1
|
Mao Z, Li M, Wang S. Targeting m 6A RNA Modification in Tumor Therapeutics. Curr Oncol 2025; 32:159. [PMID: 40136363 PMCID: PMC11941731 DOI: 10.3390/curroncol32030159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
The prevalent eukaryotic RNA modification N6-methyladenosine (m6A), which is distributed in more than 50% of cases, has demonstrated significant implications in both normal development and disease progression, particularly in the context of cancer. This review aims to discuss the potential efficacy of targeting tumor cells through modulation of m6A RNA levels. Specifically, we discuss how the upregulation or downregulation of integral or specific targets is effective in treating different tumor types and patients. Additionally, we will cover the factors influencing the efficacy of m6A RNA targeting in tumor treatment. Our review will focus on the impact of targeting m6A mRNA on genes and cells and assess its potential as a therapeutic strategy for tumors. Despite the challenges involved, further research on m6A RNA in tumors and its integration with existing tumor therapy approaches is warranted.
Collapse
Affiliation(s)
- Zhenwei Mao
- Department of Laboratory Medicine, Affiliated People’s Hospital, Jiangsu University, Zhenjiang 212002, China
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212002, China
| | - Min Li
- Department of Laboratory Medicine, Affiliated People’s Hospital, Jiangsu University, Zhenjiang 212002, China
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212002, China
| | - Shengjun Wang
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212002, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| |
Collapse
|
2
|
Masciale V, Banchelli F, Grisendi G, Samarelli AV, Raineri G, Rossi T, Zanoni M, Cortesi M, Bandini S, Ulivi P, Martinelli G, Stella F, Dominici M, Aramini B. The molecular features of lung cancer stem cells in dedifferentiation process-driven epigenetic alterations. J Biol Chem 2024; 300:107994. [PMID: 39547513 PMCID: PMC11714729 DOI: 10.1016/j.jbc.2024.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Cancer stem cells (CSCs) may be dedifferentiated somatic cells following oncogenic processes, representing a subpopulation of cells able to promote tumor growth with their capacities for proliferation and self-renewal, inducing lineage heterogeneity, which may be a main cause of resistance to therapies. It has been shown that the "less differentiated process" may have an impact on tumor plasticity, particularly when non-CSCs may dedifferentiate and become CSC-like. Bidirectional interconversion between CSCs and non-CSCs has been reported in other solid tumors, where the inflammatory stroma promotes cell reprogramming by enhancing Wnt signaling through nuclear factor kappa B activation in association with intracellular signaling, which may induce cells' pluripotency, the oncogenic transformation can be considered another important aspect in the acquisition of "new" development programs with oncogenic features. During cell reprogramming, mutations represent an initial step toward dedifferentiation, in which tumor cells switch from a partially or terminally differentiated stage to a less differentiated stage that is mainly manifested by re-entry into the cell cycle, acquisition of a stem cell-like phenotype, and expression of stem cell markers. This phenomenon typically shows up as a change in the form, function, and pattern of gene and protein expression, and more specifically, in CSCs. This review would highlight the main epigenetic alterations, major signaling pathways and driver mutations in which CSCs, in tumors and specifically, in lung cancer, could be involved, acting as key elements in the differentiation/dedifferentiation process. This would highlight the main molecular mechanisms which need to be considered for more tailored therapies.
Collapse
Affiliation(s)
- Valentina Masciale
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Federico Banchelli
- Department of Statistical Sciences "Paolo Fortunati", Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Giulia Raineri
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sara Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Franco Stella
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy; Division of Oncology, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy.
| |
Collapse
|
3
|
Nguyen LT, Zimmermann K, Kowenz-Leutz E, Dörr D, Schütz A, Schönheit J, Mildner A, Leutz A. Arginine methylation of the p30 C/EBPα oncoprotein regulates progenitor proliferation and myeloid differentiation. iScience 2024; 27:111199. [PMID: 39555410 PMCID: PMC11565546 DOI: 10.1016/j.isci.2024.111199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/12/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
The transcription factor CCAAT enhancer binding protein alpha (C/EBPα) is a master regulator of myelopoiesis. CEBPA encodes a long (p42) and a truncated (p30) protein isoform from a single mRNA. Mutations that abnormally enhance expression of p30 are associated with acute myelogenous leukemia (AML). We show by mutational analysis that three highly conserved arginine residues in the p30 C/EBPα N-terminus, previously found to be methylated, are involved in myeloid lineage commitment, progenitor proliferation, and differentiation. The conservative amino acid substitution with lysine that retains the amino acid side chain charge enhanced progenitor proliferation, while a non-conservative substitution with uncharged side chains (alanine, leucine) impaired proliferation and enhanced granulopoiesis. Analysis of protein interactions suggested that arginine methylation of p30 C/EBPα differentially determines interactions with SWI/SNF and MLL complexes. Pharmacological targeting of p30 C/EBPα arginine methylation may have clinical relevance in myeloproliferative and inflammatory diseases, in neutropenia, and in leukemic stem cells.
Collapse
Affiliation(s)
- Linh T. Nguyen
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Street 10, 13125 Berlin, Germany
- BSIO Berlin School of Integrative Oncology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Karin Zimmermann
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Street 10, 13125 Berlin, Germany
| | - Elisabeth Kowenz-Leutz
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Street 10, 13125 Berlin, Germany
| | - Dorothea Dörr
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Street 10, 13125 Berlin, Germany
| | - Anja Schütz
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Street 10, 13125 Berlin, Germany
| | - Jörg Schönheit
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Street 10, 13125 Berlin, Germany
| | - Alexander Mildner
- Institute of Biomedicine at University of Turku, Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Achim Leutz
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Street 10, 13125 Berlin, Germany
| |
Collapse
|
4
|
Gu J, Zhu Y, Lin H, Huang Y, Zhang Y, Xing Q, Kang B, Zhang Z, Wang M, Zhou T, Mai Y, Chen Q, Li F, Hu X, Wang S, Peng J, Guo X, Long B, Wang J, Gao M, Shan Y, Cui Y, Pan G. Autophagy is essential for human myelopoiesis. Stem Cell Reports 2024; 19:196-210. [PMID: 38215759 PMCID: PMC10874853 DOI: 10.1016/j.stemcr.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/14/2024] Open
Abstract
Emergency myelopoiesis (EM) is essential in immune defense against pathogens for rapid replenishing of mature myeloid cells. During the EM process, a rapid cell-cycle switch from the quiescent hematopoietic stem cells (HSCs) to highly proliferative myeloid progenitors (MPs) is critical. How the rapid proliferation of MPs during EM is regulated remains poorly understood. Here, we reveal that ATG7, a critical autophagy factor, is essential for the rapid proliferation of MPs during human myelopoiesis. Peripheral blood (PB)-mobilized hematopoietic stem/progenitor cells (HSPCs) with ATG7 knockdown or HSPCs derived from ATG7-/- human embryonic stem cells (hESCs) exhibit severe defect in proliferation during fate transition from HSPCs to MPs. Mechanistically, we show that ATG7 deficiency reduces p53 localization in lysosome for a potential autophagy-mediated degradation. Together, we reveal a previously unrecognized role of autophagy to regulate p53 for a rapid proliferation of MPs in human myelopoiesis.
