1
|
Yang Q, Liu S, Ruan J, Sun B, Chen X, Lai X. Establishment of human induced pluripotent stem cell line BAFYi001-A from a patient with Edwards syndrome. Stem Cell Res 2025; 86:103735. [PMID: 40375407 DOI: 10.1016/j.scr.2025.103735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/08/2025] [Accepted: 05/10/2025] [Indexed: 05/18/2025] Open
Abstract
Edwards' syndrome (trisomy 18) is a genetic disorder characterized by the presence of an extra chromosome 18. A specific induced pluripotent stem cell (iPSC) line, named BAFYi001-A, was generated from the umbilical cord-derived mesenchymal stromal cells (UC-MSCs) of a patient with Edwards syndrome using an integration-free Sendai virus method. This line expresses markers for identifying undifferentiated hiPSCs, trilineage differentiation potential, and genetic fidelity in the context of trisomy 18. Therefore, this cell line serves as a reliable in vitro model for investigating the pathogenesis of Edward syndrome.
Collapse
Affiliation(s)
- Qingqing Yang
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China
| | - Simin Liu
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China
| | - Jing Ruan
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China
| | - Bo Sun
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China
| | - Xiaoyan Chen
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China.
| | - Xingqiang Lai
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China.
| |
Collapse
|
2
|
Bos TA, Polyakova E, van Gils JM, de Vries AAF, Goumans MJ, Freund C, DeRuiter MC, Jongbloed MRM. A systematic review and embryological perspective of pluripotent stem cell-derived autonomic postganglionic neuron differentiation for human disease modeling. eLife 2025; 14:e103728. [PMID: 40071727 PMCID: PMC11961123 DOI: 10.7554/elife.103728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/13/2025] [Indexed: 04/02/2025] Open
Abstract
Human autonomic neuronal cell models are emerging as tools for modeling diseases such as cardiac arrhythmias. In this systematic review, we compared 33 articles applying 14 different protocols to generate sympathetic neurons and 3 different procedures to produce parasympathetic neurons. All methods involved the differentiation of human pluripotent stem cells, and none employed permanent or reversible cell immortalization. Almost all protocols were reproduced in multiple pluripotent stem cell lines, and over half showed evidence of neural firing capacity. Common limitations in the field are a lack of three-dimensional models and models that include multiple cell types. Sympathetic neuron differentiation protocols largely mirrored embryonic development, with the notable absence of migration, axon extension, and target-specificity cues. Parasympathetic neuron differentiation protocols may be improved by including several embryonic cues promoting cell survival, cell maturation, or ion channel expression. Moreover, additional markers to define parasympathetic neurons in vitro may support the validity of these protocols. Nonetheless, four sympathetic neuron differentiation protocols and one parasympathetic neuron differentiation protocol reported more than two-thirds of cells expressing autonomic neuron markers. Altogether, these protocols promise to open new research avenues of human autonomic neuron development and disease modeling.
Collapse
Affiliation(s)
- Thomas A Bos
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
| | - Elizaveta Polyakova
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
| | - Janine Maria van Gils
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
| | | | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical CentreLeidenNetherlands
| | - Christian Freund
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
- Leiden hiPSC Centre, Leiden University Medical CentreLeidenNetherlands
| | - Marco C DeRuiter
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
- Centre for Congenital Heart Disease Amsterdam-Leiden (CAHAL)LeidenNetherlands
| | - Monique RM Jongbloed
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
- Department of Cardiology, Leiden University Medical CentreLeidenNetherlands
- Centre for Congenital Heart Disease Amsterdam-Leiden (CAHAL)LeidenNetherlands
| |
Collapse
|
3
|
Ahern DT, Bansal P, Faustino IV, Chambers OM, Banda EC, Glatt-Deeley HR, Massey RE, Kondaveeti Y, Pinter SF. Isogenic hiPSC models of Turner syndrome development reveal shared roles of inactive X and Y in the human cranial neural crest network. Am J Hum Genet 2025; 112:615-629. [PMID: 39922196 PMCID: PMC11947172 DOI: 10.1016/j.ajhg.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/10/2025] Open
Abstract
Viable human aneuploidy can be challenging to model in rodents due to syntenic boundaries or primate-specific biology. Human monosomy-X (45,X) causes Turner syndrome (TS), altering craniofacial, skeletal, endocrine, and cardiovascular development, which in contrast remain unaffected in X-monosomic mice. To learn how monosomy-X may impact embryonic development, we turned to 45,X and isogenic euploid human induced pluripotent stem cells (hiPSCs) from male and female mosaic donors. Because the neural crest (NC) is hypothesized to give rise to craniofacial and cardiovascular changes in TS, we assessed differential expression of hiPSC-derived anterior NC cells (NCCs). Across three independent isogenic panels, 45,X NCCs show impaired acquisition of PAX7+SOX10+ markers and disrupted expression of other NCC-specific genes relative to isogenic euploid controls. Additionally, 45,X NCCs increase cholesterol biosynthesis genes while reducing transcripts with 5' terminal oligopyrimidine (TOP) motifs, including those of ribosomal and nuclear-encoded mitochondrial proteins. Such metabolic pathways are also over-represented in weighted co-expression modules that are preserved in monogenic neurocristopathy and reflect 28% of all TS-associated terms of the human phenotype ontology. We demonstrate that 45,X NCCs reduce protein synthesis despite activation of mammalian target of rapamycin (mTOR) but are partially rescued by mild mTOR suppression. Our analysis identifies specific sex-linked genes that are expressed from two copies in euploid males and females alike and qualify as candidate haploinsufficient drivers of TS phenotypes in NC-derived lineages. This study demonstrates that isogenic hiPSC-derived NCC panels representing monosomy-X can serve as powerful models of early NC development in TS and inform new hypotheses toward its etiology.
Collapse
Affiliation(s)
- Darcy T Ahern
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Prakhar Bansal
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Isaac V Faustino
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Owen M Chambers
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Erin C Banda
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Heather R Glatt-Deeley
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Rachael E Massey
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Yuvabharath Kondaveeti
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Stefan F Pinter
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA.
| |
Collapse
|
4
|
Syangtan D, Al Mahbuba D, Masuko S, Li Q, Elton AC, Zaltsman Y, Wrighton PJ, Xia K, Han X, Ouyang Y, Zhang F, Linhardt RJ, Kiessling LL. Heparan sulfate regulates the fate decisions of human pluripotent stem cells. Stem Cell Reports 2025; 20:102384. [PMID: 39729990 PMCID: PMC11784485 DOI: 10.1016/j.stemcr.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024] Open
Abstract
Heparan sulfate (HS) is an anionic polysaccharide generated by all animal cells, but our understanding of its roles in human pluripotent stem cell (hPSC) self-renewal and differentiation is limited. We derived HS-deficient hPSCs by disrupting the EXT1 glycosyltransferase. These EXT1-/- hPSCs maintain self-renewal and pluripotency under standard culture conditions that contain high levels of basic fibroblast growth factor(bFGF), a requirement for sufficient bFGF signaling in the engineered cells. Intriguingly, Activin/Nodal signaling is also compromised in EXT1-/- hPSCs, highlighting HS's previously unexplored involvement in this pathway. As a result, EXT1-/- hPSCs fail to differentiate into mesoderm or endoderm lineages. Unexpectedly, HS is dispensable for early ectodermal differentiation of hPSCs but still critical in generating motor neurons. Those derived from HS-deficient hPSCs lack proper neuronal projections and show alterations in axonogenesis gene expression. Thus, our study uncovers expected and unexpected mechanistic roles of HS in hPSC fate decisions.
Collapse
Affiliation(s)
- Deepsing Syangtan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Deena Al Mahbuba
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Sayaka Masuko
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Qiao Li
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Andrew C Elton
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Yefim Zaltsman
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Paul J Wrighton
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, 110 8th St., Troy, NY 12180, USA
| | - Xiaorui Han
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, 110 8th St., Troy, NY 12180, USA
| | - Yilan Ouyang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, 110 8th St., Troy, NY 12180, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, 110 8th St., Troy, NY 12180, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, 110 8th St., Troy, NY 12180, USA
| | - Laura L Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA; Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research at MIT, 500 Main St, Cambridge, MA 02142, USA.
| |
Collapse
|
5
|
Kostina A, Kiselev A, Huang A, Lankerd H, Caywood S, Jurado-Fernandez A, Volmert B, O'Hern C, Juhong A, Liu Y, Qiu Z, Park S, Aguirre A. Self-organizing human heart assembloids with autologous and developmentally relevant cardiac neural crest-derived tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627627. [PMID: 39713343 PMCID: PMC11661279 DOI: 10.1101/2024.12.11.627627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Neural crest cells (NCCs) are a multipotent embryonic cell population of ectodermal origin that extensively migrate during early development and contribute to the formation of multiple tissues. Cardiac NCCs play a critical role in heart development by orchestrating outflow tract septation, valve formation, aortic arch artery patterning, parasympathetic innervation, and maturation of the cardiac conduction system. Abnormal migration, proliferation, or differentiation of cardiac NCCs can lead to severe congenital cardiovascular malformations. However, the complexity and timing of early embryonic heart development pose significant challenges to studying the molecular mechanisms underlying NCC-related cardiac pathologies. Here, we present a sophisticated functional model of human heart assembloids derived from induced pluripotent stem cells, which, for the first time, recapitulates cardiac NCC integration into the human embryonic heart in vitro . NCCs successfully integrated at developmentally relevant stages into heart organoids, and followed developmental trajectories known to occur in the human heart. They demonstrated extensive migration, differentiated into cholinergic neurons capable of generating nerve impulses, and formed mature glial cells. Additionally, they contributed to the mesenchymal populations of the developing outflow tract. Through transcriptomic analysis, we revealed that NCCs acquire molecular features of their cardiac derivatives as heart assembloids develop. NCC-derived parasympathetic neurons formed functional connections with cardiomyocytes, promoting the maturation of the cardiac conduction system. Leveraging this model's cellular complexity and functional maturity, we uncovered that early exposure of NCCs to antidepressants harms the development of NCC derivatives in the context of the developing heart. The commonly prescribed antidepressant Paroxetine disrupted the expression of a critical early neuronal transcription factor, resulting in impaired parasympathetic innervation and functional deficits in cardiac tissue. This advanced heart assembloid model holds great promise for high-throughput drug screening and unraveling the molecular mechanisms underlying NCC-related cardiac formation and congenital heart defects. IN BRIEF Human neural crest heart assembloids resembling the major directions of neural crest differentiation in the human embryonic heart, including parasympathetic innervation and the mesenchymal component of the outflow tract, provide a human-relevant embryonic platform for studying congenital heart defects and drug safety.
