3390/cells11172697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 10/05/2023] Open
Abstract
Diabetes leads to cardiomyopathy and heart failure, the leading cause of death for diabetic patients. Monoamine oxidase (MAO) inhibition in diabetic cardiomyopathy prevents oxidative stress, mitochondrial and endoplasmic reticulum stress and the development of diastolic dysfunction. However, it is unclear whether, in addition to the direct effects exerted on the mitochondria, MAO activity is able to post-transcriptionally regulate cardiomyocyte function and survival in diabetes. To this aim, we performed gene and miRNA expression profiling in cardiac tissue from streptozotocin-treated mice (model of type 1 diabetes (T1D)), administered with either vehicle or MAOs inhibitor pargyline for 12 weeks. We found that inhibition of MAO activity in T1D hearts leads to profound transcriptomic changes, affecting autophagy and pro-survival pathways activation. MAO activity in T1D hearts increased miR-133a-3p, -193a-3p and -27a-3p expression. These miRNAs target insulin-like growth factor receptor 1 (Igf1r), growth factor receptor bound protein 10 and inositol polyphosphate 4 phosphatase type 1A, respectively, all components of the IGF1R/PI3K/AKT signaling pathway. Indeed, AKT activation was significantly downregulated in T1D hearts, whereas MAO inhibition restored the activation of this pro-survival pathway. The present study provides an important link between MAO activity, transcriptomic changes and activation of pro-survival signaling and autophagy in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Stefano Cagnin
- Department of Biology, University of Padova, 35131 Padova, Italy
- CIR-Myo Myology Center, University of Padova, 35131 Padova, Italy
| | - Marco Brugnaro
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Caterina Millino
- Department of Biology, University of Padova, 35131 Padova, Italy
| | | | - Carmen Troiano
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Moises Di Sante
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Nina Kaludercic
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Neuroscience Institute, National Research Council of Italy (CNR), 35131 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), 35127 Padova, Italy
| |
Collapse
|
19
|
miR-133a-A Potential Target for Improving Cardiac Mitochondrial Health and Regeneration After Injury. J Cardiovasc Pharmacol 2022; 80:187-193. [PMID: 35500168 DOI: 10.1097/fjc.0000000000001279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/01/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT The various roles of muscle secretory factors and myokines have been well studied, but in recent decades, the role of myocyte-specific microRNAs (myomiRs) has gained momentum. These myomiRs are known to play regulatory roles in muscle health in general, both skeletal muscle and cardiac muscle. In this review, we have focused on the significance of a myomiR termed miR-133a in cardiovascular health. The available literature supports the claim that miR-133a could be helpful in the healing process of muscle tissue after injury. The protective function could be due to its regulatory effect on muscle or stem cell mitochondrial function. In this review, we have shed light on the protective mechanisms offered by miR-133a. Most of the beneficial effects are due to the presence of miR-133a in circulation or tissue-specific expression. We have also reviewed the potential mechanisms by which miR-133a could interact with cell surface receptors and also transcriptional mechanisms by which they offer cardioprotection and regeneration. Understanding these mechanisms will help in finding an ideal strategy to repair cardiac tissue after injury.
Collapse
|
20
|
Fan J, Ren M, He Y. Diagnostic and Therapeutic Properties of Exosomes in Cardiac Fibrosis. Front Cell Dev Biol 2022; 10:931082. [PMID: 35859903 PMCID: PMC9289295 DOI: 10.3389/fcell.2022.931082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac fibrosis results from both the differentiation of cardiac fibroblasts and excessive accumulation of extracellular matrix (ECM), leading to myocardial stiffness and reduced compliance of the ventricular wall. The conversion of cardiac fibroblasts to myofibroblasts is the most important initiating step in the process of this pathological cardiac remodeling. It occurs during the progression of many cardiovascular diseases, adversely influencing both the clinical course and outcome of the disease. The pathogenesis is complex and there is no effective treatment. Exosomes are extracellular vesicles that mediate intercellular communication through delivering specific cargoes of functional nucleic acids and proteins derived from particular cell types. Recent studies have found that exosomes play an important role in the diagnosis and treatment of cardiac fibrosis, and is a potential biotherapeutics and drug delivery vectors for the treatment of cardiac fibrosis. The present review aimed to summarize the current knowledge of exosome-related mechanisms underlying cardiac fibrosis and to suggest potential therapy that could be used to treat the condition.
Collapse
Affiliation(s)
- Jiwen Fan
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meng Ren
- Department of Medical Oncology, Jilin Provincial Cancer Hospital, Changchun, China
| | - Yuquan He
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yuquan He,
| |
Collapse
|
21
|
Weber B, Franz N, Marzi I, Henrich D, Leppik L. Extracellular vesicles as mediators and markers of acute organ injury: current concepts. Eur J Trauma Emerg Surg 2022; 48:1525-1544. [PMID: 33533957 PMCID: PMC7856451 DOI: 10.1007/s00068-021-01607-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Due to the continued high incidence and mortality rate worldwide, there is a need to develop new strategies for the quick, precise, and valuable recognition of presenting injury pattern in traumatized and poly-traumatized patients. Extracellular vesicles (EVs) have been shown to facilitate intercellular communication processes between cells in close proximity as well as distant cells in healthy and disease organisms. miRNAs and proteins transferred by EVs play biological roles in maintaining normal organ structure and function under physiological conditions. In pathological conditions, EVs change the miRNAs and protein cargo composition, mediating or suppressing the injury consequences. Therefore, incorporating EVs with their unique protein and miRNAs signature into the list of promising new biomarkers is a logical next step. In this review, we discuss the general characteristics and technical aspects of EVs isolation and characterization. We discuss results of recent in vitro, in vivo, and patients study describing the role of EVs in different inflammatory diseases and traumatic organ injuries. miRNAs and protein signature of EVs found in patients with acute organ injury are also debated.
Collapse
Affiliation(s)
- Birte Weber
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Niklas Franz
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Ingo Marzi
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Dirk Henrich
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Liudmila Leppik
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
22
|
Li H, Zhan J, Chen C, Wang D. MicroRNAs in cardiovascular diseases. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:140-168. [PMID: 37724243 PMCID: PMC10471109 DOI: 10.1515/mr-2021-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 12/29/2021] [Indexed: 09/20/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death and disability worldwide, despite the wide diversity of molecular targets identified and the development of therapeutic methods. MicroRNAs (miRNAs) are a class of small (about 22 nucleotides) non-coding RNAs (ncRNAs) that negatively regulate gene expression at the post-transcriptional level in the cytoplasm and play complicated roles in different CVDs. While miRNA overexpression in one type of cell protects against heart disease, it promotes cardiac dysfunction in another type of cardiac cell. Moreover, recent studies have shown that, apart from cytosolic miRNAs, subcellular miRNAs such as mitochondria- and nucleus-localized miRNAs are dysregulated in CVDs. However, the functional properties of cellular- and subcellular-localized miRNAs have not been well characterized. In this review article, by carefully revisiting animal-based miRNA studies in CVDs, we will address the regulation and functional properties of miRNAs in various CVDs. Specifically, the cell-cell crosstalk and subcellular perspective of miRNAs are highlighted. We will provide the background for attractive molecular targets that might be useful in preventing the progression of CVDs and heart failure (HF) as well as insights for future studies.