Collapse
Affiliation(s)
- Jiaming Gu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yanling Zhu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Huaisong Lin
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yuhua Huang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yanqi Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Qi Xing
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Baoqiang Kang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhishuai Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Mingquan Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Tiancheng Zhou
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yuchan Mai
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Qianyu Chen
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Fei Li
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xing Hu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Shuoting Wang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jiaojiao Peng
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xinrui Guo
- Shandong Medicinal Biotechnology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250012, China
| | - Bing Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Junwei Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Minghui Gao
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yazhou Cui
- Shandong Medicinal Biotechnology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250012, China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Shandong Medicinal Biotechnology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250012, China.
| |
Collapse
|
5
|
Nguyen LT, Zimmermann K, Kowenz-Leutz E, Lim R, Hofstätter M, Mildner A, Leutz A. C/EBPβ-induced lymphoid-to-myeloid transdifferentiation emulates granulocyte-monocyte progenitor biology. Stem Cell Reports 2024; 19:112-125. [PMID: 38157851 PMCID: PMC10828814 DOI: 10.1016/j.stemcr.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
CCAAT/enhancer-binding protein beta (C/EBPβ) induces primary v-Abl immortalized mouse B cells to transdifferentiate (BT, B cell transdifferentiation) into granulocyte-macrophage progenitor-like cells (GMPBTs). GMPBTs maintain cytokine-independent self-renewal, lineage choice, and multilineage differentiation. Single-cell transcriptomics demonstrated that GMPBTs comprise a continuum of myelomonopoietic differentiation states that seamlessly fit into state-to-fate maps of normal granulocyte-macrophage progenitors (GMPs). Inactivating v-Abl kinase revealed the dependence on activated CSF2-JAK2-STAT5 signaling. Deleting IRF8 diminished monopoiesis and enhanced granulopoiesis while removing C/EBPβ-abrogated self-renewal and granulopoiesis but permitted macrophage differentiation. The GMPBT culture system is easily scalable to explore the basics of GMP biology and lineage commitment and largely reduces ethically and legislatively debatable, labor-intensive, and costly animal experiments.
Collapse
Affiliation(s)
- Linh Thuy Nguyen
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, Berlin, Germany; Berlin School of Integrative Oncology (BSIO), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Karin Zimmermann
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, Berlin, Germany
| | - Elisabeth Kowenz-Leutz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, Berlin, Germany
| | - Ramonique Lim
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, Berlin, Germany
| | - Maria Hofstätter
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, Berlin, Germany
| | - Alexander Mildner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, Berlin, Germany; Institute of Biomedicine at University of Turku, Turku, Finland; InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Achim Leutz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, Berlin, Germany.
| |
Collapse
|
6
|
Meyer MA, Dinh HQ, Alimadadi A, Araujo DJ, Chatterjee N, Gutierrez NA, Zhu YP, Hunter EL, Liang S, Seumois G, Kiosses WB, Catz SD, Vijayanand P, Ottensmeier C, Hedrick CC. Human CD79b + neutrophils in the blood are associated with early-stage melanoma. Front Immunol 2023; 14:1224045. [PMID: 38022639 PMCID: PMC10643866 DOI: 10.3389/fimmu.2023.1224045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Due to their abundance in the blood, low RNA content, and short lifespan, neutrophils have been classically considered to be one homogenous pool. However, recent work has found that mature neutrophils and neutrophil progenitors are composed of unique subsets exhibiting context-dependent functions. In this study, we ask if neutrophil heterogeneity is associated with melanoma incidence and/or disease stage. Experimental design Using mass cytometry, we profiled melanoma patient blood for unique cell surface markers among neutrophils. Markers were tested for their predictiveness using flow cytometry data and random forest machine learning. Results We identified CD79b+ neutrophils (CD3-CD56-CD19-Siglec8-CD203c-CD86LoCD66b+CD79b+) that are normally restricted to the bone marrow in healthy humans but appear in the blood of subjects with early-stage melanoma. Further, we found CD79b+ neutrophils present in tumors of subjects with head and neck cancer. AI-mediated machine learning analysis of neutrophils from subjects with melanoma confirmed that CD79b expression among peripheral blood neutrophils is highly important in identifying melanoma incidence. We noted that CD79b+ neutrophils possessed a neutrophilic appearance but have transcriptional and surface-marker phenotypes reminiscent of B cells. Compared to remaining blood neutrophils, CD79b+ neutrophils are primed for NETosis, express higher levels of antigen presentation-related proteins, and have an increased capacity for phagocytosis. Conclusion Our work suggests that CD79b+ neutrophils are associated with early-stage melanoma.
Collapse
Affiliation(s)
- Melissa A. Meyer
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Huy Q. Dinh
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, United States
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | - Ahmad Alimadadi
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Daniel J. Araujo
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Nandini Chatterjee
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Norma A. Gutierrez
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Yanfang Peipei Zhu
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Pediatrics, School of Medicine, University of California, San Diego, San Diego, CA, United States
- School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Emma L. Hunter
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Shu Liang
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Gregory Seumois
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - William B. Kiosses
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Sergio D. Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Pandurangan Vijayanand
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Christian Ottensmeier
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, United States
- School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- Institute of Translational Medicine, Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Catherine C. Hedrick
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, United States
- Immunology Center of Georgia, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
7
|
Li Z, Chang TC, Junco JJ, Devidas M, Li Y, Yang W, Huang X, Hedges DJ, Cheng Z, Shago M, Carroll AJ, Heerema NA, Gastier-Foster J, Wood BL, Borowitz MJ, Sanclemente L, Raetz EA, Hunger SP, Feingold E, Rosser TC, Sherman SL, Loh ML, Mullighan CG, Yu J, Wu G, Lupo PJ, Rabin KR, Yang JJ. Genomic landscape of Down syndrome-associated acute lymphoblastic leukemia. Blood 2023; 142:172-184. [PMID: 37001051 PMCID: PMC10352600 DOI: 10.1182/blood.2023019765] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Trisomy 21, the genetic cause of Down syndrome (DS), is the most common congenital chromosomal anomaly. It is associated with a 20-fold increased risk of acute lymphoblastic leukemia (ALL) during childhood and results in distinctive leukemia biology. To comprehensively define the genomic landscape of DS-ALL, we performed whole-genome sequencing and whole-transcriptome sequencing (RNA-Seq) on 295 cases. Our integrated genomic analyses identified 15 molecular subtypes of DS-ALL, with marked enrichment of CRLF2-r, IGH::IGF2BP1, and C/EBP altered (C/EBPalt) subtypes compared with 2257 non-DS-ALL cases. We observed abnormal activation of the CEBPD, CEBPA, and CEBPE genes in 10.5% of DS-ALL cases via a variety of genomic mechanisms, including chromosomal rearrangements and noncoding mutations leading to enhancer hijacking. A total of 42.3% of C/EBP-activated DS-ALL also have concomitant FLT3 point mutations or insertions/deletions, compared with 4.1% in other subtypes. CEBPD overexpression enhanced the differentiation of mouse hematopoietic progenitor cells into pro-B cells in vitro, particularly in a DS genetic background. Notably, recombination-activating gene-mediated somatic genomic abnormalities were common in DS-ALL, accounting for a median of 27.5% of structural alterations, compared with 7.7% in non-DS-ALL. Unsupervised hierarchical clustering analyses of CRLF2-rearranged DS-ALL identified substantial heterogeneity within this group, with the BCR::ABL1-like subset linked to an inferior event-free survival, even after adjusting for known clinical risk factors. These results provide important insights into the biology of DS-ALL and point to opportunities for targeted therapy and treatment individualization.
