1
|
Kim H, Park HJ. Current hPSC-derived liver organoids for toxicity testing: Cytochrome P450 enzymes and drug metabolism. Toxicol Res 2025; 41:105-121. [PMID: 40013078 PMCID: PMC11850699 DOI: 10.1007/s43188-024-00275-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 02/28/2025] Open
Abstract
Drug-induced hepatotoxicity is the leading cause of attrition of drug candidates and withdrawal of marketed drugs owing to safety concerns. In most hepatotoxicity cases, the parent drugs are metabolized by cytochrome P450 (CYP) enzymes, generating reactive metabolites that bind to intracellular organelles and proteins, ultimately causing hepatocellular damage. A major limitation of animal models, which are widely used for toxicity assessment, is the discrepancy in CYP-mediated drug metabolism and toxicological outcomes owing to species differences between humans and animals. Two-dimensional (2D) hepatocytes were first developed as a promising alternative model using human pluripotent stem cells (hPSCs). However, their CYP expression was similar to that of the fetal liver, and they lacked CYP-mediated hepatic metabolism. CYP expression in hPSC-derived hepatic models is closely correlated with liver maturity. Therefore, liver organoids that are more mature than hPSC-derived hepatic models and mimic the structure and physiological functions of the human liver have emerged as new alternatives. In this review, we explored the role and essentiality of CYPs in human hepatotoxicity, their expression, and epigenetic regulation in hPSC-derived hepatocytes and liver organoids, as well as the current state of liver organoid technology in terms of CYP expression and activity, drug metabolism, and toxicity. We also discussed the current challenges and future directions for the practical use of liver organoids. In conclusion, we highlight the importance of methods and metrics for accurately assessing CYP expression and activity in liver organoids to enable the development of feasible models that reproduce hepatotoxicity in humans.
Collapse
Affiliation(s)
- Hyemin Kim
- Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Han-Jin Park
- Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Zhang Y, Li L, Dong L, Cheng Y, Huang X, Xue B, Jiang C, Cao Y, Yang J. Hydrogel-Based Strategies for Liver Tissue Engineering. CHEM & BIO ENGINEERING 2024; 1:887-915. [PMID: 39975572 PMCID: PMC11835278 DOI: 10.1021/cbe.4c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/15/2024] [Accepted: 09/15/2024] [Indexed: 02/21/2025]
Abstract
The liver's role in metabolism, detoxification, and immune regulation underscores the urgency of addressing liver diseases, which claim millions of lives annually. Due to donor shortages in liver transplantation, liver tissue engineering (LTE) offers a promising alternative. Hydrogels, with their biocompatibility and ability to mimic the liver's extracellular matrix (ECM), support cell survival and function in LTE. This review analyzes recent advances in hydrogel-based strategies for LTE, including decellularized liver tissue hydrogels, natural polymer-based hydrogels, and synthetic polymer-based hydrogels. These materials are ideal for in vitro cell culture and obtaining functional hepatocytes. Hydrogels' tunable properties facilitate creating artificial liver models, such as organoids, 3D bioprinting, and liver-on-a-chip technologies. These developments demonstrate hydrogels' versatility in advancing LTE's applications, including hepatotoxicity testing, liver tissue regeneration, and treating acute liver failure. This review highlights the transformative potential of hydrogels in LTE and their implications for future research and clinical practice.
Collapse
Affiliation(s)
- Yu Zhang
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan
Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Luofei Li
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Liang Dong
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yuanqi Cheng
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Xiaoyu Huang
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Bin Xue
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Chunping Jiang
- Jinan
Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Yi Cao
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan
Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Jiapeng Yang
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan
Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| |
Collapse
|
3
|
Zhang K, Wan P, Wang L, Wang Z, Tan F, Li J, Ma X, Cen J, Yuan X, Liu Y, Sun Z, Cheng X, Liu Y, Liu X, Hu J, Zhong G, Li D, Xia Q, Hui L. Efficient expansion and CRISPR-Cas9-mediated gene correction of patient-derived hepatocytes for treatment of inherited liver diseases. Cell Stem Cell 2024; 31:1187-1202.e8. [PMID: 38772378 DOI: 10.1016/j.stem.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
Cell-based ex vivo gene therapy in solid organs, especially the liver, has proven technically challenging. Here, we report a feasible strategy for the clinical application of hepatocyte therapy. We first generated high-quality autologous hepatocytes through the large-scale expansion of patient-derived hepatocytes. Moreover, the proliferating patient-derived hepatocytes, together with the AAV2.7m8 variant identified through screening, enabled CRISPR-Cas9-mediated targeted integration efficiently, achieving functional correction of pathogenic mutations in FAH or OTC. Importantly, these edited hepatocytes repopulated the injured mouse liver at high repopulation levels and underwent maturation, successfully treating mice with tyrosinemia following transplantation. Our study combines ex vivo large-scale cell expansion and gene editing in patient-derived transplantable hepatocytes, which holds potential for treating human liver diseases.
Collapse
Affiliation(s)
- Kun Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Ping Wan
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhen Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fangzhi Tan
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Jie Li
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Xiaolong Ma
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin Cen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiang Yuan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yang Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing 100871, China
| | - Zhen Sun
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xi Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuanhua Liu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuhao Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing 100871, China
| | - Jiazhi Hu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing 100871, China
| | - Guisheng Zhong
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China.
| | - Lijian Hui
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
4
|
Li J, Li R, Bai X, Zhang W, Nie Y, Hu S. Direct reprogramming of fibroblasts into functional hepatocytes via CRISPRa activation of endogenous Gata4 and Foxa3. Chin Med J (Engl) 2024; 137:1351-1359. [PMID: 38721807 PMCID: PMC11191006 DOI: 10.1097/cm9.0000000000003088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND The ability to generate functional hepatocytes without relying on donor liver organs holds significant therapeutic promise in the fields of regenerative medicine and potential liver disease treatments. Clustered regularly interspaced short palindromic repeats (CRISPR) activator (CRISPRa) is a powerful tool that can conveniently and efficiently activate the expression of multiple endogenous genes simultaneously, providing a new strategy for cell fate determination. The main purpose of this study is to explore the feasibility of applying CRISPRa for hepatocyte reprogramming and its application in the treatment of mouse liver fibrosis. METHOD The differentiation of mouse embryonic fibroblasts (MEFs) into functional induced hepatocyte-like cells (iHeps) was achieved by utilizing the CRISPRa synergistic activation mediator (SAM) system, which drove the combined expression of three endogenous transcription factors- Gata4, Foxa3 , and Hnf1a -or alternatively, the expression of two transcription factors, Gata4 and Foxa3 . In vivo , we injected adeno-associated virus serotype 6 (AAV6) carrying the CRISPRa SAM system into liver fibrotic Col1a1-CreER ; Cas9fl/fl mice, effectively activating the expression of endogenous Gata4 and Foxa3 in fibroblasts. The endogenous transcriptional activation of genes was confirmed using real-time quantitative polymerase chain reaction (RT-qPCR) and RNA-seq, and the morphology and characteristics of the induced hepatocytes were observed through microscopy. The level of hepatocyte reprogramming in vivo is detected by immunofluorescence staining, while the improvement of liver fibrosis is evaluated through Sirius red staining, alpha-smooth muscle actin (α-SMA) immunofluorescence staining, and blood alanine aminotransferase (ALT) examination. RESULTS Activation of only two factors, Gata4 and Foxa3 , via CRISPRa was sufficient to successfully induce the transformation of MEFs into iHeps. These iHeps could be expanded in vitro and displayed functional characteristics similar to those of mature hepatocytes, such as drug metabolism and glycogen storage. Additionally, AAV6-based delivery of the CRISPRa SAM system effectively induced the hepatic reprogramming from fibroblasts in mice with live fibrosis. After 8 weeks of induction, the reprogrammed hepatocytes comprised 0.87% of the total hepatocyte population in the mice, significantly reducing liver fibrosis. CONCLUSION CRISPRa-induced hepatocyte reprogramming may be a promising strategy for generating functional hepatocytes and treating liver fibrosis caused by hepatic diseases.
