1
|
Lord T, Oatley JM. Spermatogenic Stem Cells: Core Biology, Defining Features, and Utilities. Mol Reprod Dev 2024; 91:e23777. [PMID: 39392153 DOI: 10.1002/mrd.23777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
The actions of spermatogenic stem cells (SSCs) provide the foundation for continual spermatogenesis and regeneration of the cognate lineage following cytotoxic insult or transplantation. Several decades of research with rodent models have yielded knowledge about the core biology, morphological features, and molecular profiles of mammalian SSCs. Translation of these discoveries to utilities for human fertility preservation, improving animal agriculture, and wildlife conservation are actively being pursued. Here, we provide overviews of these aspects covering both historical and current states of understanding.
Collapse
Affiliation(s)
- Tessa Lord
- Discipline of Biological Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Jon M Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
2
|
Hu B, Wang J, Zhao N, Feng S, Abdugheni R, Li G, Liu W, Gao S, An X, Han S, He H. Regulatory mechanisms of Capillaria hepatica infection on Brandt's Vole (Lasiopodomys brandtii) population. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116849. [PMID: 39168081 DOI: 10.1016/j.ecoenv.2024.116849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/21/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Parasite infection not only triggers the immune response of the host but also potentially affects the reproductive status, thereby influencing the population size. Therefore, understanding the impact of parasite infection on host immune and reproductive systems has long been an important issue in ecological research. To address this, we conducted field surveys (2021-2023) to investigate Capillaria hepatica infection status in Brandt's vole (Lasiopodomys brandtii) and performed controlled experiments in semi-natural enclosures and indoor laboratories. The results showed a negative correlation between the population size of Brandt's vole and the infection rate. To further explore the regulatory mechanisms, transcriptomic and proteomic analyses were performed on the infected BALB/c mice. The study found that post-infection with Capillaria hepatica, up-regulated genes and proteins in the mice liver were primarily associated with immune functions, while down-regulated genes and proteins were related to metabolic functions such as retinol metabolism. Through validation experiments supplementing retinol to the host infected with Capillaria hepatica, it was found that infection with Capillaria hepatica leads to a decrease in systemic available retinol levels, disrupting the expression of the hypothalamic-pituitary-gonadal (HPG) axis hormones, affecting the expression of CYP17A1, thereby regulating testosterone secretion related to spermatogenesis. This process results in abnormal spermatogenesis in the testes, thereby impacting the reproductive capacity of mice. This suggests that Capillaria hepatica regulates resource allocation in hosts, striking a "trade-off" between reproduction and survival, thereby exerting control over population size. These discoveries are crucial for comprehending the interaction between Capillaria hepatica and hosts, as well as their impacts on host reproduction and immune systems, and provide a scientific basis for controlling the transmission of Capillaria hepatica.
Collapse
Affiliation(s)
- Bin Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China; Institute of Zoology, Chinese Academy of Sciences, Beijing, China; School of Life Sciences, Henan University, Kaifeng, China.
| | - Jiamin Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Ning Zhao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Shengyong Feng
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Rashidin Abdugheni
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi Municipality, China.
| | - Gaojian Li
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Wei Liu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Sichao Gao
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Xing An
- Inner Mongolia Minzu University, Tongliao, China.
| | - Shuyi Han
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Hongxuan He
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Sriram S, Macedo T, Mavinkurve‐Groothuis A, van de Wetering M, Looijenga LHJ. Alkylating agents-induced gonadotoxicity in prepubertal males: Insights on the clinical and preclinical front. Clin Transl Sci 2024; 17:e13866. [PMID: 38965809 PMCID: PMC11224131 DOI: 10.1111/cts.13866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/26/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
Rising cure rates in pediatric cancer patients warrants an increased attention toward the long-term consequences of the diagnosis and treatment in survivors. Chemotherapeutic agents can be gonadotoxic, rendering them at risk for infertility post-survival. While semen cryopreservation is an option that can be provided for most (post)pubertal boys before treatment, this is unfortunately not an option prepubertal in age, simply due to the lack of spermatogenesis. Over the last couple of years, studies have thus focused on better understanding the testis niche in response to various chemotherapeutic agents that are commonly administered and their direct and indirect impact on the germ cell populations. These are generally compounds that have a high risk of infertility and have been classified into risk categories in curated fertility guidelines. However, with it comes the lack of evidence and the challenge of using informative models and conditions most reflective of the physiological scenario, in short, the appropriate study designs for clinically relevant outcomes. Besides, the exact mechanism(s) of action for many of these "risk" compounds as well as other agents is unclear. Understanding their behavior and effect on the testis niche will pave the way for incorporating new strategies to ultimately combat infertility. Of the various drug classes, alkylating agents pose the highest risk of gonadotoxicity as per previously established studies as well as risk stratification guidelines. Therefore, this review will summarize the findings in the field of male fertility concerning gonadotoxicity of akylating agents as a result of chemotherapy exposure.
Collapse
Affiliation(s)
- Sruthi Sriram
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Tiago Macedo
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | | | | | | |
Collapse
|
4
|
Lu X, Yin P, Li H, Gao W, Jia H, Ma W. Transcriptome Analysis of Key Genes Involved in the Initiation of Spermatogonial Stem Cell Differentiation. Genes (Basel) 2024; 15:141. [PMID: 38397131 PMCID: PMC10888189 DOI: 10.3390/genes15020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
PURPOSE The purpose of this study was to screen the genes and pathways that are involved in spermatogonia stem cell (SSC) differentiation regulation during the transition from Aundiff to A1. Methods: RNA sequencing was performed to screen differentially expressed genes at 1 d and 2 d after SSC differentiation culture. KEGG pathway enrichment and GO function analysis were performed to reveal the genes and pathways related to the initiation of early SSC differentiation. RESULTS The GO analysis showed that Rpl21, which regulates cell differentiation initiation, significantly increased after 1 day of SSC differentiation. The expressions of Fn1, Cd9, Fgf2, Itgb1, Epha2, Ctgf, Cttn, Timp2 and Fgfr1, which are related to promoting differentiation, were up-regulated after 2 days of SSC differentiation. The analysis of the KEGG pathway revealed that RNA transport is the most enriched pathway 1 day after SSC differentiation. Hspa2, which promotes the differentiation of male reproductive cells, and Cdkn2a, which participates in the cell cycle, were significantly up-regulated. The p53 pathway and MAPK pathway were the most enriched pathways 2 days after SSC differentiation. Cdkn1a, Hmga2, Thbs1 and Cdkn2a, microRNAs that promote cell differentiation, were also significantly up-regulated. CONCLUSIONS RNA transport, the MAPK pathway and the p53 pathway may play vital roles in early SSC differentiation, and Rpl21, Fn1, Cd9, Fgf2, Itgb1, Epha2, Ctgf, Cttn, Timp2, Fgfr1, Hspa2, Cdkn2a, Cdkn1a, Hmga2 and Thbs1 are involved in the initiation of SSC differentiation. The findings of this study provide a reference for further revelations of the regulatory mechanism of SSC differentiation.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenzhi Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China; (X.L.); (P.Y.); (H.L.); (W.G.); (H.J.)
| |
Collapse
|
5
|
Uchida A, Imaimatsu K, Suzuki H, Han X, Ushioda H, Uemura M, Imura-Kishi K, Hiramatsu R, Takase HM, Hirate Y, Ogura A, Kanai-Azuma M, Kudo A, Kanai Y. SOX17-positive rete testis epithelium is required for Sertoli valve formation and normal spermiogenesis in the male mouse. Nat Commun 2022; 13:7860. [PMID: 36543770 PMCID: PMC9772346 DOI: 10.1038/s41467-022-35465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Seminiferous tubules (STs) in the mammalian testes are connected to the rete testis (RT) via a Sertoli valve (SV). Spermatozoa produced in the STs are released into the tubular luminal fluid and passively transported through the SV into the RT. However, the physiological functions of the RT and SV remain unclear. Here, we identified the expression of Sox17 in RT epithelia. The SV valve was disrupted before puberty in RT-specific Sox17 conditional knockout (Sox17-cKO) male mice. This induced a backflow of RT fluid into the STs, which caused aberrant detachment of immature spermatids. RT of Sox17-cKO mice had reduced expression levels of various growth factor genes, which presumably support SV formation. When transplanted next to the Sox17+ RT, Sertoli cells of Sox17-cKO mice reconstructed the SV and supported proper spermiogenesis in the STs. This study highlights the novel and unexpected modulatory roles of the RT in SV valve formation and spermatogenesis in mouse testes, as a downstream action of Sox17.