Collapse
Affiliation(s)
- Zhenhua Li
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jacob J. Junco
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Meenakshi Devidas
- Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yizhen Li
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Wenjian Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Xin Huang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Dale J. Hedges
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Zhongshan Cheng
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Mary Shago
- Department of Pathobiology and Laboratory Medicine, University of Toronto, Toronto, ON, Canada
| | - Andrew J. Carroll
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL
| | - Nyla A. Heerema
- Department of Pathology, The Ohio State University, Columbus, OH
| | - Julie Gastier-Foster
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | - Brent L. Wood
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA
| | | | | | - Elizabeth A. Raetz
- Department of Pediatrics and Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| | - Stephen P. Hunger
- Department of Pediatrics and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
- The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA
| | | | | | - Mignon L. Loh
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, WA
| | | | - Jiyang Yu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Philip J. Lupo
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Karen R. Rabin
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Jun J. Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
8
|
Sweet DR, Freeman ML, Zidar DA. Immunohematologic Biomarkers in COVID-19: Insights into Pathogenesis, Prognosis, and Prevention. Pathog Immun 2023; 8:17-50. [PMID: 37427016 PMCID: PMC10324469 DOI: 10.20411/pai.v8i1.572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has had profound effects on the health of individuals and on healthcare systems worldwide. While healthcare workers on the frontlines have fought to quell multiple waves of infection, the efforts of the larger research community have changed the arch of this pandemic as well. This review will focus on biomarker discovery and other efforts to identify features that predict outcomes, and in so doing, identify possible effector and passenger mechanisms of adverse outcomes. Identifying measurable soluble factors, cell-types, and clinical parameters that predict a patient's disease course will have a legacy for the study of immunologic responses, especially stimuli, which induce an overactive, yet ineffectual immune system. As prognostic biomarkers were identified, some have served to represent pathways of therapeutic interest in clinical trials. The pandemic conditions have created urgency for accelerated target identification and validation. Collectively, these COVID-19 studies of biomarkers, disease outcomes, and therapeutic efficacy have revealed that immunologic systems and responses to stimuli are more heterogeneous than previously assumed. Understanding the genetic and acquired features that mediate divergent immunologic outcomes in response to this global exposure is ongoing and will ultimately improve our preparedness for future pandemics, as well as impact preventive approaches to other immunologic diseases.
Collapse
Affiliation(s)
- David R. Sweet
- Case Western Reserve University School of Medicine, Cleveland, OH
| | - Michael L. Freeman
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH
| | - David A. Zidar
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH
- Cardiology Section, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
9
|
Dancik GM, Varisli L, Vlahopoulos SA. The Molecular Context of Oxidant Stress Response in Cancer Establishes ALDH1A1 as a Critical Target: What This Means for Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:ijms24119372. [PMID: 37298333 DOI: 10.3390/ijms24119372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The protein family of aldehyde dehydrogenases (ALDH) encompasses nineteen members. The ALDH1 subfamily consists of enzymes with similar activity, having the capacity to neutralize lipid peroxidation products and to generate retinoic acid; however, only ALDH1A1 emerges as a significant risk factor in acute myeloid leukemia. Not only is the gene ALDH1A1 on average significantly overexpressed in the poor prognosis group at the RNA level, but its protein product, ALDH1A1 protects acute myeloid leukemia cells from lipid peroxidation byproducts. This capacity to protect cells can be ascribed to the stability of the enzyme under conditions of oxidant stress. The capacity to protect cells is evident both in vitro, as well as in mouse xenografts of those cells, shielding cells effectively from a number of potent antineoplastic agents. However, the role of ALDH1A1 in acute myeloid leukemia has been unclear in the past due to evidence that normal cells often have higher aldehyde dehydrogenase activity than leukemic cells. This being true, ALDH1A1 RNA expression is significantly associated with poor prognosis. It is hence imperative that ALDH1A1 is methodically targeted, particularly for the acute myeloid leukemia patients of the poor prognosis risk group that overexpress ALDH1A1 RNA.
Collapse
Affiliation(s)
- Garrett M Dancik
- Department of Computer Science, Eastern Connecticut State University, Willimantic, CT 06226, USA
| | - Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Spiros A Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Athens, Greece
| |
Collapse
|
10
|
Rani R, Nayak M, Nayak B. Exploring the reprogramming potential of B cells and comprehending its clinical and therapeutic perspective. Transpl Immunol 2023; 78:101804. [PMID: 36921730 DOI: 10.1016/j.trim.2023.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023]
Abstract
Initiating from multipotent progenitors, the lineages extrapolated from hematopoietic stem cells are determined by transcription factors specific to each of them. The commitment factors assist in the differentiation of progenitor cells into terminally differentiated cells. B lymphocytes constitute a population of cells that expresses clonally diverse cell surface immunoglobulin (Ig) receptors specific to antigenic epitopes. B cells are a significant facet of the adaptive immune system. The secreted antibodies corresponding to the B cell recognize the antigens via the B cell receptor (BCR). Following antigen recognition, the B cell is activated and thereafter undergoes clonal expansion and proliferation to become memory B cells. The essence of 'cellular reprogramming' has aided in reliably altering the cells to desired tissue type. The potential of reprogramming has been harnessed to decipher and find solutions for various genetically inherited diseases and degenerative disorders. B lymphocytes can be reprogrammed to their initial naive state from where they get differentiated into any lineage or cell type similar to a pluripotent stem cell which can be accomplished by the deletion of master regulators of the B cell lineage. B cells can be reprogrammed into pluripotent stem cells and also can undergo transdifferentiation at the midway of cell differentiation to other cell types. Mandated expression of C/EBP in specialized B cells corresponds to their fast and effective reprogramming into macrophages, reversing the cell fate of these lymphocytes and allowing them to differentiate freshly into other types of cells. The co-expression of C/EBPα and OKSM (Oct4, Sox2, Klf4, c-Myc) amplified the reprogramming efficiency of B lymphocytes. Various human somatic cells including the immune cells are compliant to reprogramming which paves a path for opportunities like autologous tissue grafts, blood transfusion, and cancer immunotherapy. The ability to reprogram B cells offers an unprecedented opportunity for developing a therapeutic approach for several human diseases. Here, we will focus on all the proteins and transcription factors responsible for the developmental commitment of B lymphocytes and how it is harnessed in various applications.
Collapse
Affiliation(s)
- Reetika Rani
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India
| | - Madhusmita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India.
| |
Collapse
|
11
|
Argyropoulos KV, Aypar U, Ewalt MD, Roshal M, Dogan A, Sen F. Chronic lymphocytic leukemia transdifferentiated to blastic neoplasm with T/plasmacytoid dendritic cell immunophenotype. Leuk Lymphoma 2023; 64:734-737. [PMID: 36748396 DOI: 10.1080/10428194.2022.2161819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/19/2022] [Indexed: 02/08/2023]
Affiliation(s)
- Kimon V Argyropoulos
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Umut Aypar
- Department of Pathology and Laboratory Medicine, Cytogenetics Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark D Ewalt
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine and Laboratory Medicine, Diagnostic Molecular Pathology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mikhail Roshal
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Filiz Sen
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
12
|
Nagahata Y, Masuda K, Nishimura Y, Ikawa T, Kawaoka S, Kitawaki T, Nannya Y, Ogawa S, Suga H, Satou Y, Takaori-Kondo A, Kawamoto H. Tracing the evolutionary history of blood cells to the unicellular ancestor of animals. Blood 2022; 140:2611-2625. [PMID: 36112959 PMCID: PMC10653094 DOI: 10.1182/blood.2022016286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022] Open
Abstract
Blood cells are thought to have emerged as phagocytes in the common ancestor of animals followed by the appearance of novel blood cell lineages such as thrombocytes, erythrocytes, and lymphocytes, during evolution. However, this speculation is not based on genetic evidence and it is still possible to argue that phagocytes in different species have different origins. It also remains to be clarified how the initial blood cells evolved; whether ancient animals have solely developed de novo programs for phagocytes or they have inherited a key program from ancestral unicellular organisms. Here, we traced the evolutionary history of blood cells, and cross-species comparison of gene expression profiles revealed that phagocytes in various animal species and Capsaspora (C.) owczarzaki, a unicellular organism, are transcriptionally similar to each other. We also found that both phagocytes and C. owczarzaki share a common phagocytic program, and that CEBPα is the sole transcription factor highly expressed in both phagocytes and C. owczarzaki. We further showed that the function of CEBPα to drive phagocyte program in nonphagocytic blood cells has been conserved in tunicate, sponge, and C. owczarzaki. We finally showed that, in murine hematopoiesis, repression of CEBPα to maintain nonphagocytic lineages is commonly achieved by polycomb complexes. These findings indicate that the initial blood cells emerged inheriting a unicellular organism program driven by CEBPα and that the program has also been seamlessly inherited in phagocytes of various animal species throughout evolution.