Collapse
Affiliation(s)
- Jiacheng Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and Cardiovascular Institute, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, Third Hospital, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ruopu Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and Cardiovascular Institute, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Xue Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and Cardiovascular Institute, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Wenlong Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and Cardiovascular Institute, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and Cardiovascular Institute, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and Cardiovascular Institute, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
5
|
Ma M, Ge JY, Nie YZ, Li YM, Zheng YW. Developing Humanized Animal Models with Transplantable Human iPSC-Derived Cells. FRONT BIOSCI-LANDMRK 2024; 29:34. [PMID: 38287837 DOI: 10.31083/j.fbl2901034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/02/2023] [Accepted: 12/22/2023] [Indexed: 01/31/2024]
Abstract
Establishing reliable and reproducible animal models for disease modelling, drug screening and the understanding of disease susceptibility and pathogenesis is critical. However, traditional animal models differ significantly from humans in terms of physiology, immune response, and pathogenesis. As a result, it is difficult to translate laboratory findings into biomedical applications. Although several animal models with human chimeric genes, organs or systems have been developed in the past, their limited engraftment rate and physiological functions are a major obstacle to realize convincing models of humans. The lack of human transplantation resources and insufficient immune tolerance of recipient animals are the main challenges that need to be overcome to generate fully humanized animals. Recent advances in gene editing and pluripotent stem cell-based xenotransplantation technologies offer opportunities to create more accessible human-like models for biomedical research. In this article, we have combined our laboratory expertise to summarize humanized animal models, with a focus on hematopoietic/immune system and liver. We discuss their generation strategies and the potential donor cell sources, with particular attention given to human pluripotent stem cells. In particular, we discuss the advantages, limitations and emerging trends in their clinical and pharmaceutical applications. By providing insights into the current state of humanized animal models and their potential for biomedical applications, this article aims to advance the development of more accurate and reliable animal models for disease modeling and drug screening.
Collapse
Affiliation(s)
- Min Ma
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, 212001 Zhenjiang, Jiangsu, China
| | - Jian-Yun Ge
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, 529020 Jiangmen, Guangdong, China
| | - Yun-Zhong Nie
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 108-8639 Tokyo, Japan
| | - Yu-Mei Li
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, 212001 Zhenjiang, Jiangsu, China
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, 212001 Zhenjiang, Jiangsu, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, 529020 Jiangmen, Guangdong, China
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 108-8639 Tokyo, Japan
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 278-8510 Noda, Japan
| |
Collapse
|
6
|
Reza HA, Farooqui Z, Reza AA, Conroy C, Iwasawa K, Ogura Y, Okita K, Osafune K, Takebe T. Synthetic augmentation of bilirubin metabolism in human pluripotent stem cell-derived liver organoids. Stem Cell Reports 2023; 18:2071-2083. [PMID: 37832542 PMCID: PMC10679658 DOI: 10.1016/j.stemcr.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023] Open
Abstract
UGT1A1 (UDP glucuronosyltransferase family 1 member A1) is the primary enzyme required for bilirubin conjugation, which is essential for preventing hyperbilirubinemia. Animal models lack key human organic anion transporting polypeptides with distinct epigenetic control over bilirubin metabolism, necessitating a human model to interrogate the regulatory mechanism behind UGT1A1 function. Here, we use induced pluripotent stem cells to develop human liver organoids that can emulate conjugation failure phenotype. Bilirubin conjugation assays, chromatin immunoprecipitation, and transcriptome analysis elucidated the role of glucocorticoid antagonism in UGT1A1 activation. This antagonism prevents the binding of transcriptional repressor MECP2 at the expense of NRF2 with associated off-target effects. Therefore, we introduced functional GULO (L-gulonolactone oxidase) in human organoids to augment intracellular ascorbate for NRF2 reactivation. This engineered organoid conjugated more bilirubin and protected against hyperbilirubinemia when transplanted in immunosuppressed Crigler-Najjar syndrome rat model. Collectively, we demonstrate that our organoid system serves as a manipulatable model for interrogating hyperbilirubinemia and potential therapeutic development.
Collapse
Affiliation(s)
- Hasan Al Reza
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zishaan Farooqui
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Abid Al Reza
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Callen Conroy
- College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Kentaro Iwasawa
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yasuhiro Ogura
- Department of Transplantation Surgery, Nagoya University Hospital, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Keisuke Okita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takanori Takebe
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), and Division of Stem Cell and Organoid Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
7
|
Lo EKW, Velazquez JJ, Peng D, Kwon C, Ebrahimkhani MR, Cahan P. Platform-agnostic CellNet enables cross-study analysis of cell fate engineering protocols. Stem Cell Reports 2023; 18:1721-1742. [PMID: 37478860 PMCID: PMC10444577 DOI: 10.1016/j.stemcr.2023.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/23/2023] Open
Abstract
Optimization of cell engineering protocols requires standard, comprehensive quality metrics. We previously developed CellNet, a computational tool to quantitatively assess the transcriptional fidelity of engineered cells compared with their natural counterparts, based on bulk-derived expression profiles. However, this platform and others were limited in their ability to compare data from different sources, and no current tool makes it easy to compare new protocols with existing state-of-the-art protocols in a standardized manner. Here, we utilized our prior application of the top-scoring pair transformation to build a computational platform, platform-agnostic CellNet (PACNet), to address both shortcomings. To demonstrate the utility of PACNet, we applied it to thousands of samples from over 100 studies that describe dozens of protocols designed to produce seven distinct cell types. We performed an in-depth examination of hepatocyte and cardiomyocyte protocols to identify the best-performing methods, characterize the extent of intra-protocol and inter-lab variation, and identify common off-target signatures, including a surprising neural/neuroendocrine signature in primary liver-derived organoids. We have made PACNet available as an easy-to-use web application, allowing users to assess their protocols relative to our database of reference engineered samples, and as open-source, extensible code.
Collapse
Affiliation(s)
- Emily K W Lo
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jeremy J Velazquez
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Da Peng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Chulan Kwon
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
8
|
Garcia-Llorens G, Martínez-Sena T, Pareja E, Tolosa L, Castell JV, Bort R. A robust reprogramming strategy for generating hepatocyte-like cells usable in pharmaco-toxicological studies. Stem Cell Res Ther 2023; 14:94. [PMID: 37072803 PMCID: PMC10114490 DOI: 10.1186/s13287-023-03311-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/28/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND High-throughput pharmaco-toxicological testing frequently relies on the use of established liver-derived cell lines, such as HepG2 cells. However, these cells often display limited hepatic phenotype and features of neoplastic transformation that may bias the interpretation of the results. Alternate models based on primary cultures or differentiated pluripotent stem cells are costly to handle and difficult to implement in high-throughput screening platforms. Thus, cells without malignant traits, optimal differentiation pattern, producible in large and homogeneous amounts and with patient-specific phenotypes would be desirable. METHODS We have designed and implemented a novel and robust approach to obtain hepatocytes from individuals by direct reprogramming, which is based on a combination of a single doxycycline-inducible polycistronic vector system expressing HNF4A, HNF1A and FOXA3, introduced in human fibroblasts previously transduced with human telomerase reverse transcriptase (hTERT). These cells can be maintained in fibroblast culture media, under standard cell culture conditions. RESULTS Clonal hTERT-transduced human fibroblast cell lines can be expanded at least to 110 population doublings without signs of transformation or senescence. They can be easily differentiated at any cell passage number to hepatocyte-like cells with the simple addition of doxycycline to culture media. Acquisition of a hepatocyte phenotype is achieved in just 10 days and requires a simple and non-expensive cell culture media and standard 2D culture conditions. Hepatocytes reprogrammed from low and high passage hTERT-transduced fibroblasts display very similar transcriptomic profiles, biotransformation activities and show analogous pattern behavior in toxicometabolomic studies. Results indicate that this cell model outperforms HepG2 in toxicological screening. The procedure also allows generation of hepatocyte-like cells from patients with given pathological phenotypes. In fact, we succeeded in generating hepatocyte-like cells from a patient with alpha-1 antitrypsin deficiency, which recapitulated accumulation of intracellular alpha-1 antitrypsin polymers and deregulation of unfolded protein response and inflammatory networks. CONCLUSION Our strategy allows the generation of an unlimited source of clonal, homogeneous, non-transformed induced hepatocyte-like cells, capable of performing typical hepatic functions and suitable for pharmaco-toxicological high-throughput testing. Moreover, as far as hepatocyte-like cells derived from fibroblasts isolated from patients suffering hepatic dysfunctions, retain the disease traits, as demonstrated for alpha-1-antitrypsin deficiency, this strategy can be applied to the study of other cases of anomalous hepatocyte functionality.