Collapse
|
6
|
Jevans B, Cooper F, Fatieieva Y, Gogolou A, Kang YN, Restuadi R, Moulding D, Vanden Berghe P, Adameyko I, Thapar N, Andrews PW, De Coppi P, Tsakiridis A, McCann CJ. Human enteric nervous system progenitor transplantation improves functional responses in Hirschsprung disease patient-derived tissue. Gut 2024; 73:1441-1453. [PMID: 38816188 PMCID: PMC11347211 DOI: 10.1136/gutjnl-2023-331532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE Hirschsprung disease (HSCR) is a severe congenital disorder affecting 1:5000 live births. HSCR results from the failure of enteric nervous system (ENS) progenitors to fully colonise the gastrointestinal tract during embryonic development. This leads to aganglionosis in the distal bowel, resulting in disrupted motor activity and impaired peristalsis. Currently, the only viable treatment option is surgical resection of the aganglionic bowel. However, patients frequently suffer debilitating, lifelong symptoms, with multiple surgical procedures often necessary. Hence, alternative treatment options are crucial. An attractive strategy involves the transplantation of ENS progenitors generated from human pluripotent stem cells (hPSCs). DESIGN ENS progenitors were generated from hPSCs using an accelerated protocol and characterised, in detail, through a combination of single-cell RNA sequencing, protein expression analysis and calcium imaging. We tested ENS progenitors' capacity to integrate and affect functional responses in HSCR colon, after ex vivo transplantation to organotypically cultured patient-derived colonic tissue, using organ bath contractility. RESULTS We found that our protocol consistently gives rise to high yields of a cell population exhibiting transcriptional and functional hallmarks of early ENS progenitors. Following transplantation, hPSC-derived ENS progenitors integrate, migrate and form neurons/glia within explanted human HSCR colon samples. Importantly, the transplanted HSCR tissue displayed significantly increased basal contractile activity and increased responses to electrical stimulation compared with control tissue. CONCLUSION Our findings demonstrate, for the first time, the potential of hPSC-derived ENS progenitors to repopulate and increase functional responses in human HSCR patient colonic tissue.
Collapse
Affiliation(s)
- Benjamin Jevans
- Stem Cells and Regenerative Medicine, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Fay Cooper
- School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
| | - Yuliia Fatieieva
- Department of Neuroimmunology, Centre for Brain Research, Medical University of Vienna, Wien, Austria
| | - Antigoni Gogolou
- School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
| | - Yi-Ning Kang
- Laboratory for Enteric NeuroScience (LENS), Translational Research Centre for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Restuadi Restuadi
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Dale Moulding
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Centre for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium
- Cell and Tissue Imaging Cluster (CIC), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Igor Adameyko
- Department of Neuroimmunology, Centre for Brain Research, Medical University of Vienna, Wien, Austria
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL GOS Institute of Child Health, London, UK
- Gastroenterology, Hepatology and Liver Transplant, Queensland Children's Hospital UQ Faculty, South Brisbane, Queensland, Australia
| | - Peter W Andrews
- School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
- Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, UK
| | - Anestis Tsakiridis
- School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| |
Collapse
|
7
|
Vignard V, Baruteau AE, Toutain B, Mercier S, Isidor B, Redon R, Schott JJ, Küry S, Bézieau S, Monsoro-Burq AH, Ebstein F. Exploring the origins of neurodevelopmental proteasomopathies associated with cardiac malformations: are neural crest cells central to certain pathological mechanisms? Front Cell Dev Biol 2024; 12:1370905. [PMID: 39071803 PMCID: PMC11272537 DOI: 10.3389/fcell.2024.1370905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/05/2024] [Indexed: 07/30/2024] Open
Abstract
Neurodevelopmental proteasomopathies constitute a recently defined class of rare Mendelian disorders, arising from genomic alterations in proteasome-related genes. These alterations result in the dysfunction of proteasomes, which are multi-subunit protein complexes essential for maintaining cellular protein homeostasis. The clinical phenotype of these diseases manifests as a syndromic association involving impaired neural development and multisystem abnormalities, notably craniofacial anomalies and malformations of the cardiac outflow tract (OFT). These observations suggest that proteasome loss-of-function variants primarily affect specific embryonic cell types which serve as origins for both craniofacial structures and the conotruncal portion of the heart. In this hypothesis article, we propose that neural crest cells (NCCs), a highly multipotent cell population, which generates craniofacial skeleton, mesenchyme as well as the OFT of the heart, in addition to many other derivatives, would exhibit a distinctive vulnerability to protein homeostasis perturbations. Herein, we introduce the diverse cellular compensatory pathways activated in response to protein homeostasis disruption and explore their potential implications for NCC physiology. Altogether, the paper advocates for investigating proteasome biology within NCCs and their early cranial and cardiac derivatives, offering a rationale for future exploration and laying the initial groundwork for therapeutic considerations.
Collapse
Affiliation(s)
- Virginie Vignard
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
| | - Alban-Elouen Baruteau
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
- CHU Nantes, Department of Pediatric Cardiology and Pediatric Cardiac Surgery, FHU PRECICARE, Nantes Université, Nantes, France
- Nantes Université, CHU Nantes, INSERM, CIC FEA 1413, Nantes, France
| | - Bérénice Toutain
- Nantes Université, CNRS, INSERM, l’institut du thorax, Nantes, France
| | - Sandra Mercier
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
- CHU Nantes, Service de Génétique Médicale, Nantes Université, Nantes, France
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
- CHU Nantes, Service de Génétique Médicale, Nantes Université, Nantes, France
| | - Richard Redon
- Nantes Université, CNRS, INSERM, l’institut du thorax, Nantes, France
| | | | - Sébastien Küry
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
- CHU Nantes, Service de Génétique Médicale, Nantes Université, Nantes, France
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
- CHU Nantes, Service de Génétique Médicale, Nantes Université, Nantes, France
| | - Anne H. Monsoro-Burq
- Faculté des Sciences d'Orsay, CNRS, UMR 3347, INSERM, Université Paris-Saclay, Orsay, France
- Institut Curie, PSL Research University, CNRS, UMR 3347, INSERM, Orsay, France
- Institut Universitaire de France, Paris, France
| | - Frédéric Ebstein
- Nantes Université, CNRS, INSERM, l’institut du thorax, Nantes, France
| |
Collapse
|
8
|
Ahern DT, Bansal P, Faustino IV, Glatt-Deeley HR, Massey R, Kondaveeti Y, Banda EC, Pinter SF. Isogenic hiPSC models of Turner syndrome development reveal shared roles of inactive X and Y in the human cranial neural crest network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.08.531747. [PMID: 36945647 PMCID: PMC10028916 DOI: 10.1101/2023.03.08.531747] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
Modeling the developmental etiology of viable human aneuploidy can be challenging in rodents due to syntenic boundaries, or primate-specific biology. In humans, monosomy-X (45,X) causes Turner syndrome (TS), altering craniofacial, skeletal, endocrine, and cardiovascular development, which in contrast remain unaffected in 39,X-mice. To learn how human monosomy-X may impact early embryonic development, we turned to human 45,X and isogenic euploid induced pluripotent stem cells (hiPSCs) from male and female mosaic donors. Because neural crest (NC) derived cell types are hypothesized to underpin craniofacial and cardiovascular changes in TS, we performed a highly-powered differential expression study on hiPSC-derived anterior neural crest cells (NCCs). Across three independent isogenic panels, 45,X NCCs show impaired acquisition of PAX7+SOX10+ markers, and disrupted expression of other NCC-specific genes, relative to their isogenic euploid controls. In particular, 45,X NCCs increase cholesterol biosynthesis genes while reducing transcripts that feature 5' terminal oligopyrimidine (TOP) motifs, including those of ribosomal protein and nuclear-encoded mitochondrial genes. Such metabolic pathways are also over-represented in weighted co-expression gene modules that are preserved in monogenic neurocristopathy. Importantly, these gene modules are also significantly enriched in 28% of all TS-associated terms of the human phenotype ontology. Our analysis identifies specific sex-linked genes that are expressed from two copies in euploid males and females alike and qualify as candidate haploinsufficient drivers of TS phenotypes in NC-derived lineages. This study demonstrates that isogenic hiPSC-derived NCC panels representing monosomy-X can serve as a powerful model of early NC development in TS and inform new hypotheses towards its etiology.
Collapse
Affiliation(s)
- Darcy T. Ahern
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, United States
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, United States
| | - Prakhar Bansal
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, United States
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, United States
| | - Isaac V. Faustino
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, United States
| | - Heather R. Glatt-Deeley
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, United States
| | - Rachael Massey
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, United States
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, United States
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, United States
| | - Yuvabharath Kondaveeti
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, United States
| | - Erin C. Banda
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, United States
| | - Stefan F. Pinter
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, United States
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, United States
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, United States
| |
Collapse
|
9
|
Fan Y, Hackland J, Baggiolini A, Hung LY, Zhao H, Zumbo P, Oberst P, Minotti AP, Hergenreder E, Najjar S, Huang Z, Cruz NM, Zhong A, Sidharta M, Zhou T, de Stanchina E, Betel D, White RM, Gershon M, Margolis KG, Studer L. hPSC-derived sacral neural crest enables rescue in a severe model of Hirschsprung's disease. Cell Stem Cell 2023; 30:264-282.e9. [PMID: 36868194 PMCID: PMC10034921 DOI: 10.1016/j.stem.2023.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 11/22/2022] [Accepted: 02/02/2023] [Indexed: 03/05/2023]
Abstract
The enteric nervous system (ENS) is derived from both the vagal and sacral component of the neural crest (NC). Here, we present the derivation of sacral ENS precursors from human PSCs via timed exposure to FGF, WNT, and GDF11, which enables posterior patterning and transition from posterior trunk to sacral NC identity, respectively. Using a SOX2::H2B-tdTomato/T::H2B-GFP dual reporter hPSC line, we demonstrate that both trunk and sacral NC emerge from a double-positive neuro-mesodermal progenitor (NMP). Vagal and sacral NC precursors yield distinct neuronal subtypes and migratory behaviors in vitro and in vivo. Remarkably, xenografting of both vagal and sacral NC lineages is required to rescue a mouse model of total aganglionosis, suggesting opportunities in the treatment of severe forms of Hirschsprung's disease.
Collapse
Affiliation(s)
- Yujie Fan
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | - James Hackland
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Arianna Baggiolini
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lin Y Hung
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Huiyong Zhao
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA
| | - Polina Oberst
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew P Minotti
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | - Emiliano Hergenreder
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | - Sarah Najjar
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Zixing Huang
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Nelly M Cruz
- Cancer Biology and Genetics and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aaron Zhong
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; The SKI Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mega Sidharta
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; The SKI Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ting Zhou
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; The SKI Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Richard M White
- Cancer Biology and Genetics and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael Gershon
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Kara Gross Margolis
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; Department of Pediatrics, NYU Grossman School of Medicine, New York, NY 10010, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
10
|
Migration deficits of the neural crest caused by CXADR triplication in a human Down syndrome stem cell model. Cell Death Dis 2022; 13:1018. [PMID: 36470861 PMCID: PMC9722909 DOI: 10.1038/s41419-022-05481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022]
Abstract
Down syndrome (DS) is the most common chromosomal abnormality in live-born infants and is caused by trisomy of chromosome 21. Most individuals with DS display craniofacial dysmorphology, including reduced sizes of the skull, maxilla, and mandible. However, the underlying pathogenesis remains largely unknown. Since the craniofacial skeleton is mainly formed by the neural crest, whether neural crest developmental defects are involved in the craniofacial anomalies of individuals with DS needs to be investigated. Here, we successfully derived DS-specific human induced pluripotent stem cells (hiPSCs) using a Sendai virus vector. When DS-hiPSCs were induced to differentiate into the neural crest, we found that trisomy 21 (T21) did not influence cell proliferation or apoptosis. However, the migratory ability of differentiated cells was significantly compromised, thus resulting in a substantially lower number of postmigratory cranial neural crest stem cells (NCSCs) in the DS group than in the control group. We further discovered that the migration defects could be partially attributed to the triplication of the coxsackievirus and adenovirus receptor gene (CXADR; an adhesion protein) in the DS group cells, since knockdown of CXADR substantially recovered the cell migratory ability and generation of postmigratory NCSCs in the DS group. Thus, the migratory deficits of neural crest cells may be an underlying cause of craniofacial dysmorphology in individuals with DS, which may suggest potential targets for therapeutic intervention to ameliorate craniofacial or other neural crest-related anomalies in DS.