Collapse
Affiliation(s)
- Yosuke Nagahata
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kyoko Masuda
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yuji Nishimura
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tomokatsu Ikawa
- Division of Immunology and Allergy, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Shinpei Kawaoka
- Inter-Organ Communication Research Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Toshio Kitawaki
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Suga
- Department of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kawamoto
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Yang W, Xie S, Li Y, Wang J, Xiao J, Huang K, Wang X, Wu Y, Ma L, Nie D. Lineage switch from lymphoma to myeloid neoplasms: First case series from a single institution. Open Med (Wars) 2022; 17:1466-1472. [PMID: 36133509 PMCID: PMC9462540 DOI: 10.1515/med-2022-0521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/15/2022] Open
Abstract
Lymphoma relapse is very common in clinical work, but lineage switch at relapse is rare. Although some cases have reported acute lymphocytic leukemia (ALL) switch to acute myeloid leukemia (AML) or myeloid sarcoma upon relapse, phenotype switch seldom occurs in other types of lymphoma. Here we report six cases with lineage switch from lymphoma to myeloid neoplasms. In our cohort, three cases were mantle cell lymphoma (MCL), and the other three cases were T-cell lymphoblastic lymphoma (T-LBL), B-cell lymphoblastic lymphoma (B-LBL), and diffuse large B-cell lymphoma (DLBCL) at the initial diagnosis. When linage switch occurred, most cases were AML M5 phenotypes, and only one case was myelodysplastic syndrome (MDS) phenotype. 11q23/mixed-lineage leukemia (MLL) rearrangement was negative in all cases. Although intensive therapy and stem cell transplantation have been applied in most cases, the poor outcome cannot be reversed. Therefore, we found that lineage switch could occur not only from ALL to AML or vice versa, but also from MCL or DLBCL to AML. Moreover, the incidence of MLL rearrangement in lineage switch is lower in adult hematologic malignancies as compared with pediatric patients.
Collapse
Affiliation(s)
- Wenjuan Yang
- Department of Hematology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou 510120 , PR China
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou 510120 , PR China
| | - Shuangfeng Xie
- Department of Hematology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou 510120 , PR China
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou 510120 , PR China
| | - Yiqing Li
- Department of Hematology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou 510120 , PR China
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou 510120 , PR China
| | - Jieyu Wang
- Department of Hematology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou 510120 , PR China
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou 510120 , PR China
| | - Jie Xiao
- Department of Hematology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou 510120 , PR China
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou 510120 , PR China
| | - Kezhi Huang
- Department of Hematology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou 510120 , PR China
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou 510120 , PR China
| | - Xiuju Wang
- Department of Hematology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou 510120 , PR China
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou 510120 , PR China
| | - Yudan Wu
- Department of Hematology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou 510120 , PR China
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou 510120 , PR China
| | - Liping Ma
- Department of Hematology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou 510120 , PR China
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou 510120 , PR China
| | - Danian Nie
- Department of Hematology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou 510120 , PR China
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou 510120 , PR China
| |
Collapse
|
14
|
Tercan B, Aguilar B, Huang S, Dougherty ER, Shmulevich I. Probabilistic boolean networks predict transcription factor targets to induce transdifferentiation. iScience 2022; 25:104951. [PMID: 36093045 PMCID: PMC9460527 DOI: 10.1016/j.isci.2022.104951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 06/28/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
We developed a computational approach to find the best intervention to achieve transcription factor (TF) mediated transdifferentiation. We construct probabilistic Boolean networks (PBNs) from single-cell RNA sequencing data of two different cell states to model hematopoietic transcription factors cross-talk. This was achieved by a “sampled network” approach, which enabled us to construct large networks. The interventions to induce transdifferentiation consisted of permanently activating or deactivating each of the TFs and determining the probability mass transfer of steady-state probabilities from the departure to the destination cell type or state. Our findings support the common assumption that TFs that are differentially expressed between the two cell types are the best intervention points to achieve transdifferentiation. TFs whose interventions are found to transdifferentiate progenitor B cells into monocytes include EBF1 down-regulation, CEBPB up-regulation, TCF3 down-regulation, and STAT3 up-regulation. Differentially expressed transcription factors are the best for transdifferentiation Probabilistic Boolean networks (PBNs) are used to model transdifferentiation using the scRNAseq data at one time point A new approach works for a large number of network nodes
Collapse
Affiliation(s)
| | | | - Sui Huang
- Institute for Systems Biology, Seattle, WA, USA
| | - Edward R. Dougherty
- Texas A&M University Department of Electrical & Computer Engineering, College Station, TX, USA
| | - Ilya Shmulevich
- Institute for Systems Biology, Seattle, WA, USA
- Corresponding author
| |
Collapse
|
15
|
Sebastian A, Hum NR, McCool JL, Wilson SP, Murugesh DK, Martin KA, Rios-Arce ND, Amiri B, Christiansen BA, Loots GG. Single-cell RNA-Seq reveals changes in immune landscape in post-traumatic osteoarthritis. Front Immunol 2022; 13:938075. [PMID: 35967299 PMCID: PMC9373730 DOI: 10.3389/fimmu.2022.938075] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/06/2022] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease, affecting over 300 million people world-wide. Accumulating evidence attests to the important roles of the immune system in OA pathogenesis. Understanding the role of various immune cells in joint degeneration or joint repair after injury is vital for improving therapeutic strategies for treating OA. Post-traumatic osteoarthritis (PTOA) develops in ~50% of individuals who have experienced an articular trauma like an anterior cruciate ligament (ACL) rupture. Here, using the high resolution of single-cell RNA sequencing, we delineated the temporal dynamics of immune cell accumulation in the mouse knee joint after ACL rupture. Our study identified multiple immune cell types in the joint including neutrophils, monocytes, macrophages, B cells, T cells, NK cells and dendritic cells. Monocytes and macrophage populations showed the most dramatic changes after injury. Further characterization of monocytes and macrophages reveled 9 major subtypes with unique transcriptomics signatures, including a tissue resident Lyve1hiFolr2hi macrophage population and Trem2hiFcrls+ recruited macrophages, both showing enrichment for phagocytic genes and growth factors such as Igf1, Pdgfa and Pdgfc. We also identified several genes induced or repressed after ACL injury in a cell type-specific manner. This study provides new insight into PTOA-associated changes in the immune microenvironment and highlights macrophage subtypes that may play a role in joint repair after injury.
Collapse
Affiliation(s)
- Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- *Correspondence: Aimy Sebastian, ; Gabriela G. Loots,
| | - Nicholas R. Hum
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Jillian L. McCool
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- School of Natural Sciences, University of California Merced, Merced, CA, United States
| | - Stephen P. Wilson
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Deepa K. Murugesh
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Kelly A. Martin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Naiomy Deliz Rios-Arce
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Beheshta Amiri
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Blaine A. Christiansen
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, United States
| | - Gabriela G. Loots
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- School of Natural Sciences, University of California Merced, Merced, CA, United States
- *Correspondence: Aimy Sebastian, ; Gabriela G. Loots,
| |
Collapse
|
16
|
Goswami S, Mani R, Nunes J, Chiang CL, Zapolnik K, Hu E, Frissora F, Mo X, Walker LA, Yan P, Bundschuh R, Beaver L, Devine R, Tsai YT, Ventura A, Xie Z, Chen M, Lapalombella R, Walker A, Mims A, Larkin K, Grieselhuber N, Bennett C, Phelps M, Hertlein E, Behbehani G, Vasu S, Byrd JC, Muthusamy N. PP2A is a therapeutically targetable driver of cell fate decisions via a c-Myc/p21 axis in human and murine acute myeloid leukemia. Blood 2022; 139:1340-1358. [PMID: 34788382 PMCID: PMC8900275 DOI: 10.1182/blood.2020010344] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 10/30/2021] [Indexed: 11/20/2022] Open
Abstract
Dysregulated cellular differentiation is a hallmark of acute leukemogenesis. Phosphatases are widely suppressed in cancers but have not been traditionally associated with differentiation. In this study, we found that the silencing of protein phosphatase 2A (PP2A) directly blocks differentiation in acute myeloid leukemia (AML). Gene expression and mass cytometric profiling revealed that PP2A activation modulates cell cycle and transcriptional regulators that program terminal myeloid differentiation. Using a novel pharmacological agent, OSU-2S, in parallel with genetic approaches, we discovered that PP2A enforced c-Myc and p21 dependent terminal differentiation, proliferation arrest, and apoptosis in AML. Finally, we demonstrated that PP2A activation decreased leukemia-initiating stem cells, increased leukemic blast maturation, and improved overall survival in murine Tet2-/-Flt3ITD/WT and human cell-line derived xenograft AML models in vivo. Our findings identify the PP2A/c-Myc/p21 axis as a critical regulator of the differentiation/proliferation switch in AML that can be therapeutically targeted in malignancies with dysregulated maturation fate.
