1
|
Xiong H, Zhang Y, Zhao Z. Investigation of single nucleotide polymorphisms in differentially expressed genes and proteins reveals the genetic basis of skeletal muscle growth differences between Tibetan and Large White pigs. Anim Biosci 2024; 37:2021-2032. [PMID: 38938033 PMCID: PMC11541014 DOI: 10.5713/ab.24.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/02/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVE Skeletal muscle growth is an important economic trait for meat production, with notable differences between Tibetan pigs (TIBPs, a slow-growing breed) and Large White pigs (LWPs, a fast-growing breed). However, the genetic underpinnings of this disparity remain unclear. METHODS In the current study, we integrated differentially expressed genes (DEGs) and proteins (DEPs) from 60-day-old embryonic muscle tissue, along with whole-genome single nucleotide polymorphisms (SNPs) displaying absolute allele frequency differences (ΔAF) of 0.5 or more between the TIBP and LWP breeds, to unravel the genetic factors influencing skeletal muscle growth. RESULTS Our analysis revealed 3,499 DEGs and 628 DEPs with SNPs having a ΔAF equal to or greater than 0.5. Further functional analysis identified 145 DEGs and 23 DEPs involved in biological processes related to skeletal muscle development, and 22 DEGs and 3 DEPs implicated in the mechanistic target of rapamycin kinase signaling pathway, which is known for positively regulating protein synthesis. Among these genes, several DEGs and DEPs, enriched with TIPB-specific SNPs in regulatory or/and coding regions, showed marked ΔAF between the TIBP and LWP breeds, including MYF5, MYOF, ASB2, PDE9A, SDC1, PDGFRA, MYOM2, ACVR1, ZIC3, COL11A1, TGFBR1, EDNRA, TGFB2, PDE4D, PGAM2, GRK2, SCN4B, CACNA1S, MYL4, IGF1, and FOXO1. Additionally, genes such as CAPN3, MYOM2, and PGAM2, identified as both DEPs and DEGs related to skeletal muscle development, contained multiple TIBP-specific and LWP-predominant SNPs in regulatory and/or coding regions, underscoring significant ΔAF differences between the two breeds. CONCLUSION This comprehensive investigation of SNPs in DEGs and DEPs identified a significant number of SNPs and genes related to skeletal muscle development during the prenatal stage. These findings not only shed light on potential causal genes for muscle divergence between the TIBP and LWP breeds but also offer valuable insights for pig breeding strategies aimed at enhancing meat production.
Collapse
Affiliation(s)
- Heli Xiong
- Animal Nutrition and Swine Institute, Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming 650224,
China
| | - Yan Zhang
- Animal Nutrition and Swine Institute, Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming 650224,
China
| | - Zhiyong Zhao
- Animal Nutrition and Swine Institute, Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming 650224,
China
| |
Collapse
|
2
|
Argiro L, Chevalier C, Choquet C, Nandkishore N, Ghata A, Baudot A, Zaffran S, Lescroart F. Gastruloids are competent to specify both cardiac and skeletal muscle lineages. Nat Commun 2024; 15:10172. [PMID: 39580459 PMCID: PMC11585638 DOI: 10.1038/s41467-024-54466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/12/2024] [Indexed: 11/25/2024] Open
Abstract
Cardiopharyngeal mesoderm contributes to the formation of the heart and head muscles. However, the mechanisms governing cardiopharyngeal mesoderm specification remain unclear. Here, we reproduce cardiopharyngeal mesoderm specification towards cardiac and skeletal muscle lineages with gastruloids from mouse embryonic stem cells. By conducting a comprehensive temporal analysis of cardiopharyngeal mesoderm development and differentiation in gastruloids compared to mouse embryos, we present the evidence for skeletal myogenesis in gastruloids. We identify different subpopulations of cardiomyocytes and skeletal muscles, the latter of which most likely correspond to different states of myogenesis with "head-like" and "trunk-like" skeletal myoblasts. In this work, we unveil the potential of gastruloids to undergo specification into both cardiac and skeletal muscle lineages, allowing the investigation of the mechanisms of cardiopharyngeal mesoderm differentiation in development and how this could be affected in congenital diseases.
Collapse
Affiliation(s)
- Laurent Argiro
- Aix-Marseille Univ, INSERM, Marseille Medical Genetics (MMG), Marseille, France
| | - Céline Chevalier
- Aix-Marseille Univ, INSERM, Marseille Medical Genetics (MMG), Marseille, France
| | - Caroline Choquet
- Aix-Marseille Univ, INSERM, Marseille Medical Genetics (MMG), Marseille, France
| | - Nitya Nandkishore
- Aix-Marseille Univ, INSERM, Marseille Medical Genetics (MMG), Marseille, France
- Department of Biotechnology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu, India
| | - Adeline Ghata
- Aix-Marseille Univ, INSERM, Marseille Medical Genetics (MMG), Marseille, France
| | - Anaïs Baudot
- Aix-Marseille Univ, INSERM, Marseille Medical Genetics (MMG), Marseille, France
| | - Stéphane Zaffran
- Aix-Marseille Univ, INSERM, Marseille Medical Genetics (MMG), Marseille, France.
| | - Fabienne Lescroart
- Aix-Marseille Univ, INSERM, Marseille Medical Genetics (MMG), Marseille, France.
| |
Collapse
|
3
|
Zhao J, Rui L, Ouyang W, Hao Y, Liu Y, Tang J, Ding Z, Teng Z, Liu X, Zhu H, Ding Z. Cardiac commitment driven by MyoD expression in pericardial stem cells. Front Cell Dev Biol 2024; 12:1369091. [PMID: 38601082 PMCID: PMC11004306 DOI: 10.3389/fcell.2024.1369091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 04/12/2024] Open
Abstract
Cellular therapy holds immense promise to remuscularize the damaged myocardium but is practically hindered by limited allogeneic sources of cardiac-committed cells that engraft stably in the recipient heart after transplantation. Here, we demonstrate that the pericardial tissue harbors myogenic stem cells (pSCs) that are activated in response to inflammatory signaling after myocardial infarction (MI). The pSCs derived from the MI rats (MI-pSCs) show in vivo and in vitro cardiac commitment characterized by cardiac-specific Tnnt2 expression and formation of rhythmic contraction in culture. Bulk RNA-seq analysis reveals significant upregulation of a panel of genes related to cardiac/myogenic differentiation, paracrine factors, and extracellular matrix in the activated pSCs compared to the control pSCs (Sham-pSCs). Notably, we define MyoD as a key factor that governs the process of cardiac commitment, as siRNA-mediated MyoD gene silencing results in a significant reduction of myogenic potential. Injection of the cardiac-committed cells into the infarcted rat heart leads to long-term survival and stable engraftment in the recipient myocardium. Therefore, these findings point to pericardial myogenic progenitors as an attractive candidate for cardiac cell-based therapy to remuscularize the damaged myocardium.
Collapse
Affiliation(s)
- Jianfeng Zhao
- Department of Cardiology, The People’s Hospital of Danyang Affiliated to Nantong University, Danyang, China
| | - Limei Rui
- Department of Cardiology, The People’s Hospital of Danyang Affiliated to Nantong University, Danyang, China
| | - Weili Ouyang
- Department of Cardiology, The People’s Hospital of Danyang Affiliated to Nantong University, Danyang, China
| | - Yingcai Hao
- Department of Cardiology, The People’s Hospital of Danyang Affiliated to Nantong University, Danyang, China
| | - Yusong Liu
- Department of Cardiology, The People’s Hospital of Danyang Affiliated to Nantong University, Danyang, China
| | - Jianfeng Tang
- Department of Cardiology, The People’s Hospital of Danyang Affiliated to Nantong University, Danyang, China
| | - Zheheng Ding
- Institute of Biochemistry and Molecular Biology II, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Zenghui Teng
- Institute Neuro and Sensory Physiology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Xueqing Liu
- Department of Cardiology, The People’s Hospital of Danyang Affiliated to Nantong University, Danyang, China
| | - Hongtao Zhu
- Department of Cardiology, The People’s Hospital of Danyang Affiliated to Nantong University, Danyang, China
| | - Zhaoping Ding
- Institute of Molecular Cardiology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
4
|
Kocere A, Lalonde RL, Mosimann C, Burger A. Lateral thinking in syndromic congenital cardiovascular disease. Dis Model Mech 2023; 16:dmm049735. [PMID: 37125615 PMCID: PMC10184679 DOI: 10.1242/dmm.049735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Syndromic birth defects are rare diseases that can present with seemingly pleiotropic comorbidities. Prime examples are rare congenital heart and cardiovascular anomalies that can be accompanied by forelimb defects, kidney disorders and more. Whether such multi-organ defects share a developmental link remains a key question with relevance to the diagnosis, therapeutic intervention and long-term care of affected patients. The heart, endothelial and blood lineages develop together from the lateral plate mesoderm (LPM), which also harbors the progenitor cells for limb connective tissue, kidneys, mesothelia and smooth muscle. This developmental plasticity of the LPM, which founds on multi-lineage progenitor cells and shared transcription factor expression across different descendant lineages, has the potential to explain the seemingly disparate syndromic defects in rare congenital diseases. Combining patient genome-sequencing data with model organism studies has already provided a wealth of insights into complex LPM-associated birth defects, such as heart-hand syndromes. Here, we summarize developmental and known disease-causing mechanisms in early LPM patterning, address how defects in these processes drive multi-organ comorbidities, and outline how several cardiovascular and hematopoietic birth defects with complex comorbidities may be LPM-associated diseases. We also discuss strategies to integrate patient sequencing, data-aggregating resources and model organism studies to mechanistically decode congenital defects, including potentially LPM-associated orphan diseases. Eventually, linking complex congenital phenotypes to a common LPM origin provides a framework to discover developmental mechanisms and to anticipate comorbidities in congenital diseases affecting the cardiovascular system and beyond.