Collapse
|
11
|
Hörner SJ, Couturier N, Gueiber DC, Hafner M, Rudolf R. Development and In Vitro Differentiation of Schwann Cells. Cells 2022; 11:3753. [PMID: 36497014 PMCID: PMC9739763 DOI: 10.3390/cells11233753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Schwann cells are glial cells of the peripheral nervous system. They exist in several subtypes and perform a variety of functions in nerves. Their derivation and culture in vitro are interesting for applications ranging from disease modeling to tissue engineering. Since primary human Schwann cells are challenging to obtain in large quantities, in vitro differentiation from other cell types presents an alternative. Here, we first review the current knowledge on the developmental signaling mechanisms that determine neural crest and Schwann cell differentiation in vivo. Next, an overview of studies on the in vitro differentiation of Schwann cells from multipotent stem cell sources is provided. The molecules frequently used in those protocols and their involvement in the relevant signaling pathways are put into context and discussed. Focusing on hiPSC- and hESC-based studies, different protocols are described and compared, regarding cell sources, differentiation methods, characterization of cells, and protocol efficiency. A brief insight into developments regarding the culture and differentiation of Schwann cells in 3D is given. In summary, this contribution provides an overview of the current resources and methods for the differentiation of Schwann cells, it supports the comparison and refinement of protocols and aids the choice of suitable methods for specific applications.
Collapse
Affiliation(s)
- Sarah Janice Hörner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Nathalie Couturier
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Daniele Caroline Gueiber
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Department of Electronics Engineering, Federal University of Technology Paraná, Ponta Grossa 84017-220, Brazil
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, 69117 Heidelberg, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, 69117 Heidelberg, Germany
| |
Collapse
|
12
|
Gao P, Liu S, Wang X, Ikeya M. Dental applications of induced pluripotent stem cells and their derivatives. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:162-171. [PMID: 35516907 PMCID: PMC9065891 DOI: 10.1016/j.jdsr.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 02/24/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022] Open
Abstract
Periodontal tissue regeneration is the ideal tactic for treating periodontitis. Tooth regeneration is the potential strategy to restore the lost teeth. With infinite self-renewal, broad differentiation potential, and less ethical issues than embryonic stem cells, induced pluripotent stem cells (iPSCs) are promising cell resource for periodontal and tooth regeneration. This review summarized the optimized technologies of generating iPSC lines and application of iPSC derivatives, which reduce the risk of tumorigenicity. Given that iPSCs may have epigenetic memory from the donor tissue and tend to differentiate into lineages along with the donor cells, iPSCs derived from dental tissues may benefit for personalized dental application. Neural crest cells (NCCs) and mesenchymal stem or stomal cells (MSCs) are lineage-specific progenitor cells derived from iPSCs and can differentiate into multilineage cell types. This review introduced the updated technologies of inducing iPSC-derived NCCs and iPSC-derived MSCs and their application in periodontal and tooth regeneration. Given the complexity of periodontal tissues and teeth, it is crucial to elucidate the integrated mechanisms of all constitutive cells and the spatio-temporal interactions among them to generate structural periodontal tissues and functional teeth. Thus, more sophisticated studies in vitro and in vivo and even preclinical investigations need to be conducted.
Collapse
Affiliation(s)
- Pan Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of General and Emergency Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shan Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Division of Oral Ecology and Biochemistry, Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Xiaoyi Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Kamiya D, Takenaka-Ninagawa N, Motoike S, Kajiya M, Akaboshi T, Zhao C, Shibata M, Senda S, Toyooka Y, Sakurai H, Kurihara H, Ikeya M. Induction of functional xeno-free MSCs from human iPSCs via a neural crest cell lineage. NPJ Regen Med 2022; 7:47. [PMID: 36109564 PMCID: PMC9477888 DOI: 10.1038/s41536-022-00241-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractMesenchymal stem/stromal cells (MSCs) are adult multipotent stem cells. Here, we induced MSCs from human induced pluripotent stem cells (iPSCs) via a neural crest cell (NCC) lineage under xeno-free conditions and evaluated their in vivo functions. We modified a previous MSC induction method to work under xeno-free conditions. Bovine serum albumin-containing NCC induction medium and fetal bovine serum-containing MSC induction medium were replaced with xeno-free medium. Through our optimized method, iPSCs differentiated into MSCs with high efficiency. To evaluate their in vivo activities, we transplanted the xeno-free-induced MSCs (XF-iMSCs) into mouse models for bone and skeletal muscle regeneration and confirmed their regenerative potency. These XF-iMSCs mainly promoted the regeneration of surrounding host cells, suggesting that they secrete soluble factors into affected regions. We also found that the peroxidasin and IGF2 secreted by the XF-iMSCs partially contributed to myotube differentiation. These results suggest that XF-iMSCs are important for future applications in regenerative medicine.
Collapse
|
14
|
On the evolutionary origins and regionalization of the neural crest. Semin Cell Dev Biol 2022; 138:28-35. [PMID: 35787974 DOI: 10.1016/j.semcdb.2022.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/19/2022] [Accepted: 06/19/2022] [Indexed: 11/22/2022]
Abstract
The neural crest is a vertebrate-specific embryonic stem cell population that gives rise to a vast array of cell types throughout the animal body plan. These cells are first born at the edges of the central nervous system, from which they migrate extensively and differentiate into multiple cellular derivatives. Given the unique set of structures these cells comprise, the origin of the neural crest is thought to have important implications for the evolution and diversification of the vertebrate clade. In jawed vertebrates, neural crest cells exist as distinct subpopulations along the anterior-posterior axis. These subpopulations differ in terms of their respective differentiation potential and cellular derivatives. Thus, the modern neural crest is characterized as multipotent, migratory, and regionally segregated throughout the embryo. Here, we retrace the evolutionary origins of the neural crest, from the appearance of conserved regulatory circuitry in basal chordates to the emergence of neural crest subpopulations in higher vertebrates. Finally, we discuss a stepwise trajectory by which these cells may have arisen and diversified throughout vertebrate evolution.
Collapse
|
15
|
Humphreys PA, Mancini FE, Ferreira MJS, Woods S, Ogene L, Kimber SJ. Developmental principles informing human pluripotent stem cell differentiation to cartilage and bone. Semin Cell Dev Biol 2022; 127:17-36. [PMID: 34949507 DOI: 10.1016/j.semcdb.2021.11.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022]
Abstract
Human pluripotent stem cells can differentiate into any cell type given appropriate signals and hence have been used to research early human development of many tissues and diseases. Here, we review the major biological factors that regulate cartilage and bone development through the three main routes of neural crest, lateral plate mesoderm and paraxial mesoderm. We examine how these routes have been used in differentiation protocols that replicate skeletal development using human pluripotent stem cells and how these methods have been refined and improved over time. Finally, we discuss how pluripotent stem cells can be employed to understand human skeletal genetic diseases with a developmental origin and phenotype, and how developmental protocols have been applied to gain a better understanding of these conditions.
Collapse
Affiliation(s)
- Paul A Humphreys
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, University of Manchester, UK
| | - Fabrizio E Mancini
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Miguel J S Ferreira
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, University of Manchester, UK
| | - Steven Woods
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Leona Ogene
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| |
Collapse
|
16
|
Regent F, Batz Z, Kelley RA, Gieser L, Swaroop A, Chen HY, Li T. Nicotinamide Promotes Formation of Retinal Organoids From Human Pluripotent Stem Cells via Enhanced Neural Cell Fate Commitment. Front Cell Neurosci 2022; 16:878351. [PMID: 35783089 PMCID: PMC9247291 DOI: 10.3389/fncel.2022.878351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Retinal organoids (ROs) derived from human pluripotent stem cells (hPSCs) recapitulate key features of retinogenesis and provide a promising platform to study retinal development and disease in a human context. Although multiple protocols are currently in use, hPSCs exhibit tremendous variability in differentiation efficiency, with some cell lines consistently yielding few or even no ROs, limiting their utility in research. We report here that early nicotinamide (NAM) treatment significantly improves RO yield across 8 hPSC lines from different donors, including some that would otherwise fail to generate a meaningful number of ROs. NAM treatment promotes neural commitment of hPSCs at the expense of non-neural ectodermal cell fate, which in turn increases eye field progenitor generation. Further analysis suggests that this effect is partially mediated through inhibition of BMP signaling. Our data encourage a broader use of human ROs for disease modeling applications that require the use of multiple patient-specific cell lines.
Collapse
|
17
|
Sun J, Ha N, Liu Z, Bian Q, Wang X. A Neural Crest-specific Overexpression Mouse Model Reveals the Transcriptional Regulatory Effects of Dlx2 During Maxillary Process Development. Front Physiol 2022; 13:855959. [PMID: 35514355 PMCID: PMC9070692 DOI: 10.3389/fphys.2022.855959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Craniofacial morphogenesis is a complex process that requires precise regulation of cell proliferation, migration, and differentiation. Perturbations of this process cause a series of craniofacial deformities. Dlx2 is a critical transcription factor that regulates the development of the first branchial arch. However, the transcriptional regulatory functions of Dlx2 during craniofacial development have been poorly understood due to the lack of animal models in which the Dlx2 level can be precisely modulated. In this study, we constructed a Rosa26 site-directed Dlx2 gene knock-in mouse model Rosa26 CAG-LSL-Dlx2-3xFlag for conditionally overexpressing Dlx2. By breeding with wnt1 cre mice, we obtained wnt1 cre ; Rosa26 Dlx2/- mice, in which Dlx2 is overexpressed in neural crest lineage at approximately three times the endogenous level. The wnt1 cre ; Rosa26 Dlx2/- mice exhibited consistent phenotypes that include cleft palate across generations and individual animals. Using this model, we demonstrated that Dlx2 caused cleft palate by affecting maxillary growth and uplift in the early-stage development of maxillary prominences. By performing bulk RNA-sequencing, we demonstrated that Dlx2 overexpression induced significant changes in many genes associated with critical developmental pathways. In summary, our novel mouse model provides a reliable and consistent system for investigating Dlx2 functions during development and for elucidating the gene regulatory networks underlying craniofacial development.
Collapse
Affiliation(s)
- Jian Sun
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - NaYoung Ha
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhixu Liu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Qian Bian
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
18
|
Cooper F, Gentsch GE, Mitter R, Bouissou C, Healy LE, Rodriguez AH, Smith JC, Bernardo AS. Rostrocaudal patterning and neural crest differentiation of human pre-neural spinal cord progenitors in vitro. Stem Cell Reports 2022; 17:894-910. [PMID: 35334218 PMCID: PMC9023813 DOI: 10.1016/j.stemcr.2022.02.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 01/09/2023] Open
Abstract
The spinal cord emerges from a niche of neuromesodermal progenitors (NMPs) formed and maintained by WNT/fibroblast growth factor (FGF) signals at the posterior end of the embryo. NMPs can be generated from human pluripotent stem cells and hold promise for spinal cord replacement therapies. However, NMPs are transient, which compromises production of the full range of rostrocaudal spinal cord identities in vitro. Here we report the generation of NMP-derived pre-neural progenitors (PNPs) with stem cell-like self-renewal capacity. PNPs maintain pre-spinal cord identity for 7-10 passages, dividing to self-renew and to make neural crest progenitors, while gradually adopting a more posterior identity by activating colinear HOX gene expression. The HOX clock can be halted through GDF11-mediated signal inhibition to produce a PNP and NC population with a thoracic identity that can be maintained for up to 30 passages.
