1
|
Smith NR, Giske NR, Sengupta SK, Conley P, Swain JR, Nair A, Fowler KL, Klocke C, Yoo YJ, Anderson AN, Sanati N, Torkenczy K, Adey AC, Fischer JM, Wu G, Wong MH. Dual states of murine Bmi1-expressing intestinal stem cells drive epithelial development utilizing non-canonical Wnt signaling. Dev Cell 2025:S1534-5807(25)00177-7. [PMID: 40262610 DOI: 10.1016/j.devcel.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 11/07/2024] [Accepted: 03/28/2025] [Indexed: 04/24/2025]
Abstract
Intestinal epithelial development and homeostasis critically rely upon balanced stem cell proliferation, involving slow-cycling/label-retaining and active-cycling/canonical Wnt-dependent intestinal stem cell (ISC) subtypes. ISC regulation during development remains poorly understood but has important implications for establishing key mechanisms governing tissue maintenance. Herein, we identify Bmi1+ cells as functional stem cells present in early murine intestinal development, prior to Lgr5-expressing ISCs. Lineage tracing and single-cell RNA sequencing identify that Bmi1+ ISCs can trace to Lgr5+ ISCs and other differentiated lineages. Initially highly proliferative, Bmi1+ ISCs transition to slow-cycling states as Lgr5+ ISCs emerge. Non-canonical Wnt signaling regulates the proliferative Bmi1+ cell state. These findings highlight the dynamic interplay between stem cell populations and the opposing Wnt pathways that govern proliferation-ultimately having implications for tissue development, homeostasis, regeneration, and tumorigenesis. Understanding these fundamental developmental mechanisms is critical for understanding adult intestinal maintenance.
Collapse
Affiliation(s)
- Nicholas R Smith
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Nicole R Giske
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Sidharth K Sengupta
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Patrick Conley
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - John R Swain
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Ashvin Nair
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Kathryn L Fowler
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Christopher Klocke
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yeon Jung Yoo
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Ashley N Anderson
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Nasim Sanati
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kristof Torkenczy
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrew C Adey
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA; The Knight Cancer Institute, Oregon Health & Science University, Oregon Health & Science University, Portland, OR 97201, USA
| | - Jared M Fischer
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA; Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR 97201 USA; The Knight Cancer Institute, Oregon Health & Science University, Oregon Health & Science University, Portland, OR 97201, USA
| | - Guanming Wu
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; The Knight Cancer Institute, Oregon Health & Science University, Oregon Health & Science University, Portland, OR 97201, USA
| | - Melissa H Wong
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA; The Knight Cancer Institute, Oregon Health & Science University, Oregon Health & Science University, Portland, OR 97201, USA.
| |
Collapse
|
2
|
Kayama H, Takeda K. Regulation of intestinal epithelial homeostasis by mesenchymal cells. Inflamm Regen 2024; 44:42. [PMID: 39327633 PMCID: PMC11426228 DOI: 10.1186/s41232-024-00355-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
The gastrointestinal tract harbors diverse microorganisms in the lumen. Epithelial cells segregate the luminal microorganisms from immune cells in the lamina propria by constructing chemical and physical barriers through the production of various factors to prevent excessive immune responses against microbes. Therefore, perturbations of epithelial integrity are linked to the development of gastrointestinal disorders. Several mesenchymal stromal cell populations, including fibroblasts, myofibroblasts, pericytes, and myocytes, contribute to the establishment and maintenance of epithelial homeostasis in the gut through regulation of the self-renewal, proliferation, and differentiation of intestinal stem cells. Recent studies have revealed alterations in the composition of intestinal mesenchymal stromal cells in patients with inflammatory bowel disease and colorectal cancer. A better understanding of the interplay between mesenchymal stromal cells and epithelial cells associated with intestinal health and diseases will facilitate identification of novel biomarkers and therapeutic targets for gastrointestinal disorders. This review summarizes the key findings obtained to date on the mechanisms by which functionally distinct mesenchymal stromal cells regulate epithelial integrity in intestinal health and diseases at different developmental stages.
Collapse
Affiliation(s)
- Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
3
|
Xiang J, Guo J, Zhang S, Wu H, Chen YG, Wang J, Li B, Liu H. A stromal lineage maintains crypt structure and villus homeostasis in the intestinal stem cell niche. BMC Biol 2023; 21:169. [PMID: 37553612 PMCID: PMC10408166 DOI: 10.1186/s12915-023-01667-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND The nutrient-absorbing villi of small intestines are renewed and repaired by intestinal stem cells (ISCs), which reside in a well-organized crypt structure. Genetic studies have shown that Wnt molecules secreted by telocytes, Gli1+ stromal cells, and epithelial cells are required for ISC proliferation and villus homeostasis. Intestinal stromal cells are heterogeneous and single-cell profiling has divided them into telocytes/subepithelial myofibroblasts, myocytes, pericytes, trophocytes, and Pdgfralow stromal cells. Yet, the niche function of these stromal populations remains incompletely understood. RESULTS We show here that a Twist2 stromal lineage, which constitutes the Pdgfralow stromal cell and trophocyte subpopulations, maintains the crypt structure to provide an inflammation-restricting niche for regenerating ISCs. Ablating Twist2 lineage cells or deletion of one Wntless allele in these cells disturbs the crypt structure and impairs villus homeostasis. Upon radiation, Wntless haplo-deficiency caused decreased production of anti-microbial peptides and increased inflammation, leading to defective ISC proliferation and crypt regeneration, which were partially rescued by eradication of commensal bacteria. In addition, we show that Wnts secreted by Acta2+ subpopulations also play a role in crypt regeneration but not homeostasis. CONCLUSIONS These findings suggest that ISCs may require different niches for villus homeostasis and regeneration and that the Twist2 lineage cells may help to maintain a microbe-restricted environment to allow ISC-mediated crypt regeneration.
