1
|
Generation of mouse-human chimeric embryos. Nat Protoc 2021; 16:3954-3980. [PMID: 34215863 DOI: 10.1038/s41596-021-00565-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/29/2021] [Indexed: 02/06/2023]
Abstract
Naive human pluripotent stem cells (hPSCs) can be used to generate mature human cells of all three germ layers in mouse-human chimeric embryos. Here, we describe a protocol for generating mouse-human chimeric embryos by injecting naive hPSCs converted from the primed state. Primed hPSCs are treated with a mammalian target of rapamycin inhibitor (Torin1) for 3 h and dissociated to single cells, which are plated on mouse embryonic fibroblasts in 2iLI medium, a condition essentially the same for culturing mouse embryonic stem cells. After 3-4 d, bright, dome-shaped colonies with mouse embryonic stem cell morphology are passaged in 2iLI medium. Established naive hPSCs are injected into mouse blastocysts, which produce E17.5 mouse embryos containing 0.1-4.0% human cells as quantified by next-generation sequencing of 18S ribosomal DNA amplicons. The protocol is suitable for studying the development of hPSCs in mouse embryos and may facilitate the generation of human cells, tissues and organs in animals.
Collapse
|
2
|
Nath SC, Day B, Harper L, Yee J, Hsu CYM, Larijani L, Rohani L, Duan N, Kallos MS, Rancourt DE. Fluid shear stress promotes embryonic stem cell pluripotency via interplay between β-catenin and vinculin in bioreactor culture. STEM CELLS (DAYTON, OHIO) 2021; 39:1166-1177. [PMID: 33837584 DOI: 10.1002/stem.3382] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/12/2021] [Accepted: 03/25/2021] [Indexed: 11/07/2022]
Abstract
The expansion of pluripotent stem cells (PSCs) as aggregates in stirred suspension bioreactors is garnering attention as an alternative to adherent culture. However, the hydrodynamic environment in the bioreactor can modulate PSC behavior, pluripotency and differentiation potential in ways that need to be well understood. In this study, we investigated how murine embryonic stem cells (mESCs) sense fluid shear stress and modulate a noncanonical Wnt signaling response to promote pluripotency. mESCs showed higher expression of pluripotency marker genes, Oct4, Sox2, and Nanog in the absence of leukemia inhibitory factor (LIF) in stirred suspension bioreactors compared to adherent culture, a phenomenon we have termed mechanopluripotency. In bioreactor culture, fluid shear promoted the nuclear translocation of the less well-known pluripotency regulator β-catenin and concomitant increase of c-Myc expression, an upstream regulator of Oct4, Sox2, and Nanog. We also observed similar β-catenin nuclear translocation in LIF-free mESCs cultured on E-cadherin substrate under defined fluid shear stress conditions in flow chamber plates. mESCs showed lower shear-induced expression of pluripotency marker genes when β-catenin was inhibited, suggesting that β-catenin signaling is crucial to mESC mechanopluripotency. Key to this process is vinculin, which is known to rearrange and associate more strongly with adherens junctions in response to fluid shear. When the vinculin gene is disrupted, we observe that nuclear β-catenin translocation and mechanopluripotency are abrogated. Our results indicate that mechanotransduction through the adherens junction complex is important for mESC pluripotency maintenance.
Collapse
Affiliation(s)
- Suman C Nath
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bradley Day
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Lane Harper
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeffrey Yee
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Charlie Yu-Ming Hsu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Leila Larijani
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Leili Rohani
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicholas Duan
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael S Kallos
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.,Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Derrick E Rancourt
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Garbutt TA, Konganti K, Konneker T, Hillhouse A, Phelps D, Jones A, Aylor D, Threadgill DW. Derivation of stable embryonic stem cell-like, but transcriptionally heterogenous, induced pluripotent stem cells from non-permissive mouse strains. Mamm Genome 2020; 31:263-286. [PMID: 33015751 PMCID: PMC9113365 DOI: 10.1007/s00335-020-09849-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 09/22/2020] [Indexed: 11/26/2022]
Abstract
Genetic background is known to play a role in the ability to derive pluripotent, embryonic stem cells (ESC), a trait referred to as permissiveness. Previously we demonstrated that induced pluripotent stem cells (iPSC) can be readily derived from non-permissive mouse strains by addition of serum-based media supplemented with GSK3B and MEK inhibitors, termed 2iS media, 3 days into reprogramming. Here, we describe the derivation of second type of iPSC colony from non-permissive mouse strains that can be stably maintained independently of 2iS media. The resulting cells display transcriptional heterogeneity similar to that observed in ESC from permissive genetic backgrounds derived in conventional serum containing media supplemented with leukemia inhibitor factor. However, unlike previous studies that report exclusive subpopulations, we observe both exclusive and simultaneous expression of naive and primed cell surface markers. Herein, we explore shifts in pluripotency in the presence of 2iS and characterize heterogenous subpopulations to determine their pluripotent state and role in heterogenous iPSCs derived from the non-permissive NOD/ShiLtJ strain. We conclude that heterogeneity is a naturally occurring, necessary quality of stem cells that allows for the maintenance of pluripotency. This study further demonstrates the efficacy of the 2iS reprogramming technique. It is also the first study to derive stable ESC-like stem cells from the non-permissive NOD/ShiLtJ and WSB/EiJ strains, enabling easier and broader research possibilities into pluripotency for these and similar non-permissive mouse strains and species.