Collapse
Affiliation(s)
- Guillem Garcia-Llorens
- Unidad de Hepatología Experimental y Trasplante Hepático, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politecnico La Fe, Torre A. Lab 6.08, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Valencia, Spain
| | - Teresa Martínez-Sena
- Unidad de Hepatología Experimental y Trasplante Hepático, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politecnico La Fe, Torre A. Lab 6.08, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Eugenia Pareja
- Unidad de Hepatología Experimental y Trasplante Hepático, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politecnico La Fe, Torre A. Lab 6.08, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Dr. Peset, Valencia, Spain
| | - Laia Tolosa
- Unidad de Hepatología Experimental y Trasplante Hepático, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politecnico La Fe, Torre A. Lab 6.08, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Centro de Investigación Biomédica en Red de Bioingenieria, Biomateriales y Nanomedicina (CIBER-Bbn), Instituto de Salud Carlos III, Madrid, Spain
| | - José V Castell
- Unidad de Hepatología Experimental y Trasplante Hepático, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politecnico La Fe, Torre A. Lab 6.08, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Valencia, Spain
| | - Roque Bort
- Unidad de Hepatología Experimental y Trasplante Hepático, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politecnico La Fe, Torre A. Lab 6.08, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
9
|
Wang Y, Zheng Q, Sun Z, Wang C, Cen J, Zhang X, Jin Y, Wu B, Yan T, Wang Z, Gu Q, Lv X, Nan J, Wu Z, Sun W, Pan G, Zhang L, Hui L, Cai X. Reversal of liver failure using a bioartificial liver device implanted with clinical-grade human-induced hepatocytes. Cell Stem Cell 2023; 30:617-631.e8. [PMID: 37059100 DOI: 10.1016/j.stem.2023.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/18/2023] [Accepted: 03/15/2023] [Indexed: 04/16/2023]
Abstract
Liver resection is the first-line treatment for primary liver cancers, providing the potential for a cure. However, concerns about post-hepatectomy liver failure (PHLF), a leading cause of death following extended liver resection, have restricted the population of eligible patients. Here, we engineered a clinical-grade bioartificial liver (BAL) device employing human-induced hepatocytes (hiHeps) manufactured under GMP conditions. In a porcine PHLF model, the hiHep-BAL treatment showed a remarkable survival benefit. On top of the supportive function, hiHep-BAL treatment restored functions, specifically ammonia detoxification, of the remnant liver and facilitated liver regeneration. Notably, an investigator-initiated study in seven patients with extended liver resection demonstrated that hiHep-BAL treatment was well tolerated and associated with improved liver function and liver regeneration, meeting the primary outcome of safety and feasibility. These encouraging results warrant further testing of hiHep-BAL for PHLF, the success of which would broaden the population of patients eligible for liver resection.
Collapse
Affiliation(s)
- Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou 310016, China; Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou 310016, China
| | - Qiang Zheng
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Zhen Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chenhua Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Science, Shanghai 200031, China
| | - Jin Cen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Science, Shanghai 200031, China
| | - Xinjie Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yan Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Baihua Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Science, Shanghai 200031, China
| | - Tingting Yan
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Ziyuan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Qiuxia Gu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xingyu Lv
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Junjie Nan
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Zhongyu Wu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Wenbin Sun
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ludi Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Science, Shanghai 200031, China.
| | - Lijian Hui
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Science, Shanghai 200031, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou 310016, China; Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou 310016, China.
| |
Collapse
|
10
|
Zhang J, Yang Z, Yan X, Duan J, Ruan B, Zhang X, Wen T, Zhang P, Liang L, Han H. RNA-binding protein SPEN controls hepatocyte maturation via regulating Hnf4α expression during liver development. Biochem Biophys Res Commun 2023; 642:128-136. [PMID: 36577249 DOI: 10.1016/j.bbrc.2022.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Liver organogenesis is a complex process. Although many signaling pathways and key factors have been identified during liver development, little is known about the regulation of late liver development, especially liver maturation. As a transcriptional repressor, SPEN has been demonstrated to interact with lncRNAs and transcription factors to participate in X chromosome inactivation, neural development, and lymphocyte differentiation. General disruption of SPEN results in embryonic lethality accompanied by hampered liver development in mice. However, the function of SPEN in embryonic liver development has not been reported. In this study, we demonstrate that SPEN is required for hepatocyte maturation using hepatocyte-specific disruption of SPEN with albumin-Cre-mediated knockout. SPEN expression was upregulated in hepatocytes along with liver development in mice. The deletion of the SPEN gene repressed hepatic maturation, mainly by a decrease in hepatic metabolic function and disruption of hepatocyte zonation. Additional experiments revealed that transcription factors which control hepatocyte maturation were strongly downregulated in SPEN-deficient hepatocytes, especially Hnf4α. Furthermore, restoration of Hnf4α levels partially rescued the immature state of hepatocytes caused by SPEN gene deletion. Taken together, these results reveal an unexpected role of SPEN in liver maturation.
Collapse
Affiliation(s)
- Jiayulin Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ziyan Yang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xianchun Yan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Juanli Duan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Bai Ruan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoyan Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ting Wen
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Peiran Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Liang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China; Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
11
|
Cai H, Cheng X, Wang X. ATP7B gene therapy of autologous reprogrammed hepatocytes alleviates copper accumulation in a mouse model of Wilson's disease. Hepatology 2022; 76:1046-1057. [PMID: 35340061 PMCID: PMC9790736 DOI: 10.1002/hep.32484] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/07/2022] [Accepted: 03/25/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Wilson's disease (WD) is a rare hereditary disorder due to ATP7B gene mutation, causing pathologic copper storage mainly in the liver and neurological systems. Hepatocyte transplantation showed therapeutic potential; however, this strategy is often hindered by a shortage of quality donor cells and by allogeneic immune rejection. In this study, we aimed to evaluate the function and efficacy of autologous reprogrammed, ATP7B gene-restored hepatocytes using a mouse model of WD. APPROACH AND RESULTS Sufficient liver progenitor cells (LPCs) were harvested by reprogramming hepatocytes from ATP7B-/- mice with small molecules, which exhibited strong proliferation and hepatic differentiation capacity in vitro. After lentivirus-mediated mini ATP7B gene transfection and redifferentiation, functional LPC-ATP7B-derived hepatocytes (LPC-ATP7B-Heps) were developed. RNA sequencing data showed that, compared with LPC-green fluorescent protein-Heps (LPC-GFP-Heps) with enrichment of genes that were mainly in pathways of oxidative stress and cell apoptosis, in LPC-ATP7B-Heps under high copper stress, copper ion binding and cell proliferation pathways were enriched. LPC-ATP7B-Heps transplantation into ATP7B-/- mice alleviated deposition of excess liver copper with its associated inflammation and fibrosis, comparable with those observed using normal primary hepatocytes at 4 months after transplantation. CONCLUSIONS We established a system of autologous reprogrammed WD hepatocytes and achieved ATP7B gene therapy in vitro. LPC-ATP7B-Heps transplantation demonstrated therapeutic efficacy on copper homeostasis in a mouse model of WD.
Collapse
Affiliation(s)
- Hongxia Cai
- Department of NeurologyTong‐Ren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xing Cheng
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell ScienceInstitute of Biochemistry and Cell BiologyUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Xiao‐Ping Wang
- Department of NeurologyTong‐Ren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
12
|
Graffmann N, Scherer B, Adjaye J. In vitro differentiation of pluripotent stem cells into hepatocyte like cells - basic principles and current progress. Stem Cell Res 2022; 61:102763. [DOI: 10.1016/j.scr.2022.102763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022] Open
|
13
|
Messina A, Luce E, Benzoubir N, Pasqua M, Pereira U, Humbert L, Eguether T, Rainteau D, Duclos-Vallée JC, Legallais C, Dubart-Kupperschmitt A. Evidence of Adult Features and Functions of Hepatocytes Differentiated from Human Induced Pluripotent Stem Cells and Self-Organized as Organoids. Cells 2022; 11:cells11030537. [PMID: 35159346 PMCID: PMC8834365 DOI: 10.3390/cells11030537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Human-induced pluripotent stem cell-derived hepatocytes (iHeps) have been shown to have considerable potential in liver diseases, toxicity, and pharmacological studies. However, there is a growing need to obtain iHeps that are truly similar to primary adult hepatocytes in terms of morphological features and functions. We generated such human iHeps, self-assembled as organoids (iHep-Orgs). Methods: iPSC-derived hepatoblasts were self-assembled into spheroids and differentiated into mature hepatocytes modulating final step of differentiation. Results: In about four weeks of culture, the albumin secretion levels and the complete disappearance of α-fetoprotein from iHep-Orgs suggested the acquisition of a greater degree of maturation than those previously reported. The expression of apical transporters and bile acid secretion evidenced the acquisition of complex hepatocyte polarity as well as the development of a functional and well-defined bile canalicular network confirmed by computational analysis. Activities recorded for CYP450, UGT1A1, and alcohol dehydrogenase, response to hormonal stimulation, and glucose metabolism were also remarkable. Finally, iHep-Orgs displayed a considerable ability to detoxify pathological concentrations of lactate and ammonia. Conclusions: With features similar to those of primary adult hepatocytes, the iHep-Orgs thus produced could be considered as a valuable tool for the development and optimization of preclinical and clinical applications.