Collapse
Affiliation(s)
- Jinnan Xiang
- The Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200024, China
| | - Jigang Guo
- The Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200024, China
| | - Shaoyang Zhang
- The Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200024, China
| | - Hongguang Wu
- The Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200024, China
| | - Ye-Guang Chen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Junping Wang
- Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Baojie Li
- The Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200024, China.
| | - Huijuan Liu
- The Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200024, China.
| |
Collapse
|
4
|
Smith RJ, Liang M, Loe AKH, Yung T, Kim JE, Hudson M, Wilson MD, Kim TH. Epigenetic control of cellular crosstalk defines gastrointestinal organ fate and function. Nat Commun 2023; 14:497. [PMID: 36717563 PMCID: PMC9887003 DOI: 10.1038/s41467-023-36228-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
Epithelial-mesenchymal signaling in the gastrointestinal system is vital in establishing regional identity during organogenesis and maintaining adult stem cell homeostasis. Although recent work has demonstrated that Wnt ligands expressed by mesenchymal cells are required during gastrointestinal development and stem cell homeostasis, epigenetic mechanisms driving spatiotemporal control of crosstalk remain unknown. Here, we demonstrate that gastrointestinal mesenchymal cells control epithelial fate and function through Polycomb Repressive Complex 2-mediated chromatin bivalency. We find that while key lineage-determining genes possess tissue-specific chromatin accessibility, Polycomb Repressive Complex 2 controls Wnt expression in mesenchymal cells without altering accessibility. We show that reduction of mesenchymal Wnt secretion rescues gastrointestinal fate and proliferation defects caused by Polycomb Repressive Complex 2 loss. We demonstrate that mesenchymal Polycomb Repressive Complex 2 also regulates niche signals to maintain stem cell function in the adult intestine. Our results highlight a broadly permissive chromatin architecture underlying regionalization in mesenchymal cells, then demonstrate further how chromatin architecture in niches can influence the fate and function of neighboring cells.
Collapse
Affiliation(s)
- Ryan J Smith
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Minggao Liang
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Adrian Kwan Ho Loe
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Theodora Yung
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Ji-Eun Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Matthew Hudson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Michael D Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Tae-Hee Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
5
|
Guevara-Garcia A, Soleilhac M, Minc N, Delacour D. Regulation and functions of cell division in the intestinal tissue. Semin Cell Dev Biol 2023:S1084-9521(23)00004-6. [PMID: 36702722 DOI: 10.1016/j.semcdb.2023.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/16/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
In multicellular organisms, epithelial cells are key elements of tissue organization. In developing epithelial tissues, cellular proliferation and differentiation are under the tight regulation of morphogenetic programs to ensure correct organ formation and functioning. In these processes, proliferation rates and division orientation regulate the speed, timing and direction of tissue expansion but also its proper patterning. Moreover, tissue homeostasis relies on spatio-temporal modulations of daughter cell behavior and arrangement. These aspects are particularly crucial in the intestine, which is one of the most proliferative tissues in adults, making it a very attractive adult organ system to study the role of cell division on epithelial morphogenesis and organ function. Although epithelial cell division has been the subject of intense research for many years in multiple models, it still remains in its infancy in the context of the intestinal tissue. In this review, we focus on the current knowledge on cell division and regulatory mechanisms at play in the intestinal epithelial tissue, as well as their importance in developmental biology and physiopathology.
Collapse
Affiliation(s)
| | - Matis Soleilhac
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Delphine Delacour
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France.
| |
Collapse
|
6
|
Hein RFC, Conchola AS, Fine AS, Xiao Z, Frum T, Brastrom LK, Akinwale MA, Childs CJ, Tsai YH, Holloway EM, Huang S, Mahoney J, Heemskerk I, Spence JR. Stable iPSC-derived NKX2-1+ lung bud tip progenitor organoids give rise to airway and alveolar cell types. Development 2022; 149:dev200693. [PMID: 36039869 PMCID: PMC9534489 DOI: 10.1242/dev.200693] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/28/2022] [Indexed: 12/13/2022]
Abstract
Bud tip progenitors (BTPs) in the developing lung give rise to all epithelial cell types found in the airways and alveoli. This work aimed to develop an iPSC organoid model enriched with NKX2-1+ BTP-like cells. Building on previous studies, we optimized a directed differentiation paradigm to generate spheroids with more robust NKX2-1 expression. Spheroids were expanded into organoids that possessed NKX2-1+/CPM+ BTP-like cells, which increased in number over time. Single cell RNA-sequencing analysis revealed a high degree of transcriptional similarity between induced BTPs (iBTPs) and in vivo BTPs. Using FACS, iBTPs were purified and expanded as induced bud tip progenitor organoids (iBTOs), which maintained an enriched population of bud tip progenitors. When iBTOs were directed to differentiate into airway or alveolar cell types using well-established methods, they gave rise to organoids composed of organized airway or alveolar epithelium, respectively. Collectively, iBTOs are transcriptionally and functionally similar to in vivo BTPs, providing an important model for studying human lung development and differentiation.