Collapse
Affiliation(s)
- Aya Uchida
- grid.26999.3d0000 0001 2151 536XDepartment of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo Japan ,grid.7597.c0000000094465255Bioresource Engineering Division, RIKEN BioResouce Research Center, Tsukuba, Ibaraki Japan
| | - Kenya Imaimatsu
- grid.26999.3d0000 0001 2151 536XDepartment of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo Japan
| | - Honoka Suzuki
- grid.26999.3d0000 0001 2151 536XDepartment of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo Japan
| | - Xiao Han
- grid.26999.3d0000 0001 2151 536XDepartment of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo Japan
| | - Hiroki Ushioda
- grid.26999.3d0000 0001 2151 536XDepartment of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo Japan
| | - Mami Uemura
- grid.26999.3d0000 0001 2151 536XDepartment of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo Japan
| | - Kasane Imura-Kishi
- grid.26999.3d0000 0001 2151 536XDepartment of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo Japan
| | - Ryuji Hiramatsu
- grid.26999.3d0000 0001 2151 536XDepartment of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo Japan
| | - Hinako M. Takase
- grid.265073.50000 0001 1014 9130Center for Experimental Animals, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo Japan
| | - Yoshikazu Hirate
- grid.265073.50000 0001 1014 9130Center for Experimental Animals, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo Japan
| | - Atsuo Ogura
- grid.7597.c0000000094465255Bioresource Engineering Division, RIKEN BioResouce Research Center, Tsukuba, Ibaraki Japan
| | - Masami Kanai-Azuma
- grid.265073.50000 0001 1014 9130Center for Experimental Animals, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo Japan
| | - Akihiko Kudo
- grid.411205.30000 0000 9340 2869Department of Microscopic Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo Japan
| | - Yoshiakira Kanai
- grid.26999.3d0000 0001 2151 536XDepartment of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo Japan
| |
Collapse
|
6
|
Lord T, Law NC, Oatley MJ, Miao D, Du G, Oatley JM. A novel high throughput screen to identify candidate molecular networks that regulate spermatogenic stem cell functions†. Biol Reprod 2022; 106:1175-1190. [PMID: 35244684 PMCID: PMC9198950 DOI: 10.1093/biolre/ioac048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/06/2021] [Accepted: 02/22/2022] [Indexed: 11/12/2022] Open
Abstract
Spermatogenic regeneration is key for male fertility and relies on activities of an undifferentiated spermatogonial population. Here, a high-throughput approach with primary cultures of mouse spermatogonia was devised to rapidly predict alterations in functional capacity. Combining the platform with a large-scale RNAi screen of transcription factors, we generated a repository of new information from which pathway analysis was able to predict candidate molecular networks regulating regenerative functions. Extending from this database, the SRCAP-CREBBP/EP300 (Snf2-related CREBBP activator protein-CREB binding protein/E1A binding protein P300) complex was found to mediate differential levels of histone acetylation between stem cell and progenitor spermatogonia to influence expression of key self-renewal genes including the previously undescribed testis-specific transcription factor ZSCAN2 (zinc finger and SCAN domain containing 2). Single cell RNA sequencing analysis revealed that ZSCAN2 deficiency alters key cellular processes in undifferentiated spermatogonia such as translation, chromatin modification, and ubiquitination. In Zscan2 knockout mice, while spermatogenesis was moderately impacted during steady state, regeneration after cytotoxic insult was significantly impaired. Altogether, these findings have validated the utility of our high-throughput screening approach and have generated a transcription factor database that can be utilized for uncovering novel mechanisms governing spermatogonial functions.
Collapse
Affiliation(s)
- Tessa Lord
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Program, New Lambton Heights, NSW, Australia
| | - Nathan C Law
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Melissa J Oatley
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Deqiang Miao
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Guihua Du
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Jon M Oatley
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
7
|
Inoue H, Sakurai T, Hasegawa K, Suzuki A, Saga Y. NANOS3 suppresses premature spermatogonial differentiation to expand progenitors and fine-tunes spermatogenesis in mice. Biol Open 2022; 11:274984. [PMID: 35394008 PMCID: PMC9002807 DOI: 10.1242/bio.059146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/25/2022] [Indexed: 12/19/2022] Open
Abstract
In the mouse testis, sperm originate from spermatogonial stem cells (SSCs). SSCs give rise to spermatogonial progenitors, which expand their population until entering the differentiation process that is precisely regulated by a fixed time-scaled program called the seminiferous cycle. Although this expansion process of progenitors is highly important, its regulatory mechanisms remain unclear. NANOS3 is an RNA-binding protein expressed in the progenitor population. We demonstrated that the conditional deletion of Nanos3 at a later embryonic stage results in the reduction of spermatogonial progenitors in the postnatal testis. This reduction was associated with the premature differentiation of progenitors. Furthermore, this premature differentiation caused seminiferous stage disagreement between adjacent spermatogenic cells, which influenced spermatogenic epithelial cycles, leading to disruption of the later differentiation pathway. Our study suggests that NANOS3 plays an important role in timing progenitor expansion to adjust to the proper differentiation timing by blocking the retinoic acid (RA) signaling pathway.
Collapse
Affiliation(s)
- Hiroki Inoue
- Department of Gene Function and Phenomics, Mammalian Development Laboratory, National Institute of Genetics, Mishima, 411-8540Japan
| | - Takayuki Sakurai
- Department of Genetics, School of Life Science, The Graduate University for Advised Studies (SOKENDAI), Mishima, 411-8540Japan
| | - Kazuteru Hasegawa
- Department of Genetics, School of Life Science, The Graduate University for Advised Studies (SOKENDAI), Mishima, 411-8540Japan
| | - Atsushi Suzuki
- Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, Yokohama, Kanagawa, 240-8501Japan
| | - Yumiko Saga
- Department of Gene Function and Phenomics, Mammalian Development Laboratory, National Institute of Genetics, Mishima, 411-8540Japan.,Department of Genetics, School of Life Science, The Graduate University for Advised Studies (SOKENDAI), Mishima, 411-8540Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
8
|
De Oliveira CS, Nixon B, Lord T. A scRNA-seq Approach to Identifying Changes in Spermatogonial Stem Cell Gene Expression Following in vitro Culture. Front Cell Dev Biol 2022; 10:782996. [PMID: 35433696 PMCID: PMC9010880 DOI: 10.3389/fcell.2022.782996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/08/2022] [Indexed: 01/15/2023] Open
Abstract
Spermatogonial stem cell (SSC) function is essential for male fertility, and these cells hold potential therapeutic value spanning from human infertility treatments to wildlife conservation. As in vitro culture is likely to be an integral component of many therapeutic pipelines, we have elected to explore changes in gene expression occurring in undifferentiated spermatogonia in culture that may be intertwined with the temporal reduction in regenerative capacity that they experience. Single cell RNA-sequencing analysis was conducted, comparing undifferentiated spermatogonia retrieved from the adult mouse testis with those that had been subjected to 10 weeks of in vitro culture. Although the majority of SSC signature genes were conserved between the two populations, a suite of differentially expressed genes were also identified. Gene ontology analysis revealed upregulated expression of genes involved in oxidative phosphorylation in cultured spermatogonia, along with downregulation of integral processes such as DNA repair and ubiquitin-mediated proteolysis. Indeed, our follow-up analyses have provided the first depiction of a significant accumulation of ubiquitinated proteins in cultured spermatogonia, when compared to those residing in the testis. The data produced in this manuscript will provide a valuable platform for future studies looking to improve SSC culture approaches and assess their safety for utilisation in therapeutic pipelines.