Collapse
Affiliation(s)
- Antonietta Messina
- UMR_S 1193, INSERM/Université Paris-Saclay, F-94800 Villejuif, France; (E.L.); (N.B.); (J.-C.D.-V.)
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
- Correspondence: (A.M.); (A.D.-K.)
| | - Eléanor Luce
- UMR_S 1193, INSERM/Université Paris-Saclay, F-94800 Villejuif, France; (E.L.); (N.B.); (J.-C.D.-V.)
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
| | - Nassima Benzoubir
- UMR_S 1193, INSERM/Université Paris-Saclay, F-94800 Villejuif, France; (E.L.); (N.B.); (J.-C.D.-V.)
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
| | - Mattia Pasqua
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Sorbonne Universités, 60203 Compiegne, France
| | - Ulysse Pereira
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Sorbonne Universités, 60203 Compiegne, France
| | - Lydie Humbert
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM, CRSA, AP-HP, Hôpital Saint Antoine, Metomics, 75012 Paris, France; (L.H.); (T.E.); (D.R.)
| | - Thibaut Eguether
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM, CRSA, AP-HP, Hôpital Saint Antoine, Metomics, 75012 Paris, France; (L.H.); (T.E.); (D.R.)
| | - Dominique Rainteau
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM, CRSA, AP-HP, Hôpital Saint Antoine, Metomics, 75012 Paris, France; (L.H.); (T.E.); (D.R.)
| | - Jean-Charles Duclos-Vallée
- UMR_S 1193, INSERM/Université Paris-Saclay, F-94800 Villejuif, France; (E.L.); (N.B.); (J.-C.D.-V.)
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
| | - Cécile Legallais
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Sorbonne Universités, 60203 Compiegne, France
| | - Anne Dubart-Kupperschmitt
- UMR_S 1193, INSERM/Université Paris-Saclay, F-94800 Villejuif, France; (E.L.); (N.B.); (J.-C.D.-V.)
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
- Correspondence: (A.M.); (A.D.-K.)
| |
Collapse
|
14
|
Raggi C, M'Callum MA, Pham QT, Gaub P, Selleri S, Baratang NV, Mangahas CL, Cagnone G, Reversade B, Joyal JS, Paganelli M. Leveraging interacting signaling pathways to robustly improve the quality and yield of human pluripotent stem cell-derived hepatoblasts and hepatocytes. Stem Cell Reports 2022; 17:584-598. [PMID: 35120625 PMCID: PMC9039749 DOI: 10.1016/j.stemcr.2022.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
Pluripotent stem cell (PSC)-derived hepatocyte-like cells (HLCs) have shown great potential as an alternative to primary human hepatocytes (PHHs) for in vitro modeling. Several differentiation protocols have been described to direct PSCs toward the hepatic fate. Here, by leveraging recent knowledge of the signaling pathways involved in liver development, we describe a robust, scalable protocol that allowed us to consistently generate high-quality bipotent human hepatoblasts and HLCs from both embryonic stem cells and induced PSC (iPSCs). Although not yet fully mature, such HLCs were more similar to adult PHHs than were cells obtained with previously described protocols, showing good potential as a physiologically representative alternative to PHHs for in vitro modeling. PSC-derived hepatoblasts effectively generated with this protocol could differentiate into mature hepatocytes and cholangiocytes within syngeneic liver organoids, thus opening the way for representative human 3D in vitro modeling of liver development and pathophysiology. We generated human hepatoblasts and hepatocyte-like cells (HLCs) from pluripotent stem cells Timed action on Wnt/β-catenin and TGFβ pathways improved maturity and yield of HLCs Hepatoblasts matured into hepatocytes and bile ducts within complex liver organoids The protocol is robust and showed potential for scalability and drug testing
Collapse
Affiliation(s)
- Claudia Raggi
- Liver Tissue Engineering and Cell Therapy Laboratory, CHU Sainte-Justine, Montreal, QC, Canada; Morphocell Technologies Inc., Montreal, QC, Canada
| | - Marie-Agnès M'Callum
- Liver Tissue Engineering and Cell Therapy Laboratory, CHU Sainte-Justine, Montreal, QC, Canada
| | - Quang Toan Pham
- Liver Tissue Engineering and Cell Therapy Laboratory, CHU Sainte-Justine, Montreal, QC, Canada
| | - Perrine Gaub
- CHU Sainte-Justine Research Center, Montreal, QC, Canada; Morphocell Technologies Inc., Montreal, QC, Canada
| | - Silvia Selleri
- Liver Tissue Engineering and Cell Therapy Laboratory, CHU Sainte-Justine, Montreal, QC, Canada
| | | | - Chenicka Lyn Mangahas
- Liver Tissue Engineering and Cell Therapy Laboratory, CHU Sainte-Justine, Montreal, QC, Canada
| | - Gaël Cagnone
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Bruno Reversade
- Institute of Molecular and Cell Biology and Institute of Medical Biology, A(∗)STAR, Singapore, Singapore
| | - Jean-Sébastien Joyal
- CHU Sainte-Justine Research Center, Montreal, QC, Canada; Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Massimiliano Paganelli
- Liver Tissue Engineering and Cell Therapy Laboratory, CHU Sainte-Justine, Montreal, QC, Canada; Department of Pediatrics, Université de Montréal, Montreal, QC, Canada; Morphocell Technologies Inc., Montreal, QC, Canada; Pediatric Hepatology, CHU Sainte-Justine, Montreal, QC, Canada.
| |
Collapse
|
15
|
Peaslee C, Esteva-Font C, Su T, Munoz-Howell A, Duwaerts CC, Liu Z, Rao S, Liu K, Medina M, Sneddon JB, Maher JJ, Mattis AN. Doxycycline Significantly Enhances Induction of Induced Pluripotent Stem Cells to Endoderm by Enhancing Survival Through Protein Kinase B Phosphorylation. Hepatology 2021; 74:2102-2117. [PMID: 33982322 PMCID: PMC8544023 DOI: 10.1002/hep.31898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND AIMS Induced pluripotent stem cells (iPSCs) provide an important tool for the generation of patient-derived cells, including hepatocyte-like cells, by developmental cues through an endoderm intermediate. However, most iPSC lines fail to differentiate into endoderm, with induction resulting in apoptosis. APPROACH AND RESULTS To address this issue, we built upon published methods to develop an improved protocol. We discovered that doxycycline dramatically enhances the efficiency of iPSCs to endoderm differentiation by inhibiting apoptosis and promoting proliferation through the protein kinase B pathway. We tested this protocol in >70 iPSC lines, 90% of which consistently formed complete sheets of endoderm. Endoderm generated by our method achieves similar transcriptomic profiles, expression of endoderm protein markers, and the ability to be further differentiated to downstream lineages. CONCLUSIONS Furthermore, this method achieves a 4-fold increase in endoderm cell number and will accelerate studies of human diseases in vitro and facilitate the expansion of iPSC-derived cells for transplantation studies.
Collapse
Affiliation(s)
- Caitlin Peaslee
- Department of Pathology, University of California San Francisco, San Francisco, CA
| | - Cristina Esteva-Font
- Department of Pathology, University of California San Francisco, San Francisco, CA
| | - Tao Su
- Department of Pathology, University of California San Francisco, San Francisco, CA
| | - Antonio Munoz-Howell
- Children’s Hospital Oakland Research Institute, University of California San Francisco, San Francisco, CA
| | - Caroline C. Duwaerts
- Department of Medicine, University of California San Francisco, San Francisco, CA
- Liver Center, University of California San Francisco, San Francisco, CA
| | - Zhe Liu
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA
- Diabetes Center, University of California San Francisco, San Francisco, CA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA
| | - Sneha Rao
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA
- Diabetes Center, University of California San Francisco, San Francisco, CA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA
| | - Ke Liu
- Children’s Hospital Oakland Research Institute, University of California San Francisco, San Francisco, CA
| | - Marisa Medina
- Children’s Hospital Oakland Research Institute, University of California San Francisco, San Francisco, CA
- Liver Center, University of California San Francisco, San Francisco, CA
| | - Julie B. Sneddon
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA
- Diabetes Center, University of California San Francisco, San Francisco, CA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA
- Department of Anatomy, University of California San Francisco, San Francisco, CA
| | - Jacquelyn J. Maher
- Department of Medicine, University of California San Francisco, San Francisco, CA
- Liver Center, University of California San Francisco, San Francisco, CA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA
| | - Aras N. Mattis
- Department of Pathology, University of California San Francisco, San Francisco, CA
- Liver Center, University of California San Francisco, San Francisco, CA
| |
Collapse
|
16
|
Sun L, Hui L. Progress in human liver organoids. J Mol Cell Biol 2021; 12:607-617. [PMID: 32236564 PMCID: PMC7683012 DOI: 10.1093/jmcb/mjaa013] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/30/2019] [Accepted: 03/30/2020] [Indexed: 12/24/2022] Open
Abstract
Understanding the development, regeneration, and disorders of the liver is the major goal in liver biology. Current mechanistic knowledge of human livers has been largely derived from mouse models and cell lines, which fall short in recapitulating the features of human liver cells or the structures and functions of human livers. Organoids as an in vitro system hold the promise to generate organ-like tissues in a dish. Recent advances in human liver organoids also facilitate the understanding of the biology and diseases in this complex organ. Here we review the progress in human liver organoids, mainly focusing on the methods to generate liver organoids, their applications, and possible future directions.