Collapse
Affiliation(s)
- Renee F. C. Hein
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ansley S. Conchola
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alexis S. Fine
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zhiwei Xiao
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tristan Frum
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lindy K. Brastrom
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Mayowa A. Akinwale
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Charlie J. Childs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emily M. Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sha Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - John Mahoney
- Therapeutics Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | - Idse Heemskerk
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jason R. Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Felsenthal N, Vignjevic DM. Stand by me: Fibroblasts regulation of the intestinal epithelium during development and homeostasis. Curr Opin Cell Biol 2022; 78:102116. [PMID: 35914344 DOI: 10.1016/j.ceb.2022.102116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 01/31/2023]
Abstract
The epithelium of the small intestine is composed of a single layer of cells that line two functionally distinct compartments, the villi that project into the lumen of the gut and the crypts that descend into the underlying connective tissue. Stem cells are located in crypts, where they divide and give rise to transit-amplifying cells that differentiate into secretory and absorptive epithelial cells. Most differentiated cells travel upwards from the crypt towards the villus tip, where they shed into the lumen. While some of these cell behaviors are an intrinsic property of the epithelium, it is becoming evident that tight coordination between the epithelium and the underlying fibroblasts plays a critical role in tissue morphogenesis, stem-cell niche maintenance and regionalized gene expression along the crypt-villus axis. Here, we will review the current literature describing the interaction between epithelium and fibroblasts during crypt-villus axis development and intestinal epithelium renewal during homeostasis.
Collapse
Affiliation(s)
- Neta Felsenthal
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005 Paris, France.
| | | |
Collapse
|
8
|
Swoboda J, Mittelsdorf P, Chen Y, Weiskirchen R, Stallhofer J, Schüle S, Gassler N. Intestinal Wnt in the transition from physiology to oncology. World J Clin Oncol 2022; 13:168-185. [PMID: 35433295 PMCID: PMC8966512 DOI: 10.5306/wjco.v13.i3.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/07/2021] [Accepted: 02/19/2022] [Indexed: 02/06/2023] Open
Abstract
Adult stem cells are necessary for self-renewal tissues and regeneration after damage. Especially in the intestine, which self-renews every few days, they play a key role in tissue homeostasis. Therefore, complex regulatory mechanisms are needed to prevent hyperproliferation, which can lead in the worst case to carcinogenesis or under-activation of stem cells, which can result in dysfunctional epithelial. One main regulatory signaling pathway is the Wnt/β-catenin signaling pathway. It is a highly conserved pathway, with β-catenin, a transcription factor, as target protein. Translocation of β-catenin from cytoplasm to nucleus activates the transcription of numerous genes involved in regulating stem cell pluripo-tency, proliferation, cell differentiation and regulation of cell death. This review presents a brief overview of the Wnt/β-catenin signaling pathway, the regulatory mechanism of this pathway and its role in intestinal homeostasis. Additionally, this review highlights the molecular mechanisms and the histomorphological features of Wnt hyperactivation. Furthermore, the central role of the Wnt signaling pathway in intestinal carcinogenesis as well as its clinical relevance in colorectal carcinoma are discussed.
Collapse
Affiliation(s)
- Julia Swoboda
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| | - Patrick Mittelsdorf
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| | - Yuan Chen
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen 52074, Germany
| | - Johannes Stallhofer
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena 07747, Germany
| | - Silke Schüle
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena 07747, Germany
| | - Nikolaus Gassler
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| |
Collapse
|
9
|
Nguyen Ho-Bouldoires TH, Sollier K, Zamfirov L, Broders-Bondon F, Mitrossilis D, Bermeo S, Guerin CL, Chipont A, Champenois G, Leclère R, André N, Ranno L, Michel A, Ménager C, Meseure D, Demené C, Tanter M, Fernández-Sánchez ME, Farge E. Ret kinase-mediated mechanical induction of colon stem cells by tumor growth pressure stimulates cancer progression in vivo. Commun Biol 2022; 5:137. [PMID: 35177769 PMCID: PMC8854631 DOI: 10.1038/s42003-022-03079-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
How mechanical stress actively impacts the physiology and pathophysiology of cells and tissues is little investigated in vivo. The colon is constantly submitted to multi-frequency spontaneous pulsatile mechanical waves, which highest frequency functions, of 2 s period, remain poorly understood. Here we find in vivo that high frequency pulsatile mechanical stresses maintain the physiological level of mice colon stem cells (SC) through the mechanosensitive Ret kinase. When permanently stimulated by a magnetic mimicking-tumor growth analogue pressure, we find that SC levels pathologically increase and undergo mechanically induced hyperproliferation and tumorigenic transformation. To mimic the high frequency pulsatile mechanical waves, we used a generator of pulsed magnetic force stimulation in colonic tissues pre-magnetized with ultra-magnetic liposomes. We observed the pulsatile stresses using last generation ultra-wave dynamical high-resolution imaging. Finally, we find that the specific pharmacological inhibition of Ret mechanical activation induces the regression of spontaneous formation of SC, of CSC markers, and of spontaneous sporadic tumorigenesis in Apc mutated mice colons. Consistently, in human colon cancer tissues, Ret activation in epithelial cells increases with tumor grade, and partially decreases in leaking invasive carcinoma. High frequency pulsatile physiological mechanical stresses thus constitute a new niche that Ret-dependently fuels mice colon physiological SC level. This process is pathologically over-activated in the presence of permanent pressure due to the growth of tumors initiated by pre-existing genetic alteration, leading to mechanotransductive self-enhanced tumor progression in vivo, and repressed by pharmacological inhibition of Ret. Ho-Bouldoires, Sollier, Zamfirov and Broders-Bondon et al. show that high frequency pulsatile mechanical stresses maintain the physiological level of mice colon stem cells through the mechanosensitive Ret kinase and that Ret activation is elevated in human colon cancer tissue. They go on to show that the maintenance of such stimulation in the form of tumour growth pressure results in mechanically-induced hyperproliferation and tumorigenic transformation of stem cells, which can be prevented by Ret kinase inhibition.