Collapse
Affiliation(s)
- Tiffany A Garbutt
- Program in Genetics, Department of Biological Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, 77843, USA
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Thomas Konneker
- Program in Genetics, Department of Biological Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Andrew Hillhouse
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, 77843, USA
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Drake Phelps
- Program in Genetics, Department of Biological Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Alexis Jones
- Program in Genetics, Department of Biological Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - David Aylor
- Program in Genetics, Department of Biological Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - David W Threadgill
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, 77843, USA.
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, 77843, USA.
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
4
|
Sharaireh AM, Fitzpatrick LM, Ward CM, McKay TR, Unwin RD. Epithelial cadherin regulates transition between the naïve and primed pluripotent states in mouse embryonic stem cells. Stem Cells 2020; 38:1292-1306. [PMID: 32621788 DOI: 10.1002/stem.3249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Inhibition of E-cad in mouse embryonic stem cells (mESCs) leads to a switch from LIF-BMP to Activin/Nodal-dependent pluripotency, consistent with transition from a naïve to primed pluripotent phenotype. We have used both genetic ablation and steric inhibition of E-cad function in mESCs to assess alterations to phenotype using quantitative mass spectrometry analysis, network models, and functional assays. Proteomic analyses revealed that one third of detected proteins were altered in E-cad null mESCs (Ecad-/- mESCs) compared to wild type (624 proteins were downregulated and 705 were proteins upregulated). Network pathway analysis and subsequent cellular flux assays confirmed a metabolic shift from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, specifically through mitochondrial complex III downregulation and hypoxia inducible factor 1a target upregulation. Central to this was the transcriptional coactivator EP300. E-cad is a well-known tumor suppressor, its downregulation during cancer initiation and metastasis can be linked to the metabolic switch known as Warburg effect. This study highlights a phenomena found in both primed pluripotent state and cancer stemness and links it to loss of E-cad. Data are available via ProteomeXchange with identifier PXD012679.
Collapse
Affiliation(s)
- Aseel M Sharaireh
- Division of Dentistry, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Stem Cell Group, Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | - Lorna M Fitzpatrick
- Stem Cell Group, Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | - Chris M Ward
- Division of Dentistry, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Tristan R McKay
- Stem Cell Group, Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | - Richard D Unwin
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Stoller Biomarker Discovery Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Kumar R, Evans T. Activation-Induced Cytidine Deaminase Regulates Fibroblast Growth Factor/Extracellular Signal-Regulated Kinases Signaling to Achieve the Naïve Pluripotent State During Reprogramming. Stem Cells 2019; 37:1003-1017. [PMID: 31021461 PMCID: PMC6766926 DOI: 10.1002/stem.3023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/20/2019] [Accepted: 03/31/2019] [Indexed: 11/12/2022]
Abstract
Induced pluripotent stem cells (iPSCs) derived by in vitro reprogramming of somatic cells retain the capacity to self-renew and to differentiate into many cell types. Pluripotency encompasses multiple states, with naïve iPSCs considered as ground state, possessing high levels of self-renewal capacity and maximum potential without lineage restriction. We showed previously that activation-induced cytidine deaminase (AICDA) facilitates stabilization of pluripotency during reprogramming. Here, we report that Acida-/- iPSCs, even when successfully reprogrammed, fail to achieve the naïve pluripotent state and remain primed for differentiation because of a failure to suppress fibroblast growth factor (FGF)/extracellular signal-regulated kinases (ERK) signaling. Although the mutant cells display marked genomic hypermethylation, suppression of FGF/ERK signaling by AICDA is independent of deaminase activity. Thus, our study identifies AICDA as a novel regulator of naïve pluripotency through its activity on FGF/ERK signaling. Stem Cells 2019;37:1003-1017.
Collapse
Affiliation(s)
- Ritu Kumar
- Department of Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
6
|
Generation of ERK‐Independent Human and Non‐Human Primate Pluripotent Stem Cells. ACTA ACUST UNITED AC 2019; 49:e85. [DOI: 10.1002/cpsc.85] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Increased Expression of Cell Surface SSEA-1 is Closely Associated with Naïve-Like Conversion from Human Deciduous Teeth Dental Pulp Cells-Derived iPS Cells. Int J Mol Sci 2019; 20:ijms20071651. [PMID: 30987116 PMCID: PMC6480091 DOI: 10.3390/ijms20071651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/27/2019] [Accepted: 03/31/2019] [Indexed: 12/13/2022] Open
Abstract
Stage-specific embryonic antigen 1 (SSEA-1) is an antigenic epitope (also called CD15 antigen) defined as a Lewis X carbohydrate structure and known to be expressed in murine embryonal carcinoma cells, mouse embryonic stem cells (ESCs), and murine and human germ cells, but not human ESCs/induced pluripotent stem cells (iPSCs). It is produced by α1,3-fucosyltransferase IX gene (FUT9), and F9 ECCs having a disrupted FUT9 locus by gene targeting are reported to exhibit loss of SSEA-1 expression on their cell surface. Mouse ESCs are pluripotent cells and therefore known as “naïve stem cells (NSCs).” In contrast, human ESCs/iPSCs are thought to be epiblast stem cells (EpiSCs) that are slightly more differentiated than NSCs. Recently, it has been demonstrated that treatment of EpiSCs with several reprograming-related drugs can convert EpiSCs to cells similar to NSCs, which led us to speculate that SSEA-1 may have been expressed in these NSC-like EpiSCs. Immunocytochemical staining of these cells with anti-SSEA-1 revealed increased expression of this epitope. RT-PCR analysis also confirmed increased expression of FUT9 transcripts as well as other stemness-related transcripts such as REX-1 (ZFP42). These results suggest that SSEA-1 can be an excellent marker for human NSCs.