Collapse
Affiliation(s)
- Huaping Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jiabing Zhan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Daowen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
23
|
Zheng H, Yu Z, Wang H, Liu H, Chen X. MiR-125b-5p ameliorates hypoxia/reoxygenation-induced endothelial cell dysfunction and attenuates reduced uterine perfusion pressure-induced hypertension in pregnant rats via targeting BMF. Hypertens Pregnancy 2022; 41:79-88. [PMID: 35171055 DOI: 10.1080/10641955.2022.2036753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND AND PURPOSE MicroRNA-125b-5p (miR-125b-5p) is downregulated in patients with gestational hypertension signs. However, the role of miR-125b-5p in pregnancy-induced hypertension (PIH) remains unknown. METHODS The human placental microvascular endothelial cells (HPMECs) have undergone hypoxia and reoxygenation (H/R) treatment to establish PIH cellular model. Rats were performed with reduced uterine perfusion pressure (RUPP) operation to establish PIH animal model. RESULTS MiR-125b-5p promoted viability while inhibited the apoptosis of H/R-treated HPMECs by downregulating BMF. MiR-125b-5p alleviated hypertensive symptoms and improved pregnancy outcomes in RUPP rats. CONCLUSION MiR-125b-5p ameliorates H/R-induced HPMEC dysfunction and attenuates RUPP-induced hypertension in pregnant rats by downregulating BMF.
Collapse
Affiliation(s)
- Haoyu Zheng
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian Jiangsu, China
| | - Zhou Yu
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian Jiangsu, China
| | - Hairong Wang
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian Jiangsu, China
| | - Hongxue Liu
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian Jiangsu, China
| | - Xiaoqin Chen
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian Jiangsu, China
| |
Collapse
|
24
|
Song BW, Oh S, Chang W. Multiplexed targeting of microRNA in stem cell-derived extracellular vesicles for regenerative medicine. BMB Rep 2022; 55:65-71. [PMID: 35000674 PMCID: PMC8891620 DOI: 10.5483/bmbrep.2022.55.2.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 11/20/2022] Open
Abstract
Regenerative medicine is a research field that develops methods to restore damaged cell or tissue function by regeneration, repair or replacement. Stem cells are the raw material of the body that is ultimately used from the point of view of regenerative medicine, and stem cell therapy uses cells themselves or their derivatives to promote responses to diseases and dysfunctions, the ultimate goal of regenerative medicine. Stem cell-derived extracellular vesicles (EVs) are recognized as an attractive source because they can enrich exogenous microRNAs (miRNAs) by targeting pathological recipient cells for disease therapy and can overcome the obstacles faced by current cell therapy agents. However, there are some limitations that need to be addressed before using miRNA-enriched EVs derived from stem cells for multiplexed therapeutic targeting in many diseases. Here, we review various roles on miRNA-based stem cell EVs that can induce effective and stable functional improvement of stem cell-derived EVs. In addition, we introduce and review the implications of several miRNA-enriched EV therapies improved by multiplexed targeting in diseases involving the circulatory system and nervous system. This systemic review may offer potential roles for stem cell-derived therapeutics with multiplexed targeting. [BMB Reports 2022;55(2): 65-71].
Collapse
Affiliation(s)
- Byeong-Wook Song
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary’s Hospital, Incheon 22711, Korea
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea
| | - Sekyung Oh
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan 46241, Korea
| |
Collapse
|
25
|
Błażejowska E, Urbanowicz T, Gąsecka A, Olasińska-Wiśniewska A, Jaguszewski MJ, Targoński R, Szarpak Ł, Filipiak KJ, Perek B, Jemielity M. Diagnostic and Prognostic Value of miRNAs after Coronary Artery Bypass Grafting: A Review. BIOLOGY 2021; 10:1350. [PMID: 34943265 PMCID: PMC8698870 DOI: 10.3390/biology10121350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 12/23/2022]
Abstract
MiRNAs are noncoding, 21-24 nucleotide-long RNA particles that control over 60% of genes. MiRNAs affect gene expression through binding to the 3'-untranslated region of messenger RNA (mRNA), thus inhibiting mRNA translation or inducing mRNA degradation. MiRNAs have been associated with various cardiovascular diseases, including heart failure, hypertension, left ventricular hypertrophy, or ischemic heart disease. In addition, miRNA expression alters during coronary artery bypass grafting (CABG) surgery, which could be used to predict perioperative outcomes. CABG is an operation in which complex coronary arteries stenosis is treated by bypassing atherosclerotic lesions with venous or arterial grafts. Despite a very low perioperative mortality rate and excellent long-term survival, CABG is associated with postoperative complications, including reperfusion injury, graft failure, atrial fibrillation and perioperative myocardial infarction. So far, no reliable diagnostic and prognostic tools to predict prognosis after CABG have been developed. Changes in the perioperative miRNA expression levels could improve the diagnosis of post-CABG myocardial infarction and atrial fibrillation and could be used to stratify risk after CABG. Herein, we describe the expression changes of different subtypes of miRNAs during CABG and review the diagnostic and prognostic utility of miRNAs in patients undergoing CABG.
Collapse
Affiliation(s)
- Ewelina Błażejowska
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Tomasz Urbanowicz
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (T.U.); (A.O.-W.); (B.P.); (M.J.)
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Anna Olasińska-Wiśniewska
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (T.U.); (A.O.-W.); (B.P.); (M.J.)
| | - Miłosz J. Jaguszewski
- 1st Department of Cardiology, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.J.J.); (R.T.)
| | - Radosław Targoński
- 1st Department of Cardiology, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.J.J.); (R.T.)
| | - Łukasz Szarpak
- Department of Clinical Sciences, Maria Sklodowska-Curie Medical Academy, 03-411 Warsaw, Poland; (Ł.S.); (K.J.F.)
| | - Krzysztof J. Filipiak
- Department of Clinical Sciences, Maria Sklodowska-Curie Medical Academy, 03-411 Warsaw, Poland; (Ł.S.); (K.J.F.)
| | - Bartłomiej Perek
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (T.U.); (A.O.-W.); (B.P.); (M.J.)
| | - Marek Jemielity
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (T.U.); (A.O.-W.); (B.P.); (M.J.)
| |
Collapse
|
26
|
MicroRNAs and exosomes: Cardiac stem cells in heart diseases. Pathol Res Pract 2021; 229:153701. [PMID: 34872024 DOI: 10.1016/j.prp.2021.153701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022]
Abstract
Treating cardiovascular diseases with cardiac stem cells (CSCs) is a valid treatment among various stem cell-based therapies. With supplying the physiological need for cardiovascular cells as their main function, under pathological circumstances, CSCs can also reproduce the myocardial cells. Although studies have identified many of CSCs' functions, our knowledge of molecular pathways that regulate these functions is not complete enough. Either physiological or pathological studies have shown, stem cells proliferation and differentiation could be regulated by microRNAs (miRNAs). How miRNAs regulate CSC behavior is an interesting area of research that can help us study and control the function of these cells in vitro; an achievement that may be beneficial for patients with cardiovascular diseases. The secretome of stem and progenitor cells has been studied and it has been determined that exosomes are the main source of their secretion which are very small vesicles at the nanoscale and originate from endosomes, which are secreted into the extracellular space and act as key signaling organelles in intercellular communication. Mesenchymal stem cells, cardiac-derived progenitor cells, embryonic stem cells, induced pluripotent stem cells (iPSCs), and iPSC-derived cardiomyocytes release exosomes that have been shown to have cardioprotective, immunomodulatory, and reparative effects. Herein, we summarize the regulation roles of miRNAs and exosomes in cardiac stem cells.