Collapse
Affiliation(s)
- Fay Cooper
- Developmental Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - George E Gentsch
- Developmental Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Richard Mitter
- Bioinformatics & Biostatistics Core Facility, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Camille Bouissou
- Developmental Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Lyn E Healy
- Human Embryo and Stem Cell Unit, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ana Hernandez Rodriguez
- Developmental Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - James C Smith
- Developmental Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andreia S Bernardo
- Developmental Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; National Heart and Lung Institute, Imperial College London, London SW7 2BX, UK
| |
Collapse
|
19
|
Cooper F, Tsakiridis A. Shaping axial identity during human pluripotent stem cell differentiation to neural crest cells. Biochem Soc Trans 2022; 50:499-511. [PMID: 35015077 PMCID: PMC9022984 DOI: 10.1042/bst20211152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022]
Abstract
The neural crest (NC) is a multipotent cell population which can give rise to a vast array of derivatives including neurons and glia of the peripheral nervous system, cartilage, cardiac smooth muscle, melanocytes and sympathoadrenal cells. An attractive strategy to model human NC development and associated birth defects as well as produce clinically relevant cell populations for regenerative medicine applications involves the in vitro generation of NC from human pluripotent stem cells (hPSCs). However, in vivo, the potential of NC cells to generate distinct cell types is determined by their position along the anteroposterior (A-P) axis and, therefore the axial identity of hPSC-derived NC cells is an important aspect to consider. Recent advances in understanding the developmental origins of NC and the signalling pathways involved in its specification have aided the in vitro generation of human NC cells which are representative of various A-P positions. Here, we explore recent advances in methodologies of in vitro NC specification and axis patterning using hPSCs.
Collapse
Affiliation(s)
- Fay Cooper
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, U.K
- Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield S10 2TN, U.K
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, U.K
- Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield S10 2TN, U.K
| |
Collapse
|
20
|
Liao J, Huang Y, Wang Q, Chen S, Zhang C, Wang D, Lv Z, Zhang X, Wu M, Chen G. Gene regulatory network from cranial neural crest cells to osteoblast differentiation and calvarial bone development. Cell Mol Life Sci 2022; 79:158. [PMID: 35220463 PMCID: PMC11072871 DOI: 10.1007/s00018-022-04208-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/02/2022] [Accepted: 02/14/2022] [Indexed: 11/03/2022]
Abstract
Calvarial bone is one of the most complex sequences of developmental events in embryology, featuring a uniquely transient, pluripotent stem cell-like population known as the cranial neural crest (CNC). The skull is formed through intramembranous ossification with distinct tissue lineages (e.g. neural crest derived frontal bone and mesoderm derived parietal bone). Due to CNC's vast cell fate potential, in response to a series of inductive secreted cues including BMP/TGF-β, Wnt, FGF, Notch, Hedgehog, Hippo and PDGF signaling, CNC enables generations of a diverse spectrum of differentiated cell types in vivo such as osteoblasts and chondrocytes at the craniofacial level. In recent years, since the studies from a genetic mouse model and single-cell sequencing, new discoveries are uncovered upon CNC patterning, differentiation, and the contribution to the development of cranial bones. In this review, we summarized the differences upon the potential gene regulatory network to regulate CNC derived osteogenic potential in mouse and human, and highlighted specific functions of genetic molecules from multiple signaling pathways and the crosstalk, transcription factors and epigenetic factors in orchestrating CNC commitment and differentiation into osteogenic mesenchyme and bone formation. Disorders in gene regulatory network in CNC patterning indicate highly close relevance to clinical birth defects and diseases, providing valuable transgenic mouse models for subsequent discoveries in delineating the underlying molecular mechanisms. We also emphasized the potential regenerative alternative through scientific discoveries from CNC patterning and genetic molecules in interfering with or alleviating clinical disorders or diseases, which will be beneficial for the molecular targets to be integrated for novel therapeutic strategies in the clinic.
Collapse
Affiliation(s)
- Junguang Liao
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuping Huang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qiang Wang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Sisi Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Chenyang Zhang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Dan Wang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhengbing Lv
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xingen Zhang
- Department of Orthopedics, Jiaxing Key Laboratory for Minimally Invasive Surgery in Orthopaedics & Skeletal Regenerative Medicine, Zhejiang Rongjun Hospital, Jiaxing, 314001, China
| | - Mengrui Wu
- Institute of Genetics, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- Institute of Genetics, College of Life Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
21
|
Schonkeren SL, Küthe TT, Idris M, Bon-Frauches AC, Boesmans W, Melotte V. The gut brain in a dish: Murine primary enteric nervous system cell cultures. Neurogastroenterol Motil 2022; 34:e14215. [PMID: 34236124 PMCID: PMC9285479 DOI: 10.1111/nmo.14215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/22/2021] [Accepted: 06/01/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND The enteric nervous system (ENS) is an extensive neural network embedded in the wall of the gastrointestinal tract that regulates digestive function and gastrointestinal homeostasis. The ENS consists of two main cell types; enteric neurons and enteric glial cells. In vitro techniques allow simplified investigation of ENS function, and different culture methods have been developed over the years helping to understand the role of ENS cells in health and disease. PURPOSE This review focuses on summarizing and comparing available culture protocols for the generation of primary ENS cells from adult mice, including dissection of intestinal segments, enzymatic digestions, surface coatings, and culture media. In addition, the potential of human ENS cultures is also discussed.
Collapse
Affiliation(s)
- Simone L Schonkeren
- Department of Pathology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Tara T Küthe
- Department of Pathology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Musa Idris
- Department of Pathology, Maastricht University Medical Center, Maastricht, Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ana C Bon-Frauches
- Department of Pathology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Werend Boesmans
- Department of Pathology, Maastricht University Medical Center, Maastricht, Netherlands.,Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Veerle Melotte
- Department of Pathology, Maastricht University Medical Center, Maastricht, Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
22
|
Shen M, Liu C, Wu JC. Generation of Embryonic Origin-Specific Vascular Smooth Muscle Cells from Human Induced Pluripotent Stem Cells. Methods Mol Biol 2022; 2429:233-246. [PMID: 35507165 PMCID: PMC9667909 DOI: 10.1007/978-1-0716-1979-7_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Vascular smooth muscle cells (VSMCs), a highly mosaic tissue, arise from multiple distinct embryonic origins and populate different regions of our vascular network with defined boundaries. Accumulating evidence has revealed that the heterogeneity of VSMC origins contributes to region-specific vascular diseases such as atherosclerosis and aortic aneurysm. These findings highlight the necessity of taking into account lineage-dependent responses of VSMCs to common vascular risk factors when studying vascular diseases. This chapter describes a reproducible, stepwise protocol for the generation of isogenic VSMC subtypes originated from proepicardium, second heart field, cardiac neural crest, and ventral somite using human induced pluripotent stem cells. By leveraging this robust induction protocol, patient-derived VSMC subtypes of desired embryonic origins can be generated for disease modeling as well as drug screening and development for vasculopathies with regional susceptibility.
Collapse
Affiliation(s)
- Mengcheng Shen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
23
|
Andrews PW. Human pluripotent stem cells: tools for regenerative medicine. BIOMATERIALS TRANSLATIONAL 2021; 2:294-300. [PMID: 35837419 PMCID: PMC9255800 DOI: 10.12336/biomatertransl.2021.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/12/2021] [Accepted: 12/20/2021] [Indexed: 01/17/2023]
Abstract
Human embryonic stem cells and induced pluripotent stem cells, together denoted as pluripotent stem cells have opened up unprecedented opportunities for developments in human healthcare over the past 20 years. Although much about the properties and behaviour of these cells required to underpin their applications has been discovered over this time, a number of issues remain. This brief review considers the history of these developments and some of the underlying biology, pointing out some of the problems still to be resolved, particularly in relation to their genetic stability and possible malignancy.
Collapse
Affiliation(s)
- Peter W. Andrews
- The Centre for Stem Cell Biology, The School of Bioscience, The University of Sheffield, Sheffield, UK
| |
Collapse
|
24
|
Knock E, Julian LM. Building on a Solid Foundation: Adding Relevance and Reproducibility to Neurological Modeling Using Human Pluripotent Stem Cells. Front Cell Neurosci 2021; 15:767457. [PMID: 34867204 PMCID: PMC8637745 DOI: 10.3389/fncel.2021.767457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
The brain is our most complex and least understood organ. Animal models have long been the most versatile tools available to dissect brain form and function; however, the human brain is highly distinct from that of standard model organisms. In addition to existing models, access to human brain cells and tissues is essential to reach new frontiers in our understanding of the human brain and how to intervene therapeutically in the face of disease or injury. In this review, we discuss current and developing culture models of human neural tissue, outlining advantages over animal models and key challenges that remain to be overcome. Our principal focus is on advances in engineering neural cells and tissue constructs from human pluripotent stem cells (PSCs), though primary human cell and slice culture are also discussed. By highlighting studies that combine animal models and human neural cell culture techniques, we endeavor to demonstrate that clever use of these orthogonal model systems produces more reproducible, physiological, and clinically relevant data than either approach alone. We provide examples across a range of topics in neuroscience research including brain development, injury, and cancer, neurodegenerative diseases, and psychiatric conditions. Finally, as testing of PSC-derived neurons for cell replacement therapy progresses, we touch on the advancements that are needed to make this a clinical mainstay.
Collapse
Affiliation(s)
- Erin Knock
- Research and Development, STEMCELL Technologies Inc., Vancouver, BC, Canada.,Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Lisa M Julian
- Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
25
|
Kiaee K, Jodat YA, Bassous NJ, Matharu N, Shin SR. Transcriptomic Mapping of Neural Diversity, Differentiation and Functional Trajectory in iPSC-Derived 3D Brain Organoid Models. Cells 2021; 10:3422. [PMID: 34943930 PMCID: PMC8700452 DOI: 10.3390/cells10123422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 11/17/2022] Open
Abstract
Experimental models of the central nervous system (CNS) are imperative for developmental and pathophysiological studies of neurological diseases. Among these models, three-dimensional (3D) induced pluripotent stem cell (iPSC)-derived brain organoid models have been successful in mitigating some of the drawbacks of 2D models; however, they are plagued by high organoid-to-organoid variability, making it difficult to compare specific gene regulatory pathways across 3D organoids with those of the native brain. Single-cell RNA sequencing (scRNA-seq) transcriptome datasets have recently emerged as powerful tools to perform integrative analyses and compare variability across organoids. However, transcriptome studies focusing on late-stage neural functionality development have been underexplored. Here, we combine and analyze 8 brain organoid transcriptome databases to study the correlation between differentiation protocols and their resulting cellular functionality across various 3D organoid and exogenous brain models. We utilize dimensionality reduction methods including principal component analysis (PCA) and uniform manifold approximation projection (UMAP) to identify and visualize cellular diversity among 3D models and subsequently use gene set enrichment analysis (GSEA) and developmental trajectory inference to quantify neuronal behaviors such as axon guidance, synapse transmission and action potential. We showed high similarity in cellular composition, cellular differentiation pathways and expression of functional genes in human brain organoids during induction and differentiation phases, i.e., up to 3 months in culture. However, during the maturation phase, i.e., 6-month timepoint, we observed significant developmental deficits and depletion of neuronal and astrocytes functional genes as indicated by our GSEA results. Our results caution against use of organoids to model pathophysiology and drug response at this advanced time point and provide insights to tune in vitro iPSC differentiation protocols to achieve desired neuronal functionality and improve current protocols.
Collapse
Affiliation(s)
- Kiavash Kiaee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (Y.A.J.); (N.J.B.)
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Yasamin A. Jodat
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (Y.A.J.); (N.J.B.)