Collapse
Affiliation(s)
- Thanh Huong Nguyen Ho-Bouldoires
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire de Physico-Chimie Curie, Mechanics and Genetics of Embryonic and Tumoral Development team, INSERM, F-75005, Paris, France
| | - Kévin Sollier
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire de Physico-Chimie Curie, Mechanics and Genetics of Embryonic and Tumoral Development team, INSERM, F-75005, Paris, France
| | - Laura Zamfirov
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire de Physico-Chimie Curie, Mechanics and Genetics of Embryonic and Tumoral Development team, INSERM, F-75005, Paris, France.,Physics for Medicine Paris, ESPCI ParisTech, PSL Research University, Inserm U1273, F-75005, Paris, France
| | - Florence Broders-Bondon
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire de Physico-Chimie Curie, Mechanics and Genetics of Embryonic and Tumoral Development team, INSERM, F-75005, Paris, France
| | - Démosthène Mitrossilis
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire de Physico-Chimie Curie, Mechanics and Genetics of Embryonic and Tumoral Development team, INSERM, F-75005, Paris, France.,Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St., 115 27, Athens, Greece
| | - Sebastian Bermeo
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire de Physico-Chimie Curie, Mechanics and Genetics of Embryonic and Tumoral Development team, INSERM, F-75005, Paris, France
| | | | - Anna Chipont
- Cytometry Platform, Institut Curie, Paris, France
| | - Gabriel Champenois
- Platform of Investigative Pathology, Institut Curie, 75248, Paris, France
| | - Renaud Leclère
- Platform of Investigative Pathology, Institut Curie, 75248, Paris, France
| | - Nicolas André
- Platform of Investigative Pathology, Institut Curie, 75248, Paris, France
| | - Laurent Ranno
- NEEL Institut, CNRS, Grenoble Alpes University, F-38042, Grenoble, France
| | - Aude Michel
- Sorbonne Université, Laboratoire PHENIX Physico-chimie des Electrolytes et Nanosystèmes Interfaciaux, CNRS UMR 8234, F-75005, Paris, France
| | - Christine Ménager
- Sorbonne Université, Laboratoire PHENIX Physico-chimie des Electrolytes et Nanosystèmes Interfaciaux, CNRS UMR 8234, F-75005, Paris, France
| | - Didier Meseure
- Platform of Investigative Pathology, Institut Curie, 75248, Paris, France
| | - Charlie Demené
- Physics for Medicine Paris, ESPCI ParisTech, PSL Research University, Inserm U1273, F-75005, Paris, France
| | - Mickael Tanter
- Physics for Medicine Paris, ESPCI ParisTech, PSL Research University, Inserm U1273, F-75005, Paris, France
| | - Maria Elena Fernández-Sánchez
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire de Physico-Chimie Curie, Mechanics and Genetics of Embryonic and Tumoral Development team, INSERM, F-75005, Paris, France.
| | - Emmanuel Farge
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire de Physico-Chimie Curie, Mechanics and Genetics of Embryonic and Tumoral Development team, INSERM, F-75005, Paris, France.
| |
Collapse
|
10
|
Maimets M, Pedersen MT, Guiu J, Dreier J, Thodberg M, Antoku Y, Schweiger PJ, Rib L, Bressan RB, Miao Y, Garcia KC, Sandelin A, Serup P, Jensen KB. Mesenchymal-epithelial crosstalk shapes intestinal regionalisation via Wnt and Shh signalling. Nat Commun 2022; 13:715. [PMID: 35132078 PMCID: PMC8821716 DOI: 10.1038/s41467-022-28369-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
Organs are anatomically compartmentalised to cater for specialised functions. In the small intestine (SI), regionalisation enables sequential processing of food and nutrient absorption. While several studies indicate the critical importance of non-epithelial cells during development and homeostasis, the extent to which these cells contribute to regionalisation during morphogenesis remains unexplored. Here, we identify a mesenchymal-epithelial crosstalk that shapes the developing SI during late morphogenesis. We find that subepithelial mesenchymal cells are characterised by gradients of factors supporting Wnt signalling and stimulate epithelial growth in vitro. Such a gradient impacts epithelial gene expression and regional villus formation along the anterior-posterior axis of the SI. Notably, we further provide evidence that Wnt signalling directly regulates epithelial expression of Sonic Hedgehog (SHH), which, in turn, acts on mesenchymal cells to drive villi formation. Taken together our results uncover a mechanistic link between Wnt and Hedgehog signalling across different cellular compartments that is central for anterior-posterior regionalisation and correct formation of the SI. The small intestine forms via crosstalk between epithelial and mesenchymal cell compartments. Here, the authors show that a gradient of Wnt signalling along the anterior-posterior axis regulates Sonic Hedgehog which is required for correct formation and regionalization of the small intestine.