Collapse
|
27
|
Xu H, Ni YQ, Liu YS. Mechanisms of Action of MiRNAs and LncRNAs in Extracellular Vesicle in Atherosclerosis. Front Cardiovasc Med 2021; 8:733985. [PMID: 34692785 PMCID: PMC8531438 DOI: 10.3389/fcvm.2021.733985] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis, a complex chronic inflammatory disease, involves multiple alterations of diverse cells, including endothelial cells (ECs), vascular smooth muscle cells (VSMCs), monocytes, macrophages, dendritic cells (DCs), platelets, and even mesenchymal stem cells (MSCs). Globally, it is a common cause of morbidity as well as mortality. It leads to myocardial infarctions, stroke and disabling peripheral artery disease. Extracellular vesicles (EVs) are a heterogeneous group of cell-derived membranous structures that secreted by multiple cell types and play a central role in cell-to-cell communication by delivering various bioactive cargos, especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Emerging evidence demonstrated that miRNAs and lncRNAs in EVs are tightly associated with the initiation and development of atherosclerosis. In this review, we will outline and compile the cumulative roles of miRNAs and lncRNAs encapsulated in EVs derived from diverse cells in the progression of atherosclerosis. We also discuss intercellular communications via EVs. In addition, we focused on clinical applications and evaluation of miRNAs and lncRNAs in EVs as potential diagnostic biomarkers and therapeutic targets for atherosclerosis.
Collapse
Affiliation(s)
- Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-related Disease Research, Central South University, Changsha, China
| | - Yu-Qing Ni
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-related Disease Research, Central South University, Changsha, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-related Disease Research, Central South University, Changsha, China
| |
Collapse
|
28
|
Han C, Yang J, Sun J, Qin G. Extracellular vesicles in cardiovascular disease: Biological functions and therapeutic implications. Pharmacol Ther 2021; 233:108025. [PMID: 34687770 PMCID: PMC9018895 DOI: 10.1016/j.pharmthera.2021.108025] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/15/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, are lipid bilayer particles naturally released from the cell. While exosomes are formed as intraluminal vesicles (ILVs) of the multivesicular endosomes (MVEs) and released to extracellular space upon MVE-plasma membrane fusion, microvesicles are generated through direct outward budding of the plasma membrane. Exosomes and microvesicles have same membrane orientation, different yet overlapping sizes; their cargo contents are selectively packed and dependent on the source cell type and functional state. Both exosomes and microvesicles can transfer bioactive RNAs, proteins, lipids, and metabolites from donor to recipient cells and influence the biological properties of the latter. Over the last decade, their potential roles as effective inter-tissue communicators in cardiovascular physiology and pathology have been increasingly appreciated. In addition, EVs are attractive sources of biomarkers for the diagnosis and prognosis of diseases, because they acquire their complex cargoes through cellular processes intimately linked to disease pathogenesis. Furthermore, EVs obtained from various stem/progenitor cell populations have been tested as cell-free therapy in various preclinical models of cardiovascular diseases and demonstrate unequivocally encouraging benefits. Here we summarize the findings from recent research on the biological functions of EVs in the ischemic heart disease and heart failure, and their potential as novel diagnostic biomarkers and therapeutic opportunities.
Collapse
Affiliation(s)
- Chaoshan Han
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL 35294, USA
| | - Junjie Yang
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL 35294, USA
| | - Jiacheng Sun
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL 35294, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL 35294, USA.
| |
Collapse
|
29
|
Prat-Vidal C, Crisóstomo V, Moscoso I, Báez-Díaz C, Blanco-Blázquez V, Gómez-Mauricio G, Albericio G, Aguilar S, Fernández-Santos ME, Fernández-Avilés F, Sánchez-Margallo FM, Bayes-Genis A, Bernad A. Intracoronary Delivery of Porcine Cardiac Progenitor Cells Overexpressing IGF-1 and HGF in a Pig Model of Sub-Acute Myocardial Infarction. Cells 2021; 10:cells10102571. [PMID: 34685551 PMCID: PMC8534140 DOI: 10.3390/cells10102571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/26/2022] Open
Abstract
Human cardiac progenitor cells (hCPC) are considered a good candidate in cell therapy for ischemic heart disease, demonstrating capacity to improve functional recovery after myocardial infarction (MI), both in small and large preclinical animal models. However, improvements are required in terms of cell engraftment and efficacy. Based on previously published reports, insulin-growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) have demonstrated substantial cardioprotective, repair and regeneration activities, so they are good candidates to be evaluated in large animal model of MI. We have validated porcine cardiac progenitor cells (pCPC) and lentiviral vectors to overexpress IGF-1 (co-expressing eGFP) and HGF (co-expressing mCherry). pCPC were transduced and IGF1-eGFPpos and HGF-mCherrypos populations were purified by cell sorting and further expanded. Overexpression of IGF-1 has a limited impact on pCPC expression profile, whereas results indicated that pCPC-HGF-mCherry cultures could be counter selecting high expresser cells. In addition, pCPC-IGF1-eGFP showed a higher cardiogenic response, evaluated in co-cultures with decellularized extracellular matrix, compared with native pCPC or pCPC-HGF-mCherry. In vivo intracoronary co-administration of pCPC-IGF1-eGFP and pCPC-HFG-mCherry (1:1; 40 × 106/animal), one week after the induction of an MI model in swine, revealed no significant improvement in cardiac function.
Collapse
Affiliation(s)
- Cristina Prat-Vidal
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Can Ruti Campus, Heart Institute (iCor), Germans Trias i Pujol University Hospital, 08916 Badalona, Spain; (C.P.-V.); (A.B.-G.)
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.C.); (I.M.); (C.B.-D.); (V.B.-B.); (M.-E.F.-S.); (F.F.-A.); (F.M.S.-M.)
- Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, 08908 L’Hospitalet de Llobregat, Spain
| | - Verónica Crisóstomo
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.C.); (I.M.); (C.B.-D.); (V.B.-B.); (M.-E.F.-S.); (F.F.-A.); (F.M.S.-M.)
- Jesús Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain;
| | - Isabel Moscoso
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.C.); (I.M.); (C.B.-D.); (V.B.-B.); (M.-E.F.-S.); (F.F.-A.); (F.M.S.-M.)
- Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela and Health Research Institute, University Clinical Hospital of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Claudia Báez-Díaz
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.C.); (I.M.); (C.B.-D.); (V.B.-B.); (M.-E.F.-S.); (F.F.-A.); (F.M.S.-M.)
- Jesús Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain;
| | - Virginia Blanco-Blázquez
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.C.); (I.M.); (C.B.-D.); (V.B.-B.); (M.-E.F.-S.); (F.F.-A.); (F.M.S.-M.)
- Jesús Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain;
| | | | - Guillermo Albericio
- Immunology and Oncology Department, National Center for Biotechnology, 28049 Madrid, Spain; (G.A.); (S.A.)
| | - Susana Aguilar
- Immunology and Oncology Department, National Center for Biotechnology, 28049 Madrid, Spain; (G.A.); (S.A.)
| | - María-Eugenia Fernández-Santos
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.C.); (I.M.); (C.B.-D.); (V.B.-B.); (M.-E.F.-S.); (F.F.-A.); (F.M.S.-M.)