Collapse
Affiliation(s)
- Camila Salum De Oliveira
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Tessa Lord
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
- *Correspondence: Tessa Lord,
| |
Collapse
|
9
|
Retinoic Acid Receptor Alpha Is Essential in Postnatal Sertoli Cells but Not in Germ Cells. Cells 2022; 11:cells11050891. [PMID: 35269513 PMCID: PMC8909012 DOI: 10.3390/cells11050891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/04/2022] Open
Abstract
Retinoic acid signaling is indispensable for the completion of spermatogenesis. It is known that loss of retinoic acid nuclear receptor alpha (RARA) induces male sterility due to seminiferous epithelium degeneration. Initial genetic studies established that RARA acts in Sertoli cells, but a recent paper proposed that RARA is also instrumental in germ cells. In the present study, we have re-assessed the function of RARA in germ cells by genetically ablating the Rara gene in spermatogonia and their progenies using a cell-specific conditional mutagenesis approach. We show that loss of Rara in postnatal male germ cells does not alter the histology of the seminiferous epithelium. Furthermore, RARA-deficient germ cells differentiate normally and give rise to normal, living pups. This establishes that RARA plays no crucial role in germ cells. We also tested whether RARA is required in Sertoli cells during the fetal period or after birth. For this purpose, we deleted the Rara gene in Sertoli cells at postnatal day 15 (PN15), i.e., after the onset of the first spermatogenic wave. To do so, we used temporally controlled cell-specific mutagenesis. By comparing the testis phenotypes generated when Rara is lost either at PN15 or at embryonic day 13, we show that RARA exerts all of its functions in Sertoli cells not at the fetal stage but from puberty.
Collapse
|
10
|
Sinha N, Whelan EC, Tobias JW, Avarbock M, Stefanovski D, Brinster RL. Roles of Stra8 and Tcerg1l in retinoic acid induced spermatogonial differentiation in mouse†. Biol Reprod 2021; 105:503-518. [PMID: 33959758 DOI: 10.1093/biolre/ioab093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/18/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022] Open
Abstract
Retinoic acid (RA) induces spermatogonial differentiation, but the mechanism by which it operates remains largely unknown. We developed a germ cell culture assay system to study genes involved in spermatogonial differentiation triggered by RA. Stimulated by RA 8 (Stra8), a RA-inducible gene, is indispensable for meiosis initiation, and its deletion results in a complete block of spermatogenesis at the pre-leptotene/zygotene stage. To interrogate the role of Stra8 in RA mediated differentiation of spermatogonia, we derived germ cell cultures from the neonatal testis of both wild type and Stra8 knock-out mice. We provide the first evidence that Stra8 plays a crucial role in modulating the responsiveness of undifferentiated spermatogonia to RA and facilitates transition to a differentiated state. Stra8-mediated differentiation is achieved through the downregulation of a large portfolio of genes and pathways, most notably including genes involved in the spermatogonial stem cell self-renewal process. We also report here for the first time the role of transcription elongation regulator-1 like (Tcerg1l) as a downstream effector of RA-induced spermatogonial differentiation.
Collapse
Affiliation(s)
- Nilam Sinha
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eoin C Whelan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John W Tobias
- Department of Genetics and Penn Genomics Analysis Core, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary Avarbock
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Darko Stefanovski
- Department of Clinical Studies-New Bolton Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ralph L Brinster
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
A regulatory role for CHD4 in maintenance of the spermatogonial stem cell pool. Stem Cell Reports 2021; 16:1555-1567. [PMID: 33961790 PMCID: PMC8190575 DOI: 10.1016/j.stemcr.2021.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
Maintenance and self-renewal of the spermatogonial stem cell (SSC) population is the cornerstone of male fertility. Here, we have identified a key role for the nucleosome remodeling protein CHD4 in regulating SSC function. Gene expression analyses revealed that CHD4 expression is highly enriched in the SSC population in the mouse testis. Using spermatogonial transplantation techniques it was established that loss of Chd4 expression significantly impairs SSC regenerative capacity, causing a ∼50% reduction in colonization of recipient testes. An scRNA-seq comparison revealed reduced expression of “self-renewal” genes following Chd4 knockdown, along with increased expression of signature progenitor genes. Co-immunoprecipitation analyses demonstrated that CHD4 regulates gene expression in spermatogonia not only through its traditional association with the remodeling complex NuRD, but also via interaction with the GDNF-responsive transcription factor SALL4. Cumulatively, the results of this study depict a previously unappreciated role for CHD4 in controlling fate decisions in the spermatogonial pool. CHD4 is highly expressed in spermatogonial stem cells in the mouse testis CHD4 expression is required for spermatogonial stem cell maintenance CHD4 interacts with SALL4 and NuRD to activate expression of “self-renewal” genes
Collapse
|
12
|
Long C, Zhou Y, Shen L, Yu Y, Hu D, Liu X, Lin T, He D, Xu T, Zhang D, Zhu J, Wei G. Retinoic acid can improve autophagy through depression of the PI3K-Akt-mTOR signaling pathway via RARα to restore spermatogenesis in cryptorchid infertile rats. Genes Dis 2021; 9:1368-1377. [PMID: 35873030 PMCID: PMC9293722 DOI: 10.1016/j.gendis.2021.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Cryptorchidism-caused adult infertility is a common component of idiopathic reasons for male infertility. Retinoic acid (RA) has a vital effect on the spermatogenesis process. Here, we found that the expression of c-Kit, Stra8, and Sycp3 could be up-regulated via the activation of retinoic acid receptor α (RARα) after RA supplementation in neonatal cryptorchid infertile rats. We also demonstrated that the protein expression of PI3K, p-Akt/pan-Akt, and p-mTOR/mTOR was higher in cryptorchid than in normal testes, and could be suppressed with RA in vivo. After RA treatment in infertile cryptorchid testis in vivo, the levels of the autophagy proteins LC3 and Beclin1 increased and those of P62 decreased. Biotin tracer indicated that the permeability of blood-testis barrier (BTB) in cryptorchid rats decreased after RA administration. Additionally, after blocking the RARα with AR7 (an RARα antagonist) in testicle culture in vitro, we observed that compared with normal testes, the PI3K-Akt-mTOR signaling pathway and the autophagy pathway was increased and decreased, respectively, which were coincident with cryptorchisd testes in vivo. Additionally, the appropriate concentrations of RA treatment could depress the PI3K-Akt-mTOR signaling pathway and improve the autophagy pathway. The results confirmed that RA can rehabilitate BTB function and drive key protein levels in spermatogonial differentiation through depressing the PI3K-Akt-mTOR signaling pathway via RARα.
Collapse
Affiliation(s)
- Chunlan Long
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Yu Zhou
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Lianju Shen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Yihang Yu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Dong Hu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Xing Liu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Tao Lin
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Dawei He
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Tao Xu
- Bio-manufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, PR China
| | - Deying Zhang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Jing Zhu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Guanghui Wei
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
- Corresponding author. Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China.
| |
Collapse
|
13
|
Abstract
Organoids are 3-dimensional (3D) structures grown in vitro that emulate the cytoarchitecture and functions of true organs. Therefore, testicular organoids arise as an important model for research on male reproductive biology. These organoids can be generated from different sources of testicular cells, but most studies to date have used immature primary cells for this purpose. The complexity of the mammalian testicular cytoarchitecture and regulation poses a challenge for working with testicular organoids, because, ideally, these 3D models should mimic the organization observed in vivo. In this review, we explore the characteristics of the most important cell types present in the testicular organoid models reported to date and discuss how different factors influence the regulation of these cells inside the organoids and their outcomes. Factors such as the developmental or maturational stage of the Sertoli cells, for example, influence organoid generation and structure, which affect the use of these 3D models for research. Spermatogonial stem cells have been a focus recently, especially in regard to male fertility preservation. The regulation of the spermatogonial stem cell niche inside testicular organoids is discussed in the present review, as this research area may be positively affected by recent progress in organoid generation and tissue engineering. Therefore, the testicular organoid approach is a very promising model for male reproductive biology research, but more studies and improvements are necessary to achieve its full potential.