Collapse
Affiliation(s)
- Swagata Goswami
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH
| | | | - Jessica Nunes
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH
| | - Chi-Ling Chiang
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Kevan Zapolnik
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Eileen Hu
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Frank Frissora
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, OH
| | - Logan A Walker
- Biophysics Graduate Program, University of Michigan, Ann Arbor, MI
| | - Pearlly Yan
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Ralf Bundschuh
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH
- Department of Physics, The Ohio State University, Columbus, OH; and
| | - Larry Beaver
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Raymond Devine
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Yo-Ting Tsai
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Ann Ventura
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Zhiliang Xie
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Min Chen
- College of Pharmacy, The Ohio State University, Columbus, OH
| | - Rosa Lapalombella
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Alison Walker
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Alice Mims
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Karilyn Larkin
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Nicole Grieselhuber
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Chad Bennett
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Mitch Phelps
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- College of Pharmacy, The Ohio State University, Columbus, OH
| | - Erin Hertlein
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Gregory Behbehani
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Sumithira Vasu
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - John C Byrd
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- College of Pharmacy, The Ohio State University, Columbus, OH
| | - Natarajan Muthusamy
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
17
|
Miyauchi M, Ito Y, Nakahara F, Hino T, Nakamura F, Iwasaki Y, Kawagoshi T, Koya J, Yoshimi A, Arai S, Kagoya Y, Kurokawa M. Efficient production of human neutrophils from iPSCs that prevent murine lethal infection with immune cell recruitment. Blood 2021; 138:2555-2569. [PMID: 34587247 DOI: 10.1182/blood.2021011576] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/10/2021] [Indexed: 11/20/2022] Open
Abstract
Neutrophils play an essential role in innate immune responses to bacterial and fungal infections, and loss of neutrophil function can increase the risk of acquiring lethal infections in clinical settings. Here, we show that engineered neutrophil-primed progenitors derived from human induced pluripotent stem cells can produce functional neutrophil-like cells at a clinically applicable scale that can act rapidly in vivo against lethal bacterial infections. Using 5 different mouse models, we systematically demonstrated that these neutrophil-like cells migrate to sites of inflammation and infection and increase survival against bacterial infection. In addition, we found that these human neutrophil-like cells can recruit murine immune cells. This system potentially provides a straight-forward solution for patients with neutrophil deficiency: an off-the-shelf neutrophil transfusion. This platform should facilitate the administration of human neutrophils for a broad spectrum of physiological and pathological conditions.
Collapse
Affiliation(s)
- Masashi Miyauchi
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Ito
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fumio Nakahara
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiya Hino
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fumi Nakamura
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Iwasaki
- Research and Development, Kyowa Kirin Co Ltd, Tokyo, Japan; and
| | - Taiki Kawagoshi
- Research and Development, Kyowa Kirin Co Ltd, Tokyo, Japan; and
| | - Junji Koya
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akihide Yoshimi
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shunya Arai
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Kagoya
- Department of Cell Therapy and Transplantation Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Cell Therapy and Transplantation Medicine, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
18
|
Liao W, Kohler ME, Fry T, Ernst P. Does lineage plasticity enable escape from CAR-T cell therapy? Lessons from MLL-r leukemia. Exp Hematol 2021; 100:1-11. [PMID: 34298117 PMCID: PMC8611617 DOI: 10.1016/j.exphem.2021.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 01/20/2023]
Abstract
The clinical success of engineered, CD19-directed chimeric antigen receptor (CAR) T cells in relapsed, refractory B-cell acute lymphoblastic leukemia (B-ALL) has generated great enthusiasm for the use of CAR T cells in patients with cytogenetics that portend a poor prognosis with conventional cytotoxic therapies. One such group includes infants and children with mixed lineage leukemia (MLL1, KMT2A) rearrangements (MLL-r), who fare much worse than patients with low- or standard-risk B-ALL. Although early clinical trials using CD19 CAR T cells for MLL-r B-ALL produced complete remission in most patients, relapse with CD19-negative disease was a common mechanism of treatment failure. Whereas CD19neg relapse has been observed across a broad spectrum of B-ALL patients treated with CD19-directed therapy, patients with MLL-r have manifested the emergence of AML, often clonally related to the B-ALL, suggesting that the inherent heterogeneity or lineage plasticity of MLL-r B-ALL may predispose patients to a myeloid relapse. Understanding the factors that enable and drive myeloid relapse may be important to devise strategies to improve durability of remissions. In this review, we summarize clinical observations to date with MLL-r B-ALL and generally discuss lineage plasticity as a mechanism of escape from immunotherapy.
Collapse
Affiliation(s)
- Wenjuan Liao
- Department of Pediatrics, Section of Hematology/Oncology/BMT, Center for Cancer and Blood Disorders, Children's Hospital Colorado, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO
| | - M Eric Kohler
- Department of Pediatrics, Section of Hematology/Oncology/BMT, Center for Cancer and Blood Disorders, Children's Hospital Colorado, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO
| | - Terry Fry
- Department of Pediatrics, Section of Hematology/Oncology/BMT, Center for Cancer and Blood Disorders, Children's Hospital Colorado, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO; Immunology Department and HI3 Initiative, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO
| | - Patricia Ernst
- Department of Pediatrics, Section of Hematology/Oncology/BMT, Center for Cancer and Blood Disorders, Children's Hospital Colorado, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO; Pharmacology Department, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO.
| |
Collapse
|
19
|
Huang C. Pathogenesis of Coronaviruses Through Human Monocytes and Tissue Macrophages. Viral Immunol 2021; 34:597-606. [PMID: 34297627 DOI: 10.1089/vim.2021.0038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Coronaviruses (CoVs) contribute significantly to the burden of respiratory diseases, frequently as upper respiratory tract infections. Recent emergence of novel coronaviruses in the last few decades has highlighted the potential transmission, disease, and mortality related to these viruses. In this literature review, we shall explore the disease-causing mechanism of the virus through human monocytes and macrophages. Common strains will be discussed; however, this review will center around coronaviruses responsible for epidemics, namely severe acute respiratory syndrome coronavirus (SARS-CoV)-1 and -2 and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). Macrophages are key players in the immune system and have been found to play a role in the pathogenesis of lethal coronaviruses. In physiology, they are white blood cells that engulf and digest cellular debris, foreign substances, and microbes. They play a critical role in innate immunity and help initiate adaptive immunity. Human coronaviruses utilize various mechanisms to undermine the innate immune response through its interaction with macrophages and monocytes. It is capable of entering immune cells through DPP4 (dipeptidyl-peptidase 4) receptors and antibody-dependent enhancement, delaying initial interferon response which supports robust viral replication. Pathogenesis includes triggering the production of overwhelming pro-inflammatory cytokines that attract other immune cells to the site of infection, which propagate prolonged pro-inflammatory response. The virus has also been found to suppress the release of anti-inflammatory mediators such as IL-10, leading to an aberrant inflammatory response. Elevated serum cytokines are also believed to contribute to pathological features seen in severe disease such as coagulopathy, acute lung injury, and multiorgan failure.