- Servicio de Cardiología, Hospital General Universitario Gregorio Marañón, Laboratorio Investigación Traslacional en Cardiología (LITC), Unidad de Producción Celular-GMP (UPC-GMP), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), TERCEL, 28007 Madrid, Spain
| | - Francisco Fernández-Avilés
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.C.); (I.M.); (C.B.-D.); (V.B.-B.); (M.-E.F.-S.); (F.F.-A.); (F.M.S.-M.)
- Servicio de Cardiología, Hospital General Universitario Gregorio Marañón, Laboratorio Investigación Traslacional en Cardiología (LITC), Unidad de Producción Celular-GMP (UPC-GMP), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), TERCEL, 28007 Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Francisco M. Sánchez-Margallo
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.C.); (I.M.); (C.B.-D.); (V.B.-B.); (M.-E.F.-S.); (F.F.-A.); (F.M.S.-M.)
- Jesús Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain;
| | - Antoni Bayes-Genis
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Can Ruti Campus, Heart Institute (iCor), Germans Trias i Pujol University Hospital, 08916 Badalona, Spain; (C.P.-V.); (A.B.-G.)
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.C.); (I.M.); (C.B.-D.); (V.B.-B.); (M.-E.F.-S.); (F.F.-A.); (F.M.S.-M.)
- Cardiology Service, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Antonio Bernad
- Immunology and Oncology Department, National Center for Biotechnology, 28049 Madrid, Spain; (G.A.); (S.A.)
- Correspondence: ; Tel.: +34-915-855-424
| |
Collapse
|
30
|
Jin Y, Ai L, Chai X, Tang P, Zhang W, Yang L, Hu Y, Xu Y, Li S. Maternal Circulating Exosomal miRNAs as Non-invasive Biomarkers for the Prediction of Fetal Ventricular Septal Defect. Front Genet 2021; 12:717208. [PMID: 34567071 PMCID: PMC8458870 DOI: 10.3389/fgene.2021.717208] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022] Open
Abstract
Objective: This study aimed to identify maternal circulating exosomal miRNAs as potential non-invasive biomarkers for the early detection of fetal ventricular septal defects (VSDs). Methods: In total, 182 pregnant women, comprising 91 VSD cases and 91 matched controls, were included in this study. Exosomes were isolated; dysregulated exosomal miRNAs were profiled using next-generation sequencing. Differential abundance of miRNAs was verified using quantitative real-time polymerase chain reaction (qRT-PCR). Diagnostic accuracy was evaluated by constructing receiver operating characteristic (ROC) curves. Results: In total, 77 serum exosomal miRNAs were found to be differentially expressed in the VSD group compared to their expression in the control group. Among these, five downregulated exosomal miRNAs were validated using qRT-PCR. hsa-miR-146a-5p was identified to be capable of distinguishing VSD cases from controls (area under the ROC curve [AUC]: 0.997; p < 1.00E-05). Conclusion: Circulating exosomal miRNAs, particularly hsa-miR-146a-5p, may be predictive biomarkers for the non-invasive prenatal diagnosis of fetal VSDs.
Collapse
Affiliation(s)
- Yuxia Jin
- Department of Prenatal Diagnostic, Jiaxing Maternity and Children Health Care Hospital, Jiaxing University, Jiaxing, China
| | - Ling Ai
- Department of Prenatal Diagnostic, Jiaxing Maternity and Children Health Care Hospital, Jiaxing University, Jiaxing, China
| | - Xiaojun Chai
- Department of Prenatal Diagnostic, Jiaxing Maternity and Children Health Care Hospital, Jiaxing University, Jiaxing, China
| | - Ping Tang
- Department of Prenatal Diagnostic, Jiaxing Maternity and Children Health Care Hospital, Jiaxing University, Jiaxing, China
| | - Weihua Zhang
- Department of Prenatal Diagnostic, Jiaxing Maternity and Children Health Care Hospital, Jiaxing University, Jiaxing, China
| | - Li Yang
- Department of Prenatal Diagnostic, Jiaxing Maternity and Children Health Care Hospital, Jiaxing University, Jiaxing, China
| | - Yue Hu
- Department of Prenatal Diagnostic, Jiaxing Maternity and Children Health Care Hospital, Jiaxing University, Jiaxing, China
| | - Ying Xu
- College of Medicine, Jiaxing University, Jiaxing, China
| | - Suping Li
- Department of Prenatal Diagnostic, Jiaxing Maternity and Children Health Care Hospital, Jiaxing University, Jiaxing, China
| |
Collapse
|
31
|
Jiang W, Xiong Y, Li X, Yang Y. Cardiac Fibrosis: Cellular Effectors, Molecular Pathways, and Exosomal Roles. Front Cardiovasc Med 2021; 8:715258. [PMID: 34485413 PMCID: PMC8415273 DOI: 10.3389/fcvm.2021.715258] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/20/2021] [Indexed: 01/18/2023] Open
Abstract
Cardiac fibrosis, a common pathophysiologic process in most heart diseases, refers to an excess of extracellular matrix (ECM) deposition by cardiac fibroblasts (CFs), which can lead to cardiac dysfunction and heart failure subsequently. Not only CFs but also several other cell types including macrophages and endothelial cells participate in the process of cardiac fibrosis via different molecular pathways. Exosomes, ranging in 30-150 nm of size, have been confirmed to play an essential role in cellular communications by their bioactive contents, which are currently a hot area to explore pathobiology and therapeutic strategy in multiple pathophysiologic processes including cardiac fibrosis. Cardioprotective factors such as RNAs and proteins packaged in exosomes make them an excellent cell-free system to improve cardiac function without significant immune response. Emerging evidence indicates that targeting selective molecules in cell-derived exosomes could be appealing therapeutic treatments in cardiac fibrosis. In this review, we summarize the current understandings of cellular effectors, molecular pathways, and exosomal roles in cardiac fibrosis.
Collapse
Affiliation(s)
- Wenyang Jiang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuyan Xiong
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaosong Li
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuejin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
32
|
Pinson MR, Chung DD, Adams AM, Scopice C, Payne EA, Sivakumar M, Miranda RC. Extracellular Vesicles in Premature Aging and Diseases in Adulthood Due to Developmental Exposures. Aging Dis 2021; 12:1516-1535. [PMID: 34527425 PMCID: PMC8407878 DOI: 10.14336/ad.2021.0322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
The developmental origins of health and disease (DOHaD) is a paradigm that links prenatal and early life exposures that occur during crucial periods of development to health outcome and risk of disease later in life. Maternal exposures to stress, some psychoactive drugs and alcohol, and environmental chemicals, among others, may result in functional changes in developing fetal tissues, creating a predisposition for disease in the individual as they age. Extracellular vesicles (EVs) may be mediators of both the immediate effects of exposure during development and early childhood as well as the long-term consequences of exposure that lead to increased risk and disease severity later in life. Given the prevalence of diseases with developmental origins, such as cardiovascular disease, neurodegenerative disorders, osteoporosis, metabolic dysfunction, and cancer, it is important to identify persistent mediators of disease risk. In this review, we take this approach, viewing diseases typically associated with aging in light of early life exposures and discuss the potential role of EVs as mediators of lasting consequences.