Collapse
|
8
|
An Y, Sekinaka T, Tando Y, Okamura D, Tanaka K, Ito-Matsuoka Y, Takehara A, Yaegashi N, Matsui Y. Derivation of pluripotent stem cells from nascent undifferentiated teratoma. Dev Biol 2018; 446:43-55. [PMID: 30529251 DOI: 10.1016/j.ydbio.2018.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 01/19/2023]
Abstract
Teratomas are tumors consisting of components of the three germ layers that differentiate from pluripotent stem cells derived from germ cells. In the normal mouse testis, teratomas rarely form, but a deficiency in Dead-end1 (Dnd1) in mice with a 129/Sv genetic background greatly enhances teratoma formation. Thus, DND1 is crucial for suppression of teratoma development from germ cells. In the Dnd1 mutant testis, nascent teratoma cells emerge at E15.5. To understand the nature of early teratoma cells, we established cell lines in the presence of serum and leukemia inhibitory factor (LIF) from teratoma-forming cells in neonatal Dnd1 mutant testis. These cells, which we designated cultured Dnd1 mutant germ cells (CDGCs), were morphologically similar to embryonic stem cells (ESCs) and could be maintained in the naïve pluripotent condition. In addition, the cells expressed pluripotency genes including Oct4, Nanog, and Sox2; differentiated into cells of the three germ layers in culture; and contributed to chimeric mice. The expression levels of pluripotency genes and global transcriptomes in CDGCs as well as these cells' adaption to culture conditions for primed pluripotency suggested that their pluripotent status is intermediate between naïve and primed pluripotency. In addition, the teratoma-forming cells in the neonatal testis from which CDGCs were derived also showed gene expression profiles intermediate between naïve and primed pluripotency. The results suggested that germ cells in embryonic testes of Dnd1 mutants acquire the intermediate pluripotent status during the course of conversion into teratoma cells.
Collapse
Affiliation(s)
- Yuri An
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan; Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Tamotsu Sekinaka
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
| | - Yukiko Tando
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
| | - Daiji Okamura
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara, Japan
| | - Keiko Tanaka
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan; Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yumi Ito-Matsuoka
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
| | - Asuka Takehara
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan; Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan; The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Chuo-ku, Tokyo, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University School of Medicine, Sendai, Miyagi, Japan.
| |
Collapse
|
9
|
Liu HW, Su YK, Bamodu OA, Hueng DY, Lee WH, Huang CC, Deng L, Hsiao M, Chien MH, Yeh CT, Lin CM. The Disruption of the β-Catenin/TCF-1/STAT3 Signaling Axis by 4-Acetylantroquinonol B Inhibits the Tumorigenesis and Cancer Stem-Cell-Like Properties of Glioblastoma Cells, In Vitro and In Vivo. Cancers (Basel) 2018; 10:E491. [PMID: 30563094 PMCID: PMC6315804 DOI: 10.3390/cancers10120491] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM), a malignant form of glioma, is characterized by resistance to therapy and poor prognosis. Accumulating evidence shows that the initiation, propagation, and recurrence of GBM is attributable to the presence of GBM stem cells (GBM-CSCs). EXPERIMENTAL APPROACH Herein, we investigated the effect of 4-Acetylantroquinonol B (4-AAQB), a bioactive isolate of Antrodia cinnamomea, on GBM cell viability, oncogenic, and CSCs-like activities. RESULTS We observed that aberrant expression of catenin is characteristic of GBM, compared to other glioma types (p = 0.0001, log-rank test = 475.2), and correlates with poor prognosis of GBM patients. Lower grade glioma and glioblastoma patients (n = 1152) with low catenin expression had 25% and 21.5% better overall survival than those with high catenin expression at the 5 and 10-year time-points, respectively (p = 3.57e-11, log-rank test = 43.8). Immunohistochemistry demonstrated that compared with adjacent non-tumor brain tissue, primary and recurrent GBM exhibited enhanced catenin expression (~10-fold, p < 0.001). Western blot analysis showed that 4-AAQB significantly downregulated β-catenin and dysregulated the catenin/LEF1/Stat3 signaling axis in U87MG and DBTRG-05MG cells, dose-dependently. 4-AAQB⁻induced downregulation of catenin positively correlated with reduced Sox2 and Oct4 nuclear expression in the cells. Furthermore, 4-AAQB markedly reduced the viability of U87MG and DBTRG-05MG cells with 48 h IC50 of 9.2 M and 12.5 M, respectively, effectively inhibited the nuclear catenin, limited the migration and invasion of GBM cells, with concurrent downregulation of catenin, vimentin, and slug; similarly, colony and tumorsphere formation was significantly attenuated with reduced expression of c-Myc and KLF4 proteins. CONCLUSIONS Summarily, we show for the first time that 4-AAQB suppresses the tumor-promoting catenin/LEF1/Stat3 signaling, and inhibited CSCs-induced oncogenic activities in GBM in vitro, with in vivo validation; thus projecting 4-AAQB as a potent therapeutic agent for anti-GBM target therapy.
Collapse
Affiliation(s)
- Heng-Wei Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan.
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan.
- Division of Neurosurgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yu-Kai Su
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan.
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan.
- Division of Neurosurgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan.
| | - Oluwaseun Adebayo Bamodu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
| | - Dueng-Yuan Hueng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan, ROC.
| | - Wei-Hwa Lee
- Department of Pathology, Taipei Medical University-Shuang Ho Hospital, Taipei 23561, Taiwan.
| | - Chun-Chih Huang
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 41147, Taiwan.
| | - Li Deng
- Beijing Bioprocess Key Laboratory, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
- Amoy-BUCT Industrial Bio-technovation Institute, Amoy 361022, China.