Collapse
Affiliation(s)
- Chenghao Huang
- Medical School, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
20
|
Alquicira‐Hernandez J, Powell JE, Phan TG. No evidence that plasmablasts transdifferentiate into developing neutrophils in severe COVID-19 disease. Clin Transl Immunology 2021; 10:e1308. [PMID: 34221402 PMCID: PMC8245277 DOI: 10.1002/cti2.1308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES A recent single-cell RNA sequencing study by Wilk et al. suggested that plasmablasts can transdifferentiate into 'developing neutrophils' in patients with severe COVID-19 disease. We explore the evidence for this. METHODS We downloaded the original data and code used by the authors in their study to replicate their findings and explore the possibility that regressing out variables may have led the authors to overfit their data. RESULTS The lineage relationship between plasmablasts and developing neutrophils breaks down when key features are not regressed out, and the data are not overfitted during the analysis. CONCLUSION Plasmablasts do not transdifferentiate into developing neutrophils. The single-cell RNA sequencing is a powerful technique for biological discovery and hypothesis generation. However, caution should be exercised in the bioinformatic analysis and interpretation of the data and findings cross-validated by orthogonal techniques.
Collapse
Affiliation(s)
- José Alquicira‐Hernandez
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- Institute for Molecular BioscienceUniversity of QueenslandSt LuciaQLDAustralia
| | - Joseph E Powell
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- UNSW Cellular Genomics Futures InstituteUniversity of New South WalesSydneyNSWAustralia
| | - Tri Giang Phan
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- St Vincent’s Clinical SchoolFaculty of MedicineUNSW SydneyDarlinghurstNSWAustralia
| |
Collapse
|
21
|
Hegde S, Leader AM, Merad M. MDSC: Markers, development, states, and unaddressed complexity. Immunity 2021; 54:875-884. [PMID: 33979585 DOI: 10.1016/j.immuni.2021.04.004] [Citation(s) in RCA: 402] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/20/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are one of the most discussed biological entities in immunology. While the context and classification of this group of cells has evolved, MDSCs most commonly describe cells arising during chronic inflammation, especially late-stage cancers, and are defined by their T cell immunosuppressive functions. This MDSC concept has helped explain myeloid phenomena associated with disease outcome, but currently lacks clear definitions and a unifying framework across pathologies. Here, we propose such a framework to classify MDSCs as discrete cell states based on activation signals in myeloid populations leading to suppressive modes characterized by specific, measurable effects. Developing this level of knowledge of myeloid states across pathological conditions may ultimately transform how disparate diseases are grouped and treated.
Collapse
Affiliation(s)
- Samarth Hegde
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew M Leader
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
22
|
The mutational landscape of histiocytic sarcoma associated with lymphoid malignancy. Mod Pathol 2021; 34:336-347. [PMID: 32929178 PMCID: PMC9161669 DOI: 10.1038/s41379-020-00673-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Abstract
Histiocytic sarcoma and tumors with dendritic cell differentiation (HDT) are uncommon neoplasms often with an aggressive clinical course that may occur in association with another hematologic malignancy or mediastinal germ cell tumor (secondary HDT, sHDT). Previous studies have shown mutations in the RAS/MAPK pathway in HDT and have demonstrated a clonal relationship between HDT and associated lymphoid malignancies through common translocations or identical immunoglobulin or T-cell receptor gene rearrangements. We performed whole exome sequencing on 16 cases of sHDT to further evaluate the spectrum of mutations that occur in sHDT in the context of an associated lymphoid malignancy, including cases associated with follicular lymphoma (FL), chronic lymphocytic leukemia/small lymphocytic lymphoma, B- and T-cell acute lymphoblastic leukemia/lymphoma and peripheral T-cell lymphoma, NOS. In addition, we assessed the clonal relationship between the HDT and the associated lymphoid malignancy in three cases for which matched samples were available. We found mutations in RAS/MAPK pathway genes in 14/16 cases of sHDT associated with diverse mature and precursor B-cell and T-cell neoplasms, involving KRAS (8/16), BRAF (2/16), NRAS (2/16), MAP2K1 (1/16), and NF1 (1/16). In addition, we note that FL-associated sHDT frequently shares a similar mutational profile to the associated malignancy, identifying mutations in CREBBP or KMT2D in all cases and "aberrant" somatic hypermutation in 5/6 cases. Our study confirms the role of the RAS/MAPK pathway in the pathogenesis of sHDT, provides further evidence of a common neoplastic precursor and, in the case of FL, gives additional insight into the stage in lymphomagenesis at which transdifferentiation may occur.
Collapse
|
23
|
Wesolowski R, Kowenz-Leutz E, Zimmermann K, Dörr D, Hofstätter M, Slany RK, Mildner A, Leutz A. Myeloid transformation by MLL- ENL depends strictly on C/EBP. Life Sci Alliance 2021; 4:e202000709. [PMID: 33144337 PMCID: PMC7652399 DOI: 10.26508/lsa.202000709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/02/2022] Open
Abstract
Chromosomal rearrangements of the mixed-lineage leukemia gene MLL1 are the hallmark of infant acute leukemia. The granulocyte-macrophage progenitor state forms the epigenetic basis for myelomonocytic leukemia stemness and transformation by MLL-type oncoproteins. Previously, it was shown that the establishment of murine myelomonocytic MLL-ENL transformation, but not its maintenance, depends on the transcription factor C/EBPα, suggesting an epigenetic hit-and-run mechanism of MLL-driven oncogenesis. Here, we demonstrate that compound deletion of Cebpa/Cebpb almost entirely abrogated the growth and survival of MLL-ENL-transformed cells. Rare, slow-growing, and apoptosis-prone MLL-ENL-transformed escapees were recovered from compound Cebpa/Cebpb deletions. The escapees were uniformly characterized by high expression of the resident Cebpe gene, suggesting inferior functional compensation of C/EBPα/C/EBPβ deficiency by C/EBPε. Complementation was augmented by ectopic C/EBPβ expression and downstream activation of IGF1 that enhanced growth. Cebpe gene inactivation was accomplished only in the presence of complementing C/EBPβ, but not in its absence, confirming the Cebpe dependency of the Cebpa/Cebpb double knockouts. Our data show that MLL-transformed myeloid cells are dependent on C/EBPs during the initiation and maintenance of transformation.
Collapse
Affiliation(s)
| | | | | | - Dorothea Dörr
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Robert K Slany
- Department of Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Achim Leutz
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
24
|
Csordás G, Gábor E, Honti V. There and back again: The mechanisms of differentiation and transdifferentiation in Drosophila blood cells. Dev Biol 2020; 469:135-143. [PMID: 33131706 DOI: 10.1016/j.ydbio.2020.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022]
Abstract
Transdifferentiation is a conversion of an already differentiated cell type into another cell type without the involvement of stem cells. This transition is well described in the case of vertebrate immune cells, as well as in Drosophila melanogaster, which therefore serves as a suitable model to study the process in detail. In the Drosophila larva, the latest single-cell sequencing methods enabled the clusterization of the phagocytic blood cells, the plasmatocytes, which are capable of transdifferentiation into encapsulating cells, the lamellocytes. Here we summarize the available data of the past years on the plasmatocyte-lamellocyte transition, and make an attempt to harmonize them with transcriptome-based blood cell clustering to better understand the underlying mechanisms of transdifferentiation in Drosophila, and in general.