Collapse
Affiliation(s)
- Lulu Sun
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Lijian Hui
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Suzhou 215121, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
17
|
Yasui R, Sekine K, Yamaguchi K, Furukawa Y, Taniguchi H. Robust parameter design of human induced pluripotent stem cell differentiation protocols defines lineage-specific induction of anterior-posterior gut tube endodermal cells. Stem Cells 2021; 39:429-442. [PMID: 33400835 DOI: 10.1002/stem.3326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022]
Abstract
Tissues and cells derived from pluripotent stem cells (PSC) are likely to become widely used in disease modeling, drug screening, and regenerative medicine. For these applications, the in vitro PSC differentiation process must be elaborately investigated and controlled to reliably obtain the desired end products. However, because traditional experimental methods, such as one factor at a time or brute-force approaches, are impractical for detailed screening of complex PSC cultivation conditions, more strategic and effective screening based on statistical design of experiments (DOE) ought to be indispensable. Among various DOE approaches, we regard robust parameter design (RPD) as particularly suited for differentiation protocol optimization due to its suitability for multifactorial screening. We confirmed the adaptability of RPD for investigating human induced PSC lineage specification toward anterior-posterior gut tube endodermal cells and clarified both the contribution of each cell signaling pathway and the effect of cell signaling condition alteration on marker RNA expression levels, while increasing the efficiency of the screening in 243-fold (18 vs 4374) compared with that of a brute-force approach. Specific induction of anterior foregut, hepatic, pancreatic, or mid-hindgut cells was achieved using seven iPSC strains with the optimal culture protocols established on the basis of RPD analysis. RPD has the potential to enable efficient construction and optimization of PSC differentiation protocols, and its use is recommended from fundamental research to mass production of PSC-derived products.
Collapse
Affiliation(s)
- Ryota Yasui
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Fundamental Research Laboratory, Eiken Chemical Co., Ltd., Nogi, Tochigi, Japan
| | - Keisuke Sekine
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Laboratory of Cancer Cell Systems, National Cancer Center Research Institute, Tokyo, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Advanced Medical Research Center, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
18
|
Sugahara G, Ishida Y, Sun J, Tateno C, Saito T. Art of Making Artificial Liver: Depicting Human Liver Biology and Diseases in Mice. Semin Liver Dis 2020; 40:189-212. [PMID: 32074631 PMCID: PMC8629128 DOI: 10.1055/s-0040-1701444] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Advancement in both bioengineering and cell biology of the liver led to the establishment of the first-generation humanized liver chimeric mouse (HLCM) model in 2001. The HLCM system was initially developed to satisfy the necessity for a convenient and physiologically representative small animal model for studies of hepatitis B virus and hepatitis C virus infection. Over the last two decades, the HLCM system has substantially evolved in quality, production capacity, and utility, thereby growing its versatility beyond the study of viral hepatitis. Hence, it has been increasingly employed for a variety of applications including, but not limited to, the investigation of drug metabolism and pharmacokinetics and stem cell biology. To date, more than a dozen distinctive HLCM systems have been established, and each model system has similarities as well as unique characteristics, which are often perplexing for end-users. Thus, this review aims to summarize the history, evolution, advantages, and pitfalls of each model system with the goal of providing comprehensive information that is necessary for researchers to implement the ideal HLCM system for their purposes. Furthermore, this review article summarizes the contribution of HLCM and its derivatives to our mechanistic understanding of various human liver diseases, its potential for novel applications, and its current limitations.
Collapse
Affiliation(s)
- Go Sugahara
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California,Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Yuji Ishida
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California,Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Jeffrey Sun
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chise Tateno
- Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Takeshi Saito
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California,USC Research Center for Liver Diseases, Los Angeles, California
| |
Collapse
|
19
|
Xiang C, Du Y, Meng G, Soon Yi L, Sun S, Song N, Zhang X, Xiao Y, Wang J, Yi Z, Liu Y, Xie B, Wu M, Shu J, Sun D, Jia J, Liang Z, Sun D, Huang Y, Shi Y, Xu J, Lu F, Li C, Xiang K, Yuan Z, Lu S, Deng H. Long-term functional maintenance of primary human hepatocytes in vitro. Science 2019; 364:399-402. [PMID: 31023926 DOI: 10.1126/science.aau7307] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 04/03/2019] [Indexed: 12/15/2022]
Abstract
The maintenance of terminally differentiated cells, especially hepatocytes, in vitro has proven challenging. Here we demonstrated the long-term in vitro maintenance of primary human hepatocytes (PHHs) by modulating cell signaling pathways with a combination of five chemicals (5C). 5C-cultured PHHs showed global gene expression profiles and hepatocyte-specific functions resembling those of freshly isolated counterparts. Furthermore, these cells efficiently recapitulated the entire course of hepatitis B virus (HBV) infection over 4 weeks with the production of infectious viral particles and formation of HBV covalently closed circular DNA. Our study demonstrates that, with a chemical approach, functional maintenance of PHHs supports long-term HBV infection in vitro, providing an efficient platform for investigating HBV cell biology and antiviral drug screening.
Collapse
Affiliation(s)
- Chengang Xiang
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Yuanyuan Du
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Gaofan Meng
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Liew Soon Yi
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Shicheng Sun
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Nan Song
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Xiaonan Zhang
- Shanghai Public Health Clinical Center, Shanghai 201508, China
| | - Yiwei Xiao
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jie Wang
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhigang Yi
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yifang Liu
- Center for Bioinformatics, Peking University, Beijing 100871, China
| | - Bingqing Xie
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China
| | - Min Wu
- Shanghai Public Health Clinical Center, Shanghai 201508, China
| | - Jun Shu
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Da Sun
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China
| | - Jun Jia
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Zhen Liang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China
| | - Dong Sun
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | | | - Yan Shi
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Jun Xu
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Fengmin Lu
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Cheng Li
- Center for Bioinformatics, Peking University, Beijing 100871, China
| | - Kuanhui Xiang
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Shichun Lu
- Department of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing 100853, China.