Collapse
|
11
|
Wu MH, Padilla-Rodriguez M, Blum I, Camenisch A, Figliuolo da Paz V, Ollerton M, Muller J, Momtaz S, Mitchell SAT, Kiela P, Thorne C, Wilson JM, Cox CM. Proliferation in the developing intestine is regulated by the endosomal protein Endotubin. Dev Biol 2021; 480:50-61. [PMID: 34411593 DOI: 10.1016/j.ydbio.2021.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/05/2021] [Accepted: 08/14/2021] [Indexed: 11/19/2022]
Abstract
During postnatal intestinal development, the intestinal epithelium is highly proliferative, and this proliferation is regulated by signaling in the intervillous and crypt regions. This signaling is primarily mediated by Wnt, and requires membrane trafficking. However, the mechanisms by which membrane trafficking regulates signaling during this developmental phase are largely unknown. Endotubin (EDTB, MAMDC4) is an endosomal protein that is highly expressed in the apical endocytic complex (AEC) of villus enterocytes during fetal and postnatal development, and knockout of EDTB results in defective formation of the AEC and giant lysosome. Further, knockout of EDTB in cell lines results in decreased proliferation. However, the role of EDTB in proliferation during the development of the intestine is unknown. Using Villin-CreERT2 in EDTBfl/fl mice, we deleted EDTB in the intestine in the early postnatal period, or in enteroids in vitro after isolation of intervillous cells. Loss of EDTB results in decreased proliferation in the developing intestinal epithelium and decreased ability to form enteroids. EDTB is present in cells that contain the stem cell markers LGR5 and OLFM4, indicating that it is expressed in the proliferative compartment. Further, using immunoblot analysis and TCF/LEF-GFP mice as a reporter of Wnt activity, we find that knockout of EDTB results in decreased Wnt signaling. Our results show that EDTB is essential for normal proliferation during the early stages of intestinal development and suggest that this effect is through modulation of Wnt signaling.
Collapse
Affiliation(s)
- Meng-Han Wu
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| | | | - Isabella Blum
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| | - Abigail Camenisch
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| | | | | | - John Muller
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| | - Samina Momtaz
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| | - Stefanie A T Mitchell
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| | - Pawel Kiela
- Departments of Pediatrics and Immunobiology, University of Arizona, Tucson, AZ, USA; Steele Children's Research Center, University of Arizona, Tucson, AZ, USA.
| | - Curtis Thorne
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA; The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA; Bio5 Institute, University of Arizona, Tucson, AZ, USA; Steele Children's Research Center, University of Arizona, Tucson, AZ, USA.
| | - Jean M Wilson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA; The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA; Bio5 Institute, University of Arizona, Tucson, AZ, USA.
| | - Christopher M Cox
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
12
|
Sprangers J, Zaalberg IC, Maurice MM. Organoid-based modeling of intestinal development, regeneration, and repair. Cell Death Differ 2021; 28:95-107. [PMID: 33208888 PMCID: PMC7852609 DOI: 10.1038/s41418-020-00665-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
The intestinal epithelium harbors a remarkable adaptability to undergo injury-induced repair. A key part of the regenerative response is the transient reprogramming of epithelial cells into a fetal-like state, which drives uniform proliferation, tissue remodeling, and subsequent restoration of the homeostatic state. In this review, we discuss how Wnt and YAP signaling pathways control the intestinal repair response and the transitioning of cell states, in comparison with the process of intestinal development. Furthermore, we highlight how organoid-based applications have contributed to the characterization of the mechanistic principles and key players that guide these developmental and regenerative events.
Collapse
Affiliation(s)
- Joep Sprangers
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Irene C Zaalberg
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Madelon M Maurice
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Loe AKH, Rao-Bhatia A, Kim JE, Kim TH. Mesenchymal Niches for Digestive Organ Development, Homeostasis, and Disease. Trends Cell Biol 2020; 31:152-165. [PMID: 33349527 DOI: 10.1016/j.tcb.2020.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
Mesenchymal-epithelial crosstalk plays a crucial role in organ development and stem cell function. However, the identity of the mesenchymal cells involved in this exchange was unclear. Recent significant advances in single-cell transcriptomics have defined the heterogeneity of these mesenchymal niches. By combining multiomic profiling, animal models, and organoid culture, new studies have not only demonstrated the roles of diverse mesenchymal cell populations but also defined the mechanisms underlying their regulation of niche signals. Focusing on several digestive organs, we describe how similar and diverse mesenchymal cell populations promote organ development and maintain proper stem cell activity, and how the heterogeneity of mesenchymal niches is altered in digestive diseases such as inflammation and cancer.