Collapse
Affiliation(s)
- Nathalia de Lima e Martins Lara
- Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sadman Sakib
- Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ina Dobrinski
- Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Correspondence: Ina Dobrinski, DrMedVet, MVSc, PhD, Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 404 HMRB, 3300 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
14
|
Gewiss RL, Shelden EA, Griswold MD. STRA8 induces transcriptional changes in germ cells during spermatogonial development. Mol Reprod Dev 2021; 88:128-140. [PMID: 33400349 PMCID: PMC7920925 DOI: 10.1002/mrd.23448] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/03/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022]
Abstract
Spermatogonial development is a key process during spermatogenesis to prepare germ cells to enter meiosis. While the initial point of spermatogonial differentiation is well‐characterized, the development of spermatogonia from the onset of differentiation to the point of meiotic entry has not been well defined. Further, STRA8 is highly induced at the onset of spermatogonial development but its function in spermatogonia has not been defined. To better understand how STRA8 impacts spermatogonia, we performed RNA‐sequencing in both wild‐type and STRA8 knockout mice at multiple timepoints during retinoic acid (RA)‐stimulated spermatogonial development. As expected, in spermatogonia from wild‐type mice we found that steady‐state levels of many transcripts that define undifferentiated progenitor cells were decreased while transcripts that define the differentiating spermatogonia were increased as a result of the actions of RA. However, the spermatogonia from STRA8 knockout mice displayed a muted RA response such that there were more transcripts typical of undifferentiated cells and fewer transcripts typical of differentiating cells following RA action. While spermatogonia from STRA8 knockout mice can ultimately form spermatocytes that fail to complete meiosis, it appears that the defect likely begins as a result of altered messenger RNA levels during spermatogonial differentiation.
Collapse
Affiliation(s)
- Rachel L Gewiss
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA.,Center for Reproductive Biology, Washington State University, Pullman, WA
| | - Eric A Shelden
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA.,Center for Reproductive Biology, Washington State University, Pullman, WA
| | - Michael D Griswold
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA.,Center for Reproductive Biology, Washington State University, Pullman, WA
| |
Collapse
|
15
|
Yoshida S. Mouse Spermatogenesis Reflects the Unity and Diversity of Tissue Stem Cell Niche Systems. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036186. [PMID: 32152184 DOI: 10.1101/cshperspect.a036186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mouse spermatogenesis is supported by spermatogenic stem cells (SSCs). SSCs maintain their pool while migrating over an open (or facultative) niche microenvironment of testicular seminiferous tubules, where ligands that support self-renewal are likely distributed widely. This contrasts with the classic picture of closed (or definitive) niches in which stem cells are gathered and the ligands are highly localized. Some of the key properties observed in the dynamics of SSCs in the testicular niche in vivo, which show the flexible and stochastic (probabilistic) fate behaviors, are found to be generic for a wide range of, if not all, tissue stem cells. SSCs also show properties characteristic of an open niche-supported system, such as high motility. Motivated by the properties of SSCs, in this review, I will reconsider the potential unity and diversity of tissue stem cell systems, with an emphasis on the varying degrees of ligand distribution and stem cell motility.
Collapse
Affiliation(s)
- Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences; and Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
16
|
Unique Epigenetic Programming Distinguishes Regenerative Spermatogonial Stem Cells in the Developing Mouse Testis. iScience 2020; 23:101596. [PMID: 33083754 PMCID: PMC7552105 DOI: 10.1016/j.isci.2020.101596] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/17/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
Spermatogonial stem cells (SSCs) both self-renew and give rise to progenitors that initiate spermatogenic differentiation in the mammalian testis. Questions remain regarding the extent to which the SSC and progenitor states are functionally distinct. Here we provide the first multiparametric integrative analysis of mammalian germ cell epigenomes comparable with that done for >100 somatic cell types by the ENCODE Project. Differentially expressed genes distinguishing SSC- and progenitor-enriched spermatogonia showed distinct histone modification patterns, particularly for H3K27ac and H3K27me3. Motif analysis predicted transcription factors that may regulate spermatogonial subtype-specific fate, and immunohistochemistry and gene-specific chromatin immunoprecipitation analyses confirmed subtype-specific differences in target gene binding of a subset of these factors. Taken together, these results show that SSCs and progenitors display distinct epigenetic profiling consistent with these spermatogonial subtypes being differentially programmed to either self-renew and maintain regenerative capacity as SSCs or lose regenerative capacity and initiate lineage commitment as progenitors.
Collapse
|
17
|
Sakib S, Uchida A, Valenzuela-Leon P, Yu Y, Valli-Pulaski H, Orwig K, Ungrin M, Dobrinski I. Formation of organotypic testicular organoids in microwell culture†. Biol Reprod 2020; 100:1648-1660. [PMID: 30927418 DOI: 10.1093/biolre/ioz053] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/29/2019] [Indexed: 01/15/2023] Open
Abstract
Three-dimensional (3D) organoids can serve as an in vitro platform to study cell-cell interactions, tissue development, and toxicology. Development of organoids with tissue architecture similar to testis in vivo has remained a challenge. Here, we present a microwell aggregation approach to establish multicellular 3D testicular organoids from pig, mouse, macaque, and human. The organoids consist of germ cells, Sertoli cells, Leydig cells, and peritubular myoid cells forming a distinct seminiferous epithelium and interstitial compartment separated by a basement membrane. Sertoli cells in the organoids express tight junction proteins claudin 11 and occludin. Germ cells in organoids showed an attenuated response to retinoic acid compared to germ cells in 2D culture indicating that the tissue architecture of the organoid modulates response to retinoic acid similar to in vivo. Germ cells maintaining physiological cell-cell interactions in organoids also had lower levels of autophagy indicating lower levels of cellular stress. When organoids were treated with mono(2-ethylhexyl) phthalate (MEHP), levels of germ cell autophagy increased in a dose-dependent manner, indicating the utility of the organoids for toxicity screening. Ablation of primary cilia on testicular somatic cells inhibited the formation of organoids demonstrating an application to screen for factors affecting testicular morphogenesis. Organoids can be generated from cryopreserved testis cells and preserved by vitrification. Taken together, the testicular organoid system recapitulates the 3D organization of the mammalian testis and provides an in vitro platform for studying germ cell function, testicular development, and drug toxicity in a cellular context representative of the testis in vivo.
Collapse
Affiliation(s)
- Sadman Sakib
- Department of Comparative Biology and Experimental Medicine, University of Calgary Faculty of Veterinary Medicine, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aya Uchida
- Department of Comparative Biology and Experimental Medicine, University of Calgary Faculty of Veterinary Medicine, Calgary, Alberta, Canada
| | - Paula Valenzuela-Leon
- Department of Comparative Biology and Experimental Medicine, University of Calgary Faculty of Veterinary Medicine, Calgary, Alberta, Canada
| | - Yang Yu
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Hanna Valli-Pulaski
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kyle Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mark Ungrin
- Department of Comparative Biology and Experimental Medicine, University of Calgary Faculty of Veterinary Medicine, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ina Dobrinski
- Department of Comparative Biology and Experimental Medicine, University of Calgary Faculty of Veterinary Medicine, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
18
|
Wang GS, Liang A, Dai YB, Wu XL, Sun F. Expression and localization of retinoid receptors in the testis of normal and infertile men. Mol Reprod Dev 2020; 87:978-985. [PMID: 32770619 DOI: 10.1002/mrd.23412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 11/07/2022]
Abstract
Retinoic acid (RA), the active metabolite of vitamin A, is one of the most important factors regulating spermatogenesis. RA activates downstream pathways through its receptors (retinoic acid receptor alpha [RARA], retinoic acid receptor beta, and retinoic acid receptor gamma [RARG]) and retinoid X receptors (retinoid X receptor alpha [RXRA], retinoid X receptor beta [RXRB], and retinoid X receptor gamma [RXRG]). These receptors may serve as therapeutic targets for infertile men. However, the localization and expression of retinoid receptors in normal and infertile men were unknown. In this study, we found RARA and RARG were mostly localized in spermatocytes and round spermatids, RXRB was mainly expressed in Sertoli cells, and RXRG was expressed in most cell types in the fertile human testis. The localization of RARA, RARG, RXRB, and RXRG in men with hypospermatogenesis (HYPO) was similar to that of men with normal fertility. In addition, the messenger RNA expression levels of RARA, RARG, RXRA, RXRB, and RXRG were significantly decreased in men with Sertoli cell-only syndrome (SCOS) and maturational arrest (MA), but not in men with HYPO. These results suggest that reduced levels of RARA, RARG, RXRB, RXRA, and RXRG are more closely associated with SCOS and MA spermatogenetic failure. These results could contribute to the development of new molecular indicators of spermatogenic dysfunction and might provide novel therapeutic targets for treating male infertility.