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan.
| | - Chi-Tai Yeh
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan.
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
| | - Chien-Min Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan.
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan.
- Division of Neurosurgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
10
|
Barui A, Chowdhury F, Pandit A, Datta P. Rerouting mesenchymal stem cell trajectory towards epithelial lineage by engineering cellular niche. Biomaterials 2018; 156:28-44. [DOI: 10.1016/j.biomaterials.2017.11.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/22/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
|
11
|
Festuccia N, Owens N, Navarro P. Esrrb, an estrogen-related receptor involved in early development, pluripotency, and reprogramming. FEBS Lett 2017; 592:852-877. [DOI: 10.1002/1873-3468.12826] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/11/2017] [Accepted: 08/19/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Nicola Festuccia
- Epigenetics of Stem Cells; Department of Developmental and Stem Cell Biology; Institut Pasteur; CNRS UMR3738; Paris France
| | - Nick Owens
- Epigenetics of Stem Cells; Department of Developmental and Stem Cell Biology; Institut Pasteur; CNRS UMR3738; Paris France
| | - Pablo Navarro
- Epigenetics of Stem Cells; Department of Developmental and Stem Cell Biology; Institut Pasteur; CNRS UMR3738; Paris France
| |
Collapse
|
12
|
Kobayashi S. Live imaging of X chromosome inactivation and reactivation dynamics. Dev Growth Differ 2017; 59:493-500. [PMID: 28635043 PMCID: PMC11520949 DOI: 10.1111/dgd.12365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 04/19/2017] [Indexed: 11/29/2022]
Abstract
The epigenetic phenomenon called X chromosome inactivation plays critical roles in female development in eutherian mammals, and has attracted attention in the fields of developmental biology and regenerative biology in efforts to understand the pluripotency of stem cells. X chromosome inactivation is routinely studied after cell fixation, but live imaging is increasingly being required to improve our understanding of the dynamics and kinetics of X chromosome inactivation and reactivation processes. Here, we describe our live imaging method to monitor the epigenetic status of X chromosomes using a gene knock-in mouse strain named "Momiji" and give an overview of the application of this strain as a resource for biological and stem cell research.
Collapse
Affiliation(s)
- Shin Kobayashi
- Molecular Profiling Research Center for Drug DiscoveryNational Institute of Advanced Industrial Science and Technology2‐4‐7 AomiKoutou‐kuTokyo135‐0064Japan
- Department of EpigeneticsMedical Research InstituteTokyo Medical & Dental University1‐5‐45 YushimaBunkyo‐kuTokyo113‐8510Japan
| |
Collapse
|
13
|
Masaki H, Kato-Itoh M, Takahashi Y, Umino A, Sato H, Ito K, Yanagida A, Nishimura T, Yamaguchi T, Hirabayashi M, Era T, Loh KM, Wu SM, Weissman IL, Nakauchi H. Inhibition of Apoptosis Overcomes Stage-Related Compatibility Barriers to Chimera Formation in Mouse Embryos. Cell Stem Cell 2017; 19:587-592. [PMID: 27814480 DOI: 10.1016/j.stem.2016.10.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 09/05/2016] [Accepted: 10/19/2016] [Indexed: 12/19/2022]
Abstract
Cell types more advanced in development than embryonic stem cells, such as EpiSCs, fail to contribute to chimeras when injected into pre-implantation-stage blastocysts, apparently because the injected cells undergo apoptosis. Here we show that transient promotion of cell survival through expression of the anti-apoptotic gene BCL2 enables EpiSCs and Sox17+ endoderm progenitors to integrate into blastocysts and contribute to chimeric embryos. Upon injection into blastocyst, BCL2-expressing EpiSCs contributed to all bodily tissues in chimeric animals while Sox17+ endoderm progenitors specifically contributed in a region-specific fashion to endodermal tissues. In addition, BCL2 expression enabled rat EpiSCs to contribute to mouse embryonic chimeras, thereby forming interspecies chimeras that could survive to adulthood. Our system therefore provides a method to overcome cellular compatibility issues that typically restrict chimera formation. Application of this type of approach could broaden the use of embryonic chimeras, including region-specific chimeras, for basic developmental biology research and regenerative medicine.