Collapse
Affiliation(s)
- Adrian Kwan Ho Loe
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Abilasha Rao-Bhatia
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ji-Eun Kim
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tae-Hee Kim
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
14
|
Elmentaite R, Ross ADB, Roberts K, James KR, Ortmann D, Gomes T, Nayak K, Tuck L, Pritchard S, Bayraktar OA, Heuschkel R, Vallier L, Teichmann SA, Zilbauer M. Single-Cell Sequencing of Developing Human Gut Reveals Transcriptional Links to Childhood Crohn's Disease. Dev Cell 2020; 55:771-783.e5. [PMID: 33290721 PMCID: PMC7762816 DOI: 10.1016/j.devcel.2020.11.010] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/04/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023]
Abstract
Human gut development requires the orchestrated interaction of differentiating cell types. Here, we generate an in-depth single-cell map of the developing human intestine at 6–10 weeks post-conception. Our analysis reveals the transcriptional profile of cycling epithelial precursor cells; distinct from LGR5-expressing cells. We propose that these cells may contribute to differentiated cell subsets via the generation of LGR5-expressing stem cells and receive signals from surrounding mesenchymal cells. Furthermore, we draw parallels between the transcriptomes of ex vivo tissues and in vitro fetal organoids, revealing the maturation of organoid cultures in a dish. Lastly, we compare scRNA-seq profiles from pediatric Crohn’s disease epithelium alongside matched healthy controls to reveal disease-associated changes in the epithelial composition. Contrasting these with the fetal profiles reveals the re-activation of fetal transcription factors in Crohn’s disease. Our study provides a resource available at www.gutcellatlas.org, and underscores the importance of unraveling fetal development in understanding disease. Single-cell RNA-seq map of the developing and pediatric human intestine Cycling BEX5+ epithelial precursors are distinct from adult LGR5+ stem cells Human fetal intestinal organoids mature in culture Fetal transcription factors are reactivated in the Crohn’s disease epithelium
Collapse
Affiliation(s)
- Rasa Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Alexander D B Ross
- Wellcome Trust, MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Kenny Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Kylie R James
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Daniel Ortmann
- Wellcome Trust, MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Tomás Gomes
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Komal Nayak
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Liz Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Sophie Pritchard
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | | | - Robert Heuschkel
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals Trust, Cambridge CB2 0QQ, UK
| | - Ludovic Vallier
- Wellcome Trust, MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Theory of Condensed Matter, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton CB10 1SA, UK.
| | - Matthias Zilbauer
- Wellcome Trust, MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK; Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals Trust, Cambridge CB2 0QQ, UK.
| |
Collapse
|
15
|
Baulies A, Angelis N, Li VSW. Hallmarks of intestinal stem cells. Development 2020; 147:147/15/dev182675. [PMID: 32747330 DOI: 10.1242/dev.182675] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intestinal stem cells (ISCs) are highly proliferative cells that fuel the continuous renewal of the intestinal epithelium. Understanding their regulatory mechanisms during tissue homeostasis is key to delineating their roles in development and regeneration, as well as diseases such as bowel cancer and inflammatory bowel disease. Previous studies of ISCs focused mainly on the position of these cells along the intestinal crypt and their capacity for multipotency. However, evidence increasingly suggests that ISCs also exist in distinct cellular states, which can be an acquired rather than a hardwired intrinsic property. In this Review, we summarise the recent findings into how ISC identity can be defined by proliferation state, signalling crosstalk, epigenetics and metabolism, and propose an update on the hallmarks of ISCs. We further discuss how these properties contribute to intestinal development and the dynamics of injury-induced regeneration.
Collapse
Affiliation(s)
- Anna Baulies
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nikolaos Angelis
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
16
|
Oh S, Yoo YB. Epithelial-Mesenchymal Interactions for the Development of Intestinal Villi. Dev Reprod 2019; 23:305-311. [PMID: 31993536 PMCID: PMC6985290 DOI: 10.12717/dr.2019.23.4.305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 10/23/2019] [Accepted: 11/06/2019] [Indexed: 01/21/2023]
Abstract
Small intestine has a structure called villi that increases the mucosal surface area for nutrient absorption. Intricate and tight epithelial-mesenchymal interactions are required for villi development. These interactions are regulated by signaling molecules, physical forces, and epithelial deformation. Signaling molecules include hedgehog (Hh), bone morphogenetic protein (BMP) and Wnt ligands. The Hh ligand is expressed from the epithelium and binds to the underlying mesenchymal cells, resulting in aggregation into mesenchymal clusters. The clusters express BMP and Wnt ligands to control its size and spacing between clusters. The clusters then form villi. Despite the fact that the villi formation is studied extensively, we do not have a complete understanding. In addition, the recent study shows there is a great relationship between the overexpression of the Hh signal and development of cancer in the gastrointestinal tract. Therefore, signaling between epithelial and mesenchymal cells and their physical interactions will be discussed on this review.
Collapse
Affiliation(s)
- Seunghoon Oh
- Dept. of Physiology, College of Medicine,
Dankook University, Korea
| | - Young Bok Yoo
- Dept. of Anatomy, College of Medicine,
Dankook University, Korea
| |
Collapse
|
17
|
A Role for the WNT Co-Receptor LRP6 in Pathogenesis and Therapy of Epithelial Cancers. Cancers (Basel) 2019; 11:cancers11081162. [PMID: 31412666 PMCID: PMC6721565 DOI: 10.3390/cancers11081162] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
The WNT/β-catenin signaling pathway controls stem and progenitor cell proliferation, survival and differentiation in epithelial tissues. Aberrant stimulation of this pathway is therefore frequently observed in cancers from epithelial origin. For instance, colorectal and hepatic cancers display activating mutations in the CTNNB1 gene encoding β-catenin, or inactivating APC and AXIN gene mutations. However, these mutations are uncommon in breast and pancreatic cancers despite nuclear β-catenin localization, indicative of pathway activation. Notably, the low-density lipoprotein receptor-related protein 6 (LRP6), an indispensable co-receptor for WNT, is frequently overexpressed in colorectal, liver, breast and pancreatic adenocarcinomas in association with increased WNT/β -catenin signaling. Moreover, LRP6 is hyperphosphorylated in KRAS-mutated cells and in patient-derived colorectal tumours. Polymorphisms in the LRP6 gene are also associated with different susceptibility to developing specific types of lung, bladder and colorectal cancers. Additionally, recent observations suggest that LRP6 dysfunction may be involved in carcinogenesis. Indeed, reducing LRP6 expression and/or activity inhibits cancer cell proliferation and delays tumour growth in vivo. This review summarizes current knowledge regarding the biological function and regulation of LRP6 in the development of epithelial cancers—especially colorectal, liver, breast and pancreatic cancers.