Collapse
Affiliation(s)
- Agnese Kocere
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
- Department of Molecular Life Science, University of Zurich, 8057 Zurich, Switzerland
| | - Robert L. Lalonde
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Christian Mosimann
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Alexa Burger
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| |
Collapse
|
5
|
Heat Shock Protein B7 Inhibits the Progression of Endometrial Carcinoma by Inhibiting PI3K/AKT/mTOR Pathway. Reprod Sci 2023; 30:590-600. [PMID: 35859224 DOI: 10.1007/s43032-022-01041-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE To investigate the role and mechanism of action of Heat shock protein B7 (HSPB7) in endometrial carcinoma (EC). METHODS GEPIA (Gene Expression Profiling Interactive Analysis) was used to analyze the expression and prognostic value of HSPB7 in TCGA data. HSPB7 mRNA and protein expression levels were detected by qRT-PCR and Western blot, respectively. EC cell proliferation, apoptosis, migration, and invasion were determined by colony formation, EdU, flow cytometry, and transwell assays. Mitochondrial membrane potential was determined using JC-1 probe. In addition, apoptosis-related and metastasis-related proteins were quantitatively evaluated. A gene set enrichment analysis of the signaling pathways by which HSPB7 influences EC was performed and the levels of enriched pathway-related proteins were evaluated. RESULTS We first proved that HSPB7 was downregulated in EC tissues and HSPB7 levels were positively related to survival rates. In functional assays, HSPB7 overexpression suppressed the proliferation, migration, and invasion of EC cells and conversely promoted apoptosis. Moreover, HSPB7 overexpression decreased the mitochondrial membrane potential of EC cells significantly. Bioinformatics analyses revealed that the PI3K/AKT/mTOR pathway was significantly enriched in EC. HSPB7 inhibited the phosphorylation of the PI3K/AKT/mTOR pathway to reduce proliferation, migration and invasion, and increased apoptosis in EC cells. CONCLUSION HSPB7 was downregulated in EC and influenced EC cell proliferation, invasion, migration, and apoptosis via the PI3K/AKT/mTOR signaling pathway. These findings provide a novel perspective for the development of EC treatment strategies.
Collapse
|
6
|
Elmadbouh I. Generation of muscle progenitors from human-induced pluripotent stem cells. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Small molecules have a role in the differentiation of human-induced pluripotent stem cells (hiPSCs) into different cell linages. The aim of this study was to evaluate the differentiation of hiPSCs into cardiac or skeletal myogenic progenitors with a single small molecule.
Methods
hiPSCs were treated with three different small molecules such as Isoxazole-9, Danazol and Givinostat in serum-free medium for 7 days. Cell viability, qRT-PCR, western blots, and immunostaining were assessed after treatment of hiPSCs with small molecules.
Results
Higher hiPSC viability was observed in hiPSCs treated with Isoxazole-9 (25 µM), Danazol (25 µM) and Givinostat (150 nM) versus control (P < 0.05). Givinostat had dual effect by generating both skeletal and cardiac progenitor cells versus Isoxazole-9 and Danazol after 7 days. Givinostat treatment induced upregulation of skeletal myogenic genes and their protein expression levels on day 4 and further increased on day 8 (P < 0.05) versus control. Furthermore,positive stained cells for Pax3, Myf5, MyoD1, dystrophin, desmin, myogenin, and β-catenin at 1 month. Givinostat increased upregulation of cardiac gene expression levels versus control after day 4 (P < 0.05), with positive stained cells for Nkx2.5, GATA4, TnT, TnI, connexin 43 and α-sarcomeric actinin at 1 month.
Conclusions
Pretreatment of hiPSCs with Givinostat represents a viable strategy for producing both cardiac/skeletal myogenic progenitors in vitro for cell therapies against myocardial infarction and Duchenne muscular dystrophy.
Collapse
|
7
|
Simunovic M, Siggia ED, Brivanlou AH. In vitro attachment and symmetry breaking of a human embryo model assembled from primed embryonic stem cells. Cell Stem Cell 2022; 29:962-972.e4. [DOI: 10.1016/j.stem.2022.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 02/08/2023]
|
8
|
Allele-specific aberration of imprinted domain chromosome architecture associates with large offspring syndrome. iScience 2022; 25:104269. [PMID: 35542046 PMCID: PMC9079005 DOI: 10.1016/j.isci.2022.104269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 03/12/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
Large offspring syndrome (LOS) and Beckwith-Wiedemann syndrome are similar epigenetic congenital overgrowth conditions in ruminants and humans, respectively. We have reported global loss-of-imprinting, methylome epimutations, and gene misregulation in LOS. However, less than 4% of gene misregulation can be explained with short range (<20kb) alterations in DNA methylation. Therefore, we hypothesized that methylome epimutations in LOS affect chromosome architecture which results in misregulation of genes located at distances >20kb in cis and in trans (other chromosomes). Our analyses focused on two imprinted domains that frequently reveal misregulation in these syndromes, namely KvDMR1 and IGF2R. Using bovine fetal fibroblasts, we identified CTCF binding at IGF2R imprinting control region but not KvDMR1, and allele-specific chromosome architecture of these domains in controls. In LOS, analyses identified erroneous long-range contacts and clustering tendency in the direction of expression of misregulated genes. In conclusion, altered chromosome architecture is associated with LOS. IGF2R imprinted domain has allele-specific chromosome architecture in bovines In bovines, CTCF binds at IGF2R imprinting control region but not at KvDMR1 Bovine large offspring syndrome (LOS) shows altered chromosome architecture at IGF2R Misregulated genes in LOS exhibit genomic location-based clustering tendency
Collapse
|
9
|
Stutt N, Song M, Wilson MD, Scott IC. Cardiac specification during gastrulation - The Yellow Brick Road leading to Tinman. Semin Cell Dev Biol 2021; 127:46-58. [PMID: 34865988 DOI: 10.1016/j.semcdb.2021.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
The question of how the heart develops, and the genetic networks governing this process have become intense areas of research over the past several decades. This research is propelled by classical developmental studies and potential clinical applications to understand and treat congenital conditions in which cardiac development is disrupted. Discovery of the tinman gene in Drosophila, and examination of its vertebrate homolog Nkx2.5, along with other core cardiac transcription factors has revealed how cardiac progenitor differentiation and maturation drives heart development. Careful observation of cardiac morphogenesis along with lineage tracing approaches indicated that cardiac progenitors can be divided into two broad classes of cells, namely the first and second heart fields, that contribute to the heart in two distinct waves of differentiation. Ample evidence suggests that the fate of individual cardiac progenitors is restricted to distinct cardiac structures quite early in development, well before the expression of canonical cardiac progenitor markers like Nkx2.5. Here we review the initial specification of cardiac progenitors, discuss evidence for the early patterning of cardiac progenitors during gastrulation, and consider how early gene expression programs and epigenetic patterns can direct their development. A complete understanding of when and how the developmental potential of cardiac progenitors is determined, and their potential plasticity, is of great interest developmentally and also has important implications for both the study of congenital heart disease and therapeutic approaches based on cardiac stem cell programming.