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Nicole J. Bassous
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (Y.A.J.); (N.J.B.)
| | - Navneet Matharu
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA;
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
- Innovative Genomics Institute, University of California San Francisco, San Francisco, CA 94720, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (Y.A.J.); (N.J.B.)
| |
Collapse
|
26
|
Hörner SJ, Couturier N, Bruch R, Koch P, Hafner M, Rudolf R. hiPSC-Derived Schwann Cells Influence Myogenic Differentiation in Neuromuscular Cocultures. Cells 2021; 10:cells10123292. [PMID: 34943800 PMCID: PMC8699767 DOI: 10.3390/cells10123292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 12/13/2022] Open
Abstract
Motoneurons, skeletal muscle fibers, and Schwann cells form synapses, termed neuromuscular junctions (NMJs). These control voluntary body movement and are affected in numerous neuromuscular diseases. Therefore, a variety of NMJ in vitro models have been explored to enable mechanistic and pharmacological studies. So far, selective integration of Schwann cells in these models has been hampered, due to technical limitations. Here we present robust protocols for derivation of Schwann cells from human induced pluripotent stem cells (hiPSC) and their coculture with hiPSC-derived motoneurons and C2C12 muscle cells. Upon differentiation with tuned BMP signaling, Schwann cells expressed marker proteins, S100b, Gap43, vimentin, and myelin protein zero. Furthermore, they displayed typical spindle-shaped morphologies with long processes, which often aligned with motoneuron axons. Inclusion of Schwann cells in coculture experiments with hiPSC-derived motoneurons and C2C12 myoblasts enhanced myotube growth and affected size and number of acetylcholine receptor plaques on myotubes. Altogether, these data argue for the availability of a consistent differentiation protocol for Schwann cells and their amenability for functional integration into neuromuscular in vitro models, fostering future studies of neuromuscular mechanisms and disease.
Collapse
Affiliation(s)
- Sarah Janice Hörner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Nathalie Couturier
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
| | - Roman Bruch
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
| | - Philipp Koch
- Central Institute of Mental Health, Medical Faculty Mannheim of Heidelberg University, 68159 Mannheim, Germany;
- Hector Institute for Translational Brain Research (HITBR gGmbH), 68159 Mannheim, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
- Institute of Medical Technology, Mannheim University of Applied Sciences and Heidelberg University, 68163 Mannheim, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Institute of Medical Technology, Mannheim University of Applied Sciences and Heidelberg University, 68163 Mannheim, Germany
- Correspondence:
| |
Collapse
|
27
|
Dolde X, Karreman C, Wiechers M, Schildknecht S, Leist M. Profiling of Human Neural Crest Chemoattractant Activity as a Replacement of Fetal Bovine Serum for In Vitro Chemotaxis Assays. Int J Mol Sci 2021; 22:ijms221810079. [PMID: 34576243 PMCID: PMC8468192 DOI: 10.3390/ijms221810079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/27/2022] Open
Abstract
Fetal bovine serum (FBS) is the only known stimulus for the migration of human neural crest cells (NCCs). Non-animal chemoattractants are desirable for the optimization of chemotaxis as-says to be incorporated in a test battery for reproductive and developmental toxicity. We con-firmed here in an optimized transwell assay that FBS triggers directed migration along a con-centration gradient. The responsible factor was found to be a protein in the 30–100 kDa size range. In a targeted approach, we tested a large panel of serum constituents known to be chem-otactic for NCCs in animal models (e.g., VEGF, PDGF, FGF, SDF-1/CXCL12, ephrins, endothelin, Wnt, BMPs). None of the corresponding human proteins showed any effect in our chemotaxis assays based on human NCCs. We then examined, whether human cells would produce any fac-tor able to trigger NCC migration in a broad screening approach. We found that HepG2 hepa-toma cells produced chemotaxis-triggering activity (CTA). Using chromatographic methods and by employing the NCC chemotaxis test as bioassay, the responsible protein was enriched by up to 5000-fold. We also explored human serum and platelets as a direct source, independent of any cell culture manipulations. A CTA was enriched from platelet lysates several thousand-fold. Its temperature and protease sensitivity suggested also a protein component. The capacity of this factor to trigger chemotaxis was confirmed by single-cell video-tracking analysis of migrating NCCs. The human CTA characterized here may be employed in the future for the setup of assays testing for the disturbance of directed NCC migration by toxicants.
Collapse
Affiliation(s)
- Xenia Dolde
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (X.D.); (C.K.); (M.W.)
| | - Christiaan Karreman
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (X.D.); (C.K.); (M.W.)
| | - Marianne Wiechers
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (X.D.); (C.K.); (M.W.)
| | - Stefan Schildknecht
- Department of Life Sciences, Albstadt-Sigmaringen University of Applied Sciences, 72488 Sigmaringen, Germany;
| | - Marcel Leist
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (X.D.); (C.K.); (M.W.)
- Correspondence: ; Tel.: +49-(0)7531-88-5037; Fax: +49-(0)7531-88-5039
| |
Collapse
|
28
|
Mo J, Anastasaki C, Chen Z, Shipman T, Papke J, Yin K, Gutmann DH, Le LQ. Humanized neurofibroma model from induced pluripotent stem cells delineates tumor pathogenesis and developmental origins. J Clin Invest 2021; 131:139807. [PMID: 33108355 DOI: 10.1172/jci139807] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is a common tumor predisposition syndrome caused by NF1 gene mutation, in which affected patients develop Schwann cell lineage peripheral nerve sheath tumors (neurofibromas). To investigate human neurofibroma pathogenesis, we differentiated a series of isogenic, patient-specific NF1-mutant human induced pluripotent stem cells (hiPSCs) into Schwannian lineage cells (SLCs). We found that, although WT and heterozygous NF1-mutant hiPSCs-SLCs did not form tumors following mouse sciatic nerve implantation, NF1-null SLCs formed bona fide neurofibromas with high levels of SOX10 expression. To confirm that SOX10+ SLCs contained the cells of origin for neurofibromas, both Nf1 alleles were inactivated in mouse Sox10+ cells, leading to classic nodular cutaneous and plexiform neurofibroma formation that completely recapitulated their human counterparts. Moreover, we discovered that NF1 loss impaired Schwann cell differentiation by inducing a persistent stem-like state to expand the pool of progenitors required to initiate tumor formation, indicating that, in addition to regulating MAPK-mediated cell growth, NF1 loss also altered Schwann cell differentiation to promote neurofibroma development. Taken together, we established a complementary humanized neurofibroma explant and, to our knowledge, first-in-kind genetically engineered nodular cutaneous neurofibroma mouse models that delineate neurofibroma pathogenesis amenable to future therapeutic target discovery and evaluation.
Collapse
Affiliation(s)
- Juan Mo
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Corina Anastasaki
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Zhiguo Chen
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Tracey Shipman
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jason Papke
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Kevin Yin
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Lu Q Le
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA.,Simmons Comprehensive Cancer Center and.,Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
29
|
Kim H, Noh HB, Lee S, Lee K, Chang B, Cheong E, Lee CJ, Hwang D. Fine-tuning of dual-SMAD inhibition to differentiate human pluripotent stem cells into neural crest stem cells. Cell Prolif 2021; 54:e13103. [PMID: 34323338 PMCID: PMC8450125 DOI: 10.1111/cpr.13103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/27/2021] [Accepted: 07/09/2021] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES The derivation of neural crest stem cells (NCSCs) from human pluripotent stem cells (hPSCs) has been commonly induced by WNT activation in combination with dual-SMAD inhibition. In this study, by fine-tuning BMP signalling in the conventional dual-SMAD inhibition, we sought to generate large numbers of NCSCs without WNT activation. MATERIALS AND METHODS In the absence of WNT activation, we modulated the level of BMP signalling in the dual-SMAD inhibition system to identify conditions that efficiently drove the differentiation of hPSCs into NCSCs. We isolated two NCSC populations separately and characterized them in terms of global gene expression profiles and differentiation ability. RESULTS Our modified dual-SMAD inhibition containing a lower dose of BMP inhibitor than that of the conventional dual-SMAD inhibition drove hPSCs into mainly NCSCs, which consisted of HNK+ p75high and HNK+ p75low cell populations. We showed that the p75high population formed spherical cell clumps, while the p75low cell population generated a 2D monolayer. We detected substantial differences in gene expression profiles between the two cell groups and showed that both p75high and p75low cells differentiated into mesenchymal stem cells (MSCs), while only p75high cells had the ability to become peripheral neurons. CONCLUSIONS This study will provide a framework for the generation and isolation of NCSC populations for effective cell therapy for peripheral neuropathies and MSC-based cell therapy.
Collapse
Affiliation(s)
- Hyun‐Mun Kim
- Department of Biomedical ScienceGraduate School of CHA UniversitySungnamKorea
| | - Hye Bin Noh
- Department of Biomedical ScienceGraduate School of CHA UniversitySungnamKorea
| | - Sang‐Hyuk Lee
- Department of Biomedical ScienceGraduate School of CHA UniversitySungnamKorea
| | - Kun‐Gu Lee
- Department of Biomedical ScienceGraduate School of CHA UniversitySungnamKorea
| | - Bomi Chang
- Center for Cognition and SocialityInstitute for Basic ScienceDaejeonKorea
- Brain Science InstituteKorea Institute of Science and TechnologySeoulKorea
- Department of Biotechnology, College of Life Science and Biotechnology, Translational Research Center for Protein Function ControlYonsei UniversitySeoulKorea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Translational Research Center for Protein Function ControlYonsei UniversitySeoulKorea
| | - C. Justin Lee
- Center for Cognition and SocialityInstitute for Basic ScienceDaejeonKorea
| | - Dong‐Youn Hwang
- Department of Biomedical ScienceGraduate School of CHA UniversitySungnamKorea
- Department of Microbiology, School of MedicineCHA UniversitySungnamKorea
| |
Collapse
|
30
|
Lai X, Liu J, Zou Z, Wang Y, Wang Y, Liu X, Huang W, Ma Y, Chen Q, Li F, Wu G, Li W, Wang W, Yuan Y, Jiang B. SOX10 ablation severely impairs the generation of postmigratory neural crest from human pluripotent stem cells. Cell Death Dis 2021; 12:814. [PMID: 34453037 PMCID: PMC8397771 DOI: 10.1038/s41419-021-04099-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
Animal studies have indicated that SOX10 is one of the key transcription factors regulating the proliferation, migration and differentiation of multipotent neural crest (NC), and mutation of SOX10 in humans may lead to type 4 Waardenburg syndrome (WS). However, the exact role of SOX10 in human NC development and the underlying molecular mechanisms of SOX10-related human diseases remain poorly understood due to the lack of appropriate human model systems. In this study, we successfully generated SOX10-knockout human induced pluripotent stem cells (SOX10-/- hiPSCs) by the CRISPR-Cas9 gene editing tool. We found that loss of SOX10 significantly inhibited the generation of p75highHNK1+/CD49D+ postmigratory neural crest stem cells (NCSCs) and upregulated the cell apoptosis rate during NC commitment from hiPSCs. Moreover, we discovered that both the neuronal and glial differentiation capacities of SOX10-/- NCSCs were severely compromised. Intriguingly, we showed that SOX10-/- hiPSCs generated markedly more TFAP2C+nonneural ectoderm cells (NNE) than control hiPSCs during neural crest differentiation. Our results indicate that SOX10 is crucial for the transition of premigratory cells to migrating NC and is vital for NC survival. Taken together, these results provide new insights into the function of SOX10 in human NC development, and the SOX10-knockout hiPSC lines may serve as a valuable cell model to study the pathogenesis of SOX10-related human neurocristopathies.