Collapse
|
18
|
Greicius G, Virshup DM. Stromal control of intestinal development and the stem cell niche. Differentiation 2019; 108:8-16. [DOI: 10.1016/j.diff.2019.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
|
19
|
Abstract
The adult gastrointestinal tract (GI) is a series of connected organs (esophagus, stomach, small intestine, colon) that develop via progressive regional specification of a continuous tubular embryonic organ anlage. This chapter focuses on organogenesis of the small intestine. The intestine arises by folding of a flat sheet of endodermal cells into a tube of highly proliferative pseudostratified cells. Dramatic elongation of this tube is driven by rapid epithelial proliferation. Then, epithelial-mesenchymal crosstalk and physical forces drive a stepwise cascade that results in convolution of the tubular surface into finger-like projections called villi. Concomitant with villus formation, a sharp epithelial transcriptional boundary is defined between stomach and intestine. Finally, flask-like depressions called crypts are established to house the intestinal stem cells needed throughout life for epithelial renewal. New insights into these events are being provided by in vitro organoid systems, which hold promise for future regenerative engineering of the small intestine.
Collapse
Affiliation(s)
- Sha Wang
- University of Michigan, Cell and Developmental Biology Department, Ann Arbor, MI, United States
| | - Katherine D Walton
- University of Michigan, Cell and Developmental Biology Department, Ann Arbor, MI, United States.
| | - Deborah L Gumucio
- University of Michigan, Cell and Developmental Biology Department, Ann Arbor, MI, United States
| |
Collapse
|
20
|
Wang SY, Li JY, Xu JH, Xia ZS, Cheng D, Zhong W, Lai Y, Yu T, Chen QK. Butyrate suppresses abnormal proliferation in colonic epithelial cells under diabetic state by targeting HMGB1. J Pharmacol Sci 2018; 139:266-274. [PMID: 30871870 DOI: 10.1016/j.jphs.2018.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
Butyrate is widely accepted as a proliferation inhibitor in colon cancer but less thoroughly characterized in the colonic epithelium of objects with type 2 diabetes mellitus. The present study investigated the regulatory effect of butyrate on proliferation, the related molecule high-mobility group box 1 (HMGB1) and the receptor for advanced glycation end products (RAGE) in the colon of db/db type 2 diabetic model mice and non-cancerous NCM460 colon cells. Proliferation and the expression of HMGB1 and RAGE were increased and could be partially reversed by butyrate treatment in the colon of db/db mice, which were consistent in NCM460 cells under a high glucose state. In NCM460 cells, under the normal glucose state, proliferation increased by overexpression of HMGB1. Under a high glucose state, increased expression of HMGB1 was accompanied with a release from cell nuclei into the cytoplasm and extracellular matrix. Down-regulation of HMGB1 could lower the expression of RAGE and attenuate the abnormally increased proliferation. And overexpression of HMGB1 reversed the suppressing effect of butyrate on abnormally increased proliferation. Conclusively, butyrate suppressed the abnormally increased proliferation in colonic epithelial cells under diabetic state by targeting HMGB1.
Collapse
Affiliation(s)
- Si-Yi Wang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Jie-Yao Li
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Ji-Hao Xu
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Zhong-Sheng Xia
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Di Cheng
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Wa Zhong
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Yu Lai
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Tao Yu
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, People's Republic of China.
| | - Qi-Kui Chen
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, People's Republic of China.
| |
Collapse
|
21
|
Wang S, Cebrian C, Schnell S, Gumucio DL. Radial WNT5A-Guided Post-mitotic Filopodial Pathfinding Is Critical for Midgut Tube Elongation. Dev Cell 2018; 46:173-188.e3. [PMID: 30016620 DOI: 10.1016/j.devcel.2018.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/17/2018] [Accepted: 06/14/2018] [Indexed: 01/09/2023]
Abstract
The early midgut undergoes intensive elongation, but the underlying cellular and molecular mechanisms are unknown. The early midgut epithelium is pseudostratified, and its nuclei travel between apical and basal surfaces in concert with cell cycle. Using 3D confocal imaging and 2D live imaging, we profiled behaviors of individual dividing cells. As nuclei migrate apically for mitosis, cells maintain a basal process (BP), which splits but is inherited by only one daughter. After mitosis, some daughters directly use the inherited BP as a "conduit" to transport the nucleus basally, while >50% of daughters generate a new basal filopodium and use it as a path to return the nucleus. Post-mitotic filopodial "pathfinding" is guided by mesenchymal WNT5A. Without WNT5A, some cells fail to tether basally and undergo apoptosis, leading to a shortened midgut. Thus, these studies reveal previously unrecognized strategies for efficient post-mitotic nuclear trafficking, which is critical for early midgut elongation.