Collapse
Affiliation(s)
- Gui-Shuan Wang
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, Jiangsu, China
| | - Ajuan Liang
- Reproductive Medical Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu-Bing Dai
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xiao-Long Wu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, Jiangsu, China
| | - Fei Sun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, Jiangsu, China.,Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.,International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory of Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
19
|
Lord T, Nixon B. Metabolic Changes Accompanying Spermatogonial Stem Cell Differentiation. Dev Cell 2020; 52:399-411. [PMID: 32097651 DOI: 10.1016/j.devcel.2020.01.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/27/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Male fertility is driven by spermatogonial stem cells (SSCs) that self-renew while also giving rise to differentiating spermatogonia. Spermatogonial transitions are accompanied by a shift in gene expression, however, whether equivalent changes in metabolism occur remains unexplored. In this review, we mined recently published scRNA-seq databases from mouse and human testes to compare expression profiles of spermatogonial subsets, focusing on metabolism. Comparisons revealed a conserved upregulation of genes involved in mitochondrial function, biogenesis, and oxidative phosphorylation in differentiating spermatogonia, while gene expression in SSCs reflected a glycolytic cell. Here, we also discuss the relationship between metabolism and the external microenvironment within which spermatogonia reside.
Collapse
Affiliation(s)
- Tessa Lord
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, the University of Newcastle, Callaghan, Newcastle, NSW 2300, Australia; Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, Newcastle, NSW 2305, Australia.
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, the University of Newcastle, Callaghan, Newcastle, NSW 2300, Australia; Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, Newcastle, NSW 2305, Australia
| |
Collapse
|
20
|
Du G, Wang X, Luo M, Xu W, Zhou T, Wang M, Yu L, Li L, Cai L, Wang PJ, Zhong Li J, Oatley JM, Wu X. mRBPome capture identifies the RNA-binding protein TRIM71, an essential regulator of spermatogonial differentiation. Development 2020; 147:dev184655. [PMID: 32188631 PMCID: PMC10679512 DOI: 10.1242/dev.184655] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/23/2020] [Indexed: 12/15/2022]
Abstract
Continual spermatogenesis relies on the actions of an undifferentiated spermatogonial population that is composed of stem cells and progenitors. Here, using mouse models, we explored the role of RNA-binding proteins (RBPs) in regulation of the biological activities of this population. Proteins bound to polyadenylated RNAs in primary cultures of undifferentiated spermatogonia were captured with oligo (dT)-conjugated beads after UV-crosslinking and profiled by proteomics (termed mRBPome capture), yielding a putative repertoire of 473 RBPs. From this database, the RBP TRIM71 was identified and found to be expressed by stem and progenitor spermatogonia in prepubertal and adult mouse testes. Tissue-specific deletion of TRIM71 in the male germline led to reduction of the undifferentiated spermatogonial population and a block in transition to the differentiating state. Collectively, these findings demonstrate a key role of the RBP system in regulation of the spermatogenic lineage and may provide clues about the influence of RBPs on the biology of progenitor cell populations in other lineages.
Collapse
Affiliation(s)
- Guihua Du
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Xinrui Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Rare Metabolic Diseases & Jiangsu Province Key Laboratory of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China
| | - Mengcheng Luo
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Weiya Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Tao Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Mei Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Luping Yu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lufan Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Li'e Cai
- Key Laboratory of Rare Metabolic Diseases & Jiangsu Province Key Laboratory of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - John Zhong Li
- Key Laboratory of Rare Metabolic Diseases & Jiangsu Province Key Laboratory of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China
| | - Jon M Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
21
|
Crespo D, Assis LHC, van de Kant HJG, de Waard S, Safian D, Lemos MS, Bogerd J, Schulz RW. Endocrine and local signaling interact to regulate spermatogenesis in zebrafish: follicle-stimulating hormone, retinoic acid and androgens. Development 2019; 146:dev.178665. [PMID: 31597660 DOI: 10.1242/dev.178665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/01/2019] [Indexed: 01/07/2023]
Abstract
Retinoic acid (RA) is crucial for mammalian spermatogonia differentiation, and stimulates Stra8 expression, a gene required for meiosis. Certain fish species, including zebrafish, have lost the stra8 gene. While RA still seems important for spermatogenesis in fish, it is not known which stage(s) respond to RA or whether its effects are integrated into the endocrine regulation of spermatogenesis. In zebrafish, RA promoted spermatogonia differentiation, supported androgen-stimulated meiosis, and reduced spermatocyte and spermatid apoptosis. Follicle-stimulating hormone (Fsh) stimulated RA production. Expressing a dominant-negative RA receptor variant in germ cells clearly disturbed spermatogenesis but meiosis and spermiogenesis still took place, although sperm quality was low in 6-month-old adults. This condition also activated Leydig cells. Three months later, spermatogenesis apparently had recovered, but doubling of testis weight demonstrated hypertrophy, apoptosis/DNA damage among spermatids was high and sperm quality remained low. We conclude that RA signaling is important for zebrafish spermatogenesis but is not of crucial relevance. As Fsh stimulates androgen and RA production, germ cell-mediated, RA-dependent reduction of Leydig cell activity may form a hitherto unknown intratesticular negative-feedback loop.
Collapse
Affiliation(s)
- Diego Crespo
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Luiz H C Assis
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Henk J G van de Kant
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Sjors de Waard
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Diego Safian
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Moline S Lemos
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Jan Bogerd
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Rüdiger W Schulz
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands .,Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen NO-5817, Norway
| |
Collapse
|
22
|
Vermeulen M, Del Vento F, Kanbar M, Pyr Dit Ruys S, Vertommen D, Poels J, Wyns C. Generation of Organized Porcine Testicular Organoids in Solubilized Hydrogels from Decellularized Extracellular Matrix. Int J Mol Sci 2019; 20:E5476. [PMID: 31684200 PMCID: PMC6862040 DOI: 10.3390/ijms20215476] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 01/15/2023] Open
Abstract
Cryopreservation of immature testicular tissue (ITT) prior to chemo/radiotherapy is now ethically accepted and is currently the only way to preserve fertility of prepubertal boys about to undergo cancer therapies. So far, three-dimensional culture of testicular cells isolated from prepubertal human testicular tissue was neither efficient nor reproducible to obtain mature spermatozoa, and ITT transplantation is not a safe option when there is a risk of cancer cell contamination of the testis. Hence, generation of testicular organoids (TOs) after cell selection is a novel strategy aimed at restoring fertility in these patients. Here, we created TOs using hydrogels developed from decellularized porcine ITT and compared cell numbers, organization and function to TOs generated in collagen only hydrogel. Organotypic culture of porcine ITT was used as a control. Rheological and mass spectrometry analyses of both hydrogels highlighted differences in terms of extracellular matrix stiffness and composition, respectively. Sertoli cells (SCs) and germ cells (GCs) assembled into seminiferous tubule-like structures delimited by a basement membrane while Leydig cells (LCs) and peritubular cells localized outside. TOs were maintained for 45 days in culture and secreted stem cell factor and testosterone demonstrating functionality of SCs and LCs, respectively. In both TOs GC numbers decreased and SC numbers increased. However, LC numbers decreased significantly in the collagen hydrogel TOs (p < 0.05) suggesting a better preservation of growth factors within TOs developed from decellularized ITT and thus a better potential to restore the reproductive capacity.
Collapse
Affiliation(s)
- Maxime Vermeulen
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique, Medical School, Université Catholique de Louvain, 1200 Brussels, Belgium.
| | - Federico Del Vento
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique, Medical School, Université Catholique de Louvain, 1200 Brussels, Belgium.
| | - Marc Kanbar
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique, Medical School, Université Catholique de Louvain, 1200 Brussels, Belgium.
| | - Sébastien Pyr Dit Ruys
- Phosphorylation - MassProt Unit, Institut de Duve, Université Catholique de Louvain, 1200 Brussels, Belgium.
| | - Didier Vertommen
- Phosphorylation - MassProt Unit, Institut de Duve, Université Catholique de Louvain, 1200 Brussels, Belgium.
| | - Jonathan Poels
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium.
| | - Christine Wyns
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique, Medical School, Université Catholique de Louvain, 1200 Brussels, Belgium.