Collapse
Affiliation(s)
- Hideki Masaki
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Megumi Kato-Itoh
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Yusuke Takahashi
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ayumi Umino
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Hideyuki Sato
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Keiichi Ito
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Ayaka Yanagida
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Toshinobu Nishimura
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tomoyuki Yamaguchi
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki-shi, Aichi-ken 444-0864, Japan
| | - Takumi Era
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto 860-8555, Japan
| | - Kyle M Loh
- Institute for Stem Cell Biology and Regenerative Medicine and Ludwig Center for Cancer Stem Cell Biology and Medicine, Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sean M Wu
- Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, Institute for Stem Cell Biology and Regenerative Medicine and Child Health Research Institute, Stanford University School of Medicine, CA 94305, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine and Ludwig Center for Cancer Stem Cell Biology and Medicine, Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hiromitsu Nakauchi
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Zimmerlin L, Park TS, Zambidis ET. Capturing Human Naïve Pluripotency in the Embryo and in the Dish. Stem Cells Dev 2017; 26:1141-1161. [PMID: 28537488 DOI: 10.1089/scd.2017.0055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although human embryonic stem cells (hESCs) were first derived almost 20 years ago, it was only recently acknowledged that they share closer molecular and functional identity to postimplantation lineage-primed murine epiblast stem cells than to naïve preimplantation inner cell mass-derived mouse ESCs (mESCs). A myriad of transcriptional, epigenetic, biochemical, and metabolic attributes have now been described that distinguish naïve and primed pluripotent states in both rodents and humans. Conventional hESCs and human induced pluripotent stem cells (hiPSCs) appear to lack many of the defining hallmarks of naïve mESCs. These include important features of the naïve ground state murine epiblast, such as an open epigenetic architecture, reduced lineage-primed gene expression, and chimera and germline competence following injection into a recipient blastocyst-stage embryo. Several transgenic and chemical methods were recently reported that appear to revert conventional human PSCs to mESC-like ground states. However, it remains unclear if subtle deviations in global transcription, cell signaling dependencies, and extent of epigenetic/metabolic shifts in these various human naïve-reverted pluripotent states represent true functional differences or alternatively the existence of distinct human pluripotent states along a spectrum. In this study, we review the current understanding and developmental features of various human pluripotency-associated phenotypes and discuss potential biological mechanisms that may support stable maintenance of an authentic epiblast-like ground state of human pluripotency.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| | - Tea Soon Park
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| | - Elias T Zambidis
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| |
Collapse
|
15
|
Hadjimichael C, Chanoumidou K, Nikolaou C, Klonizakis A, Theodosi GI, Makatounakis T, Papamatheakis J, Kretsovali A. Promyelocytic Leukemia Protein Is an Essential Regulator of Stem Cell Pluripotency and Somatic Cell Reprogramming. Stem Cell Reports 2017; 8:1366-1378. [PMID: 28392218 PMCID: PMC5425614 DOI: 10.1016/j.stemcr.2017.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/18/2022] Open
Abstract
Promyelocytic leukemia protein (PML), the main constituent of PML nuclear bodies, regulates various physiological processes in different cell types. However, little is known about its functions in embryonic stem cells (ESC). Here, we report that PML contributes to ESC self-renewal maintenance by controlling cell-cycle progression and sustaining the expression of crucial pluripotency factors. Transcriptomic analysis and gain- or loss-of-function approaches showed that PML-deficient ESC exhibit morphological, metabolic, and growth properties distinct to naive and closer to the primed pluripotent state. During differentiation of embryoid bodies, PML influences cell-fate decisions between mesoderm and endoderm by controlling the expression of Tbx3. PML loss compromises the reprogramming ability of embryonic fibroblasts to induced pluripotent stem cells by inhibiting the transforming growth factor β pathway at the very early stages. Collectively, these results designate PML as a member of the regulatory network for ESC naive pluripotency and somatic cell reprogramming. PML is essential for the maintenance of naive pluripotent cells PML prevents the naive to primed pluripotency transition PML influences cell-fate commitment through Tbx3 regulation PML is required for iPSCs formation via regulation of TGF signaling pathway
Collapse
Affiliation(s)
- Christiana Hadjimichael
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Crete 70013, Greece
| | - Konstantina Chanoumidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Crete 70013, Greece; Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, Alexandroupolis, Evros 68100, Greece
| | | | | | | | - Takis Makatounakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Crete 70013, Greece
| | - Joseph Papamatheakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Crete 70013, Greece
| | - Androniki Kretsovali
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Crete 70013, Greece.
| |
Collapse
|
16
|
Augustin I, Dewi DL, Hundshammer J, Erdmann G, Kerr G, Boutros M. Autocrine Wnt regulates the survival and genomic stability of embryonic stem cells. Sci Signal 2017; 10:10/461/eaah6829. [PMID: 28074006 DOI: 10.1126/scisignal.aah6829] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Wnt signaling plays an important role in the self-renewal and differentiation of stem cells. The secretion of Wnt ligands requires Evi (also known as Wls). Genetically ablating Evi provides an experimental approach to studying the consequence of depleting all redundant Wnt proteins, and overexpressing Evi enables a nonspecific means of increasing Wnt signaling. We generated Evi-deficient and Evi-overexpressing mouse embryonic stem cells (ESCs) to analyze the role of autocrine Wnt production in self-renewal and differentiation. Self-renewal was reduced in Evi-deficient ESCs and increased in Evi-overexpressing ESCs in the absence of leukemia inhibitory factor, which supports the self-renewal of ESCs. The differentiation of ESCs into cardiomyocytes was enhanced when Evi was overexpressed and teratoma formation and growth of Evi-deficient ESCs in vivo were impaired, indicating that autocrine Wnt ligands were necessary for ESC differentiation and survival. ESCs lacking autocrine Wnt signaling had mitotic defects and showed genomic instability. Together, our study demonstrates that autocrine Wnt secretion is important for the survival, chromosomal stability, differentiation, and tumorigenic potential of ESCs.
Collapse
Affiliation(s)
- Iris Augustin
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany.
| | - Dyah L Dewi
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany
| | - Jennifer Hundshammer
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany
| | - Gerrit Erdmann
- NMI TT Naturwissenschaftliches und Medizinisches Institut Technologie Transfer GmbH Pharmaservices, Berlin 13353, Germany
| | - Grainne Kerr
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany.