| | - Hongkui Deng
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China. .,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China
| |
Collapse
|
20
|
Furuya K, Zheng YW, Sako D, Iwasaki K, Zheng DX, Ge JY, Liu LP, Furuta T, Akimoto K, Yagi H, Hamada H, Isoda H, Oda T, Ohkohchi N. Enhanced hepatic differentiation in the subpopulation of human amniotic stem cells under 3D multicellular microenvironment. World J Stem Cells 2019; 11:705-721. [PMID: 31616545 PMCID: PMC6789189 DOI: 10.4252/wjsc.v11.i9.705] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/06/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND To solve the problem of liver transplantation donor insufficiency, an alternative cell transplantation therapy was investigated. We focused on amniotic epithelial cells (AECs) as a cell source because, unlike induced pluripotent stem cells, they are cost-effective and non-tumorigenic. The utilization of AECs in regenerative medicine, however, is in its infancy. A general profile for AECs has not been comprehensively analyzed. Moreover, no hepatic differentiation protocol for AECs has yet been established. To this end, we independently compiled human AEC libraries, purified amniotic stem cells (ASCs), and co-cultured them with mesenchymal stem cells (MSCs) and human umbilical vein endothelial cell (HUVECs) in a 3D system which induces functional hepatic organoids. AIM To characterize AECs and generate functional hepatic organoids from ASCs and other somatic stem cells. METHODS AECs, MSCs, and HUVECs were isolated from the placentae and umbilical cords of cesarean section patients. Amnion and primary AEC stemness characteristics and heterogeneity were analyzed by immunocytochemistry, Alkaline phosphatase (AP) staining, and flow cytometry. An adherent AEC subpopulation was selected and evaluated for ASC purification quality by a colony formation assay. AEC transcriptomes were compared with those for other hepatocytes cell sources by bioinformatics. The 2D and 3D culture were compared by relative gene expression using several differentiation protocols. ASCs, MSCs, and HUVECs were combined in a 3D co-culture system to generate hepatic organoids whose structure was compared with a 3D AEC sphere and whose function was elucidated by immunofluorescence imaging, periodic acid Schiff, and an indocyanine green (ICG) test. RESULTS AECs have certain stemness markers such as EPCAM, SSEA4, and E-cadherin. One AEC subpopulation was also either positive for AP staining or expressed the TRA-1-60 and TRA-1-81 stemness markers. Moreover, it could form colonies and its frequency was enhanced ten-fold in the adherent subpopulation after selective primary passage. Bioinformatics analysis of ribose nucleic acid sequencing revealed that the total AEC gene expression was distant from those of pluripotent stem cells and hepatocytes but some gene expression overlapped among these cells. TJP1, associated with epidermal growth factor receptor, and MET, associated with hepatocyte growth factor receptor, were upregulated and may be important for hepatic differentiation. In conventional flat culture, the cells turned unviable and did not readily differentiate into hepatocytes. In 3D culture, however, hepatic gene expression of the AEC sphere was elevated even under a two-step differentiation protocol. Furthermore, the organoids derived from the MSC and HUVEC co-culture showed 3D structure with polarity, hepatic-like glycogen storage, and ICG absorption/elimination. CONCLUSION Human amniotic epithelial cells are heterogeneous and certain subpopulations have high stemness. Under a 3D co-culture system, functional hepatic organoids were generated in a multicellular microenvironment.
Collapse
Affiliation(s)
- Kinji Furuya
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Institute of Regenerative Medicine and Affiliated Hospital, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
- Department of Regenerative Medicine, School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Daisuke Sako
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Kenichi Iwasaki
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Dong-Xu Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Jian-Yun Ge
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Li-Ping Liu
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Institute of Regenerative Medicine and Affiliated Hospital, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Tomoaki Furuta
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kazunori Akimoto
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Hiroya Yagi
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hiromi Hamada
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Nobuhiro Ohkohchi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
21
|
Ge JY, Zheng YW, Liu LP, Isoda H, Oda T. Impelling force and current challenges by chemicals in somatic cell reprogramming and expansion beyond hepatocytes. World J Stem Cells 2019; 11:650-665. [PMID: 31616541 PMCID: PMC6789182 DOI: 10.4252/wjsc.v11.i9.650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/07/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
In the field of regenerative medicine, generating numerous transplantable functional cells in the laboratory setting on a large scale is a major challenge. However, the in vitro maintenance and expansion of terminally differentiated cells are challenging because of the lack of specific environmental and intercellular signal stimulations, markedly hindering their therapeutic application. Remarkably, the generation of stem/progenitor cells or functional cells with effective proliferative potential is markedly in demand for disease modeling, cell-based transplantation, and drug discovery. Despite the potent genetic manipulation of transcription factors, integration-free chemically defined approaches for the conversion of somatic cell fate have garnered considerable attention in recent years. This review aims to summarize the progress thus far and discuss the advantages, limitations, and challenges of the impact of full chemicals on the stepwise reprogramming of pluripotency, direct lineage conversion, and direct lineage expansion on somatic cells. Owing to the current chemical-mediated induction, reprogrammed pluripotent stem cells with reproducibility difficulties, and direct lineage converted cells with marked functional deficiency, it is imperative to generate the desired cell types directly by chemically inducing their potent proliferation ability through a lineage-committed progenitor state, while upholding the maturation and engraftment capacity posttransplantation in vivo. Together with the comprehensive understanding of the mechanism of chemical drives, as well as the elucidation of specificity and commonalities, the precise manipulation of the expansion for diverse functional cell types could broaden the available cell sources and enhance the cellular function for clinical application in future.
Collapse
Affiliation(s)
- Jian-Yun Ge
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Institute of Regenerative Medicine and Affiliated Hospital, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
- Department of Regenerative Medicine, School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Li-Ping Liu
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Institute of Regenerative Medicine and Affiliated Hospital, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
22
|
Qiu Z, Li H, Zhang Z, Zhu Z, He S, Wang X, Wang P, Qin J, Zhuang L, Wang W, Xie F, Gu Y, Zou K, Li C, Li C, Wang C, Cen J, Chen X, Shu Y, Zhang Z, Sun L, Min L, Fu Y, Huang X, Lv H, Zhou H, Ji Y, Zhang Z, Meng Z, Shi X, Zhang H, Li Y, Hui L. A Pharmacogenomic Landscape in Human Liver Cancers. Cancer Cell 2019; 36:179-193.e11. [PMID: 31378681 PMCID: PMC7505724 DOI: 10.1016/j.ccell.2019.07.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 05/17/2019] [Accepted: 07/01/2019] [Indexed: 12/30/2022]
Abstract
Liver cancers are highly heterogeneous with poor prognosis and drug response. A better understanding between genetic alterations and drug responses would facilitate precision treatment for liver cancers. To characterize the landscape of pharmacogenomic interactions in liver cancers, we developed a protocol to establish human liver cancer cell models at a success rate of around 50% and generated the Liver Cancer Model Repository (LIMORE) with 81 cell models. LIMORE represented genomic and transcriptomic heterogeneity of primary cancers. Interrogation of the pharmacogenomic landscape of LIMORE discovered unexplored gene-drug associations, including synthetic lethalities to prevalent alterations in liver cancers. Moreover, predictive biomarker candidates were suggested for the selection of sorafenib-responding patients. LIMORE provides a rich resource facilitating drug discovery in liver cancers.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Asian People/genetics
- Biomarkers, Tumor/genetics
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/ethnology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Clinical Decision-Making
- Databases, Genetic
- Drug Resistance, Neoplasm/genetics
- Female
- Genetic Heterogeneity
- Genetic Predisposition to Disease
- High-Throughput Nucleotide Sequencing
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/ethnology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Male
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Nude
- Mice, SCID
- Patient Selection
- Pharmacogenomic Testing
- Pharmacogenomic Variants
- Phenotype
- Precision Medicine
- Protein Kinase Inhibitors/pharmacology
- Sorafenib/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Zhixin Qiu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hong Li
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhengtao Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhenfeng Zhu
- Department of Minimally Invasive Therapy, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Sheng He
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Xujun Wang
- SJTU-Yale Joint Center for Biostatistics, Department of Bioinformatics and Biostatistics, Shanghai Jiaotong University, Shanghai 200240, China
| | - Pengcheng Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Shanghai 200032, China
| | - Jianjie Qin
- Liver Transplantation Center, Key Laboratory of Living Donor Liver Transplantation of Ministry of Public Health, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Liping Zhuang
- Department of Minimally Invasive Therapy, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wei Wang
- Shanghai ChemPartner Co., Ltd., Shanghai 201203, China
| | - Fubo Xie
- Shanghai ChemPartner Co., Ltd., Shanghai 201203, China
| | - Ying Gu
- Shanghai ChemPartner Co., Ltd., Shanghai 201203, China
| | - Keke Zou
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Li
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chun Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chenhua Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin Cen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaotao Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yajing Shu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhao Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lulu Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lihua Min
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong Fu
- Fifth Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Xiaowu Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Shanghai 200032, China
| | - Hui Lv
- SJTU-Yale Joint Center for Biostatistics, Department of Bioinformatics and Biostatistics, Shanghai Jiaotong University, Shanghai 200240, China
| | - He Zhou
- Shanghai ChemPartner Co., Ltd., Shanghai 201203, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhigang Zhang
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Zhiqiang Meng
- Department of Minimally Invasive Therapy, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 211166, China.
| | - Haibin Zhang
- Fifth Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China.
| | - Yixue Li
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China; Bio-Research Innovation Center Suzhou, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Suzhou, Jiangsu 215121, China.
| |
Collapse
|
23
|
Sun L, Wang Y, Cen J, Ma X, Cui L, Qiu Z, Zhang Z, Li H, Yang RZ, Wang C, Chen X, Wang L, Ye Y, Zhang H, Pan G, Kang JS, Ji Y, Zheng YW, Zheng S, Hui L. Modelling liver cancer initiation with organoids derived from directly reprogrammed human hepatocytes. Nat Cell Biol 2019; 21:1015-1026. [PMID: 31332348 DOI: 10.1038/s41556-019-0359-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 06/11/2019] [Indexed: 12/24/2022]
Abstract
Human liver cancers, including hepatocellular carcinomas and intra-hepatic cholangiocarcinomas, are often diagnosed late with poor prognosis. A better understanding of cancer initiation could provide potential preventive therapies and increase survival. Models for studying human liver cancer initiation are largely missing. Here, using directly reprogrammed human hepatocytes (hiHeps) and inactivation of p53 and RB, we established organoids possessing liver architecture and function. HiHep organoids were genetically engineered to model the initial alterations in human liver cancers. Bona fide hepatocellular carcinomas were developed by overexpressing c-Myc. Excessive mitochondrion-endoplasmic reticulum coupling induced by c-Myc facilitated hepatocellular carcinoma initiation and seemed to be a target of preventive treatment. Furthermore, through the analysis of human intra-hepatic cholangiocarcinoma-enriched mutations, we demonstrate that the RAS-induced lineage conversion from hepatocytes to intra-hepatic cholangiocarcinoma cells can be prevented by the combined inhibition of Notch and JAK-STAT. Together, hiHep organoids represent a system that can be genetically manipulated to model cancer initiation and identify potential preventive therapies.