Collapse
Affiliation(s)
- Marisa R Pinson
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Dae D Chung
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Amy M Adams
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Chiara Scopice
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Elizabeth A Payne
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Monisha Sivakumar
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
33
|
Schweiger V, Hasimbegovic E, Kastner N, Spannbauer A, Traxler D, Gyöngyösi M, Mester-Tonczar J. Non-Coding RNAs in Stem Cell Regulation and Cardiac Regeneration: Current Problems and Future Perspectives. Int J Mol Sci 2021; 22:ijms22179160. [PMID: 34502068 PMCID: PMC8431637 DOI: 10.3390/ijms22179160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/12/2021] [Accepted: 08/21/2021] [Indexed: 12/03/2022] Open
Abstract
Although advances in rapid revascularization strategies following acute myocardial infarction (AMI) have led to improved short and long-term outcomes, the associated loss of cardiomyocytes and the subsequent remodeling result in an impaired ventricular function that can lead to heart failure or death. The poor regenerative capacity of the myocardium and the current lack of effective regenerative therapies have driven stem cell research in search of a possible solution. One approach involves the delivery of stem cells to the site of injury in order to stimulate repair response. Although animal studies initially delivered promising results, the application of similar techniques in humans has been hampered by poor target site retention and oncogenic considerations. In response, several alternative strategies, including the use of non-coding RNAs (ncRNAs), have been introduced with the aim of activating and regulating stem cells or inducing stem cell status in resident cells. Circular RNAs (circRNAs) and microRNAs (miRNAs) are ncRNAs with pivotal functions in cell proliferation and differentiation, whose role in stem cell regulation and potential significance for the field of cardiac regeneration is the primary focus of this review. We also address the general advantages of ncRNAs as promising drivers of cardiac regeneration and potent stem cell regulators.
Collapse
|
34
|
Lee JY, Kim HS. Extracellular Vesicles in Regenerative Medicine: Potentials and Challenges. Tissue Eng Regen Med 2021; 18:479-484. [PMID: 34297340 PMCID: PMC8300067 DOI: 10.1007/s13770-021-00365-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 12/25/2022] Open
Abstract
The ultimate goal of regenerative medicine is to regain or restore the damaged or lost function of tissues and organs. Several therapeutic strategies are currently being explored to achieve this goal. From the point of view of regenerative medicine, extracellular vesicles (EVs) are exceptionally attractive due to the fact that they can overcome the limitations faced by many cell therapies and can be engineered according to their purpose through various technical modifications. EVs are biological nanoscale vesicles naturally secreted by all forms of living organisms, including prokaryotes and eukaryotes, and act as vehicles of communication between cells and their surrounding environment. Over the past decade, EVs have emerged as a new therapeutic agent for various diseases and conditions owing to their multifaceted biological functions. This is reflected by the number of publications on this subject found in the Web of Science database, which currently exceeds 12,300, over 85% of which were published within the last decade, demonstrating the increasing global trends of this innovative field. The reviews collected in this special issue provide an overview of the different approaches being explored in the use of EVs for regenerative medicine.
Collapse
Affiliation(s)
- Ji Yong Lee
- Research Institute of Hyperbaric Medicine and Science, Yonsei University Wonju College of Medicine, Wonju-si, Gangwon-do, 26426, Republic of Korea
| | - Han-Soo Kim
- Department of Biomedical Sciences, Catholic Kwandong University College of Medical Convergence, Gangneung-si, Gangwon-do, 25601, Republic of Korea.
| |
Collapse
|
35
|
Su H, Su H, Liu CH, Hu HJ, Zhao JB, Zou T, Tang YX. H 2S inhibits atrial fibrillation-induced atrial fibrosis through miR-133a/CTGF axis. Cytokine 2021; 146:155557. [PMID: 34303273 DOI: 10.1016/j.cyto.2021.155557] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022]
Abstract
AIM Atrial fibrillation (AF) is a common clinical arrhythmia and can cause a variety of complications. To study the therapeutic effect of H2S in atrial fibrosis and explore the important role of miR-133a, in vitro experiments in human atrial fibroblasts (HAFs) were conducted. METHODS The fibrosis in HAFs was induced by Ang II. The expression levels of miR-133a and CTGF in HAFs were examined by qRT-PCR. The proliferation and migration of HAFs were detected by CCK-8 and cell scratch assays. The protein expressions of CTGF, collagen I, collagen III and α-SMA were detected by western blotting. The dual-luciferase reporter gene was used to detect the interaction between miR-133a and CTGF. RESULTS The proliferation and migration of HAFs stimulated by Ang II were enhanced, the expression of miR-133a was reduced, and the levels of CTGF and fibrosis markers (collagen I, collagen III and α-SMA) were increased. Furthermore, H2S reduced fibrosis, proliferation and migration of HAFs induced by Ang II. Accordingly, overexpression of miR-133a inhibited the proliferation and migration ability on Ang II-induced HAFs, and decreased the protein expressions of related fibrosis markers and CTGF. Meanwhile, miR-133a inhibitor could reverse the inhibition effect of H2S on proliferation and migration in HAFs by Ang II-induced. By targeting CTGF, miR-133a inhibited the expression of CTGF. CONCLUSION H2S improved myocardial cell fibrosis by significantly increasing the expression of miR-133a, and CTGF might be a potential target for miR-133a to play an important role in myocardial fibrosis.
Collapse
Affiliation(s)
- Hua Su
- Department of Cardiology, The First Affiliated Hospital of the University of South China, Hengyang 421001, Hunan Province, PR China
| | - Hao Su
- Cardiac Medical Center, Beijing Aviation General Hospital, Beijing 100012, PR China
| | - Chang-Hui Liu
- Department of Cardiology, The First Affiliated Hospital of the University of South China, Hengyang 421001, Hunan Province, PR China
| | - Heng-Jing Hu
- Department of Cardiology, The First Affiliated Hospital of the University of South China, Hengyang 421001, Hunan Province, PR China
| | - Jun-Bi Zhao
- Department of Cardiology, The First Affiliated Hospital of the University of South China, Hengyang 421001, Hunan Province, PR China
| | - Tao Zou
- Department of Cardiology, The First Affiliated Hospital of the University of South China, Hengyang 421001, Hunan Province, PR China
| | - Yi-Xin Tang
- Department of Cardiology, The First Affiliated Hospital of the University of South China, Hengyang 421001, Hunan Province, PR China.
| |
Collapse
|
36
|
Villarreal-Leal RA, Cooke JP, Corradetti B. Biomimetic and immunomodulatory therapeutics as an alternative to natural exosomes for vascular and cardiac applications. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 35:102385. [PMID: 33774130 PMCID: PMC8238887 DOI: 10.1016/j.nano.2021.102385] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/21/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Inflammation is a central mechanism in cardiovascular diseases (CVD), where sustained oxidative stress and immune responses contribute to cardiac remodeling and impairment. Exosomes are extracellular vesicles released by cells to communicate with their surroundings and to modulate the tissue microenvironment. Recent evidence indicates their potential as cell-free immunomodulatory therapeutics for CVD, preventing cell death and fibrosis while inducing wound healing and angiogenesis. Biomimetic exosomes are semi-synthetic particles engineered using essential moieties present in natural exosomes (lipids, RNA, proteins) to reproduce their therapeutic effects while improving on scalability and standardization due to the ample range of moieties available to produce them. In this review, we provide an up-to-date description of the use of exosomes for CVD and offer our vision on the areas of opportunity for the development of biomimetic strategies. We also discuss the current limitations to overcome in the process towards their translation into clinic.