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium.
| |
Collapse
|
23
|
La HM, Hobbs RM. Mechanisms regulating mammalian spermatogenesis and fertility recovery following germ cell depletion. Cell Mol Life Sci 2019; 76:4071-4102. [PMID: 31254043 PMCID: PMC11105665 DOI: 10.1007/s00018-019-03201-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/07/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022]
Abstract
Mammalian spermatogenesis is a highly complex multi-step process sustained by a population of mitotic germ cells with self-renewal potential known as spermatogonial stem cells (SSCs). The maintenance and regulation of SSC function are strictly dependent on a supportive niche that is composed of multiple cell types. A detailed appreciation of the molecular mechanisms underpinning SSC activity and fate is of fundamental importance for spermatogenesis and male fertility. However, different models of SSC identity and spermatogonial hierarchy have been proposed and recent studies indicate that cell populations supporting steady-state germline maintenance and regeneration following damage are distinct. Importantly, dynamic changes in niche properties may underlie the fate plasticity of spermatogonia evident during testis regeneration. While formation of spermatogenic colonies in germ-cell-depleted testis upon transplantation is a standard assay for SSCs, differentiation-primed spermatogonial fractions have transplantation potential and this assay provides readout of regenerative rather than steady-state stem cell capacity. The characterisation of spermatogonial populations with regenerative capacity is essential for the development of clinical applications aimed at restoring fertility in individuals following germline depletion by genotoxic treatments. This review will discuss regulatory mechanisms of SSCs in homeostatic and regenerative testis and the conservation of these mechanisms between rodent models and man.
Collapse
Affiliation(s)
- Hue M La
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Robin M Hobbs
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
24
|
Oliver E, Stukenborg JB. Rebuilding the human testis in vitro. Andrology 2019; 8:825-834. [PMID: 31539453 PMCID: PMC7496374 DOI: 10.1111/andr.12710] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/21/2019] [Accepted: 09/16/2019] [Indexed: 12/22/2022]
Abstract
Increasing rates of male infertility have led to a greater need for relevant model systems to gain further insight into male fertility and its failings. Spermatogenesis and hormone production occur within distinct regions of the testis. Defined by specialized architecture and a diverse population of cell types, it is no surprise that disruption of this highly organized microenvironment can lead to infertility. To date, no robust in vitro system has facilitated full spermatogenesis resulting in the production of fertilization‐competent human spermatozoa. Here, we review a selection of current in vitro systems available for modelling the human testis microenvironment with focus on the progression of spermatogenesis and recapitulation of the testis microenvironment.
Collapse
Affiliation(s)
- E Oliver
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - J-B Stukenborg
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
25
|
Sakib S, Goldsmith T, Voigt A, Dobrinski I. Testicular organoids to study cell-cell interactions in the mammalian testis. Andrology 2019; 8:835-841. [PMID: 31328437 DOI: 10.1111/andr.12680] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/03/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Over the last ten years, three-dimensional organoid culture has garnered renewed interest, as organoids generated from primary cells or stem cells with cell associations and functions similar to organs in vivo can be a powerful tool to study tissue-specific cell-cell interactions in vitro. Very recently, a few interesting approaches have been put forth for generating testicular organoids for studying the germ cell niche microenvironment. AIM To review different model systems that have been employed to study germ cell biology and testicular cell-cell interactions and discuss how the organoid approach can address some of the shortcomings of those systems. RESULTS AND CONCLUSION Testicular organoids that bear architectural and functional similarities to their in vivo counterparts are a powerful model system to study cell-cell interactions in the germ cell niche. Organoids enable studying samples in humans and other large animals where in vivo experiments are not possible, allow modeling of testicular disease and malignancies and may provide a platform to design more precise therapeutic interventions.
Collapse
Affiliation(s)
- S Sakib
- Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AL, Canada.,Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AL, Canada
| | - T Goldsmith
- Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AL, Canada.,Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AL, Canada
| | - A Voigt
- Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AL, Canada
| | - I Dobrinski
- Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AL, Canada.,Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AL, Canada
| |
Collapse
|
26
|
Li X, Long XY, Xie YJ, Zeng X, Chen X, Mo ZC. The roles of retinoic acid in the differentiation of spermatogonia and spermatogenic disorders. Clin Chim Acta 2019; 497:54-60. [PMID: 31302099 DOI: 10.1016/j.cca.2019.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/20/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022]
Abstract
Male fertility depends on the regulatory balance between germ cell self-renewal and differentiation, and the spatial and temporal patterns of this balance must be maintained throughout the life cycle. Retinoic acid and its receptors are important factors in spermatogenesis. Spermatogonia cells can self-proliferate and differentiate and have unique meiotic capabilities; they halve their genetic material and produce monomorphic sperm to pass genetic material to the next generation. A number of studies have found that the spermatogenesis process is halted in animals with vitamin A deficiency and that most germ cells are degraded, but they tend to recover after treatment with RA or vitamin A. This literature review discusses our understanding of how RA regulates sperm cell differentiation and meiosis and also reviews the functional information and details of RA.
Collapse
Affiliation(s)
- Xuan Li
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiang-Yang Long
- Department of Urology, The Second Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Yuan-Jie Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xin Zeng
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xi Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Zhong-Cheng Mo
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
27
|
Sakib S, Voigt A, Goldsmith T, Dobrinski I. Three-dimensional testicular organoids as novel in vitro models of testicular biology and toxicology. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz011. [PMID: 31463083 PMCID: PMC6705190 DOI: 10.1093/eep/dvz011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/06/2019] [Accepted: 07/03/2019] [Indexed: 05/05/2023]
Abstract
Organoids are three dimensional structures consisting of multiple cell types that recapitulate the cellular architecture and functionality of native organs. Over the last decade, the advent of organoid research has opened up many avenues for basic and translational studies. Following suit of other disciplines, research groups working in the field of male reproductive biology have started establishing and characterizing testicular organoids. The three-dimensional architectural and functional similarities of organoids to their tissue of origin facilitate study of complex cell interactions, tissue development and establishment of representative, scalable models for drug and toxicity screening. In this review, we discuss the current state of testicular organoid research, their advantages over conventional monolayer culture and their potential applications in the field of reproductive biology and toxicology.
Collapse
Affiliation(s)
- Sadman Sakib
- Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Anna Voigt
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Taylor Goldsmith
- Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Ina Dobrinski
- Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
- Correspondence address. Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Room 404, Heritage Medical Research Building, 3300 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada. Tel: 4032106523; Fax: 4032108821; E-mail:
| |
Collapse
|
28
|
Law NC, Oatley MJ, Oatley JM. Developmental kinetics and transcriptome dynamics of stem cell specification in the spermatogenic lineage. Nat Commun 2019; 10:2787. [PMID: 31243281 PMCID: PMC6594958 DOI: 10.1038/s41467-019-10596-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 05/17/2019] [Indexed: 12/15/2022] Open
Abstract
Continuity, robustness, and regeneration of cell lineages relies on stem cell pools that are established during development. For the mammalian spermatogenic lineage, a foundational spermatogonial stem cell (SSC) pool arises from prospermatogonial precursors during neonatal life via mechanisms that remain undefined. Here, we mapped the kinetics of this process in vivo using a multi-transgenic reporter mouse model, in silico with single-cell RNA sequencing, and functionally with transplantation analyses to define the SSC trajectory from prospermatogonia. Outcomes revealed that a heterogeneous prospermatogonial population undergoes dynamic changes during late fetal and neonatal development. Differential transcriptome profiles predicted divergent developmental trajectories from fetal prospermatogonia to descendant postnatal spermatogonia. Furthermore, transplantation analyses demonstrated that a defined subset of fetal prospermatogonia is fated to function as SSCs. Collectively, these findings suggest that SSC fate is preprogrammed within a subset of fetal prospermatogonia prior to building of the foundational pool during early neonatal development. In neonatal testes, prospermatogonia generate both spermatogonia for the first wave of spermatogenesis and spermatogonial stem cells (SSCs) for maintenance of spermatogenesis in males. Here the authors characterize the development of mouse SSCs from prospermatogonia using single-cell RNA-seq and transplantation assays.