| |
Collapse
|
17
|
Generation of functional endothelial cells with progenitor-like features from murine induced pluripotent stem cells. Vascul Pharmacol 2016; 86:94-108. [DOI: 10.1016/j.vph.2016.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/20/2016] [Indexed: 11/19/2022]
|
18
|
Russell R, Ilg M, Lin Q, Wu G, Lechel A, Bergmann W, Eiseler T, Linta L, Kumar P P, Klingenstein M, Adachi K, Hohwieler M, Sakk O, Raab S, Moon A, Zenke M, Seufferlein T, Schöler HR, Illing A, Liebau S, Kleger A. A Dynamic Role of TBX3 in the Pluripotency Circuitry. Stem Cell Reports 2016; 5:1155-1170. [PMID: 26651606 PMCID: PMC4682344 DOI: 10.1016/j.stemcr.2015.11.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 11/06/2015] [Accepted: 11/12/2015] [Indexed: 01/05/2023] Open
Abstract
Pluripotency represents a cell state comprising a fine-tuned pattern of transcription factor activity required for embryonic stem cell (ESC) self-renewal. TBX3 is the earliest expressed member of the T-box transcription factor family and is involved in maintenance and induction of pluripotency. Hence, TBX3 is believed to be a key member of the pluripotency circuitry, with loss of TBX3 coinciding with loss of pluripotency. We report a dynamic expression of TBX3 in vitro and in vivo using genetic reporter tools tracking TBX3 expression in mouse ESCs (mESCs). Low TBX3 levels are associated with reduced pluripotency, resembling the more mature epiblast. Notably, TBX3-low cells maintain the intrinsic capability to switch to a TBX3-high state and vice versa. Additionally, we show TBX3 to be dispensable for induction and maintenance of naive pluripotency as well as for germ cell development. These data highlight novel facets of TBX3 action in mESCs.
Collapse
Affiliation(s)
- Ronan Russell
- Department of Internal Medicine I, Ulm University, 89081 Ulm, Germany
| | - Marcus Ilg
- Department of Internal Medicine I, Ulm University, 89081 Ulm, Germany
| | - Qiong Lin
- Department of Cell Biology, Institute for Biomedical Engineering, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - André Lechel
- Department of Internal Medicine I, Ulm University, 89081 Ulm, Germany
| | - Wendy Bergmann
- Department of Internal Medicine I, Ulm University, 89081 Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, Ulm University, 89081 Ulm, Germany
| | - Leonhard Linta
- Institute of Neuroanatomy, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Pavan Kumar P
- Weis Center for Research, Geisinger Clinic, Danville, PA 17822, USA
| | - Moritz Klingenstein
- Institute of Neuroanatomy, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Kenjiro Adachi
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Meike Hohwieler
- Department of Internal Medicine I, Ulm University, 89081 Ulm, Germany
| | - Olena Sakk
- Core Facility Transgenic Mice, Ulm University, 89081 Ulm, Germany
| | - Stefanie Raab
- Institute of Neuroanatomy, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Anne Moon
- Weis Center for Research, Geisinger Clinic, Danville, PA 17822, USA
| | - Martin Zenke
- Department of Cell Biology, Institute for Biomedical Engineering, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Anett Illing
- Department of Internal Medicine I, Ulm University, 89081 Ulm, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
19
|
Sessions JW, Skousen CS, Price KD, Hanks BW, Hope S, Alder JK, Jensen BD. CRISPR-Cas9 directed knock-out of a constitutively expressed gene using lance array nanoinjection. SPRINGERPLUS 2016; 5:1521. [PMID: 27652094 PMCID: PMC5017990 DOI: 10.1186/s40064-016-3037-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/10/2016] [Indexed: 11/23/2022]
Abstract
Background CRISPR-Cas9 genome editing and labeling has emerged as an important tool in biologic research, particularly in regards to potential transgenic and gene therapy applications. Delivery of CRISPR-Cas9 plasmids to target cells is typically done by non-viral methods (chemical, physical, and/or electrical), which are limited by low transfection efficiencies or with viral vectors, which are limited by safety and restricted volume size. In this work, a non-viral transfection technology, named lance array nanoinjection (LAN), utilizes a microfabricated silicon chip to physically and electrically deliver genetic material to large numbers of target cells. To demonstrate its utility, we used the CRISPR-Cas9 system to edit the genome of isogenic cells. Two variables related to the LAN process were tested which include the magnitude of current used during plasmid attraction to the silicon lance array (1.5, 4.5, or 6.0 mA) and the number of times cells were injected (one or three times). Results Results indicate that most successful genome editing occurred after injecting three times at a current control setting of 4.5 mA, reaching a median level of 93.77 % modification. Furthermore, we found that genome editing using LAN follows a non-linear injection-dose response, meaning samples injected three times had modification rates as high as nearly 12 times analogously treated single injected samples. Conclusions These findings demonstrate the LAN’s ability to deliver genetic material to cells and indicate that successful alteration of the genome is influenced by a serial injection method as well as the electrical current settings.
Collapse
Affiliation(s)
- John W Sessions
- Department of Mechanical Engineering, Brigham Young University, Provo, UT USA
| | - Craig S Skousen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT USA
| | - Kevin D Price
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT USA
| | - Brad W Hanks
- Department of Mechanical Engineering, Brigham Young University, Provo, UT USA
| | - Sandra Hope
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT USA
| | - Jonathan K Alder
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT USA
| | - Brian D Jensen
- Department of Mechanical Engineering, Brigham Young University, Provo, UT USA
| |
Collapse
|
20
|
Xiao X, Li N, Zhang D, Yang B, Guo H, Li Y. Generation of Induced Pluripotent Stem Cells with Substitutes for Yamanaka's Four Transcription Factors. Cell Reprogram 2016; 18:281-297. [PMID: 27696909 DOI: 10.1089/cell.2016.0020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) share many characteristics with embryonic stem cells, but lack ethical controversy. They provide vast opportunities for disease modeling, pathogenesis understanding, therapeutic drug development, toxicology, organ synthesis, and treatment of degenerative disease. However, this procedure also has many potential challenges, including a slow generation time, low efficiency, partially reprogrammed colonies, as well as somatic coding mutations in the genome. Pioneered by Shinya Yamanaka's team in 2006, iPSCs were first generated by introducing four transcription factors: Oct 4, Sox 2, Klf 4, and c-Myc (OSKM). Of those factors, Klf 4 and c-Myc are oncogenes, which are potentially a tumor risk. Therefore, to avoid problems such as tumorigenesis and low throughput, one of the key strategies has been to use other methods, including members of the same subgroup of transcription factors, activators or inhibitors of signaling pathways, microRNAs, epigenetic modifiers, or even differentiation-associated factors, to functionally replace the reprogramming transcription factors. In this study, we will mainly focus on the advances in the generation of iPSCs with substitutes for OSKM. The identification and combination of novel proteins or chemicals, particularly small molecules, to induce pluripotency will provide useful tools to discover the molecular mechanisms governing reprogramming and ultimately lead to the development of new iPSC-based therapeutics for future clinical applications.