Collapse
Affiliation(s)
- Xingqiang Lai
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jia Liu
- VIP Medical Service Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhengwei Zou
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Clinical Translation, First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yina Wang
- VIP Medical Service Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ye Wang
- Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao Liu
- Department of Laboratory Medicine, Zhongshan People's Hospital, Zhongshan, Guangdong, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuanchen Ma
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qian Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Fugui Li
- Department of Laboratory Medicine, Zhongshan People's Hospital, Zhongshan, Guangdong, China
| | - Guifu Wu
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Weijia Wang
- Department of Laboratory Medicine, Zhongshan People's Hospital, Zhongshan, Guangdong, China.
| | - Yong Yuan
- Department of Cardiovascular Center, Zhongshan People's Hospital, Zhongshan, Guangdong, China.
| | - Boxiong Jiang
- VIP Medical Service Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
31
|
Farina AR, Cappabianca LA, Zelli V, Sebastiano M, Mackay AR. Mechanisms involved in selecting and maintaining neuroblastoma cancer stem cell populations, and perspectives for therapeutic targeting. World J Stem Cells 2021; 13:685-736. [PMID: 34367474 PMCID: PMC8316860 DOI: 10.4252/wjsc.v13.i7.685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Pediatric neuroblastomas (NBs) are heterogeneous, aggressive, therapy-resistant embryonal tumours that originate from cells of neural crest (NC) origin and in particular neuroblasts committed to the sympathoadrenal progenitor cell lineage. Therapeutic resistance, post-therapeutic relapse and subsequent metastatic NB progression are driven primarily by cancer stem cell (CSC)-like subpopulations, which through their self-renewing capacity, intermittent and slow cell cycles, drug-resistant and reversibly adaptive plastic phenotypes, represent the most important obstacle to improving therapeutic outcomes in unfavourable NBs. In this review, dedicated to NB CSCs and the prospects for their therapeutic eradication, we initiate with brief descriptions of the unique transient vertebrate embryonic NC structure and salient molecular protagonists involved NC induction, specification, epithelial to mesenchymal transition and migratory behaviour, in order to familiarise the reader with the embryonic cellular and molecular origins and background to NB. We follow this by introducing NB and the potential NC-derived stem/progenitor cell origins of NBs, before providing a comprehensive review of the salient molecules, signalling pathways, mechanisms, tumour microenvironmental and therapeutic conditions involved in promoting, selecting and maintaining NB CSC subpopulations, and that underpin their therapy-resistant, self-renewing metastatic behaviour. Finally, we review potential therapeutic strategies and future prospects for targeting and eradication of these bastions of NB therapeutic resistance, post-therapeutic relapse and metastatic progression.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Lucia Annamaria Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Veronica Zelli
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Michela Sebastiano
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy.
| |
Collapse
|
32
|
Pan SH, Zhao N, Feng X, Jie Y, Jin ZB. Conversion of mouse embryonic fibroblasts into neural crest cells and functional corneal endothelia by defined small molecules. SCIENCE ADVANCES 2021; 7:7/23/eabg5749. [PMID: 34088673 PMCID: PMC8177713 DOI: 10.1126/sciadv.abg5749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/20/2021] [Indexed: 05/06/2023]
Abstract
Reprogramming of somatic cells into desired functional cell types by small molecules has vast potential for developing cell replacement therapy. Here, we developed a stepwise strategy to generate chemically induced neural crest cells (ciNCCs) and chemically induced corneal endothelial cells (ciCECs) from mouse fibroblasts using defined small molecules. The ciNCCs exhibited typical NCC features and could differentiate into ciCECs using another chemical combination in vitro. The resulting ciCECs showed consistent gene expression profiles and self-renewal capacity to those of primary CECs. Notably, these ciCECs could be cultured for as long as 30 passages and still retain the CEC features in defined medium. Transplantation of these ciCECs into an animal model reversed corneal opacity. Our chemical approach for direct reprogramming of mouse fibroblasts into ciNCCs and ciCECs provides an alternative cell source for regeneration of corneal endothelia and other tissues derived from neural crest.
Collapse
Affiliation(s)
- Shao-Hui Pan
- Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Ning Zhao
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing 100730, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University and Capital Medical University, Beijing Tongren Hospital, Beijing 100730, China
| | - Xiang Feng
- Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Ying Jie
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing 100730, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing 100730, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University and Capital Medical University, Beijing Tongren Hospital, Beijing 100730, China
| |
Collapse
|
33
|
Gogolou A, Frith TJR, Tsakiridis A. Generating Enteric Nervous System Progenitors from Human Pluripotent Stem Cells. Curr Protoc 2021; 1:e137. [PMID: 34102038 DOI: 10.1002/cpz1.137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intrinsic innervation of the gastrointestinal (GI) tract is comprised of enteric neurons and glia, which are buried within the wall of the bowel and organized into two concentric plexuses that run along the length of the gut forming the enteric nervous system (ENS). The ENS regulates vital GI functions including gut motility, blood flow, fluid secretion, and absorption and thus maintains gut homeostasis. During vertebrate development it originates predominantly from the vagal neural crest (NC), a multipotent cell population that emerges from the caudal hindbrain region, migrates to and within the gut to ultimately generate neurons and glia in response to gut-derived signals. Loss of GI innervation due to congenital or acquired defects in ENS development causes enteric neuropathies which lack curative treatment. Human pluripotent stem cells (hPSCs) offer a promising in vitro source of enteric neurons for modeling human ENS development and pathology and potential use in cell therapy applications. Here we describe in detail a differentiation strategy for the derivation of enteric neural progenitors and neurons from hPSCs through a vagal NC intermediate. Using a combination of instructive signals and retinoic acid in a dose/time dependent manner, vagal NC cells commit into the ENS lineage and develop into enteric neurons and glia upon culture in neurotrophic media. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Generation of vagal neural crest/early ENS progenitors from hPSCs Basic Protocol 2: Differentiation of hPSC-derived vagal NC/early ENS progenitors to enteric neurons and glia.
Collapse
Affiliation(s)
- Antigoni Gogolou
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | | | - Anestis Tsakiridis
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
34
|
Gong Y, Duan H, Wang X, Zhao C, Li W, Dong C, Li Z, Zhou Q. Transplantation of human induced pluripotent stem cell-derived neural crest cells for corneal endothelial regeneration. Stem Cell Res Ther 2021; 12:214. [PMID: 33781330 PMCID: PMC8008577 DOI: 10.1186/s13287-021-02267-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The corneal endothelium maintains corneal hydration through the barrier and pump function, while its dysfunction may cause corneal edema and vision reduction. Considering its development from neural crest cells (NCCs), here we investigated the efficacy of the human induced pluripotent stem cell (hiPSC)-derived NCCs for corneal endothelial regeneration in rabbits. METHODS Directed differentiation of hiPSC-derived NCCs was achieved using the chemically defined medium containing GSK-3 inhibitor and TGF-β inhibitor. The differentiated cells were characterized by immunofluorescence staining, FACS analysis, and in vitro multi-lineage differentiation capacity. For in vivo functional evaluation, 1.0 × 106 hiPSC-derived NCCs or NIH-3 T3 fibroblasts (as control) combined with 100 μM Y-27632 were intracamerally injected into the anterior chamber of rabbits following removal of corneal endothelium. Rabbit corneal thickness and phenotype changes of the transplanted cells were examined at 7 and 14 days with handy pachymeter, dual-immunofluorescence staining, and quantitative RT-PCR. RESULTS The hiPSC-derived NCCs were differentiated homogenously through 7 days of induction and exhibited multi-lineage differentiation capacity into peripheral neurons, mesenchymal stem cells, and corneal keratocytes. After 7 days of intracameral injection in rabbit, the hiPSC-derived NCCs led to a gradual recovery of normal corneal thickness and clarity, when comparing to control rabbit with fibroblasts injection. However, the recovery efficacy after 14 days deteriorated and caused the reappearance of corneal edema. Mechanistically, the transplanted cells exhibited the impaired maturation, cellular senescence, and endothelial-mesenchymal transition (EnMT) after the early stage of the in vivo directional differentiation. CONCLUSIONS Transplantation of the hiPSC-derived NCCs rapidly restored rabbit corneal thickness and clarity. However, the long-term recovery efficacy was impaired by the improper maturation, senescence, and EnMT of the transplanted cells.
Collapse
Affiliation(s)
- Yajie Gong
- Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, 271016, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China
| | - Haoyun Duan
- Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, 271016, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China
| | - Xin Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China
- Eye Hospital of Shandong First Medical University, 372 Jingsi Road, Jinan, 250021, China
| | - Can Zhao
- Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, 271016, China
- Eye Hospital of Shandong First Medical University, 372 Jingsi Road, Jinan, 250021, China
| | - Wenjing Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China
| | - Chunxiao Dong
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China
- Eye Hospital of Shandong First Medical University, 372 Jingsi Road, Jinan, 250021, China
| | - Zongyi Li
- Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, 271016, China.
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China.
| | - Qingjun Zhou
- Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, 271016, China.
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China.
| |
Collapse
|
35
|
Shen M, Quertermous T, Fischbein MP, Wu JC. Generation of Vascular Smooth Muscle Cells From Induced Pluripotent Stem Cells: Methods, Applications, and Considerations. Circ Res 2021; 128:670-686. [PMID: 33818124 PMCID: PMC10817206 DOI: 10.1161/circresaha.120.318049] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The developmental origin of vascular smooth muscle cells (VSMCs) has been increasingly recognized as a major determinant for regional susceptibility or resistance to vascular diseases. As a human material-based complement to animal models and human primary cultures, patient induced pluripotent stem cell iPSC-derived VSMCs have been leveraged to conduct basic research and develop therapeutic applications in vascular diseases. However, iPSC-VSMCs (induced pluripotent stem cell VSMCs) derived by most existing induction protocols are heterogeneous in developmental origins. In this review, we summarize signaling networks that govern in vivo cell fate decisions and in vitro derivation of distinct VSMC progenitors, as well as key regulators that terminally specify lineage-specific VSMCs. We then highlight the significance of leveraging patient-derived iPSC-VSMCs for vascular disease modeling, drug discovery, and vascular tissue engineering and discuss several obstacles that need to be circumvented to fully unleash the potential of induced pluripotent stem cells for precision vascular medicine.
Collapse
Affiliation(s)
- Mengcheng Shen
- Stanford Cardiovascular Institute
- Division of Cardiovascular Medicine, Department of Medicine
| | - Thomas Quertermous
- Stanford Cardiovascular Institute
- Division of Cardiovascular Medicine, Department of Medicine
| | | | - Joseph C. Wu
- Stanford Cardiovascular Institute
- Division of Cardiovascular Medicine, Department of Medicine
- Department of Radiology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
36
|
Wymeersch FJ, Wilson V, Tsakiridis A. Understanding axial progenitor biology in vivo and in vitro. Development 2021; 148:148/4/dev180612. [PMID: 33593754 DOI: 10.1242/dev.180612] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of the components that make up the embryonic body axis, such as the spinal cord and vertebral column, takes place in an anterior-to-posterior (head-to-tail) direction. This process is driven by the coordinated production of various cell types from a pool of posteriorly-located axial progenitors. Here, we review the key features of this process and the biology of axial progenitors, including neuromesodermal progenitors, the common precursors of the spinal cord and trunk musculature. We discuss recent developments in the in vitro production of axial progenitors and their potential implications in disease modelling and regenerative medicine.