Collapse
Affiliation(s)
- Nathan Stutt
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Mengyi Song
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Michael D Wilson
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Ian C Scott
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada.
| |
Collapse
|
10
|
Lescroart F, Dumas CE, Adachi N, Kelly RG. Emergence of heart and branchiomeric muscles in cardiopharyngeal mesoderm. Exp Cell Res 2021; 410:112931. [PMID: 34798131 DOI: 10.1016/j.yexcr.2021.112931] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/27/2021] [Accepted: 11/14/2021] [Indexed: 12/17/2022]
Abstract
Branchiomeric muscles of the head and neck originate in a population of cranial mesoderm termed cardiopharyngeal mesoderm that also contains progenitor cells contributing to growth of the embryonic heart. Retrospective lineage analysis has shown that branchiomeric muscles share a clonal origin with parts of the heart, indicating the presence of common heart and head muscle progenitor cells in the early embryo. Genetic lineage tracing and functional studies in the mouse, as well as in Ciona and zebrafish, together with recent experiments using single cell transcriptomics and multipotent stem cells, have provided further support for the existence of bipotent head and heart muscle progenitor cells. Current challenges concern defining where and when such common progenitor cells exist in mammalian embryos and how alternative myogenic derivatives emerge in cardiopharyngeal mesoderm. Addressing these questions will provide insights into mechanisms of cell fate acquisition and the evolution of vertebrate musculature, as well as clinical insights into the origins of muscle restricted myopathies and congenital defects affecting craniofacial and cardiac development.
Collapse
Affiliation(s)
| | - Camille E Dumas
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009, Marseille, France
| | - Noritaka Adachi
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009, Marseille, France
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009, Marseille, France.
| |
Collapse
|
11
|
Proteomic Analysis of Exosomes during Cardiogenic Differentiation of Human Pluripotent Stem Cells. Cells 2021; 10:cells10102622. [PMID: 34685602 PMCID: PMC8533815 DOI: 10.3390/cells10102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022] Open
Abstract
Efforts to direct the specification of human pluripotent stem cells (hPSCs) to therapeutically important somatic cell types have focused on identifying proper combinations of soluble cues. Yet, whether exosomes, which mediate intercellular communication, play a role in the differentiation remains unexplored. We took a first step toward addressing this question by subjecting hPSCs to stage-wise specification toward cardiomyocytes (CMs) in scalable stirred-suspension cultures and collecting exosomes. Samples underwent liquid chromatography (LC)/mass spectrometry (MS) and subsequent proteomic analysis revealed over 300 unique proteins from four differentiation stages including proteins such as PPP2CA, AFM, MYH9, MYH10, TRA2B, CTNNA1, EHD1, ACTC1, LDHB, and GPC4, which are linked to cardiogenic commitment. There was a significant correlation of the protein composition of exosomes with the hPSC line and stage of commitment. Differentiating hPSCs treated with exosomes from hPSC-derived CMs displayed improved efficiency of CM formation compared to cells without exogenously added vesicles. Collectively, these results demonstrate that exosomes from hPSCs induced along the CM lineage contain proteins linked to the specification process with modulating effects and open avenues for enhancing the biomanufacturing of stem cell products for cardiac diseases.
Collapse
|
12
|
Guénantin AC, Jebeniani I, Leschik J, Watrin E, Bonne G, Vignier N, Pucéat M. Targeting the histone demethylase LSD1 prevents cardiomyopathy in a mouse model of laminopathy. J Clin Invest 2021; 131:136488. [PMID: 33393499 DOI: 10.1172/jci136488] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
LMNA mutations in patients are responsible for a dilated cardiomyopathy. Molecular mechanisms underlying the origin and development of the pathology are unknown. Herein, using mouse pluripotent embryonic stem cells (ESCs) and a mouse model both harboring the p.H222P Lmna mutation, we found early defects in cardiac differentiation of mutated ESCs and dilatation of mutated embryonic hearts at E13.5, pointing to a developmental origin of the disease. Using mouse ESCs, we demonstrated that cardiac differentiation of LmnaH222P/+ was impaired at the mesodermal stage. Expression of Mesp1, a mesodermal cardiogenic gene involved in epithelial-to-mesenchymal transition of epiblast cells, as well as Snai1 and Twist expression, was decreased in LmnaH222P/+ cells compared with WT cells in the course of differentiation. In turn, cardiomyocyte differentiation was impaired. ChIP assay of H3K4me1 in differentiating cells revealed a specific decrease of this histone mark on regulatory regions of Mesp1 and Twist in LmnaH222P/+ cells. Downregulation or inhibition of LSD1 that specifically demethylated H3K4me1 rescued the epigenetic landscape of mesodermal LmnaH222P/+ cells and in turn contraction of cardiomyocytes. Inhibition of LSD1 in pregnant mice or neonatal mice prevented cardiomyopathy in E13.5 LmnaH222P/H222P offspring and adults, respectively. Thus, LSD1 appeared to be a therapeutic target to prevent or cure dilated cardiomyopathy associated with a laminopathy.
Collapse
Affiliation(s)
| | - Imen Jebeniani
- INSERM UMR-1251, MMG, Aix-Marseille University, Marseille, France
| | | | - Erwan Watrin
- Centre National de la Recherche Scientifique, UMR6290, Rennes, France; Institut de Génétique et Développement de Rennes, Université de Rennes, Rennes, France
| | - Gisèle Bonne
- Sorbonne Université, INSERM UMRS974, Centre de Recherche en Myologie, Institut de Myologie, G.H. Pitié Salpêtrière, F-75651 Paris Cedex 13, France
| | - Nicolas Vignier
- Sorbonne Université, INSERM UMRS974, Centre de Recherche en Myologie, Institut de Myologie, G.H. Pitié Salpêtrière, F-75651 Paris Cedex 13, France
| | - Michel Pucéat
- INSERM U-633, Paris Descartes University.,INSERM UMR-1251, MMG, Aix-Marseille University, Marseille, France
| |
Collapse
|
13
|
Cheng X, Shi B, Li J. Distinct Embryonic Origin and Injury Response of Resident Stem Cells in Craniofacial Muscles. Front Physiol 2021; 12:690248. [PMID: 34276411 PMCID: PMC8281086 DOI: 10.3389/fphys.2021.690248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023] Open
Abstract
Craniofacial muscles emerge as a developmental novelty during the evolution from invertebrates to vertebrates, facilitating diversified modes of predation, feeding and communication. In contrast to the well-studied limb muscles, knowledge about craniofacial muscle stem cell biology has only recently starts to be gathered. Craniofacial muscles are distinct from their counterparts in other regions in terms of both their embryonic origin and their injury response. Compared with somite-derived limb muscles, pharyngeal arch-derived craniofacial muscles demonstrate delayed myofiber reconstitution and prolonged fibrosis during repair. The regeneration of muscle is orchestrated by a blended source of stem/progenitor cells, including myogenic muscle satellite cells (MuSCs), mesenchymal fibro-adipogenic progenitors (FAPs) and other interstitial progenitors. Limb muscles host MuSCs of the Pax3 lineage, and FAPs from the mesoderm, while craniofacial muscles have MuSCs of the Mesp1 lineage and FAPs from the ectoderm-derived neural crest. Both in vivo and in vitro data revealed distinct patterns of proliferation and differentiation in these craniofacial muscle stem/progenitor cells. Additionally, the proportion of cells of different embryonic origins changes throughout postnatal development in the craniofacial muscles, creating a more dynamic niche environment than in other muscles. In-depth comparative studies of the stem cell biology of craniofacial and limb muscles might inspire the development of novel therapeutics to improve the management of myopathic diseases. Based on the most up-to-date literature, we delineated the pivotal cell populations regulating craniofacial muscle repair and identified clues that might elucidate the distinct embryonic origin and injury response in craniofacial muscle cells.