Collapse
Affiliation(s)
- Nathan C Law
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Melissa J Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Jon M Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
29
|
Helsel A, Griswold MD. Retinoic acid signaling and the cycle of the seminiferous epithelium. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2019; 6:1-6. [PMID: 32832726 PMCID: PMC7442248 DOI: 10.1016/j.coemr.2019.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
- Aileen Helsel
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, WA, 99164-7520, United States
| | - Michael D Griswold
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, WA, 99164-7520, United States
| |
Collapse
|
30
|
Velte EK, Niedenberger BA, Serra ND, Singh A, Roa-DeLaCruz L, Hermann BP, Geyer CB. Differential RA responsiveness directs formation of functionally distinct spermatogonial populations at the initiation of spermatogenesis in the mouse. Development 2019; 146:dev.173088. [PMID: 31023878 DOI: 10.1242/dev.173088] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/16/2019] [Indexed: 12/22/2022]
Abstract
In the mammalian testis, sustained spermatogenesis relies on spermatogonial stem cells (SSCs); their progeny either remain as stem cells (self-renewal) or proliferate and differentiate to enter meiosis in response to retinoic acid (RA). Here, we sought to uncover elusive mechanisms regulating a key switch fundamental to spermatogonial fate: the capacity of spermatogonia to respond to RA. Using the developing mouse testis as a model, we found that spermatogonia and precursor prospermatogonia exhibit a heterogeneous capacity to respond to RA with at least two underlying causes. First, progenitor spermatogonia are prevented from responding to RA by catabolic activity of cytochrome P450 family 26 enzymes. Second, a smaller subset of undifferentiated spermatogonia enriched for SSCs exhibit catabolism-independent RA insensitivity. Moreover, for the first time, we observed that precursor prospermatogonia are heterogeneous and comprise subpopulations that exhibit the same differential RA responsiveness found in neonatal spermatogonia. We propose a novel model by which mammalian prospermatogonial and spermatogonial fates are regulated by their intrinsic capacity to respond (or not) to the differentiation signal provided by RA before, and concurrent with, the initiation of spermatogenesis.
Collapse
Affiliation(s)
- Ellen K Velte
- Departments of Anatomy and Cell Biology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Bryan A Niedenberger
- Departments of Anatomy and Cell Biology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Nicholas D Serra
- Departments of Anatomy and Cell Biology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Anukriti Singh
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Lorena Roa-DeLaCruz
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Brian P Hermann
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Christopher B Geyer
- Departments of Anatomy and Cell Biology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA .,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
31
|
Xu C, Xu J, Ji G, Liu Q, Shao W, Chen Y, Gu J, Weng Z, Zhang X, Wang Y, Gu A. Deficiency of X-ray repair cross-complementing group 1 in primordial germ cells contributes to male infertility. FASEB J 2019; 33:7427-7436. [PMID: 30998386 DOI: 10.1096/fj.201801962rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
X-ray repair cross-complementing group 1 (Xrcc1), a key DNA repair gene, plays a vital role in maintaining genomic stability and is highly expressed in the early stages of spermatogenesis, but the exact functions remain elusive. Here we generated primordial germ cell-specific Xrcc1 knockout (cXrcc1-/-) mice to elucidate the effects of Xrcc1 on spermatogenesis. We demonstrated that Xrcc1 deficiency results in infertility in male mice due to impaired spermatogenesis. We found that cXrcc1-/- mice exhibited smaller size of testes as well as lower sperm concentration and motility than the wild-type mice. Mechanistically, we demonstrated that Xrcc1 deficiency in primordial germ cells induced elevated levels of reactive oxygen species, mitochondria dysfunction, apoptosis, and loss of stemness of spermatogonial stem cells (SSCs) in testes. In Xrcc1-deficienct SSCs, elevated oxidative stress and mitochondrial dysfunction could be partially reversed by treatment with the antioxidant N-acetylcysteine (NAC), whereas NAC treatment did not restore the fertility or ameliorate the apoptosis caused by loss of Xrcc1. Overall, our findings provided new insights into understanding the crucial role of Xrcc1 during spermatogenesis.-Xu, C., Xu, J., Ji, G., Liu, Q., Shao, W., Chen, Y., Gu, J., Weng, Z., Zhang, X., Wang, Y., Gu, A. Deficiency of X-ray repair cross-complementing group 1 in primordial germ cells contributes to male infertility.
Collapse
Affiliation(s)
- Cheng Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Maternal, Child, and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, China; and
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wentao Shao
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yaoyao Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jie Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhenkun Weng
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yubang Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,Safety Assessment and Research Center for Drugs, Pesticides, and Veterinary Drugs of the Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
32
|
Liao J, Ng SH, Luk AC, Suen HC, Qian Y, Lee AWT, Tu J, Fung JCL, Tang NLS, Feng B, Chan WY, Fouchet P, Hobbs RM, Lee TL. Revealing cellular and molecular transitions in neonatal germ cell differentiation using single cell RNA sequencing. Development 2019; 146:dev174953. [PMID: 30824552 DOI: 10.1242/dev.174953] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/17/2019] [Indexed: 12/22/2022]
Abstract
Neonatal germ cell development provides the foundation of spermatogenesis. However, a systematic understanding of this process is still limited. To resolve cellular and molecular heterogeneity in this process, we profiled single cell transcriptomes of undifferentiated germ cells from neonatal mouse testes and employed unbiased clustering and pseudotime ordering analysis to assign cells to distinct cell states in the developmental continuum. We defined the unique transcriptional programs underlying migratory capacity, resting cellular states and apoptosis regulation in transitional gonocytes. We also identified a subpopulation of primitive spermatogonia marked by CD87 (plasminogen activator, urokinase receptor), which exhibited a higher level of self-renewal gene expression and migration potential. We further revealed a differentiation-primed state within the undifferentiated compartment, in which elevated Oct4 expression correlates with lower expression of self-renewal pathway factors, higher Rarg expression, and enhanced retinoic acid responsiveness. Lastly, a knockdown experiment revealed the role of Oct4 in the regulation of gene expression related to the MAPK pathway and cell adhesion, which may contribute to stem cell differentiation. Our study thus provides novel insights into cellular and molecular regulation during early germ cell development.