Collapse
Affiliation(s)
- Gábor Csordás
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany.
| | - Erika Gábor
- Institute of Genetics, Biological Research Centre, Szeged, H-6701, P.O.Box 521, Hungary.
| | - Viktor Honti
- Institute of Genetics, Biological Research Centre, Szeged, H-6701, P.O.Box 521, Hungary.
| |
Collapse
|
25
|
Grasseau A, Boudigou M, Le Pottier L, Chriti N, Cornec D, Pers JO, Renaudineau Y, Hillion S. Innate B Cells: the Archetype of Protective Immune Cells. Clin Rev Allergy Immunol 2020; 58:92-106. [PMID: 31183788 DOI: 10.1007/s12016-019-08748-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The innate B cell (IBC) population is heterogeneous and involved in the primary immune response. IBC functions include a high ability to produce natural antibodies with IgM isotype, the elimination of apoptotic cells, and a capacity to be cognate help to T cells. Among IBC subsets, B-1 cells and marginal zone B cells are the main producers of IgM, act as rapid immune responders that may relocate to follicular lymphoid and differentiate to cytokine and antibody-secreting cells shortly after infection. IBCs functions are highly dependent on their localization site and the nature of their B cell receptor repertoire, suggesting a high plasticity range of different immune responses. In this review, we will describe the nature and functions of the different innate-like B cell subsets, first in mice and then in humans. Besides this, we will emphasize the strong ability of these cells to undertake different protective functions from the first line of defense against pathogens to the regulatory role of the broader immune response.
Collapse
Affiliation(s)
- Alexis Grasseau
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Marina Boudigou
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Laëtitia Le Pottier
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Nedra Chriti
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Divi Cornec
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Jacques-Olivier Pers
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Yves Renaudineau
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France.,Laboratory of Immunology and Immunotherapy, CHU Brest, Brest, France
| | - Sophie Hillion
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France. .,Laboratory of Immunology and Immunotherapy, CHU Brest, Brest, France.
| |
Collapse
|
26
|
Wei C, Yu P, Cheng L. Hematopoietic Reprogramming Entangles with Hematopoiesis. Trends Cell Biol 2020; 30:752-763. [PMID: 32861580 DOI: 10.1016/j.tcb.2020.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
Hematopoiesis generally refers to hematopoietic development in fetuses and adults, as well as to hematopoietic stem cell differentiation into progeny lineages. The multiple processes that generate diverse hematopoietic cells have been considered to be unidirectional. However, many reports have recently demonstrated that these processes are not only reversible but also interconvertible via cell reprogramming. The cell reprogramming that occurs in hematopoietic cells is termed hematopoietic reprogramming. We focus on both autogenous and artificial hematopoietic reprogramming under physiological and pathological conditions that is mainly directed by the actions of transcription factors (TFs), chemical compounds, or extracellular cytokines. A comprehensive understanding of hematopoietic reprogramming will help us not only to generate desirable cells for cell therapy but also to further analyze normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Chuijin Wei
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Pei Yu
- Department of Orthopaedics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lin Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
27
|
Stolz ML, McCormick C. The bZIP Proteins of Oncogenic Viruses. Viruses 2020; 12:v12070757. [PMID: 32674309 PMCID: PMC7412551 DOI: 10.3390/v12070757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Basic leucine zipper (bZIP) transcription factors (TFs) govern diverse cellular processes and cell fate decisions. The hallmark of the leucine zipper domain is the heptad repeat, with leucine residues at every seventh position in the domain. These leucine residues enable homo- and heterodimerization between ZIP domain α-helices, generating coiled-coil structures that stabilize interactions between adjacent DNA-binding domains and target DNA substrates. Several cancer-causing viruses encode viral bZIP TFs, including human T-cell leukemia virus (HTLV), hepatitis C virus (HCV) and the herpesviruses Marek’s disease virus (MDV), Epstein–Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV). Here, we provide a comprehensive review of these viral bZIP TFs and their impact on viral replication, host cell responses and cell fate.
Collapse
|
28
|
Wilk AJ, Rustagi A, Zhao NQ, Roque J, Martínez-Colón GJ, McKechnie JL, Ivison GT, Ranganath T, Vergara R, Hollis T, Simpson LJ, Grant P, Subramanian A, Rogers AJ, Blish CA. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat Med 2020; 26:1070-1076. [PMID: 32514174 PMCID: PMC7382903 DOI: 10.1038/s41591-020-0944-y] [Citation(s) in RCA: 1129] [Impact Index Per Article: 225.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/19/2020] [Indexed: 02/08/2023]
Abstract
There is an urgent need to better understand the pathophysiology of Coronavirus disease 2019 (COVID-19), the global pandemic caused by SARS-CoV-2, which has infected more than three million people worldwide1. Approximately 20% of patients with COVID-19 develop severe disease and 5% of patients require intensive care2. Severe disease has been associated with changes in peripheral immune activity, including increased levels of pro-inflammatory cytokines3,4 that may be produced by a subset of inflammatory monocytes5,6, lymphopenia7,8 and T cell exhaustion9,10. To elucidate pathways in peripheral immune cells that might lead to immunopathology or protective immunity in severe COVID-19, we applied single-cell RNA sequencing (scRNA-seq) to profile peripheral blood mononuclear cells (PBMCs) from seven patients hospitalized for COVID-19, four of whom had acute respiratory distress syndrome, and six healthy controls. We identify reconfiguration of peripheral immune cell phenotype in COVID-19, including a heterogeneous interferon-stimulated gene signature, HLA class II downregulation and a developing neutrophil population that appears closely related to plasmablasts appearing in patients with acute respiratory failure requiring mechanical ventilation. Importantly, we found that peripheral monocytes and lymphocytes do not express substantial amounts of pro-inflammatory cytokines. Collectively, we provide a cell atlas of the peripheral immune response to severe COVID-19.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Betacoronavirus/immunology
- COVID-19
- Case-Control Studies
- Coronavirus Infections/genetics
- Coronavirus Infections/immunology
- Coronavirus Infections/pathology
- Cytokines/genetics
- Cytokines/metabolism
- Female
- Gene Expression Profiling/methods
- Humans
- Immunity, Cellular
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/virology
- Male
- Middle Aged
- Pandemics
- Pneumonia, Viral/genetics
- Pneumonia, Viral/immunology
- Pneumonia, Viral/pathology
- RNA-Seq/methods
- SARS-CoV-2
- Sequence Analysis, RNA/methods
- Severity of Illness Index
- Single-Cell Analysis/methods
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Young Adult
Collapse
Affiliation(s)
- Aaron J Wilk
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Arjun Rustagi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nancy Q Zhao
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonasel Roque
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Julia L McKechnie
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Geoffrey T Ivison
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Thanmayi Ranganath
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Rosemary Vergara
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Taylor Hollis
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura J Simpson
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Philip Grant
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Aruna Subramanian
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Angela J Rogers
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Catherine A Blish
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
29
|
Wilk AJ, Rustagi A, Zhao NQ, Roque J, Martinez-Colon GJ, McKechnie JL, Ivison GT, Ranganath T, Vergara R, Hollis T, Simpson LJ, Grant P, Subramanian A, Rogers AJ, Blish CA. A single-cell atlas of the peripheral immune response to severe COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 32511639 DOI: 10.1101/2020.04.17.20069930] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is an urgent need to better understand the pathophysiology of Coronavirus disease 2019 (COVID-19), the global pandemic caused by SARS-CoV-2. Here, we apply single-cell RNA sequencing (scRNA-seq) to peripheral blood mononuclear cells (PBMCs) of 7 patients hospitalized with confirmed COVID-19 and 6 healthy controls. We identify substantial reconfiguration of peripheral immune cell phenotype in COVID-19, including a heterogeneous interferon-stimulated gene (ISG) signature, HLA class II downregulation, and a novel B cell-derived granulocyte population appearing in patients with acute respiratory failure requiring mechanical ventilation. Importantly, peripheral monocytes and lymphocytes do not express substantial amounts of pro-inflammatory cytokines, suggesting that circulating leukocytes do not significantly contribute to the potential COVID-19 cytokine storm. Collectively, we provide the most thorough cell atlas to date of the peripheral immune response to severe COVID-19.