Collapse
Affiliation(s)
- Filip J Wymeersch
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Valerie Wilson
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield S10 2TN UK .,Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| |
Collapse
|
37
|
Directed Differentiation of Human Pluripotent Stem Cells towards Corneal Endothelial-Like Cells under Defined Conditions. Cells 2021; 10:cells10020331. [PMID: 33562615 PMCID: PMC7915025 DOI: 10.3390/cells10020331] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
The most crucial function of corneal endothelial cells (CEnCs) is to maintain optical transparency by transporting excess fluid out of stroma. Unfortunately, CEnCs are not able to proliferate in vivo in the case of trauma or dystrophy. Visually impaired patients with corneal endothelial deficiencies that are waiting for transplantation due to massive global shortage of cadaveric corneal transplants are in a great need of help. In this study, our goal was to develop a defined, clinically applicable protocol for direct differentiation of CEnCs from human pluripotent stem cells (hPSCs). To produce feeder-free hPSC-CEnCs, we used small molecule induction with transforming growth factor (TGF) beta receptor inhibitor SB431542, GSK-3-specific inhibitor CHIR99021 and retinoic acid to guide differentiation through the neural crest and periocular mesenchyme (POM). Cells were characterized by the morphology and expression of human (h)CEnC markers with immunocytochemistry and RT-qPCR. After one week of induction, we observed the upregulation of POM markers paired-like homeodomain transcription factor 2 (PITX2) and Forkhead box C1 (FOXC1) and polygonal-shaped cells expressing CEnC-associated markers Zona Occludens-1 (ZO-1), sodium-potassium (Na+/K+)-ATPase, CD166, sodium bicarbonate cotransporter 1 (SLC4A4), aquaporin 1 (AQP1) and N-cadherin (NCAD). Furthermore, we showed that retinoic acid induced a dome formation in the cell culture, with a possible indication of fluid transport by the differentiated cells. Thus, we successfully generated CEnC-like cells from hPSCs with a defined, simple and fast differentiation method.
Collapse
|
38
|
Soto J, Ding X, Wang A, Li S. Neural crest-like stem cells for tissue regeneration. Stem Cells Transl Med 2021; 10:681-693. [PMID: 33533168 PMCID: PMC8046096 DOI: 10.1002/sctm.20-0361] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Neural crest stem cells (NCSCs) are a transient population of cells that arise during early vertebrate development and harbor stem cell properties, such as self‐renewal and multipotency. These cells form at the interface of non‐neuronal ectoderm and neural tube and undergo extensive migration whereupon they contribute to a diverse array of cell and tissue derivatives, ranging from craniofacial tissues to cells of the peripheral nervous system. Neural crest‐like stem cells (NCLSCs) can be derived from pluripotent stem cells, placental tissues, adult tissues, and somatic cell reprogramming. NCLSCs have a differentiation capability similar to NCSCs, and possess great potential for regenerative medicine applications. In this review, we present recent developments on the various approaches to derive NCLSCs and the therapeutic application of these cells for tissue regeneration.
Collapse
Affiliation(s)
- Jennifer Soto
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
| | - Xili Ding
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, People's Republic of China
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA.,Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA.,Department of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
39
|
Prasad MS, Charney RM, Patel LJ, García-Castro MI. Distinct molecular profile and restricted stem cell potential defines the prospective human cranial neural crest from embryonic stem cell state. Stem Cell Res 2020; 49:102086. [PMID: 33370869 PMCID: PMC7932500 DOI: 10.1016/j.scr.2020.102086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 06/14/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022] Open
Abstract
Neural crest cells are an embryonic multipotent stem cell population. Recent studies in model organisms have suggested that neural crest cells are specified earlier than previously thought, at blastula stages. However, the molecular dynamics of early neural crest specification, and functional changes from pluripotent precursors to early specified NC, remain to be elucidated. In this report, we utilized a robust human model of cranial neural crest formation to address the distinct molecular character of the earliest stages of neural crest specification and assess the functional differences from its embryonic stem cell precursor. Our human neural crest model reveals a rapid change in the epigenetic state of neural crest and pluripotency genes, accompanied by changes in gene expression upon Wnt-based induction from embryonic stem cells. These changes in gene expression are directly regulated by the transcriptional activity of β-catenin. Furthermore, prospective cranial neural crest cells are characterized by restricted stem cell potential compared to embryonic stem cells. Our results suggest that human neural crest induced by Wnt/β-catenin signaling from human embryonic stem cells rapidly acquire a prospective neural crest cell state defined by a unique molecular signature and endowed with limited potential compared to pluripotent stem cells.
Collapse
Affiliation(s)
- Maneeshi S Prasad
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, USA.
| | - Rebekah M Charney
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, USA
| | - Lipsa J Patel
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, USA
| | - Martín I García-Castro
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, USA.
| |
Collapse
|
40
|
Modeling tumors of the peripheral nervous system associated with Neurofibromatosis type 1: Reprogramming plexiform neurofibroma cells. Stem Cell Res 2020; 49:102068. [PMID: 33160273 DOI: 10.1016/j.scr.2020.102068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 11/24/2022] Open
Abstract
Plexiform neurofibromas (pNFs) are benign tumors of the peripheral nervous system (PNS) that can progress towards a deadly soft tissue sarcoma termed malignant peripheral nerve sheath tumor (MPNST). pNFs appear during development in the context of the genetic disease Neurofibromatosis type 1 (NF1) due to the complete loss of the NF1 tumor suppressor gene in a cell of the neural crest (NC) - Schwann cell (SC) axis of differentiation. NF1(-/-) cells from pNFs can be reprogrammed into induced pluripotent stem cells (iPSCs) that exhibit an increased proliferation rate and maintain full iPSC properties. Efficient protocols for iPSC differentiation towards NC and SC exist and thus NC cells can be efficiently obtained from NF1(-/-) iPSCs and further differentiated towards SCs. In this review, we will focus on the iPSC modeling of pNFs, including the reprogramming of primary pNF-derived cells, the properties of pNF-derived iPSCs, the capacity to differentiate towards the NC-SC lineage, and how well iPSC-derived NF1(-/-) SC spheroids recapitulate pNF-derived primary SCs. The potential uses of NF1(-/-) iPSCs in pNF modeling and a future outlook are discussed.
Collapse
|
41
|
Rocha M, Beiriger A, Kushkowski EE, Miyashita T, Singh N, Venkataraman V, Prince VE. From head to tail: regionalization of the neural crest. Development 2020; 147:dev193888. [PMID: 33106325 PMCID: PMC7648597 DOI: 10.1242/dev.193888] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The neural crest is regionalized along the anteroposterior axis, as demonstrated by foundational lineage-tracing experiments that showed the restricted developmental potential of neural crest cells originating in the head. Here, we explore how recent studies of experimental embryology, genetic circuits and stem cell differentiation have shaped our understanding of the mechanisms that establish axial-specific populations of neural crest cells. Additionally, we evaluate how comparative, anatomical and genomic approaches have informed our current understanding of the evolution of the neural crest and its contribution to the vertebrate body.
Collapse
Affiliation(s)
- Manuel Rocha
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Anastasia Beiriger
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Elaine E Kushkowski
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Tetsuto Miyashita
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
- Canadian Museum of Nature, Ottawa, ON K1P 6P4, Canada
| | - Noor Singh
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Vishruth Venkataraman
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Victoria E Prince
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
42
|
Transplantation of hPSC-derived pericyte-like cells promotes functional recovery in ischemic stroke mice. Nat Commun 2020; 11:5196. [PMID: 33060592 PMCID: PMC7566513 DOI: 10.1038/s41467-020-19042-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/26/2020] [Indexed: 12/15/2022] Open
Abstract
Pericytes play essential roles in blood–brain barrier (BBB) integrity and dysfunction or degeneration of pericytes is implicated in a set of neurological disorders although the underlying mechanism remains largely unknown. However, the scarcity of material sources hinders the application of BBB models in vitro for pathophysiological studies. Additionally, whether pericytes can be used to treat neurological disorders remains to be elucidated. Here, we generate pericyte-like cells (PCs) from human pluripotent stem cells (hPSCs) through the intermediate stage of the cranial neural crest (CNC) and reveal that the cranial neural crest-derived pericyte-like cells (hPSC-CNC PCs) express typical pericyte markers including PDGFRβ, CD146, NG2, CD13, Caldesmon, and Vimentin, and display distinct contractile properties, vasculogenic potential and endothelial barrier function. More importantly, when transplanted into a murine model of transient middle cerebral artery occlusion (tMCAO) with BBB disruption, hPSC-CNC PCs efficiently promote neurological functional recovery in tMCAO mice by reconstructing the BBB integrity and preventing of neuronal apoptosis. Our results indicate that hPSC-CNC PCs may represent an ideal cell source for the treatment of BBB dysfunction-related disorders and help to model the human BBB in vitro for the study of the pathogenesis of such neurological diseases. Pericytes play an essential role in blood brain barrier (BBB) integrity. Here, the authors generate pericyte-like cells (PCs) from human pluripotent stem cells (hPSCs) which display functional properties and also promote BBB recovery in a mouse model of cerebral artery occlusion.
Collapse
|
43
|
Stavish D, Böiers C, Price C, Frith TJR, Halliwell J, Saldaña-Guerrero I, Wray J, Brown J, Carr J, James C, Barbaric I, Andrews PW, Enver T. Generation and trapping of a mesoderm biased state of human pluripotency. Nat Commun 2020; 11:4989. [PMID: 33020476 PMCID: PMC7536399 DOI: 10.1038/s41467-020-18727-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 09/10/2020] [Indexed: 12/22/2022] Open
Abstract
We postulate that exit from pluripotency involves intermediates that retain pluripotency while simultaneously exhibiting lineage-bias. Using a MIXL1 reporter, we explore mesoderm lineage-bias within the human pluripotent stem cell compartment. We identify a substate, which at the single cell level coexpresses pluripotent and mesodermal gene expression programmes. Functionally these cells initiate stem cell cultures and exhibit mesodermal bias in differentiation assays. By promoting mesodermal identity through manipulation of WNT signalling while preventing exit from pluripotency using lysophosphatidic acid, we 'trap' and maintain cells in a lineage-biased stem cell state through multiple passages. These cells correspond to a normal state on the differentiation trajectory, the plasticity of which is evidenced by their reacquisition of an unbiased state upon removal of differentiation cues. The use of 'cross-antagonistic' signalling to trap pluripotent stem cell intermediates with different lineage-bias may have general applicability in the efficient production of cells for regenerative medicine.
Collapse
Affiliation(s)
- Dylan Stavish
- The Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Charlotta Böiers
- Stem Cell Laboratory, Department of Cancer Biology, University College London Cancer Institute, 72 Huntley St, London, WC1E 6AG, UK
| | - Christopher Price
- The Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Thomas J R Frith
- The Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Jason Halliwell
- The Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ingrid Saldaña-Guerrero
- The Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Jason Wray
- Stem Cell Laboratory, Department of Cancer Biology, University College London Cancer Institute, 72 Huntley St, London, WC1E 6AG, UK
| | - John Brown
- Stem Cell Laboratory, Department of Cancer Biology, University College London Cancer Institute, 72 Huntley St, London, WC1E 6AG, UK
| | - Jonathon Carr
- The Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Chela James
- Stem Cell Laboratory, Department of Cancer Biology, University College London Cancer Institute, 72 Huntley St, London, WC1E 6AG, UK
| | - Ivana Barbaric
- The Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Peter W Andrews
- The Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Tariq Enver
- Stem Cell Laboratory, Department of Cancer Biology, University College London Cancer Institute, 72 Huntley St, London, WC1E 6AG, UK
| |
Collapse
|
44
|
Kobayashi GS, Musso CM, Moreira DDP, Pontillo-Guimarães G, Hsia GSP, Caires-Júnior LC, Goulart E, Passos-Bueno MR. Recapitulation of Neural Crest Specification and EMT via Induction from Neural Plate Border-like Cells. Stem Cell Reports 2020; 15:776-788. [PMID: 32857981 PMCID: PMC7486307 DOI: 10.1016/j.stemcr.2020.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Neural crest cells (NCCs) contribute to several tissues during embryonic development. NCC formation depends on activation of tightly regulated molecular programs at the neural plate border (NPB) region, which initiate NCC specification and epithelial-to-mesenchymal transition (EMT). Although several approaches to investigate NCCs have been devised, these early events of NCC formation remain largely unknown in humans, and currently available cellular models have not investigated EMT. Here, we report that the E6 neural induction protocol converts human induced pluripotent stem cells into NPB-like cells (NBCs), from which NCCs can be efficiently derived. NBC-to-NCC induction recapitulates gene expression dynamics associated with NCC specification and EMT, including downregulation of NPB factors and upregulation of NCC specifiers, coupled with other EMT-associated cell-state changes, such as cadherin modulation and activation of TWIST1 and other EMT inducers. This strategy will be useful in future basic or translational research focusing on these early steps of NCC formation.