Collapse
Affiliation(s)
- Ramiro A Villarreal-Leal
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
| | - John P Cooke
- RNA Therapeutics Program, Department of Cardiovascular Sciences (R.S., J.P.C.), Houston Methodist Research Institute, TX, USA; Houston Methodist DeBakey Heart and Vascular Center (J.P.C.), Houston Methodist Hospital, TX, USA
| | - Bruna Corradetti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Center of NanoHealth, Swansea University Medical School, Swansea, UK.
| |
Collapse
|
37
|
Sileno S, Beji S, D'Agostino M, Carassiti A, Melillo G, Magenta A. microRNAs involved in psoriasis and cardiovascular diseases. VASCULAR BIOLOGY 2021; 3:R49-R68. [PMID: 34291190 PMCID: PMC8284950 DOI: 10.1530/vb-21-0007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022]
Abstract
Psoriasis is a chronic inflammatory disease involving the skin. Both genetic and environmental factors play a pathogenic role in psoriasis and contribute to the severity of the disease. Psoriasis, in fact, has been associated with different comorbidities such as diabetes, metabolic syndrome, gastrointestinal or kidney diseases, cardiovascular disease (CVD), and cerebrovascular diseases (CeVD). Indeed, life expectancy in severe psoriasis is reduced by up to 5 years due to CVD and CeVD. Moreover, patients with severe psoriasis have a higher prevalence of traditional cardiovascular (CV) risk factors, including dyslipidemia, diabetes, smoking, and hypertension. Further, systemic inflammation is associated with oxidative stress increase and induces endothelial damage and atherosclerosis progression. Different miRNA have been already described in psoriasis, both in the skin tissues and in the blood flow, to play a role in the progression of disease. In this review, we will summarize and discuss the most important miRNAs that play a role in psoriasis and are also linked to CVD.
Collapse
Affiliation(s)
- Sara Sileno
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Experimental Immunology Laboratory Via Monti di Creta, Rome, Italy
| | - Sara Beji
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Experimental Immunology Laboratory Via Monti di Creta, Rome, Italy
| | - Marco D'Agostino
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Experimental Immunology Laboratory Via Monti di Creta, Rome, Italy
| | - Alessandra Carassiti
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Experimental Immunology Laboratory Via Monti di Creta, Rome, Italy
| | - Guido Melillo
- Unit of Cardiology, IDI-IRCCS, Via Monti di Creta, Rome, Italy
| | - Alessandra Magenta
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Via Fosso del Cavaliere, Rome, Italy
| |
Collapse
|
38
|
Saheera S, Jani VP, Witwer KW, Kutty S. Extracellular vesicle interplay in cardiovascular pathophysiology. Am J Physiol Heart Circ Physiol 2021; 320:H1749-H1761. [PMID: 33666501 PMCID: PMC8163654 DOI: 10.1152/ajpheart.00925.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/27/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are nanosized lipid bilayer-delimited particles released from cells that mediate intercellular communications and play a pivotal role in various physiological and pathological processes. Subtypes of EVs may include plasma membrane ectosomes or microvesicles and endosomal origin exosomes, although functional distinctions remain unclear. EVs carry cargo proteins, nucleic acids (RNA and DNA), lipids, and metabolites. By presenting or transferring this cargo to recipient cells, EVs can trigger cellular responses. We summarize contemporary understanding of EV biogenesis, composition, and function, with an emphasis on the role of EVs in the cardiovascular system. In addition, we outline the functional relevance of EVs in cardiovascular pathophysiology, further highlighting their potential for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Sherin Saheera
- Department of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Vivek P Jani
- Helen B. Taussig Heart Center, The Johns Hopkins Hospital and School of Medicine, Baltimore, Maryland
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shelby Kutty
- Helen B. Taussig Heart Center, The Johns Hopkins Hospital and School of Medicine, Baltimore, Maryland
| |
Collapse
|
39
|
Scărlătescu AI, Micheu MM, Popa-Fotea NM, Dorobanțu M. MicroRNAs in Acute ST Elevation Myocardial Infarction-A New Tool for Diagnosis and Prognosis: Therapeutic Implications. Int J Mol Sci 2021; 22:4799. [PMID: 33946541 PMCID: PMC8124280 DOI: 10.3390/ijms22094799] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Despite diagnostic and therapeutic advances, coronary artery disease and especially its extreme manifestation, ST elevation myocardial infarction (STEMI), remain the leading causes of morbidity and mortality worldwide. Early and prompt diagnosis is of great importance regarding the prognosis of STEMI patients. In recent years, microRNAs (miRNAs) have emerged as promising tools involved in many pathophysiological processes in various fields, including cardiovascular diseases. In acute coronary syndromes (ACS), circulating levels of miRNAs are significantly elevated, as an indicator of cardiac damage, making them a promising marker for early diagnosis of myocardial infarction. They also have prognostic value and great potential as therapeutic targets considering their key function in gene regulation. This review aims to summarize current information about miRNAs and their role as diagnostic, prognostic and therapeutic targets in STEMI patients.
Collapse
Affiliation(s)
- Alina Ioana Scărlătescu
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (N.-M.P.-F.); (M.D.)
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| | - Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| | - Nicoleta-Monica Popa-Fotea
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (N.-M.P.-F.); (M.D.)
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| | - Maria Dorobanțu
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (N.-M.P.-F.); (M.D.)
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| |
Collapse
|
40
|
Macrophage migration inhibitory factor facilitates the therapeutic efficacy of mesenchymal stem cells derived exosomes in acute myocardial infarction through upregulating miR-133a-3p. J Nanobiotechnology 2021; 19:61. [PMID: 33639970 PMCID: PMC7916292 DOI: 10.1186/s12951-021-00808-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Background Exosome transplantation is a promising cell-free therapeutic approach for the treatment of ischemic heart disease. The purpose of this study was to explore whether exosomes derived from Macrophage migration inhibitory factor (MIF) engineered umbilical cord MSCs (ucMSCs) exhibit superior cardioprotective effects in a rat model of AMI and reveal the mechanisms underlying it. Results Exosomes isolated from ucMSCs (MSC-Exo), MIF engineered ucMSCs (MIF-Exo) and MIF downregulated ucMSCs (siMIF-Exo) were used to investigate cellular protective function in human umbilical vein endothelial cells (HUVECs) and H9C2 cardiomyocytes under hypoxia and serum deprivation (H/SD) and infarcted hearts in rats. Compared with MSC-Exo and siMIF-Exo, MIF-Exo significantly enhanced proliferation, migration, and angiogenesis of HUVECs and inhibited H9C2 cardiomyocyte apoptosis under H/SD in vitro. MIF-Exo also significantly inhibited cardiomyocyte apoptosis, reduced fibrotic area, and improved cardiac function as measured by echocardiography in infarcted rats in vivo. Exosomal miRNAs sequencing and qRT-PCR confirmed miRNA-133a-3p significantly increased in MIF-Exo. The biological effects of HUVECs and H9C2 cardiomyocytes were attenuated with incubation of MIF-Exo and miR-133a-3p inhibitors. These effects were accentuated with incubation of siMIF-Exo and miR-133a-3p mimics that increased the phosphorylation of AKT protein in these cells. Conclusion MIF-Exo can provide cardioprotective effects by promoting angiogenesis, inhibiting apoptosis, reducing fibrosis, and preserving heart function in vitro and in vivo. The mechanism in the biological activities of MIF-Exo involves miR-133a-3p and the downstream AKT signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00808-5.