Collapse
Affiliation(s)
- Xu Cheng
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingtao Li
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Lee JW, Lee CS, Ryu YR, Lee J, Son H, Cho HJ, Kim HS. Lysophosphatidic Acid Receptor 4 Is Transiently Expressed during Cardiac Differentiation and Critical for Repair of the Damaged Heart. Mol Ther 2021; 29:1151-1163. [PMID: 33160074 PMCID: PMC7934582 DOI: 10.1016/j.ymthe.2020.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/05/2020] [Accepted: 11/01/2020] [Indexed: 12/15/2022] Open
Abstract
Efficient differentiation of pluripotent stem cells (PSCs) into cardiac cells is essential for the development of new therapeutic modalities to repair damaged heart tissue. We identified a novel cell surface marker, the G protein-coupled receptor lysophosphatidic acid receptor 4 (LPAR4), specific to cardiac progenitor cells (CPCs) and determined its functional significance and therapeutic potential. During in vitro differentiation of mouse and human PSCs toward cardiac lineage, LPAR4 expression peaked after 3−7 days of differentiation in cardiac progenitors and then declined. In vivo, LPAR4 was specifically expressed in the early stage of embryonal heart development, and as development progressed, LPAR4 expression decreased and was non-specifically distributed. We identified the effective agonist octadecenyl phosphate and a p38 MAPK blocker as the downstream signal blocker. Sequential stimulation and inhibition of LPAR4 using these agents enhanced the in vitro efficiency of cardiac differentiation from mouse and human PSCs. Importantly, in vivo, this sequential stimulation and inhibition of LPAR4 reduced the infarct size and rescued heart dysfunction in mice. In conclusion, LPAR4 is a novel CPC marker transiently expressed only in heart during embryo development. Modulation of LPAR4-positive cells may be a promising strategy for repairing myocardium after myocardial infarction.
Collapse
Affiliation(s)
- Jin-Woo Lee
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul 03080, Republic of Korea
| | - Choon-Soo Lee
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul 03080, Republic of Korea
| | - Yong-Rim Ryu
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Jaewon Lee
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - HyunJu Son
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul 03080, Republic of Korea
| | - Hyun-Jai Cho
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea.
| | - Hyo-Soo Kim
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
15
|
Stem Cells an Overview. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Yahya I, Morosan-Puopolo G, Brand-Saberi B. The CXCR4/SDF-1 Axis in the Development of Facial Expression and Non-somitic Neck Muscles. Front Cell Dev Biol 2020; 8:615264. [PMID: 33415110 PMCID: PMC7783292 DOI: 10.3389/fcell.2020.615264] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022] Open
Abstract
Trunk and head muscles originate from distinct embryonic regions: while the trunk muscles derive from the paraxial mesoderm that becomes segmented into somites, the majority of head muscles develops from the unsegmented cranial paraxial mesoderm. Differences in the molecular control of trunk versus head and neck muscles have been discovered about 25 years ago; interestingly, differences in satellite cell subpopulations were also described more recently. Specifically, the satellite cells of the facial expression muscles share properties with heart muscle. In adult vertebrates, neck muscles span the transition zone between head and trunk. Mastication and facial expression muscles derive from the mesodermal progenitor cells that are located in the first and second branchial arches, respectively. The cucullaris muscle (non-somitic neck muscle) originates from the posterior-most branchial arches. Like other subclasses within the chemokines and chemokine receptors, CXCR4 and SDF-1 play essential roles in the migration of cells within a number of various tissues during development. CXCR4 as receptor together with its ligand SDF-1 have mainly been described to regulate the migration of the trunk muscle progenitor cells. This review first underlines our recent understanding of the development of the facial expression (second arch-derived) muscles, focusing on new insights into the migration event and how this embryonic process is different from the development of mastication (first arch-derived) muscles. Other muscles associated with the head, such as non-somitic neck muscles derived from muscle progenitor cells located in the posterior branchial arches, are also in the focus of this review. Implications on human muscle dystrophies affecting the muscles of face and neck are also discussed.
Collapse
Affiliation(s)
- Imadeldin Yahya
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany.,Department of Anatomy, Faculty of Veterinary Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
17
|
Fukushima H, Yoshioka M, Kawatou M, López-Dávila V, Takeda M, Kanda Y, Sekino Y, Yoshida Y, Yamashita JK. Specific induction and long-term maintenance of high purity ventricular cardiomyocytes from human induced pluripotent stem cells. PLoS One 2020; 15:e0241287. [PMID: 33137106 PMCID: PMC7605685 DOI: 10.1371/journal.pone.0241287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 10/13/2020] [Indexed: 12/28/2022] Open
Abstract
Currently, cardiomyocyte (CM) differentiation methods require a purification step after CM induction to ensure the high purity of the cell population. Here we show an improved human CM differentiation protocol with which high-purity ventricular-type CMs can be obtained and maintained without any CM purification process. We induced and collected a mesodermal cell population (platelet-derived growth factor receptor-α (PDGFRα)-positive cells) that can respond to CM differentiation cues, and then stimulated CM differentiation by means of Wnt inhibition. This method reproducibly generated CMs with purities above 95% in several human pluripotent stem cell lines. Furthermore, these CM populations were maintained in culture at such high purity without any further CM purification step for over 200 days. The majority of these CMs (>95%) exhibited a ventricular-like phenotype with a tendency to structural and electrophysiological maturation, including T-tubule-like structure formation and the ability to respond to QT prolongation drugs. This is a simple and valuable method to stably generate CM populations suitable for cardiac toxicology testing, disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Hiroyuki Fukushima
- Department of Cell Growth and Differentiation, Laboratory of Stem Cell Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Miki Yoshioka
- Department of Cell Growth and Differentiation, Laboratory of Stem Cell Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Masahide Kawatou
- Department of Cell Growth and Differentiation, Laboratory of Stem Cell Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Department of Cardiovascular Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Víctor López-Dávila
- Department of Cell Growth and Differentiation, Laboratory of Stem Cell Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Masafumi Takeda
- Department of Cell Growth and Differentiation, Laboratory of Stem Cell Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Yuko Sekino
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Yoshinori Yoshida
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Jun K. Yamashita
- Department of Cell Growth and Differentiation, Laboratory of Stem Cell Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
18
|
Pappas MP, Peifer LN, Chan SSK. Dual TGFβ and Wnt inhibition promotes Mesp1-mediated mouse pluripotent stem cell differentiation into functional cardiomyocytes. Dev Growth Differ 2020; 62:487-494. [PMID: 33048365 DOI: 10.1111/dgd.12694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/26/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022]
Abstract
Efficient derivation of cardiomyocytes from mouse pluripotent stem cells has proven challenging, and existing approaches rely on expensive supplementation or extensive manipulation. Mesp1 is a transcription factor that regulates cardiovascular specification during embryo development, and its overexpression has been shown to promote cardiogenesis. Here, we utilize a doxycycline-inducible Mesp1-expressing mouse embryonic stem cell system to develop an efficient differentiation protocol to generate functional cardiomyocytes. Our cardiac differentiation method involves transient Mesp1 induction following by subsequent dual inhibition of TGFβ and Wnt signaling pathways using small molecules. We discovered that whereas TGFβ inhibition promoted Mesp1-induced cardiac differentiation, Wnt inhibition was ineffective. Nevertheless, a combined inhibition of both pathways was superior to either inhibition alone in generating cardiomyocytes. These observations suggested a potential interaction between TGFβ and Wnt signaling pathways in the context of Mesp1-induced cardiac differentiation. Using a step-by-step approach, we have further optimized the windows of Mesp1 induction, TGFβ inhibition and Wnt inhibition to yield a maximal cardiomyocyte output - Mesp1 was induced first, followed by dual inhibition of TGFβ and Wnt signaling. Our protocol is capable of producing approximately 50% of cardiomyocytes in 12 days, which is comparable to existing methods, and have the advantages of being technically simple and inexpensive. Moreover, cardiomyocytes thus derived are functional, displaying intrinsic contractile capacity and contraction in response to electric stimulus. Derivation of mouse cardiomyocytes without the use of growth factors or other costly supplementation provides an accessible cell source for future applications.
Collapse
Affiliation(s)
- Matthew P Pappas
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Lindsay N Peifer
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Sunny S K Chan
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.,Paul and Shelia Wellstone Muscular Dystrophy Center, Stem Cell Institute, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
19
|
Borasch K, Richardson K, Plendl J. Cardiogenesis with a focus on vasculogenesis and angiogenesis. Anat Histol Embryol 2020; 49:643-655. [PMID: 32319704 DOI: 10.1111/ahe.12549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/04/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022]
Abstract
The initial intraembryonic vasculogenesis occurs in the cardiogenic mesoderm. Here, a cell population of proendocardial cells detaches from the mesoderm that subsequently generates the single endocardial tube by forming vascular plexuses. In the course of embryogenesis, the endocardium retains vasculogenic, angiogenic and haematopoietic potential. The coronary blood vessels that sustain the rapidly expanding myocardium develop in the course of the formation of the cardiac loop by vasculogenesis and angiogenesis from progenitor cells of the proepicardial serosa at the venous pole of the heart as well as from the endocardium and endothelial cells of the sinus venosus. Prospective coronary endothelial cells and progenitor cells of the coronary blood vessel walls (smooth muscle cells, perivascular cells) originate from different cell populations that are in close spatial as well as regulatory connection with each other. Vasculo- and angiogenesis of the coronary blood vessels are for a large part regulated by the epicardium and epicardium-derived cells. Vasculogenic and angiogenic signalling pathways include the vascular endothelial growth factors, the angiopoietins and the fibroblast growth factors and their receptors.