Collapse
Affiliation(s)
- Xiong Xiao
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China .,2 Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Nan Li
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China
| | - Dapeng Zhang
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China
| | - Bo Yang
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China
| | - Hongmei Guo
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China
| | - Yuemin Li
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China
| |
Collapse
|
21
|
Russell AJ, Silpa L. Chemical-Induced Naive Pluripotency. Cell Chem Biol 2016; 23:532-534. [PMID: 27203371 DOI: 10.1016/j.chembiol.2016.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The capacity to harness the properties of pluripotent stem cells has a wide-reaching impact on regenerative medicine, drug discovery, and also basic science. Two recent publications by Ursu et al. and Illich et al. demonstrate that inhibition of a CK1 isoform efficiently induces naive pluripotency in epiblast stem cells.
Collapse
Affiliation(s)
- Angela J Russell
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK; Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | - Laurence Silpa
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
22
|
Osteil P, Studdert J, Wilkie E, Fossat N, Tam PP. Generation of genome-edited mouse epiblast stem cells via a detour through ES cell-chimeras. Differentiation 2016; 91:119-25. [DOI: 10.1016/j.diff.2015.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 11/27/2022]
|
23
|
RUSU E, NECULA LG, NEAGU AI, ALECU M, STAN C, ALBULESCU R, TANASE CP. Current status of stem cell therapy: opportunities and limitations. Turk J Biol 2016; 40:955-967. [DOI: 10.3906/biy-1506-95] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
24
|
Ebrahimi B. Reprogramming barriers and enhancers: strategies to enhance the efficiency and kinetics of induced pluripotency. CELL REGENERATION (LONDON, ENGLAND) 2015; 4:10. [PMID: 26566431 PMCID: PMC4642739 DOI: 10.1186/s13619-015-0024-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/19/2015] [Indexed: 12/13/2022]
Abstract
Induced pluripotent stem cells are powerful tools for disease modeling, drug screening, and cell transplantation therapies. These cells can be generated directly from somatic cells by ectopic expression of defined factors through a reprogramming process. However, pluripotent reprogramming is an inefficient process because of various defined and unidentified barriers. Recent studies dissecting the molecular mechanisms of reprogramming have methodically improved the quality, ease, and efficiency of reprogramming. Different strategies have been applied for enhancing reprogramming efficiency, including depletion/inhibition of barriers (p53, p21, p57, p16(Ink4a)/p19(Arf), Mbd3, etc.), overexpression of enhancing genes (e.g., FOXH1, C/EBP alpha, UTF1, and GLIS1), and administration of certain cytokines and small molecules. The current review provides an in-depth overview of the cutting-edge findings regarding distinct barriers of reprogramming to pluripotency and strategies to enhance reprogramming efficiency. By incorporating the mechanistic insights from these recent findings, a combined method of inhibition of roadblocks and application of enhancing factors may yield the most reliable and effective approach in pluripotent reprogramming.
Collapse
Affiliation(s)
- Behnam Ebrahimi
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
25
|
López-Ruano G, Prieto-Bermejo R, Ramos TL, San-Segundo L, Sánchez-Abarca LI, Sánchez-Guijo F, Pérez-Simón JA, Sánchez-Yagüe J, Llanillo M, Hernández-Hernández Á. PTPN13 and β-Catenin Regulate the Quiescence of Hematopoietic Stem Cells and Their Interaction with the Bone Marrow Niche. Stem Cell Reports 2015; 5:516-31. [PMID: 26344907 PMCID: PMC4624939 DOI: 10.1016/j.stemcr.2015.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/29/2022] Open
Abstract
The regulation of hematopoietic stem cells (HSCs) depends on the integration of the multiple signals received from the bone marrow niche. We show the relevance of the protein tyrosine phosphatase PTPN13 and β-catenin as intracellular signaling molecules to control HSCs adhesiveness, cell cycling, and quiescence. Lethally irradiated mice transplanted with Lin– bone marrow cells in which PTPN13 or β-catenin had been silenced showed a significant increase of long-term (LT) and short-term (ST) HSCs. A decrease in cycling cells was also found, together with an increase in quiescence. The decreased expression of PTPN13 or β-catenin was linked to the upregulation of several genes coding for integrins and several cadherins, explaining the higher cell adhesiveness. Our data are consistent with the notion that the levels of PTPN13 and β-catenin must be strictly regulated by extracellular signaling to regulate HSC attachment to the niche and the balance between proliferation and quiescence. PTPN13 or β-catenin silencing increases LT-HSCs and ST-HSCs frequency in vivo The cell cycling of HSPCs was decreased by PTPN13 or β-catenin downregulation LT-HSCs and ST-HSCs quiescence was increased by PTPN13 or β-catenin downregulation PTPN13 and β-catenin levels modulate the interaction of HSPCs with the BM niche
Collapse
Affiliation(s)
- Guillermo López-Ruano
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain
| | - Rodrigo Prieto-Bermejo
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain
| | - Teresa L Ramos
- IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain
| | - Laura San-Segundo
- IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain
| | - Luis Ignacio Sánchez-Abarca
- Department of Hematology, Hospital Universitario Virgen del Rocío/IBIS/CSIC/University of Seville, Seville 41013, Spain
| | - Fermín Sánchez-Guijo
- IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain
| | - José Antonio Pérez-Simón
- Department of Hematology, Hospital Universitario Virgen del Rocío/IBIS/CSIC/University of Seville, Seville 41013, Spain
| | - Jesús Sánchez-Yagüe
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain
| | - Marcial Llanillo
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain
| | - Ángel Hernández-Hernández
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain.