Collapse
Affiliation(s)
- Lulu Sun
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuqing Wang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Jin Cen
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaolong Ma
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lei Cui
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhixin Qiu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhengtao Zhang
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hong Li
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Run-Zhou Yang
- Shanghai Institute for Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chenhua Wang
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaotao Chen
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Le Wang
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yao Ye
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haibin Zhang
- Fifth Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Guoyu Pan
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Sheng Kang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yun-Wen Zheng
- Faculty of Medicine, University of Tsukuba, Tsukuba-shi, Japan.
- School of Medicine, Yokohama City University, Yokohama, Japan.
- Institute of Regenerative Medicine, Jiangsu University, Zhenjiang, China.
| | - Shan Zheng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China.
| | - Lijian Hui
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Suzhou, China.
| |
Collapse
|
24
|
A two-step lineage reprogramming strategy to generate functionally competent human hepatocytes from fibroblasts. Cell Res 2019; 29:696-710. [PMID: 31270412 PMCID: PMC6796870 DOI: 10.1038/s41422-019-0196-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 01/05/2023] Open
Abstract
Terminally differentiated cells can be generated by lineage reprogramming, which is, however, hindered by incomplete conversion with residual initial cell identity and partial functionality. Here, we demonstrate a new reprogramming strategy by mimicking the natural regeneration route, which permits generating expandable hepatic progenitor cells and functionally competent human hepatocytes. Fibroblasts were first induced into human hepatic progenitor-like cells (hHPLCs), which could robustly expand in vitro and efficiently engraft in vivo. Moreover, hHPLCs could be efficiently induced into mature human hepatocytes (hiHeps) in vitro, whose molecular identity highly resembles primary human hepatocytes (PHHs). Most importantly, hiHeps could be generated in large quantity and were functionally competent to replace PHHs for drug-metabolism estimation, toxicity prediction and hepatitis B virus infection modeling. Our results highlight the advantages of the progenitor stage for successful lineage reprogramming. This strategy is promising for generating other mature human cell types by lineage reprogramming.
Collapse
|
25
|
Grant R, Hallett J, Forbes S, Hay D, Callanan A. Blended electrospinning with human liver extracellular matrix for engineering new hepatic microenvironments. Sci Rep 2019; 9:6293. [PMID: 31000735 PMCID: PMC6472345 DOI: 10.1038/s41598-019-42627-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 04/03/2019] [Indexed: 12/21/2022] Open
Abstract
Tissue engineering of a transplantable liver could provide an alternative to donor livers for transplant, solving the problem of escalating donor shortages. One of the challenges for tissue engineers is the extracellular matrix (ECM); a finely controlled in vivo niche which supports hepatocytes. Polymers and decellularized tissue scaffolds each provide some of the necessary biological cues for hepatocytes, however, neither alone has proved sufficient. Enhancing microenvironments using bioactive molecules allows researchers to create more appropriate niches for hepatocytes. We combined decellularized human liver tissue with electrospun polymers to produce a niche for hepatocytes and compared the human liver ECM to its individual components; Collagen I, Laminin-521 and Fibronectin. The resulting scaffolds were validated using THLE-3 hepatocytes. Immunohistochemistry confirmed retention of proteins in the scaffolds. Mechanical testing demonstrated significant increases in the Young's Modulus of the decellularized ECM scaffold; providing significantly stiffer environments for hepatocytes. Each scaffold maintained hepatocyte growth, albumin production and influenced expression of key hepatic genes, with the decellularized ECM scaffolds exerting an influence which is not recapitulated by individual ECM components. Blended protein:polymer scaffolds provide a viable, translatable niche for hepatocytes and offers a solution to current obstacles in disease modelling and liver tissue engineering.
Collapse
Affiliation(s)
- Rhiannon Grant
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Scotland, UK
| | - John Hallett
- Scottish Centre for Regenerative Medicine, University of Edinburgh, Scotland, UK
| | - Stuart Forbes
- Scottish Centre for Regenerative Medicine, University of Edinburgh, Scotland, UK
| | - David Hay
- Scottish Centre for Regenerative Medicine, University of Edinburgh, Scotland, UK
| | - Anthony Callanan
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Scotland, UK.
| |
Collapse
|
26
|
Gijbels E, Vilas-Boas V, Deferm N, Devisscher L, Jaeschke H, Annaert P, Vinken M. Mechanisms and in vitro models of drug-induced cholestasis. Arch Toxicol 2019; 93:1169-1186. [PMID: 30972450 DOI: 10.1007/s00204-019-02437-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/02/2019] [Indexed: 12/12/2022]
Abstract
Cholestasis underlies one of the major manifestations of drug-induced liver injury. Drug-induced cholestatic liver toxicity is a complex process, as it can be triggered by a variety of factors that induce 2 types of biological responses, namely a deteriorative response, caused by bile acid accumulation, and an adaptive response, aimed at removing the accumulated bile acids. Several key events in both types of responses have been characterized in the past few years. In parallel, many efforts have focused on the development and further optimization of experimental cell culture models to predict the occurrence of drug-induced cholestatic liver toxicity in vivo. In this paper, a state-of-the-art overview of mechanisms and in vitro models of drug-induced cholestatic liver injury is provided.
Collapse
Affiliation(s)
- Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Vânia Vilas-Boas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Neel Deferm
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N2, Herestraat 49, Bus 921, 3000, Leuven, Belgium
| | - Lindsey Devisscher
- Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 1018, Kansas City, KS, 66160, USA
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N2, Herestraat 49, Bus 921, 3000, Leuven, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
27
|
Yuan L, Zhang Y, Liu X, Chen Y, Zhang L, Cao J, Li X, Wang M, Wu K, Zhang J, Liu G, Tang Q, Yuan Q, Cheng T, Xia N. Agonist c-Met Monoclonal Antibody Augments the Proliferation of hiPSC-derived Hepatocyte-Like Cells and Improves Cell Transplantation Therapy for Liver Failure in Mice. Theranostics 2019; 9:2115-2128. [PMID: 31037160 PMCID: PMC6485278 DOI: 10.7150/thno.30009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/24/2018] [Indexed: 02/06/2023] Open
Abstract
Rationale: Hepatocyte-like cells (HLCs) derived from human induced pluripotent stem cells (hiPSCs) have been developed to address the shortage of primary human hepatocytes (PHHs) for therapeutic applications. However, the in vivo repopulation capacity of HLCs remains limited. This study investigated the roles of agonist antibody activating the c-Met receptor in promoting the in vivo proliferation and repopulation of engrafted PHHs and/or HLCs in mice with liver injuries due to different causes. Methods: An agonist c-Met receptor antibody (5D5) was used to treat PHHs and hiPSC-HLCs in both cell culture and hepatocyte-engrafted immunodeficient mice mimicking various inherited and acquired liver diseases. The promoting roles and potential influence on the hepatic phenotype of the 5D5 regimen in cell transplantation-based therapeutic applications were systematically evaluated. Results: In hiPSC-HLC cell cultures, 5D5 treatment significantly stimulated c-Met receptor downstream signalling pathways and accelerated cell proliferation in dose-dependent and reversible manners. In contrast, only slight but nonsignificant promotion was observed in 5D5-treated PHHs. In vivo administration of 5D5 greatly promoted the expansion of implanted hiPSC-HLCs in fumarylacetoacetate hydrolase (Fah) deficient mice, resulting in significantly increased human albumin levels and high human liver chimerism (over 40%) in the transplanted mice at week 8 after transplantation. More importantly, transplantation of hiPSC-HLCs in combination with 5D5 significantly prolonged animal survival and ameliorated liver pathological changes in mice with acute and/or chronic liver injuries caused by Fas agonistic antibody treatment, carbon tetrachloride treatment and/or tyrosinemic stress. Conclusion: Our results demonstrated that the proliferation of hiPSC-HLCs can be enhanced by antibody-mediated modulation of c-Met signalling and facilitate hiPSC-HLC-based therapeutic applications for life-threatening liver diseases.