Collapse
Affiliation(s)
- Katrin Borasch
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie University Berlin, Berlin, Germany
| | - Kenneth Richardson
- College of Veterinary Medicine, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Johanna Plendl
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie University Berlin, Berlin, Germany
| |
Collapse
|
20
|
Kim E, Wu F, Wu X, Choo HJ. Generation of craniofacial myogenic progenitor cells from human induced pluripotent stem cells for skeletal muscle tissue regeneration. Biomaterials 2020; 248:119995. [PMID: 32283390 PMCID: PMC7232788 DOI: 10.1016/j.biomaterials.2020.119995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/13/2020] [Accepted: 03/20/2020] [Indexed: 12/18/2022]
Abstract
Craniofacial skeletal muscle is composed of approximately 60 muscles, which have critical functions including food uptake, eye movements and facial expressions. Although craniofacial muscles have significantly different embryonic origin, most current skeletal muscle differentiation protocols using human induced pluripotent stem cells (iPSCs) are based on somite-derived limb and trunk muscle developmental pathways. Since the lack of a protocol for craniofacial muscles is a significant gap in the iPSC-derived muscle field, we have developed an optimized protocol to generate craniofacial myogenic precursor cells (cMPCs) from human iPSCs by mimicking key signaling pathways during craniofacial embryonic myogenesis. At each different stage, human iPSC-derived cMPCs mirror the transcription factor expression profiles seen in their counterparts during embryo development. After the bi-potential cranial pharyngeal mesoderm is established, cells are committed to cranial skeletal muscle lineages with inhibition of cardiac lineages and are purified by flow cytometry. Furthermore, identities of Ipsc-derived cMPCs are verified with human primary myoblasts from craniofacial muscles using RNA sequencing. These data suggest that our new method could provide not only in vitro research tools to study muscle specificity of muscular dystrophy but also abundant and reliable cellular resources for tissue engineering to support craniofacial reconstruction surgery.
Collapse
Affiliation(s)
- Eunhye Kim
- Department of Cell Biology, School of Medcine, Emory University, Atlanta, GA, 30322, USA
| | - Fang Wu
- Department of Cell Biology, School of Medcine, Emory University, Atlanta, GA, 30322, USA
| | - Xuewen Wu
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Emory University, Atlanta, GA, 30322, USA; Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Hyojung J Choo
- Department of Cell Biology, School of Medcine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
21
|
Biological Pathways of Long-Term Visit-to-Visit Blood Pressure Variability in the American Population: Cardiovascular Health Study and Women’s Health Initiatives. BIOMED RESEARCH INTERNATIONAL 2020. [DOI: 10.1155/2020/3841945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Studies reported a positive relationship between visit-to-visit blood pressure variability (VVBPV) and cardiovascular morbidity and mortality independently of the mean arterial blood pressure across clinical visits. The literature is scarce on the genes and biological mechanisms that regulate long-term VVBPV. We sought to identify biological pathways that regulate visit-to-visit blood pressure variability. We used phenotypic and genotype data from the Women’s Health Initiatives and Cardiovascular Health Studies. We defined VVBPV of systolic and diastolic blood pressure phenotypes as the standard deviation about the participant’s regression line with systolic and diastolic blood pressure regressed separately across visits. We imputed missing genotypes and then conducted a genome-wide association analysis to identify genomic variants related to the VVBPV and detect biological pathways. For systolic VVBPV, we identified a neurological pathway, the GABAergic pathway (P values = 1.1E − 2), and a vascular pathway, the RAP1 signaling pathway (P values = 5.8E − 2). For diastolic VVBPV, the hippo signaling (P values = 4.1E − 2), CDO myogenesis (P values = 7.0E − 2), and O-glycosylation of TSR domain-containing protein pathways (P values = 9.0E − 2) were the significant pathways. Future studies are warranted to validate these results. Further understanding of the roles of the genes regulating the identified pathways will help researchers to improve future pharmacological interventions to treat VVBPV in clinical practice.
Collapse
|
22
|
Penaloza JS, Pappas MP, Hagen HR, Xie N, Chan SSK. Single-cell RNA-seq analysis of Mesp1-induced skeletal myogenic development. Biochem Biophys Res Commun 2019; 520:284-290. [PMID: 31590918 DOI: 10.1016/j.bbrc.2019.09.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022]
Abstract
The Mesp1 lineage contributes to cardiac, hematopoietic and skeletal myogenic development. Interestingly, muscle stem cells residing in craniofacial skeletal muscles primarily arise from Mesp1+ progenitors, but those in trunk and limb skeletal muscles do not. To gain insights into the difference between the head and trunk/limb muscle developmental processes, we studied Mesp1+ skeletal myogenic derivatives via single-cell RNA-seq and other strategies. Using a doxycycline-inducible Mesp1-expressing mouse embryonic stem cell line, we found that the development of Mesp1-induced skeletal myogenic progenitors can be characterized by dynamic expression of PDGFRα and VCAM1. Single-cell RNA-seq analysis further revealed the heterogeneous nature of these Mesp1+ derivatives, spanning pluripotent and mesodermal to mesenchymal and skeletal myogenic. We subsequently reconstructed the single-cell trajectories of these subpopulations. Our data thereby provide a cell fate projection of Mesp1-induced skeletal myogenesis.
Collapse
Affiliation(s)
| | | | | | - Ning Xie
- Department of Pediatrics, Minneapolis, MN, 55455, USA.
| | - Sunny S K Chan
- Department of Pediatrics, Minneapolis, MN, 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
23
|
Sadahiro T. Cardiac regeneration with pluripotent stem cell-derived cardiomyocytes and direct cardiac reprogramming. Regen Ther 2019; 11:95-100. [PMID: 31304202 PMCID: PMC6606831 DOI: 10.1016/j.reth.2019.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/20/2019] [Accepted: 06/13/2019] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular disease is the leading cause of death globally. Cardiomyocytes (CMs) have poor regenerative capacity, and pharmacological therapies have limited efficacy in severe heart failure. Currently, there are several promising strategies for cardiac regeneration. The most promising approach to remuscularize failing hearts is cell transplantation therapy using newly generated CMs from exogenous sources, such as pluripotent stem cells. Alternatively, approaches to generate new CMs from endogenous cell sources in situ may also repair the injured heart and improve cardiac function. Direct cardiac reprogramming has emerged as a novel therapeutic approach to regenerate injured hearts by directly converting endogenous cardiac fibroblasts into CM-like cells. Through cell transplantation and direct cardiac reprogramming, new CMs can be generated and scar tissue reduced to improve cardiac function; therefore, cardiac regeneration may serve as a powerful strategy for treatment of severe heart failure. While substantial progress has been made in these two strategies for cardiac regeneration over the past several years, challenges remain for clinical translation. This review provide an overview of previous reports and current challenges in this field.