| |
Collapse
|
26
|
Muñoz-Descalzo S, Hadjantonakis AK, Arias AM. Wnt/ß-catenin signalling and the dynamics of fate decisions in early mouse embryos and embryonic stem (ES) cells. Semin Cell Dev Biol 2015; 47-48:101-9. [PMID: 26321498 DOI: 10.1016/j.semcdb.2015.08.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 12/22/2022]
Abstract
Wnt/ß-catenin signalling is a widespread cell signalling pathway with multiple roles during vertebrate development. In mouse embryonic stem (mES) cells, there is a dual role for ß-catenin: it promotes differentiation when activated as part of the Wnt/ß-catenin signalling pathway, and promotes stable pluripotency independently of signalling. Although mES cells resemble the preimplantation epiblast progenitors, the first requirement for Wnt/ß-catenin signalling during mouse development has been reported at implantation [1,2]. The relationship between ß-catenin and pluripotency and that of mES cells with epiblast progenitors suggests that ß-catenin might have a functional role during preimplantation development. Here we summarize the expression and function of Wnt/ß-catenin signalling elements during the early stages of mouse development and consider the reasons why the requirement in ES cells do not reflect the embryo.
Collapse
Affiliation(s)
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
27
|
Masaki H, Kato-Itoh M, Umino A, Sato H, Hamanaka S, Kobayashi T, Yamaguchi T, Nishimura K, Ohtaka M, Nakanishi M, Nakauchi H. Interspecific in vitro assay for the chimera-forming ability of human pluripotent stem cells. Development 2015; 142:3222-30. [PMID: 26023098 DOI: 10.1242/dev.124016] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/01/2015] [Indexed: 12/25/2022]
Abstract
Functional assay limitations are an emerging issue in characterizing human pluripotent stem cells (PSCs). With rodent PSCs, chimera formation using pre-implantation embryos is the gold-standard assay of pluripotency (competence of progeny to differentiate into all three germ layers). In human PSCs (hPSCs), however, this can only be monitored via teratoma formation or in vitro differentiation, as ethical concerns preclude generation of human-human or human-animal chimeras. To circumvent this issue, we developed a functional assay utilizing interspecific blastocyst injection and in vitro culture (interspecies in vitro chimera assay) that enables the development and observation of embryos up to headfold stage. The assay uses mouse pre-implantation embryos and rat, monkey and human PSCs to create interspecies chimeras cultured in vitro to the early egg-cylinder stage. Intra- and interspecific chimera assays with rodent PSC lines were performed to confirm the consistency of results in vitro and in vivo. The behavior of chimeras developed in vitro appeared to recapitulate that of chimeras developed in vivo; that is, PSC-derived cells survived and were integrated into the epiblast of egg-cylinder-stage embryos. This indicates that the interspecific in vitro chimera assay is useful in evaluating the chimera-forming ability of rodent PSCs. However, when human induced PSCs (both conventional and naïve-like types) were injected into mouse embryos and cultured, some human cells survived but were segregated; unlike epiblast-stage rodent PSCs, they never integrated into the epiblast of egg-cylinder-stage embryos. These data suggest that the mouse-human interspecies in vitro chimera assay does not accurately reflect the early developmental potential/process of hPSCs. The use of evolutionarily more closely related species as host embryos might be necessary to evaluate the developmental potency of hPSCs.
Collapse
Affiliation(s)
- Hideki Masaki
- ERATO Nakauchi Stem Cell and Organ Regeneration Project, Japan Technology and Science Agency, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Megumi Kato-Itoh
- ERATO Nakauchi Stem Cell and Organ Regeneration Project, Japan Technology and Science Agency, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ayumi Umino
- ERATO Nakauchi Stem Cell and Organ Regeneration Project, Japan Technology and Science Agency, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hideyuki Sato
- ERATO Nakauchi Stem Cell and Organ Regeneration Project, Japan Technology and Science Agency, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Sanae Hamanaka
- ERATO Nakauchi Stem Cell and Organ Regeneration Project, Japan Technology and Science Agency, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Toshihiro Kobayashi
- ERATO Nakauchi Stem Cell and Organ Regeneration Project, Japan Technology and Science Agency, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomoyuki Yamaguchi
- ERATO Nakauchi Stem Cell and Organ Regeneration Project, Japan Technology and Science Agency, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ken Nishimura
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-11 Higashi, Central 4, Tsukuba, Ibaraki 305-8562, Japan
| | - Manami Ohtaka
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-11 Higashi, Central 4, Tsukuba, Ibaraki 305-8562, Japan
| | - Mahito Nakanishi
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-11 Higashi, Central 4, Tsukuba, Ibaraki 305-8562, Japan
| | - Hiromitsu Nakauchi
- ERATO Nakauchi Stem Cell and Organ Regeneration Project, Japan Technology and Science Agency, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5461, USA
| |
Collapse
|