Collapse
|
28
|
Kim Y, Kang K, Lee SB, Seo D, Yoon S, Kim SJ, Jang K, Jung YK, Lee KG, Factor VM, Jeong J, Choi D. Small molecule-mediated reprogramming of human hepatocytes into bipotent progenitor cells. J Hepatol 2019; 70:97-107. [PMID: 30240598 DOI: 10.1016/j.jhep.2018.09.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 08/02/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Currently, much effort is directed towards the development of new cell sources for clinical therapy using cell fate conversion by small molecules. Direct lineage reprogramming to a progenitor state has been reported in terminally differentiated rodent hepatocytes, yet remains a challenge in human hepatocytes. METHODS Human hepatocytes were isolated from healthy and diseased donor livers and reprogrammed into progenitor cells by 2 small molecules, A83-01 and CHIR99021 (AC), in the presence of EGF and HGF. The stemness properties of human chemically derived hepatic progenitors (hCdHs) were tested by standard in vitro and in vivo assays and transcriptome profiling. RESULTS We developed a robust culture system for generating hCdHs with therapeutic potential. The use of HGF proved to be an essential determinant of the fate conversion process. Based on functional evidence, activation of the HGF/MET signal transduction system collaborated with A83-01 and CHIR99021 to allow a rapid expansion of progenitor cells through the activation of the ERK pathway. hCdHs expressed hepatic progenitor markers and could self-renew for at least 10 passages while retaining a normal karyotype and potential to differentiate into functional hepatocytes and biliary epithelial cells in vitro. Gene expression profiling using RNAseq confirmed the transcriptional reprogramming of hCdHs towards a progenitor state and the suppression of mature hepatocyte transcripts. Upon intrasplenic transplantation in several models of therapeutic liver repopulation, hCdHs effectively repopulated the damaged parenchyma. CONCLUSION Our study is the first report of successful reprogramming of human hepatocytes to a population of proliferating bipotent cells with regenerative potential. hCdHs may provide a novel tool that permits expansion and genetic manipulation of patient-specific progenitors to study regeneration and the repair of diseased livers. LAY SUMMARY Human primary hepatocytes were reprogrammed towards hepatic progenitor cells by a combined treatment with 2 small molecules, A83-01 and CHIR99021, and HGF. Chemically derived hepatic progenitors exhibited a high proliferation potential and the ability to differentiate into hepatocytes and biliary epithelial cells both in vitro and in vivo. This approach enables the generation of patient-specific hepatic progenitors and provides a platform for personal and stem cell-based regenerative medicine.
Collapse
Affiliation(s)
- Yohan Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea; HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Republic of Korea
| | - Kyojin Kang
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea; HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Republic of Korea
| | - Seung Bum Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science, Seoul 01812, Republic of Korea
| | - Daekwan Seo
- Macrogen Corporation, Rockville, MD 20850, USA
| | - Sangtae Yoon
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea; HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Republic of Korea
| | - Sung Joo Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University College of Medicine, Seoul 03063, Republic of Korea
| | - Kiseok Jang
- Department of Pathology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Yun Kyung Jung
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Kyeong Geun Lee
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Valentina M Factor
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jaemin Jeong
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea; HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Republic of Korea.
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea; HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
29
|
Abstract
Primary hepatocytes are widely used in regenerative medicine, drug metabolism analysis, and in vitro drug screens. To overcome the shortage of liver donors, several strategies, such as differentiation of pluripotent stem cells and transdifferentiation from somatic cells, were developed to generate hepatocytes from alternative sources. Here, we describe in detail lenti-virus-based procedure for direct conversion of human fibroblasts to hepatocytes (hiHep cells) in vitro. A detailed protocol for preparation of human fibroblasts from scar tissues is also provided. Based on this protocol, FOXA3, HNF1A, and HNF4A are introduced into SV40-large-T-antigen-expressing human scar fibroblasts by lenti-virus. It usually takes about 5-7 days to get epithelial hiHep colonies. SV40-large-T-antigen-expressing hiHep (hiHepLT) cells are proliferative and can be expanded to a large number for potential uses.
Collapse
Affiliation(s)
- Pengyu Huang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
| | - Lulu Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ludi Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lijian Hui
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China.,State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
30
|
Zhang K, Zhang L, Liu W, Ma X, Cen J, Sun Z, Wang C, Feng S, Zhang Z, Yue L, Sun L, Zhu Z, Chen X, Feng A, Wu J, Jiang Z, Li P, Cheng X, Gao D, Peng L, Hui L. In Vitro Expansion of Primary Human Hepatocytes with Efficient Liver Repopulation Capacity. Cell Stem Cell 2018; 23:806-819.e4. [PMID: 30416071 DOI: 10.1016/j.stem.2018.10.018] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/17/2018] [Accepted: 10/12/2018] [Indexed: 12/17/2022]
Abstract
Transplantation of human hepatocytes (HHs) holds significant potential for treating liver diseases. However, the supply of transplantable HHs is severely constrained by limited donor availability and compromised capacity for in vitro expansion. In response to chronic injury, some HHs are reprogrammed into proliferative cells that express both hepatocyte and progenitor markers, suggesting exploitable strategies for expanding HHs in vitro. Here, we report defined medium conditions that allow 10,000-fold expansion of HHs. These proliferating HHs are bi-phenotypic, partially retaining hepatic features while gaining expression of progenitor-associated genes. Importantly, these cells engraft into injured mouse liver at a level comparable to primary HHs, and they undergo maturation following transplantation in vivo or differentiation in vitro. Thus, this study provides a protocol that enables large-scale expansion of transplantable HHs, which could be further developed for modeling and treating human liver disease.
Collapse
Affiliation(s)
- Kun Zhang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ludi Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Wenming Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaolong Ma
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin Cen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhen Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Chenhua Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Sisi Feng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhengtao Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Liyun Yue
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Lulu Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhenfeng Zhu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaotao Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Anqi Feng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiaying Wu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiwu Jiang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Peng Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xin Cheng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Dong Gao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Luying Peng
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Lijian Hui
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China; Stem Cell and Regenerative Medicine Innovation Academy, Beijing 100101, China.
| |
Collapse
|
31
|
Analysis of differentially expressed genes among human hair follicle-derived iPSCs, induced hepatocyte-like cells, and primary hepatocytes. Stem Cell Res Ther 2018; 9:211. [PMID: 30092828 PMCID: PMC6085644 DOI: 10.1186/s13287-018-0940-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/07/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022] Open
Abstract
Background Differentiation of human induced pluripotent stem cells (hiPSCs) into hepatocytes has important clinical significance in providing a new stem cell source for cell therapy of terminal liver disease. The differential gene expression analysis of hiPSCs, induced hepatocyte-like cells (HLCs), and primary human hepatocytes (PHHs) provides valuable information for optimization of an induction scheme and exploration of differentiation mechanisms. Methods Human hair follicle-derived iPSCs (hHF-iPSCs) were induced in vitro by mimicking the environment of a developing liver for 19 days. Expression of specific proteins was determined by immunofluorescence staining; the function of HLCs in storage and metabolism was identified by detecting periodic acid–Schiff, indocyanine green, and low-density lipoprotein. Based on the transcriptomics data, the differential gene expression profiles of hHF-iPSCs, HLCs, and PHHs were analyzed by Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway, FunRich, and network analysis methods. Results HLCs were able to express albumin (ALB), alpha-fetoprotein, CYP3A4, and CYP7A1, and exhibited matured liver cell functions such as glycogen synthesis and storage. Complement and coagulation cascades and metabolic pathways ranked top in the downregulated list of HLCs/PHHs, while the cell cycle ranked top in the upregulated list of HLCs/PHHs. In the protein–protein interaction network, according to the degree rankings, TOP2A, CDK1, etc. were the important upregulated differentially expressed genes (DEGs), while ALB, ACACB, etc. were the major downregulated DEGs in HLCs/PHHs; the module analysis indicated that CDCA8, AURKB, and AURKA were the top upregulated DEGs in HLCs/PHHs. Conclusions We presented the differences in gene expression among hHF-iPSCs, HLCs, and PHHs through transcriptome array data and provided new ideas for the optimization of induction. Electronic supplementary material The online version of this article (10.1186/s13287-018-0940-z) contains supplementary material, which is available to authorized users.
Collapse
|