Collapse
Key Words
- BMP, bone morphogenic protein
- CFs, cardiac fibroblasts
- CMs, cardiomyocytes
- CPCs, cardiac progenitor cells
- Cardiomyocytes
- Direct reprogramming
- ESCs, embryonic stem cells
- Fibroblasts
- GHMT, GMT plus Hand2
- GMT, Gata4
- MI, myocardial infarction
- Mef2c, and Tbx5
- PSCs, pluripotent stem cells
- Pluripotent stem cells
- Regeneration
- SeV-GMT, Sendai virus vector expressing GMT
- iCMs, induced cardiomyocyte-like cells
- iPSCs, induced pluripotent stem cells
- miRs, microRNAs
Collapse
Affiliation(s)
- Taketaro Sadahiro
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba City, Ibaraki, 305-8575, Japan
| |
Collapse
|
24
|
Prünster MM, Ricci L, Brown FD, Tiozzo S. Modular co-option of cardiopharyngeal genes during non-embryonic myogenesis. EvoDevo 2019; 10:3. [PMID: 30867897 PMCID: PMC6399929 DOI: 10.1186/s13227-019-0116-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/15/2019] [Indexed: 01/03/2023] Open
Abstract
Background In chordates, cardiac and body muscles arise from different embryonic origins. In addition, myogenesis can be triggered in adult organisms, during asexual development or regeneration. In non-vertebrate chordates like ascidians, muscles originate from embryonic precursors regulated by a conserved set of genes that orchestrate cell behavior and dynamics during development. In colonial ascidians, besides embryogenesis and metamorphosis, an adult can propagate asexually via blastogenesis, skipping embryo and larval stages, and form anew the adult body, including the complete body musculature. Results To investigate the cellular origin and mechanisms that trigger non-embryonic myogenesis, we followed the expression of ascidian myogenic genes during Botryllus schlosseri blastogenesis and reconstructed the dynamics of muscle precursors. Based on the expression dynamics of Tbx1/10, Ebf, Mrf, Myh3 for body wall and of FoxF, Tbx1/10, Nk4, Myh2 for heart development, we show that the embryonic factors regulating myogenesis are only partially co-opted in blastogenesis, and that markers for muscle precursors are expressed in two separate domains: the dorsal tube and the ventral mesenchyma. Conclusions Regardless of the developmental pathway, non-embryonic myogenesis shares a similar molecular and anatomical setup as embryonic myogenesis, but implements a co-option and loss of molecular modules. We then propose that the cellular precursors contributing to heart and body muscles may have different origins and may be coordinated by different developmental pathways. Electronic supplementary material The online version of this article (10.1186/s13227-019-0116-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Mandela Prünster
- 1Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), CNRS, Sorbonne Université, 06230 Villefranche sur Mer, France
| | - Lorenzo Ricci
- 1Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), CNRS, Sorbonne Université, 06230 Villefranche sur Mer, France.,2Department of Organismic and Evolutionary Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138 USA
| | - Federico D Brown
- 3Departamento de Zoologia, Instituto Biociências, Universidade de São Paulo, São Paulo, SP CEP 05508-090 Brazil.,4Centro de Biologia Marinha (CEBIMar), Universidade de São Paulo, São Sebastião, SP CEP 11612-109 Brazil
| | - Stefano Tiozzo
- 1Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), CNRS, Sorbonne Université, 06230 Villefranche sur Mer, France
| |
Collapse
|
25
|
Magli A, Baik J, Mills LJ, Kwak IY, Dillon BS, Mondragon Gonzalez R, Stafford DA, Swanson SA, Stewart R, Thomson JA, Garry DJ, Dynlacht BD, Perlingeiro RCR. Time-dependent Pax3-mediated chromatin remodeling and cooperation with Six4 and Tead2 specify the skeletal myogenic lineage in developing mesoderm. PLoS Biol 2019; 17:e3000153. [PMID: 30807574 PMCID: PMC6390996 DOI: 10.1371/journal.pbio.3000153] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 02/01/2019] [Indexed: 12/26/2022] Open
Abstract
The transcriptional mechanisms driving lineage specification during development are still largely unknown, as the interplay of multiple transcription factors makes it difficult to dissect these molecular events. Using a cell-based differentiation platform to probe transcription function, we investigated the role of the key paraxial mesoderm and skeletal myogenic commitment factors-mesogenin 1 (Msgn1), T-box 6 (Tbx6), forkhead box C1 (Foxc1), paired box 3 (Pax3), Paraxis, mesenchyme homeobox 1 (Meox1), sine oculis-related homeobox 1 (Six1), and myogenic factor 5 (Myf5)-in paraxial mesoderm and skeletal myogenesis. From this study, we define a genetic hierarchy, with Pax3 emerging as the gatekeeper between the presomitic mesoderm and the myogenic lineage. By assaying chromatin accessibility, genomic binding and transcription profiling in mesodermal cells from mouse and human Pax3-induced embryonic stem cells and Pax3-null embryonic day (E)9.5 mouse embryos, we identified conserved Pax3 functions in the activation of the skeletal myogenic lineage through modulation of Hedgehog, Notch, and bone morphogenetic protein (BMP) signaling pathways. In addition, we demonstrate that Pax3 molecular function involves chromatin remodeling of its bound elements through an increase in chromatin accessibility and cooperation with sine oculis-related homeobox 4 (Six4) and TEA domain family member 2 (Tead2) factors. To our knowledge, these data provide the first integrated analysis of Pax3 function, demonstrating its ability to remodel chromatin in mesodermal cells from developing embryos and proving a mechanistic footing for the transcriptional hierarchy driving myogenesis.
Collapse
Affiliation(s)
- Alessandro Magli
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - June Baik
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Lauren J. Mills
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Il-Youp Kwak
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Bridget S. Dillon
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ricardo Mondragon Gonzalez
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - David A. Stafford
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Scott A. Swanson
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - Ron Stewart
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - James A. Thomson
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - Daniel J. Garry
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Brian D. Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, New York, United States of America
| | - Rita C. R. Perlingeiro
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
26
|
Nandkishore N, Vyas B, Javali A, Ghosh S, Sambasivan R. Divergent early mesoderm specification underlies distinct head and trunk muscle programmes in vertebrates. Development 2018; 145:dev.160945. [PMID: 30237317 DOI: 10.1242/dev.160945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 07/31/2018] [Indexed: 01/19/2023]
Abstract
Head and trunk muscles have discrete embryological origins and are governed by distinct regulatory programmes. Whereas the developmental route of trunk muscles from mesoderm is well studied, that of head muscles is ill defined. Here, we show that, unlike the myogenic trunk paraxial mesoderm, head mesoderm development is independent of the T/Tbx6 network in mouse. We reveal that, in contrast to Wnt and FGF-driven trunk mesoderm, dual inhibition of Wnt/β-catenin and Nodal specifies head mesoderm. Remarkably, the progenitors derived from embryonic stem cells by dual inhibition efficiently differentiate into cardiac and skeletal muscle cells. This twin potential is the defining feature of cardiopharyngeal mesoderm: the head subtype giving rise to heart and branchiomeric head muscles. Therefore, our findings provide compelling evidence that dual inhibition specifies head mesoderm and unravel the mechanism that diversifies head and trunk muscle programmes during early mesoderm fate commitment. Significantly, this is the first report of directed differentiation of pluripotent stem cells, without transgenes, into progenitors with muscle/heart dual potential. Ability to generate branchiomeric muscle in vitro could catalyse efforts in modelling myopathies that selectively involve head muscles.
Collapse
Affiliation(s)
- Nitya Nandkishore
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bellary Road, Bengaluru 560065, India.,SASTRA University, Thirumalaisamudram, Thanjavur 613401, India
| | - Bhakti Vyas
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bellary Road, Bengaluru 560065, India.,Manipal Academy of Higher Education, Manipal 576104, India
| | - Alok Javali
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bellary Road, Bengaluru 560065, India.,National Centre for Biological Sciences, TIFR, GKVK Campus, Bellary Road, Bengaluru 560065, India
| | - Subho Ghosh
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bellary Road, Bengaluru 560065, India
| | - Ramkumar Sambasivan
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bellary Road, Bengaluru 560065, India
| |
Collapse
|
27
|
Sadahiro T, Isomi M, Muraoka N, Kojima H, Haginiwa S, Kurotsu S, Tamura F, Tani H, Tohyama S, Fujita J, Miyoshi H, Kawamura Y, Goshima N, Iwasaki YW, Murano K, Saito K, Oda M, Andersen P, Kwon C, Uosaki H, Nishizono H, Fukuda K, Ieda M. Tbx6 Induces Nascent Mesoderm from Pluripotent Stem Cells and Temporally Controls Cardiac versus Somite Lineage Diversification. Cell Stem Cell 2018; 23:382-395.e5. [PMID: 30100166 DOI: 10.1016/j.stem.2018.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/08/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
Abstract
The mesoderm arises from pluripotent epiblasts and differentiates into multiple lineages; however, the underlying molecular mechanisms are unclear. Tbx6 is enriched in the paraxial mesoderm and is implicated in somite formation, but its function in other mesoderms remains elusive. Here, using direct reprogramming-based screening, single-cell RNA-seq in mouse embryos, and directed cardiac differentiation in pluripotent stem cells (PSCs), we demonstrated that Tbx6 induces nascent mesoderm from PSCs and determines cardiovascular and somite lineage specification via its temporal expression. Tbx6 knockout in mouse PSCs using CRISPR/Cas9 technology inhibited mesoderm and cardiovascular differentiation, whereas transient Tbx6 expression induced mesoderm and cardiovascular specification from mouse and human PSCs via direct upregulation of Mesp1, repression of Sox2, and activation of BMP/Nodal/Wnt signaling. Notably, prolonged Tbx6 expression suppressed cardiac differentiation and induced somite lineages, including skeletal muscle and chondrocytes. Thus, Tbx6 is critical for mesoderm induction and subsequent lineage diversification.