Collapse
Affiliation(s)
- Sha Wang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA.
| | - Cristina Cebrian
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Deborah L Gumucio
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
22
|
Walton KD, Mishkind D, Riddle MR, Tabin CJ, Gumucio DL. Blueprint for an intestinal villus: Species-specific assembly required. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:e317. [PMID: 29513926 PMCID: PMC6002883 DOI: 10.1002/wdev.317] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/18/2017] [Accepted: 01/11/2018] [Indexed: 12/14/2022]
Abstract
Efficient absorption of nutrients by the intestine is essential for life. In mammals and birds, convolution of the intestinal surface into finger-like projections called villi is an important adaptation that ensures the massive surface area for nutrient contact that is required to meet metabolic demands. Each villus projection serves as a functional absorptive unit: it is covered by a simple columnar epithelium that is derived from endoderm and contains a mesodermally derived core with supporting vasculature, lacteals, enteric nerves, smooth muscle, fibroblasts, myofibroblasts, and immune cells. In cross section, the consistency of structure in the billions of individual villi of the adult intestine is strikingly beautiful. Villi are generated in fetal life, and work over several decades has revealed that villus morphogenesis requires substantial "crosstalk" between the endodermal and mesodermal tissue components, with soluble signals, cell-cell contacts, and mechanical forces providing specific dialects for sequential conversations that orchestrate villus assembly. A key part of this process is the formation of subepithelial mesenchymal cell clusters that act as signaling hubs, directing overlying epithelial cells to cease proliferation, thereby driving villus emergence and simultaneously determining the location of future stem cell compartments. Interestingly, distinct species-specific differences govern how and when tissue-shaping signals and forces generate mesenchymal clusters and control villus emergence. As the details of villus development become increasingly clear, the emerging picture highlights a sophisticated local self-assembled cascade that underlies the reproducible elaboration of a regularly patterned field of absorptive villus units. This article is categorized under: Vertebrate Organogenesis > From a Tubular Primordium: Non-Branched Comparative Development and Evolution > Organ System Comparisons Between Species Early Embryonic Development > Development to the Basic Body Plan.
Collapse
Affiliation(s)
- Katherine D Walton
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Darcy Mishkind
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Misty R Riddle
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Clifford J Tabin
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Deborah L Gumucio
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
23
|
In Vitro Induction and In Vivo Engraftment of Lung Bud Tip Progenitor Cells Derived from Human Pluripotent Stem Cells. Stem Cell Reports 2017; 10:101-119. [PMID: 29249664 PMCID: PMC5770275 DOI: 10.1016/j.stemcr.2017.11.012] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 12/11/2022] Open
Abstract
The current study aimed to understand the developmental mechanisms regulating bud tip progenitor cells in the human fetal lung, which are present during branching morphogenesis, and to use this information to induce a bud tip progenitor-like population from human pluripotent stem cells (hPSCs) in vitro. We identified cues that maintained isolated human fetal lung epithelial bud tip progenitor cells in vitro and induced three-dimensional hPSC-derived organoids with bud tip-like domains. Bud tip-like domains could be isolated, expanded, and maintained as a nearly homogeneous population. Molecular and cellular comparisons revealed that hPSC-derived bud tip-like cells are highly similar to native lung bud tip progenitors. hPSC-derived epithelial bud tip-like structures survived in vitro for over 16 weeks, could be easily frozen and thawed, maintained multilineage potential, and successfully engrafted into the airways of immunocompromised mouse lungs, where they persisted for up to 6 weeks and gave rise to several lung epithelial lineages.
Collapse
|
24
|
Chin AM, Hill DR, Aurora M, Spence JR. Morphogenesis and maturation of the embryonic and postnatal intestine. Semin Cell Dev Biol 2017; 66:81-93. [PMID: 28161556 DOI: 10.1016/j.semcdb.2017.01.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 12/12/2022]
Abstract
The intestine is a vital organ responsible for nutrient absorption, bile and waste excretion, and a major site of host immunity. In order to keep up with daily demands, the intestine has evolved a mechanism to expand the absorptive surface area by undergoing a morphogenetic process to generate finger-like units called villi. These villi house specialized cell types critical for both absorbing nutrients from food, and for protecting the host from commensal and pathogenic microbes present in the adult gut. In this review, we will discuss mechanisms that coordinate intestinal development, growth, and maturation of the small intestine, starting from the formation of the early gut tube, through villus morphogenesis and into early postnatal life when the intestine must adapt to the acquisition of nutrients through food intake, and to interactions with microbes.
Collapse
Affiliation(s)
- Alana M Chin
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - David R Hill
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Megan Aurora
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, United States; Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
25
|
Nigmatullina L, Norkin M, Dzama MM, Messner B, Sayols S, Soshnikova N. Id2 controls specification of Lgr5 + intestinal stem cell progenitors during gut development. EMBO J 2017; 36:869-885. [PMID: 28077488 DOI: 10.15252/embj.201694959] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 11/09/2022] Open
Abstract
The adult intestinal stem cells (ISCs), their hierarchies, mechanisms of maintenance and differentiation have been extensively studied. However, when and how ISCs are established during embryogenesis remains unknown. We show here that the transcription regulator Id2 controls the specification of embryonic Lgr5+ progenitors in the developing murine small intestine. Cell fate mapping analysis revealed that Lgr5+ progenitors emerge at E13.5 in wild-type embryos and differ from the rest on the intestinal epithelium by a characteristic ISC signature. In the absence of Id2, the intestinal epithelium differentiates into Lgr5+ cells already at E9.5. Furthermore, the size of the Lgr5+ cell pool is significantly increased. We show that Id2 restricts the activity of the Wnt signalling pathway at early stages and prevents precocious differentiation of the embryonic intestinal epithelium. Id2-deficient embryonic epithelial cells cultured ex vivo strongly activate Wnt target genes as well as markers of neoplastic transformation and form fast growing undifferentiated spheroids. Furthermore, adult ISCs from Id2-deficient mice display a distinct transcriptional signature, supporting an essential role for Id2 in the correct specification of ISCs.
Collapse
|