Collapse
|
30
|
Coactivation of NF-κB and Notch signaling is sufficient to induce B-cell transformation and enables B-myeloid conversion. Blood 2020; 135:108-120. [PMID: 31697816 DOI: 10.1182/blood.2019001438] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/06/2019] [Indexed: 12/12/2022] Open
Abstract
NF-κB and Notch signaling can be simultaneously activated in a variety of B-cell lymphomas. Patients with B-cell lymphoma occasionally develop clonally related myeloid tumors with poor prognosis. Whether concurrent activation of both pathways is sufficient to induce B-cell transformation and whether the signaling initiates B-myeloid conversion in a pathological context are largely unknown. Here, we provide genetic evidence that concurrent activation of NF-κB and Notch signaling in committed B cells is sufficient to induce B-cell lymphomatous transformation and primes common progenitor cells to convert to myeloid lineage through dedifferentiation, not transdifferentiation. Intriguingly, the converted myeloid cells can further transform, albeit at low frequency, into myeloid leukemia. Mechanistically, coactivation of NF-κB and Notch signaling endows committed B cells with the ability to self renew. Downregulation of BACH2, a lymphoma and myeloid gene suppressor, but not upregulation of CEBPα and/or downregulation of B-cell transcription factors, is an early event in both B-cell transformation and myeloid conversion. Interestingly, a DNA hypomethylating drug not only effectively eliminated the converted myeloid leukemia cells, but also restored the expression of green fluorescent protein, which had been lost in converted myeloid leukemia cells. Collectively, our results suggest that targeting NF-κB and Notch signaling will not only improve lymphoma treatment, but also prevent the lymphoma-to-myeloid tumor conversion. Importantly, DNA hypomethylating drugs might efficiently treat these converted myeloid neoplasms.
Collapse
|
31
|
Song B, Lee JM, Park YJ, Kim IK, Kim BS, Shin KS, Jeon I, Koh CH, Bae EA, Seo H, Byun Y, Kang CY. Differentiation of c-Kit + CD24 + natural killer cells into myeloid cells in a GATA-2-dependent manner. FASEB J 2020; 34:4462-4481. [PMID: 31989715 DOI: 10.1096/fj.201902662r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/26/2019] [Accepted: 01/14/2020] [Indexed: 01/09/2023]
Abstract
Myeloid progenitor cells have generally been considered the predominant source of myeloid cells under steady-state conditions. Here we show that NK cells contributed to a myeloid cell lineage pool in naïve and tumor-bearing mice. Using fate tracing of NKp46+ cells, we found that myeloid cells could be derived from NK cells. Notably, among mature CD11b+ CD27+ NK cells, c-Kit+ CD24+ NK cells were capable of differentiating into a range of myeloid lineages in vitro and produced neutrophils and monocytes in vivo. The differentiation was completely inhibited by NK-stimulating cytokines. In addition to the potential for differentiation into myeloid cells, c-Kit+ CD24+ NK cells retained NK cell phenotypes and effector functions. Mechanistically, GATA-2 was necessary for the differentiation of c-Kit+ CD24+ NK cells. Therefore, we discovered that GATA-2-dependent differentiation of c-Kit+ CD24+ NK cells contributes to myeloid cell development and identified a novel pathway for myeloid lineage commitment under physiological conditions.
Collapse
Affiliation(s)
- Boyeong Song
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Mi Lee
- Laboratory of Immunology, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Young-Jun Park
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Il-Kyu Kim
- Laboratory of Immunology, Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Byung-Seok Kim
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Kwang-Soo Shin
- Laboratory of Immunology, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Insu Jeon
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Choong-Hyun Koh
- Laboratory of Immunology, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Eun-Ah Bae
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Hyungseok Seo
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.,Laboratory of Immunology, Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Youngro Byun
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Chang-Yuil Kang
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.,Laboratory of Immunology, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Wang Y, Kim J, Chan A, Whyne C, Nam D. A two phase regulation of bone regeneration: IL-17F mediates osteoblastogenesis via C/EBP-β in vitro. Bone 2018; 116:47-57. [PMID: 30010083 DOI: 10.1016/j.bone.2018.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/28/2018] [Accepted: 07/10/2018] [Indexed: 01/15/2023]
Abstract
T lymphocytes and pro-inflammatory cytokines, specifically interleukin-17F (IL-17F) have been identified as important regulators in bone regeneration during fracture repair. To better understand the molecular mechanisms of IL-17F-mediated osteoblastogenesis, a mouse pre-osteoblast cell line (MC3T3-E1) was utilized to characterize the intracellular signal transduction of IL-17F. Comparisons to the established canonical Wnt signaling pathway were made using Wnt3a ligand. Our results demonstrated greater bone marker gene expression in IL-17F-treated cells, compared to cells treated with Wnt3a. Western blot analysis confirmed degradation of β-catenin and up-regulation of two key proteins in osteoblast differentiation, Runx2 and C/EBP-β, in response to IL-17F treatment. RNA silencing of IL-17F receptors, IL-17Ra and IL-17Rc via siRNA transfection resulted in decreased expression of Act2, Runx2, and C/EBP-β, demonstrating the direct ligand-receptor interaction between IL-17F and IL-17Ra/c as an activator of osteoblastogenesis. Our findings suggest that IL-17F promotes osteoblast differentiation independent of the canonical Wnt pathway and β-catenin signaling, presenting new insights on modulating the adaptive immune response in the inflammatory phase, temporally distinct from the reparative and remodeling phases of fracture healing.
Collapse
Affiliation(s)
- Yufa Wang
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jieun Kim
- MD/PhD Program, University of Toronto, Toronto, ON, Canada
| | - Andrea Chan
- Division of Orthopaedic Surgery, University of Toronto, Toronto, ON, Canada
| | - Cari Whyne
- Sunnybrook Research Institute, Toronto, ON, Canada; Division of Orthopaedic Surgery, University of Toronto, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada
| | - Diane Nam
- Sunnybrook Research Institute, Toronto, ON, Canada; Division of Orthopaedic Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
33
|
Hu T, Murdaugh R, Nakada D. Transcriptional and Microenvironmental Regulation of Lineage Ambiguity in Leukemia. Front Oncol 2017; 7:268. [PMID: 29164065 PMCID: PMC5681738 DOI: 10.3389/fonc.2017.00268] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/23/2017] [Indexed: 01/27/2023] Open
Abstract
Leukemia is characterized by the uncontrolled production of leukemic cells and impaired normal hematopoiesis. Although the combination of chemotherapies and hematopoietic stem cell transplantation has significantly improved the outcome of leukemia patients, a proportion of patients still suffer from relapse after treatment. Upon relapse, a phenomenon termed “lineage switch” is observed in a subset of leukemia patients, in which conversion of lymphoblastic leukemia to myeloid leukemia or vice versa is observed. A rare entity of leukemia called mixed-phenotype acute leukemia exhibits co-expression of markers representing two or three lineages. These two phenotypes regarding the lineage ambiguity suggest that the fate of some leukemia retain or acquire a certain degree of plasticity. Studies using animal models provide insight into how lineage specifying transcription factors can enforce or convert a fate in hematopoietic cells. Modeling lineage conversion in normal hematopoietic progenitor cells may improve our current understanding of how lineage switch occurs in leukemia. In this review, we will summarize the role of transcription factors and microenvironmental signals that confer fate plasticity to normal hematopoietic progenitor cells, and their potential to regulate lineage switching in leukemias. Future efforts to uncover the mechanisms contributing to lineage conversion in both normal hematopoiesis and leukemia may pave the way to improve current therapeutic strategies.
Collapse
Affiliation(s)
- Tianyuan Hu
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Rebecca Murdaugh
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
| | - Daisuke Nakada
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|