Collapse
Affiliation(s)
- Taketaro Sadahiro
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mari Isomi
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Naoto Muraoka
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hidenori Kojima
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Sho Haginiwa
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shota Kurotsu
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Fumiya Tamura
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jun Fujita
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroyuki Miyoshi
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoshifumi Kawamura
- Japan Biological Informatics Consortium (JBiC), Koto-ku, Tokyo 135-8073, Japan
| | - Naoki Goshima
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo 135-0064, Japan
| | - Yuka W Iwasaki
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kensaku Murano
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kuniaki Saito
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Invertebrate Genetics Laboratory, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka 411-8540, Japan; Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 240-0193, Japan
| | - Mayumi Oda
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Peter Andersen
- Division of Cardiology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chulan Kwon
- Division of Cardiology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hideki Uosaki
- Division of Cardiology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Hirofumi Nishizono
- Life Science Research Center, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masaki Ieda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba City, Ibaraki 305-8575, Japan.
| |
Collapse
|
28
|
Magli A, Perlingeiro RRC. Myogenic progenitor specification from pluripotent stem cells. Semin Cell Dev Biol 2018; 72:87-98. [PMID: 29107681 DOI: 10.1016/j.semcdb.2017.10.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022]
Abstract
Pluripotent stem cells represent important tools for both basic and translational science as they enable to study mechanisms of development, model diseases in vitro and provide a potential source of tissue-specific progenitors for cell therapy. Concomitantly with the increasing knowledge of the molecular mechanisms behind activation of the skeletal myogenic program during embryonic development, novel findings in the stem cell field provided the opportunity to begin recapitulating in vitro the events occurring during specification of the myogenic lineage. In this review, we will provide a perspective of the molecular mechanisms responsible for skeletal myogenic commitment in the embryo and how this knowledge was instrumental for specifying this lineage from pluripotent stem cells. In addition, we will discuss the current limitations for properly recapitulating skeletal myogenesis in the petri dish, and we will provide insights about future applications of pluripotent stem cell-derived myogenic cells.
Collapse
Affiliation(s)
- Alessandro Magli
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rita R C Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
29
|
Naderi A. SRARP and HSPB7 are epigenetically regulated gene pairs that function as tumor suppressors and predict clinical outcome in malignancies. Mol Oncol 2018; 12:724-755. [PMID: 29577611 PMCID: PMC5928383 DOI: 10.1002/1878-0261.12195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/27/2018] [Accepted: 03/10/2018] [Indexed: 12/16/2022] Open
Abstract
Deletions of chromosome 1p36 are common in cancers; however, despite extensive studies, there has been limited success for discovering candidate tumor suppressors in this region. SRARP has recently been identified as a novel corepressor of the androgen receptor (AR) and is located on chromosome 1p36. Here, bioinformatics analysis of large tumor datasets was performed to study SRARP and its gene pair, HSPB7. In addition, using cancer cell lines, mechanisms of SRARP and HSPB7 regulation and their molecular functions were investigated. This study demonstrated that SRARP and HSPB7 are a gene pair located 5.2 kb apart on 1p36.13 and are inactivated by deletions and epigenetic silencing in malignancies. Importantly, SRARP and HSPB7 have tumor suppressor functions in clonogenicity and cell viability associated with the downregulation of Akt and ERK. SRARP expression is inversely correlated with genes that promote cell proliferation and signal transduction, which supports its functions as a tumor suppressor. In addition, AR exerts dual regulatory effects on SRARP, and although an increased AR activity suppresses SRARP transcription, a minimum level of AR activity is required to maintain baseline SRARP expression in AR+ cancer cells. Furthermore, as observed with SRARP, HSPB7 interacts with the 14-3-3 protein, presenting a shared molecular feature between SRARP and HSPB7. Of note, genome- and epigenome-wide associations of SRARP and HSPB7 with survival strongly support their tumor suppressor functions. In particular, DNA hypermethylation, lower expression, somatic mutations, and lower copy numbers of SRARP are associated with worse cancer outcome. Moreover, DNA hypermethylation and lower expression of SRARP in normal adjacent tissues predict poor survival, suggesting that SRARP inactivation is an early event in carcinogenesis. In summary, SRARP and HSPB7 are tumor suppressors that are commonly inactivated in malignancies. SRARP inactivation is an early event in carcinogenesis that is strongly associated with worse survival, presenting potential translational applications.
Collapse
Affiliation(s)
- Ali Naderi
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| |
Collapse
|
30
|
Wu J, Jackson-Weaver O, Xu J. The TGFβ superfamily in cardiac dysfunction. Acta Biochim Biophys Sin (Shanghai) 2018; 50:323-335. [PMID: 29462261 DOI: 10.1093/abbs/gmy007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Indexed: 12/23/2022] Open
Abstract
TGFβ superfamily includes the transforming growth factor βs (TGFβs), bone morphogenetic proteins (BMPs), growth and differentiation factors (GDFs) and Activin/Inhibin families of ligands. Among the 33 members of TGFβ superfamily ligands, many act on multiple types of cells within the heart, including cardiomyocytes, cardiac fibroblasts/myofibroblasts, coronary endothelial cells, smooth muscle cells, and immune cells (e.g. monocytes/macrophages and neutrophils). In this review, we highlight recent discoveries on TGFβs, BMPs, and GDFs in different cardiac residential cellular components, in association with functional impacts in heart development, injury repair, and dysfunction. Specifically, we will review the roles of TGFβs, BMPs, and GDFs in cardiac hypertrophy, fibrosis, contractility, metabolism, angiogenesis, and regeneration.
Collapse
Affiliation(s)
- Jian Wu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Olan Jackson-Weaver
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Jian Xu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
31
|
Chal J, Al Tanoury Z, Oginuma M, Moncuquet P, Gobert B, Miyanari A, Tassy O, Guevara G, Hubaud A, Bera A, Sumara O, Garnier JM, Kennedy L, Knockaert M, Gayraud-Morel B, Tajbakhsh S, Pourquié O. Recapitulating early development of mouse musculoskeletal precursors of the paraxial mesoderm in vitro. Development 2018; 145:145/6/dev157339. [DOI: 10.1242/dev.157339] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 02/06/2018] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Body skeletal muscles derive from the paraxial mesoderm, which forms in the posterior region of the embryo. Using microarrays, we characterize novel mouse presomitic mesoderm (PSM) markers and show that, unlike the abrupt transcriptome reorganization of the PSM, neural tube differentiation is accompanied by progressive transcriptome changes. The early paraxial mesoderm differentiation stages can be efficiently recapitulated in vitro using mouse and human pluripotent stem cells. While Wnt activation alone can induce posterior PSM markers, acquisition of a committed PSM fate and efficient differentiation into anterior PSM Pax3+ identity further requires BMP inhibition to prevent progenitors from drifting to a lateral plate mesoderm fate. When transplanted into injured adult muscle, these precursors generated large numbers of immature muscle fibers. Furthermore, exposing these mouse PSM-like cells to a brief FGF inhibition step followed by culture in horse serum-containing medium allows efficient recapitulation of the myogenic program to generate myotubes and associated Pax7+ cells. This protocol results in improved in vitro differentiation and maturation of mouse muscle fibers over serum-free protocols and enables the study of myogenic cell fusion and satellite cell differentiation.