Collapse
|
41
|
Liu Y, Wang M, Liang Y, Wang C, Naruse K, Takahashi K. Treatment of Oxidative Stress with Exosomes in Myocardial Ischemia. Int J Mol Sci 2021; 22:ijms22041729. [PMID: 33572188 PMCID: PMC7915208 DOI: 10.3390/ijms22041729] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
A thrombus in a coronary artery causes ischemia, which eventually leads to myocardial infarction (MI) if not removed. However, removal generates reactive oxygen species (ROS), which causes ischemia–reperfusion (I/R) injury that damages the tissue and exacerbates the resulting MI. The mechanism of I/R injury is currently extensively understood. However, supplementation of exogenous antioxidants is ineffective against oxidative stress (OS). Enhancing the ability of endogenous antioxidants may be a more effective way to treat OS, and exosomes may play a role as targeted carriers. Exosomes are nanosized vesicles wrapped in biofilms which contain various complex RNAs and proteins. They are important intermediate carriers of intercellular communication and material exchange. In recent years, diagnosis and treatment with exosomes in cardiovascular diseases have gained considerable attention. Herein, we review the new findings of exosomes in the regulation of OS in coronary heart disease, discuss the possibility of exosomes as carriers for the targeted regulation of endogenous ROS generation, and compare the advantages of exosome therapy with those of stem-cell therapy. Finally, we explore several miRNAs found in exosomes against OS.
Collapse
|
42
|
Nguyen BY, Azam T, Wang X. Cellular signaling cross-talk between different cardiac cell populations: an insight into the role of exosomes in the heart diseases and therapy. Am J Physiol Heart Circ Physiol 2021; 320:H1213-H1234. [PMID: 33513083 DOI: 10.1152/ajpheart.00718.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exosomes are a subgroup of extracellular bilayer membrane nanovesicles that are enriched in a variety of bioactive lipids, receptors, transcription factors, surface proteins, DNA, and noncoding RNAs. They have been well recognized to play essential roles in mediating intercellular signaling by delivering bioactive molecules from host cells to regulate the physiological processes of recipient cells. In the context of heart diseases, accumulating studies have indicated that exosome-carried cellular proteins and noncoding RNA derived from different types of cardiac cells, including cardiomyocytes, fibroblasts, endothelial cells, immune cells, adipocytes, and resident stem cells, have pivotal roles in cardiac remodeling under disease conditions such as cardiac hypertrophy, diabetic cardiomyopathy, and myocardial infarction. In addition, exosomal contents derived from stem cells have been shown to be beneficial for regenerative potential of the heart. In this review, we discuss current understanding of the role of exosomes in cardiac communication, with a focus on cardiovascular pathophysiology and perspectives for their potential uses as cardiac therapies.
Collapse
Affiliation(s)
- Binh Yen Nguyen
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Tayyiba Azam
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Xin Wang
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
43
|
Lan H, Xue Q, Liu Y, Jin K, Fang X, Shao H. The emerging therapeutic role of mesenchymal stem cells in anthracycline-induced cardiotoxicity. Cell Tissue Res 2021; 384:1-12. [PMID: 33433685 DOI: 10.1007/s00441-020-03364-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem cell (MSC)-based tissue regeneration therapy has been extensively investigated for cardiac regeneration over the past two decades. Numerous animal and clinical investigations demonstrated the efficacy of various types of MSCs towards myocardial protection and restoration against anthracycline-induced cardiotoxicity (AIC). It has been established that local or systemic administration of MSCs considerably improved the cardiac function, while ameliorating inflammatory responses and myocardial fibrosis. Several factors influence the outcomes of MSC treatment for AIC, including MSC types, dosages, and routes and duration of administration. In this review, we discuss the recent (from 2015 to 2020) experimental and clinical research on the preventive and regeneration efficacy of different types of MSCs (with or without supporting agents) against AIC, as well as the key factors responsible for MSC-mediated cardiac repair. In addition, challenges and future perspectives of MSC-based cardiac regeneration therapy are also outlined.
Collapse
Affiliation(s)
- Huanrong Lan
- Department of Breast and Thyroid Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, People's Republic of China
| | - Qi Xue
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, People's Republic of China
| | - Yuyao Liu
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, People's Republic of China
| | - Ketao Jin
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, People's Republic of China
| | - Xingliang Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, 312000, Zhejiang Province, People's Republic of China
| | - Hong Shao
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
44
|
Plasmatic Membrane Expression of Adhesion Molecules in Human Cardiac Progenitor/Stem Cells Might Explain Their Superior Cell Engraftment after Cell Transplantation. Stem Cells Int 2020; 2020:8872009. [PMID: 33101423 PMCID: PMC7569451 DOI: 10.1155/2020/8872009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 01/12/2023] Open
Abstract
Human bone marrow mesenchymal stem cells (BM-MSCs) and cardiac progenitor/stem cells (CPCs) have been extensively studied as a potential therapeutic treatment for myocardial infarction (MI). Previous reports suggest that lower doses of CPCs are needed to improve cardiac function relative to their bone marrow counterparts. Here, we confirmed this observations and investigated the surface protein expression profile that might explain this effect. Myocardial infarction was performed in nude rats by permanent ligation of the left coronary artery. Cardiac function and infarct size before and after cell transplantation were evaluated by echocardiography and morphometry, respectively. The CPC and BM-MSC receptome were analyzed by proteomic analysis of biotin-labeled surface proteins. Rats transplanted with CPCs showed a greater improvement in cardiac function after MI than those transplanted with BM-MSCs, and this was associated with a smaller infarct size. Analysis of the receptome of CPCs and BM-MSCs showed that gene ontology biological processes and KEGG pathways associated with adhesion mechanisms were upregulated in CPCs compared with BM-MSCs. Moreover, the membrane protein interactome in CPCs showed a strong relationship with biological processes related to cell adhesion whereas the BM-MSCs interactome was more related to immune regulation processes. We conclude that the stronger capacity of CPCs over BM-MSCs to engraft in the infarcted area is likely linked to a more pronounced cell adhesion expression program.