Collapse
Affiliation(s)
- Gerson Shigeru Kobayashi
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| | - Camila Manso Musso
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Danielle de Paula Moreira
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Giovanna Pontillo-Guimarães
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Gabriella Shih Ping Hsia
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Carlos Caires-Júnior
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Ernesto Goulart
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
45
|
Frith TJR, Gogolou A, Hackland JOS, Hewitt ZA, Moore HD, Barbaric I, Thapar N, Burns AJ, Andrews PW, Tsakiridis A, McCann CJ. Retinoic Acid Accelerates the Specification of Enteric Neural Progenitors from In-Vitro-Derived Neural Crest. Stem Cell Reports 2020; 15:557-565. [PMID: 32857978 PMCID: PMC7486303 DOI: 10.1016/j.stemcr.2020.07.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
The enteric nervous system (ENS) is derived primarily from the vagal neural crest, a migratory multipotent cell population emerging from the dorsal neural tube between somites 1 and 7. Defects in the development and function of the ENS cause a range of enteric neuropathies, including Hirschsprung disease. Little is known about the signals that specify early ENS progenitors, limiting progress in the generation of enteric neurons from human pluripotent stem cells (hPSCs) to provide tools for disease modeling and regenerative medicine for enteric neuropathies. We describe the efficient and accelerated generation of ENS progenitors from hPSCs, revealing that retinoic acid is critical for the acquisition of vagal axial identity and early ENS progenitor specification. These ENS progenitors generate enteric neurons in vitro and, following in vivo transplantation, achieved long-term colonization of the ENS in adult mice. Thus, hPSC-derived ENS progenitors may provide the basis for cell therapy for defects in the ENS. Retinoic acid alters the axial identity of hPSC-derived neural crest cells ENS progenitor markers are upregulated in response to RA ENS progenitors are capable of generating enteric neurons in vitro hPSC ENS progenitors colonize the ENS of mice following long-term transplantation
Collapse
Affiliation(s)
- Thomas J R Frith
- University of Sheffield, Department of Biomedical Science, Sheffield, UK.
| | - Antigoni Gogolou
- University of Sheffield, Department of Biomedical Science, Sheffield, UK
| | - James O S Hackland
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Zoe A Hewitt
- University of Sheffield, Department of Biomedical Science, Sheffield, UK
| | - Harry D Moore
- University of Sheffield, Department of Biomedical Science, Sheffield, UK
| | - Ivana Barbaric
- University of Sheffield, Department of Biomedical Science, Sheffield, UK
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Neurogastroenterology and Motility Unit, Great Ormond Street Hospital, London, UK; Department of Gastroenterology, Hepatology and Liver Transplant, Queensland Children's Hospital, Brisbane, Australia; Prince Abdullah Ben Khalid Celiac Research Chair, College of Medicine, King Saud University, Riyadh, KSA
| | - Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Peter W Andrews
- University of Sheffield, Department of Biomedical Science, Sheffield, UK
| | - Anestis Tsakiridis
- University of Sheffield, Department of Biomedical Science, Sheffield, UK.
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
46
|
Sánchez-Gaya V, Mariner-Faulí M, Rada-Iglesias A. Rare or Overlooked? Structural Disruption of Regulatory Domains in Human Neurocristopathies. Front Genet 2020; 11:688. [PMID: 32765580 PMCID: PMC7379850 DOI: 10.3389/fgene.2020.00688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022] Open
Abstract
In the last few years, the role of non-coding regulatory elements and their involvement in human disease have received great attention. Among the non-coding regulatory sequences, enhancers are particularly important for the proper establishment of cell type-specific gene-expression programs. Furthermore, the disruption of enhancers can lead to human disease through two main mechanisms: (i) Mutations or copy number variants can directly alter the enhancer sequences and thereby affect expression of their target genes; (ii) structural variants can provoke changes in 3-D chromatin organization that alter neither the enhancers nor their target genes, but rather the physical communication between them. In this review, these pathomechanisms are mostly discussed in the context of neurocristopathies, congenital disorders caused by defects that occur during neural crest development. We highlight why, due to its contribution to multiple tissues and organs, the neural crest represents an important, yet understudied, cell type involved in multiple congenital disorders. Moreover, we discuss currently available resources and experimental models for the study of human neurocristopathies. Last, we provide some practical guidelines that can be followed when investigating human neurocristopathies caused by structural variants. Importantly, these guidelines can be useful not only to uncover the etiology of human neurocristopathies, but also of other human congenital disorders in which enhancer disruption is involved.
Collapse
Affiliation(s)
- Víctor Sánchez-Gaya
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas-University of Cantabria-Sociedad para el Desarrollo de Cantabria, Santander, Spain
| | - Maria Mariner-Faulí
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas-University of Cantabria-Sociedad para el Desarrollo de Cantabria, Santander, Spain
| | - Alvaro Rada-Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas-University of Cantabria-Sociedad para el Desarrollo de Cantabria, Santander, Spain
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
47
|
Mehler VJ, Burns CJ, Stauss H, Francis RJ, Moore ML. Human iPSC-Derived Neural Crest Stem Cells Exhibit Low Immunogenicity. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 16:161-171. [PMID: 32055644 PMCID: PMC7005462 DOI: 10.1016/j.omtm.2019.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/28/2019] [Indexed: 12/14/2022]
Abstract
Recent clinical trials are evaluating induced pluripotent stem cells (iPSCs) as a cellular therapy in the field of regenerative medicine. The widespread clinical utility of iPSCs is expected to be realized using allogeneic cells that have undergone thorough safety evaluations, including assessment of their immunogenicity. IPSC-derived neural crest stem cells (NCSCs) have significant potential in regenerative medicine; however, their application in cellular therapy has not been widely studied to date, and no reports on their potential immunogenicity have been published so far. In this study, we have assessed the expression of immune-related antigens in iPSC-NCSCs, including human leukocyte antigen (HLA) class I and II and co-stimulatory molecules. To investigate functional immunogenicity, we used iPSC-NCSCs as stimulator cells in a one-way mixed lymphocyte reaction. In these experiments, iPSC-NCSCs did not stimulate detectable proliferation of CD3+ and CD3+CD8+ T cells or induce cytokine production. We show that this was not a result of any immunosuppressive features of iPSC-NCSCs, but rather more consistent with their non-immunogenic molecular phenotype. These results are encouraging for the potential future use of iPSC-NCSCs as a cellular therapy.
Collapse
Affiliation(s)
- Vera J Mehler
- Endocrinology Section, Biotherapeutics, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, Potters Bar EN6 3QG, UK.,Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
| | - Chris J Burns
- Endocrinology Section, Biotherapeutics, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, Potters Bar EN6 3QG, UK
| | - Hans Stauss
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
| | - Robert J Francis
- Biological Imaging Group, Analytical and Biological Sciences, NIBSC, Blanche Lane, Potters Bar EN6 3QG, UK
| | - Melanie L Moore
- Endocrinology Section, Biotherapeutics, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, Potters Bar EN6 3QG, UK
| |
Collapse
|
48
|
Hackland J. Top-Down Inhibition (TDi) and Baseline Activation (BLa): Controlling Signal Transduction When Endogenous Cytokines are Ruining Your Differentiation. ACTA ACUST UNITED AC 2019; 51:e98. [PMID: 31756052 DOI: 10.1002/cpsc.98] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the 20 years since the first human pluripotent stem cell (hPSC) lines were established, there have been a plethora of protocols developed that allow us to generate a wide range of human cell types in vitro. Efforts to achieve a greater degree of specificity and efficiency in generating desired cell types have resulted in increasingly complex approaches. The magnitude and timing of signals has become key, and the concept of a "fully defined" system is a forever sought-after goal with shifting goalposts. This overview discusses two related approaches that can be used to deliver a tightly regulated, intermediate-strength signal, and which can also manage the impact of endogenous signaling variation and enable a switch away from bovine serum albumin-containing medium to a better-defined system without suffering a subsequent loss of robustness or efficiency. The approaches, referred to as top-down inhibition and baseline activation, were developed to deliver intermediate levels of BMP and WNT signaling during neural crest induction from hPSC, but could be applied to a variety of other signals and differentiation systems. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- James Hackland
- Developmental Biology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
49
|
Britton G, Heemskerk I, Hodge R, Qutub AA, Warmflash A. A novel self-organizing embryonic stem cell system reveals signaling logic underlying the patterning of human ectoderm. Development 2019; 146:dev.179093. [PMID: 31519692 DOI: 10.1242/dev.179093] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
During development, the ectoderm is patterned by a combination of BMP and WNT signaling. Research in model organisms has provided substantial insight into this process; however, there are currently no systems in which to study ectodermal patterning in humans. Further, the complexity of neural plate border specification has made it difficult to transition from discovering the genes involved to deeper mechanistic understanding. Here, we develop an in vitro model of human ectodermal patterning, in which human embryonic stem cells self-organize to form robust and quantitatively reproducible patterns corresponding to the complete medial-lateral axis of the embryonic ectoderm. Using this platform, we show that the duration of endogenous WNT signaling is a crucial control parameter, and that cells sense relative levels of BMP and WNT signaling in making fate decisions. These insights allowed us to develop an improved protocol for placodal differentiation. Thus, our platform is a powerful tool for studying human ectoderm patterning and for improving directed differentiation protocols.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- George Britton
- Systems Synthetic and Physical Biology Program, Rice University Houston, Houston, TX 77005, USA
| | - Idse Heemskerk
- Department of Biosciences, Rice University Houston, Houston, TX 77005, USA
| | - Rachel Hodge
- Department of Biosciences, Rice University Houston, Houston, TX 77005, USA
| | - Amina A Qutub
- Department of Bioengineering, Rice University Houston, Houston, TX 77005, USA
| | - Aryeh Warmflash
- Department of Biosciences, Rice University Houston, Houston, TX 77005, USA .,Department of Bioengineering, Rice University Houston, Houston, TX 77005, USA
| |
Collapse
|
50
|
Wu HF, Zeltner N. Overview of Methods to Differentiate Sympathetic Neurons from Human Pluripotent Stem Cells. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2019; 50:e92. [PMID: 31479594 DOI: 10.1002/cpsc.92] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sympathetic neurons are crucial for maintenance of body homeostasis and regulation of all organs. Diseases can arise from malfunction of sympathetic neurons, including malignancies, hypertension, and genetic disorders. Human pluripotent stem cells (hPSCs) allow modeling of human diseases and the in-depth study of pathologies of specific cell types associated with such disorders. Advances in the ability to differentiate hPSCs in vitro has allowed the generation of specific cell types such as sympathetic neurons, which provides the novel opportunity to study diseases affecting the sympathetic nervous system in the human context. Here, we compare selected recent publications that have achieved the goal of generating sympathetic neurons from hPSCs. We discuss strengths and weaknesses of each approach and debate future improvements and the next steps for using these neurons to better our understanding of sympathetic neuron disorders and their treatments. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Hsueh Fu Wu
- Center for Molecular Medicine, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia
| | - Nadja Zeltner
- Center for Molecular Medicine, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia
| |
Collapse
|