Collapse
Affiliation(s)
- Jérome Chal
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Ziad Al Tanoury
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Masayuki Oginuma
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Philippe Moncuquet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Bénédicte Gobert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
- Anagenesis Biotechnologies, Parc d'innovation, Illkirch Graffenstaden 67400, France
| | - Ayako Miyanari
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Olivier Tassy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Getzabel Guevara
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Alexis Hubaud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Agata Bera
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Olga Sumara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Jean-Marie Garnier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Leif Kennedy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Marie Knockaert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Barbara Gayraud-Morel
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
- CNRS UMR 3738, Institut Pasteur, Paris 75015, France
| | - Shahragim Tajbakhsh
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
- CNRS UMR 3738, Institut Pasteur, Paris 75015, France
| | - Olivier Pourquié
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| |
Collapse
|
32
|
Razy-Krajka F, Gravez B, Kaplan N, Racioppi C, Wang W, Christiaen L. An FGF-driven feed-forward circuit patterns the cardiopharyngeal mesoderm in space and time. eLife 2018; 7:e29656. [PMID: 29431097 PMCID: PMC5809146 DOI: 10.7554/elife.29656] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/26/2018] [Indexed: 12/16/2022] Open
Abstract
In embryos, multipotent progenitors divide to produce distinct progeny and express their full potential. In vertebrates, multipotent cardiopharyngeal progenitors produce second-heart-field-derived cardiomyocytes, and branchiomeric skeletal head muscles. However, the mechanisms underlying these early fate choices remain largely elusive. The tunicate Ciona emerged as an attractive model to study early cardiopharyngeal development at high resolution: through two asymmetric and oriented divisions, defined cardiopharyngeal progenitors produce distinct first and second heart precursors, and pharyngeal muscle (aka atrial siphon muscle, ASM) precursors. Here, we demonstrate that differential FGF-MAPK signaling distinguishes between heart and ASM precursors. We characterize a feed-forward circuit that promotes the successive activations of essential ASM determinants, Hand-related, Tbx1/10 and Ebf. Finally, we show that coupling FGF-MAPK restriction and cardiopharyngeal network deployment with cell divisions defines the timing of gene expression and permits the emergence of diverse cell types from multipotent progenitors.
Collapse
Affiliation(s)
- Florian Razy-Krajka
- Center for Developmental Genetics, Department of BiologyCollege of Arts and Science, New York UniversityNew YorkUnited States
| | - Basile Gravez
- Center for Developmental Genetics, Department of BiologyCollege of Arts and Science, New York UniversityNew YorkUnited States
| | - Nicole Kaplan
- Center for Developmental Genetics, Department of BiologyCollege of Arts and Science, New York UniversityNew YorkUnited States
| | - Claudia Racioppi
- Center for Developmental Genetics, Department of BiologyCollege of Arts and Science, New York UniversityNew YorkUnited States
| | - Wei Wang
- Center for Developmental Genetics, Department of BiologyCollege of Arts and Science, New York UniversityNew YorkUnited States
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of BiologyCollege of Arts and Science, New York UniversityNew YorkUnited States
| |
Collapse
|
33
|
Liu Y. Earlier and broader roles of Mesp1 in cardiovascular development. Cell Mol Life Sci 2017; 74:1969-1983. [PMID: 28050627 PMCID: PMC11107530 DOI: 10.1007/s00018-016-2448-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022]
Abstract
Mesoderm posterior 1 is one of earliest markers of the nascent mesoderm. Its best-known function is driving the onset of the cardiovascular system. In the past decade, new evidence supports that Mesp1 acts earlier with greater breadth in cell fate decisions, and through cell-autonomous and cell non-autonomous mechanisms. This review summarizes these new aspects, with an emphasis on the upstream and downstream regulation around Mesp1 and how they may guide cell fate reprogramming.
Collapse
Affiliation(s)
- Yu Liu
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
34
|
Liu XF, Ding XB, Li X, Jin CF, Yue YW, Li GP, Guo H. An atlas and analysis of bovine skeletal muscle long noncoding RNAs. Anim Genet 2017; 48:278-286. [DOI: 10.1111/age.12539] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2016] [Indexed: 12/29/2022]
Affiliation(s)
- X. F. Liu
- College of Animal Science and Veterinary Medicine; Tianjin Agricultural University; Tianjin 300384 China
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education; Inner Mongolia University; Hohhot 010071 China
| | - X. B. Ding
- College of Animal Science and Veterinary Medicine; Tianjin Agricultural University; Tianjin 300384 China
| | - X. Li
- College of Animal Science and Veterinary Medicine; Tianjin Agricultural University; Tianjin 300384 China
| | - C. F. Jin
- College of Animal Science and Veterinary Medicine; Tianjin Agricultural University; Tianjin 300384 China
| | - Y. W. Yue
- College of Animal Science and Veterinary Medicine; Tianjin Agricultural University; Tianjin 300384 China
| | - G. P. Li
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education; Inner Mongolia University; Hohhot 010071 China
| | - H. Guo
- College of Animal Science and Veterinary Medicine; Tianjin Agricultural University; Tianjin 300384 China
| |
Collapse
|
35
|
Mespaa can potently induce cardiac fates in zebrafish. Dev Biol 2016; 418:17-27. [PMID: 27554166 DOI: 10.1016/j.ydbio.2016.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/12/2016] [Accepted: 08/18/2016] [Indexed: 01/04/2023]
Abstract
The Mesp family of transcription factors have been implicated in the early formation and migration of the cardiac lineage, although the precise molecular mechanisms underlying this process remain unknown. In this study we examine the function of Mesp family members in zebrafish cardiac development and find that Mespaa is remarkably efficient at promoting cardiac fates in normally non-cardiogenic cells. However, Mespaa is dispensable for normal cardiac formation. Despite no overt defects in cardiovascular specification, we find a consistent defect in cardiac laterality in mespaa null embryos. This is further exacerbated by the depletion of other mesp paralogues, highlighting a conserved role for the mesp family in left-right asymmetry, distinct from a function in cardiac specification. Despite an early requirement for mespaa to promote cardiogenesis, cells over-expressing mespaa are found to both exhibit unique cellular behaviors and activate the transcription of gata5 only after the completion of gastrulation. We propose that while mespaa remains capable of driving cardiac progenitor formation in zebrafish, it may not play an essential role in the cardiac regulatory network. Furthermore, the late activation of migration and cardiac gene transcription in mespaa over-expressing cells challenges previous studies on the timing of these events and provides intriguing questions for future study.
Collapse
|
36
|
Abstract
Cardiac cell specification and the genetic determinants that govern this process are highly conserved among Chordates. Recent studies have established the importance of evolutionarily-conserved mechanisms in the study of congenital heart defects and disease, as well as cardiac regeneration. As a basal Chordate, the Ciona model system presents a simple scaffold that recapitulates the basic blueprint of cardiac development in Chordates. Here we will focus on the development and cellular structure of the heart of the ascidian Ciona as compared to other Chordates, principally vertebrates. Comparison of the Ciona model system to heart development in other Chordates presents great potential for dissecting the genetic mechanisms that underlie congenital heart defects and disease at the cellular level and might provide additional insight into potential pathways for therapeutic cardiac regeneration.
Collapse
|
37
|
Abstract
The transcription factors Mesp1 and Mesp2 have essential roles in the migration and specification of multipotent progenitor cells at the onset of cardiogenesis. Chiapparo et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201505082) identify common Mesp functions in fate specification and Mesp1-specific targets controlling the speed and direction of progenitor cell migration.
Collapse
Affiliation(s)
- Robert G Kelly
- Aix-Marseille University, Centre National de la Recherche Scientifique, Institut de Biologie du Développement de Marseille UMR 7288, 13288 Marseille, France
| |
Collapse
|
38
|
Chan SSK, Chan HHW, Kyba M. Heterogeneity of Mesp1+ mesoderm revealed by single-cell RNA-seq. Biochem Biophys Res Commun 2016; 474:469-475. [PMID: 27131741 DOI: 10.1016/j.bbrc.2016.04.139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/26/2016] [Indexed: 01/12/2023]
Abstract
Mesp1 is a transcription factor that promotes differentiation of pluripotent cells into different mesoderm lineages including hematopoietic, cardiac and skeletal myogenic. This occurs via at least two transient cell populations: a common hematopoietic/cardiac progenitor population and a common cardiac/skeletal myogenic progenitor population. It is not established whether Mesp1-induced mesoderm cells are intrinsically heterogeneous, or are simply capable of multiple lineage decisions. In the current study, we applied single-cell RNA-seq to analyze Mesp1+ mesoderm. Initial whole transcriptome analysis showed a surprising homogeneity among Mesp1-induced mesoderm cells. However, this apparent global homogeneity masked an intrinsic heterogeneity revealed by interrogating a panel of early mesoderm patterning factors. This approach enabled discovery of subpopulations primed for hematopoietic or cardiac development. These studies demonstrate the heterogeneic nature of Mesp1+ mesoderm.
Collapse
Affiliation(s)
- Sunny Sun-Kin Chan
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Howe H W Chan
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|