Collapse
|
45
|
Duan H, Zhang X, Song R, Liu T, Zhang Y, Yu A. Upregulation of miR-133a by adiponectin inhibits pyroptosis pathway and rescues acute aortic dissection. Acta Biochim Biophys Sin (Shanghai) 2020; 52:988-997. [PMID: 32634201 DOI: 10.1093/abbs/gmaa078] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
Acute aortic dissection (AAD) is a cardiovascular emergency caused by the formation of hematoma in the middle layer of the aortic wall. Adiponectin (APN) is an adipose tissue-specific protein that has anti-inflammation and anti-atherosclerosis functions. Pyroptosis, as an inflammatory cell death, depends on the activation of caspase1, while nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) is a typical representative of the pyroptosis pathway. In this study, we aimed to find whether APN affects the AAD process. The results showed that APN overexpression (OE) inhibited the AAD development and the levels of glucose, triglyceride, and total cholesterol in mice model. In addition, APN OE inhibited the productions of gasdermin D (GSDMD), NLRP3, caspase1, interleukin-1β (IL-1β), IL-18, and osteopontin (OPN), as well as α-smooth muscle actin (α-SMA) downregulation in vitro and in vivo. In addition, NLRP3 was found to be a target gene of miR-133a and miR-133a OE showed similar effects to APN OE in attenuating the LPS-induced productions of GSDMD, NLRP3, caspase1, IL-1β, IL-18, and OPN, as well as α-SMA downregulation in vascular smooth muscle cells (vSMCs). Moreover, the beneficial effects of APN OE were abolished by miR-133a knockdown in vSMCs. In conclusion, our present results indicated that the upregulation of miR-133a by APN inhibits pyroptosis pathway, which potentially rescues AAD.
Collapse
Affiliation(s)
- Haizhen Duan
- Department of Emergency Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Xiaojun Zhang
- Department of Emergency Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Renjie Song
- Department of Emergency Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Tongying Liu
- Department of Emergency Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Yuanyuan Zhang
- Wake Forest University, Institute for Regenerative Medicine (WFIRM) 391 Technology Way, Winston-Salem, North Carolina, 27101, USA
| | - Anyong Yu
- Department of Emergency Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
46
|
Liang B, He X, Zhao YX, Zhang XX, Gu N. Advances in Exosomes Derived from Different Cell Sources and Cardiovascular Diseases. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7298687. [PMID: 32724810 PMCID: PMC7364237 DOI: 10.1155/2020/7298687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/16/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022]
Abstract
Exosomes can reach distant tissues through blood circulation to communicate directly with target cells and rapidly regulate intracellular signals. Exosomes play an important role in cardiovascular pathophysiology. Different exosomes derived from different sources, and their cargos have different mechanisms of action. In addition to being biomarkers, exosomes also have a certain significance in the diagnosis, treatment, and even prevention of cardiovascular diseases. Here, we provide a review of the up-to-date applications of exosomes, derived from various sources, in the prognosis and diagnosis of cardiovascular diseases.
Collapse
Affiliation(s)
- Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin He
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Xiu Zhao
- Hospital (T.C.M.) Affiliated to Southwest Medical University, Luzhou, China
| | | | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
47
|
Henning RJ. Cardiovascular Exosomes and MicroRNAs in Cardiovascular Physiology and Pathophysiology. J Cardiovasc Transl Res 2020; 14:195-212. [PMID: 32588374 DOI: 10.1007/s12265-020-10040-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/26/2020] [Indexed: 12/16/2022]
Abstract
Cardiac exosomes mediate cell-to-cell communication, stimulate or inhibit the activities of target cells, and affect myocardial hypertrophy, injury and infarction, ventricular remodeling, angiogenesis, and atherosclerosis. The exosomes that are released in the heart from cardiomyocytes, vascular cells, fibroblasts, and resident stem cells are hypoimmunogenic, are physiologically more stable than cardiac cells, can circulate in the body, and are able to cross the blood-brain barrier. Exosomes utilize three mechanisms for cellular communication: (1) internalization by cells, (2) direct fusion to the cell membrane, and (3) receptor-ligand interactions. Cardiac exosomes transmit proteins, mRNA, and microRNAs to other cells during both physiological and pathological process. Cardiac-specific exosome miRNAs can regulate the expression of sarcomeric genes, ion channel genes, autophagy, anti-apoptotic and anti-fibrotic activity, and angiogenesis. This review discusses the role of exosomes and microRNAs in normal myocardium, myocardial injury and infarction, atherosclerosis, and the importance of circulating microRNAs as biomarkers of cardiac disease. Graphical Abstract.
Collapse
Affiliation(s)
- Robert J Henning
- University of South Florida, 13201 Bruce B. Downs Blvd., Tampa, FL, 33612-3805, USA.
| |
Collapse
|
48
|
Climent M, Viggiani G, Chen YW, Coulis G, Castaldi A. MicroRNA and ROS Crosstalk in Cardiac and Pulmonary Diseases. Int J Mol Sci 2020; 21:ijms21124370. [PMID: 32575472 PMCID: PMC7352701 DOI: 10.3390/ijms21124370] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) affect many cellular functions and the proper redox balance between ROS and antioxidants contributes substantially to the physiological welfare of the cell. During pathological conditions, an altered redox equilibrium leads to increased production of ROS that in turn may cause oxidative damage. MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level contributing to all major cellular processes, including oxidative stress and cell death. Several miRNAs are expressed in response to ROS to mediate oxidative stress. Conversely, oxidative stress may lead to the upregulation of miRNAs that control mechanisms to buffer the damage induced by ROS. This review focuses on the complex crosstalk between miRNAs and ROS in diseases of the cardiac (i.e., cardiac hypertrophy, heart failure, myocardial infarction, ischemia/reperfusion injury, diabetic cardiomyopathy) and pulmonary (i.e., idiopathic pulmonary fibrosis, acute lung injury/acute respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, lung cancer) compartments. Of note, miR-34a, miR-144, miR-421, miR-129, miR-181c, miR-16, miR-31, miR-155, miR-21, and miR-1/206 were found to play a role during oxidative stress in both heart and lung pathologies. This review comprehensively summarizes current knowledge in the field.
Collapse
Affiliation(s)
- Montserrat Climent
- Humanitas Clinical and Research Center—IRCCS, Via Manzoni 56, 20089 Rozzano, MI, Italy;
| | - Giacomo Viggiani
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, MI, Italy;
| | - Ya-Wen Chen
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Gerald Coulis
- Department of Physiology and Biophysics, and Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA;
| | - Alessandra Castaldi
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Correspondence:
| |
Collapse
|
49
|
Guo Y, Chen J, Qiu H. Novel Mechanisms of Exercise-Induced Cardioprotective Factors in Myocardial Infarction. Front Physiol 2020; 11:199. [PMID: 32210839 PMCID: PMC7076164 DOI: 10.3389/fphys.2020.00199] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Exercise training has been reported to ameliorate heart dysfunction in both humans and animals after myocardial infarction (MI). Exercise-induced cardioprotective factors have been implicated in mediating cardiac repair under pathological conditions. These protective factors secreted by or enriched in the heart could exert cardioprotective functions in an autocrine or paracrine manner. Extracellular vesicles, especially exosomes, contain key molecules and play an essential role in cell-to-cell communication via delivery of various factors, which may be a novel target to study the mechanism of exercise-induced benefits, besides traditional signaling pathways. This review is designed to demonstrate the function and underlying protective mechanism of exercise-induced cardioprotective factors in MI, with an aim to offer more potential therapeutic targets for MI.
Collapse
Affiliation(s)
- Yuan Guo
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Jingyuan Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haihua Qiu
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| |
Collapse
|
50
|
Yang H, He X, Wang C, Zhang L, Yu J, Wang K. Knockdown of TUG 1 suppresses hypoxia-induced apoptosis of cardiomyocytes by up-regulating miR-133a. Arch Biochem Biophys 2020; 681:108262. [DOI: 10.1016/j.abb.2020.108262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/01/2020] [Accepted: 01/07/2020] [Indexed: 01/23/2023]
|