Collapse
Affiliation(s)
- Jinyue Liao
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- The Chinese University of Hong Kong - Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics, Shatin, Hong Kong SAR, China
| | - Shuk Han Ng
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- The Chinese University of Hong Kong - Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics, Shatin, Hong Kong SAR, China
| | - Alfred Chun Luk
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- The Chinese University of Hong Kong - Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics, Shatin, Hong Kong SAR, China
| | - Hoi Ching Suen
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- The Chinese University of Hong Kong - Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics, Shatin, Hong Kong SAR, China
| | - Yan Qian
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- The Chinese University of Hong Kong - Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics, Shatin, Hong Kong SAR, China
| | - Annie Wing Tung Lee
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- The Chinese University of Hong Kong - Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics, Shatin, Hong Kong SAR, China
| | - Jiajie Tu
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- The Chinese University of Hong Kong - Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics, Shatin, Hong Kong SAR, China
| | - Jacqueline Chak Lam Fung
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- The Chinese University of Hong Kong - Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics, Shatin, Hong Kong SAR, China
| | - Nelson Leung Sang Tang
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Bo Feng
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wai Yee Chan
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- The Chinese University of Hong Kong - Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics, Shatin, Hong Kong SAR, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Joint CUHK-UoS (University of Southampton) Joint Laboratories for Stem Cells and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- CUHK-BGI Innovation Institute of Trans-omics Hong Kong, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Pierre Fouchet
- CEA DRF IBFJ IRCM, Laboratoire des Cellules Souches Germinales, 92265 Fontenay-aux-Roses, France
- Université Paris Diderot, Sorbonne Paris Cité, INSERM, UMR 967, 92265 Fontenay-aux-Roses, France
- Université Paris Sud, INSERM, UMR 967, 92265 Fontenay-aux-Roses, France
| | - Robin M Hobbs
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Tin Lap Lee
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- The Chinese University of Hong Kong - Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics, Shatin, Hong Kong SAR, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Joint CUHK-UoS (University of Southampton) Joint Laboratories for Stem Cells and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- CUHK-BGI Innovation Institute of Trans-omics Hong Kong, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
33
|
Yoshida S. Heterogeneous, dynamic, and stochastic nature of mammalian spermatogenic stem cells. Curr Top Dev Biol 2019; 135:245-285. [DOI: 10.1016/bs.ctdb.2019.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Safian D, Ryane N, Bogerd J, Schulz RW. Fsh stimulates Leydig cell Wnt5a production, enriching zebrafish type A spermatogonia. J Endocrinol 2018; 239:351-363. [PMID: 30400013 DOI: 10.1530/joe-18-0447] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Follicle-stimulating hormone (Fsh) modulates vertebrate spermatogenesis by regulating somatic cell functions in the testis. We have found previously that zebrafish Fsh stimulated the differentiating proliferation of type A undifferentiated spermatogonia (Aund) in an androgen-independent manner by regulating the production of growth factors and other signaling molecules in both Sertoli (SCs) and Leydig cells (LCs). For example, Fsh triggered the release of Igf3 that subsequently activated β-catenin signaling to promote the differentiating proliferation of Aund. In the present study, we report that Fsh moreover uses the non-canonical Wnt pathway to promote the proliferation and accumulation of Aund. Initially, we found that the stimulatory effect of Fsh on the proliferation activity of Aund was further strengthened when β-catenin signaling was inhibited, resulting in an accumulation of Aund. We then showed that this Fsh-induced accumulation of Aund was associated with increased transcript levels of the non-canonical Wnt ligand, wnt5a. In situ hybridization of insl3 mRNA, a gene expressed in LCs, combined with Wnt5a immunocytochemistry identified LCs as the cellular source of Wnt5a in the adult zebrafish testis. Addition of an antagonist of Wnt5a to incubations with Fsh decreased both the proliferation activity and the relative section area occupied by Aund, while an agonist of Wnt5a increased these same parameters for Aund. Taken together, our data suggest that Fsh triggered LCs to release Wnt5a, which then promoted the proliferation and accumulation of Aund. Hence, Fsh uses non-canonical Wnt signaling to ensure the production of Aund, while also triggering β-catenin signaling via Igf3 to ensure spermatogonial differentiation.
Collapse
Affiliation(s)
- Diego Safian
- Reproductive Biology Group, Division Developmental Biology, Department of Biology, Institute of Biodynamics and Biocomplexity, Faculty of Science, University of Utrecht, NL-3584 CH Utrecht, The Netherlands
| | - Najoua Ryane
- Reproductive Biology Group, Division Developmental Biology, Department of Biology, Institute of Biodynamics and Biocomplexity, Faculty of Science, University of Utrecht, NL-3584 CH Utrecht, The Netherlands
| | - Jan Bogerd
- Reproductive Biology Group, Division Developmental Biology, Department of Biology, Institute of Biodynamics and Biocomplexity, Faculty of Science, University of Utrecht, NL-3584 CH Utrecht, The Netherlands
| | - Rüdiger W Schulz
- Reproductive Biology Group, Division Developmental Biology, Department of Biology, Institute of Biodynamics and Biocomplexity, Faculty of Science, University of Utrecht, NL-3584 CH Utrecht, The Netherlands
- Reproduction and Developmental Biology Group, Institute of Marine Research, Nordnes, Bergen, Norway
| |
Collapse
|
35
|
La HM, Chan AL, Legrand JMD, Rossello FJ, Gangemi CG, Papa A, Cheng Q, Morand EF, Hobbs RM. GILZ-dependent modulation of mTORC1 regulates spermatogonial maintenance. Development 2018; 145:dev.165324. [PMID: 30126904 DOI: 10.1242/dev.165324] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022]
Abstract
Male fertility is dependent on spermatogonial stem cells (SSCs) that self-renew and produce differentiating germ cells. Growth factors produced within the testis are essential for SSC maintenance but intrinsic factors that dictate the SSC response to these stimuli are poorly characterised. Here, we have studied the role of GILZ, a TSC22D family protein and spermatogenesis regulator, in spermatogonial function and signalling. Although broadly expressed in the germline, GILZ was prominent in undifferentiated spermatogonia and Gilz deletion in adults resulted in exhaustion of the GFRα1+ SSC-containing population and germline degeneration. GILZ loss was associated with mTORC1 activation, suggesting enhanced growth factor signalling. Expression of deubiquitylase USP9X, an mTORC1 modulator required for spermatogenesis, was disrupted in Gilz mutants. Treatment with an mTOR inhibitor rescued GFRα1+ spermatogonial failure, indicating that GILZ-dependent mTORC1 inhibition is crucial for SSC maintenance. Analysis of cultured undifferentiated spermatogonia lacking GILZ confirmed aberrant activation of ERK MAPK upstream mTORC1 plus USP9X downregulation and interaction of GILZ with TSC22D proteins. Our data indicate an essential role for GILZ-TSC22D complexes in ensuring the appropriate response of undifferentiated spermatogonia to growth factors via distinct inputs to mTORC1.
Collapse
Affiliation(s)
- Hue M La
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria 3800, Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Ai-Leen Chan
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria 3800, Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Julien M D Legrand
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria 3800, Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Fernando J Rossello
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria 3800, Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Christina G Gangemi
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria 3800, Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Antonella Papa
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Qiang Cheng
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria 3800, Australia
| | - Eric F Morand
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria 3800, Australia
| | - Robin M Hobbs
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria 3800, Australia .,Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
36
|
Peer NR, Law SM, Murdoch B, Goulding EH, Eddy EM, Kim K. Germ Cell-Specific Retinoic Acid Receptor α Functions in Germ Cell Organization, Meiotic Integrity, and Spermatogonia. Endocrinology 2018; 159:3403-3420. [PMID: 30099545 PMCID: PMC6112597 DOI: 10.1210/en.2018-00533] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022]
Abstract
Retinoic acid receptor α (RARA), a retinoic acid-dependent transcription factor, is expressed in both somatic and germ cells of the testis. Rara-null male mice with global Rara mutations displayed severely degenerated testis and infertility phenotypes. To elucidate the specific responsibility of germ cell RARA in spermatogenesis, Rara was deleted in germ cells, generating germ cell-specific Rara conditional knockout (cKO) mice. These Rara cKO animals exhibited phenotypes of quantitatively reduced epididymal sperm counts and disorganized germ cell layers in the seminiferous tubules, which worsened with aging. Abnormal tubules lacked lumen, contained vacuoles, and showed massive germ cell sloughing, all characteristics similar to those observed in Rara-null tubules. Spermatocyte chromosomal spreads revealed a novel role for germ cell RARA in modulating the integrity of synaptonemal complexes and meiotic progression. Furthermore, the initiation of spermatogenesis from spermatogonial stem cells was decreased in Rara cKO testes following busulfan treatment, supporting a role of germ cell RARA in spermatogonial proliferation. Collectively, the evidence in this study indicates that RARA produced in male germ cells has a broad spectrum of functions throughout spermatogenesis, which includes the maintenance of seminiferous epithelium organization, the integrity of the meiotic genome, and spermatogonial proliferation and differentiation. The results further suggest that germ cell RARA has dual functions: intrinsically in germ cells, balancing proliferation and differentiation of spermatogonia, and controlling genome integrity during meiosis; and extrinsically in the crosstalks with Sertoli cells, controlling the cell junctional physiology for coordinating proper spatial and temporal development of germ cells during spermatogenesis.
Collapse
Affiliation(s)
- Natalie R Peer
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Sze Ming Law
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Brenda Murdoch
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington
- Department of Animal and Veterinary Science, University of Idaho, Moscow, Idaho
| | - Eugenia H Goulding
- Laboratory of Reproductive and Developmental Biology, Gamete Biology Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Edward M Eddy
- Laboratory of Reproductive and Developmental Biology, Gamete Biology Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Kwanhee Kim
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington
| |
Collapse
|
37
|
Lei Q, Pan Q, Li N, Zhou Z, Zhang J, He X, Peng S, Li G, Sidhu K, Chen S, Hua J. H19 regulates the proliferation of bovine male germline stem cells via IGF-1 signaling pathway. J Cell Physiol 2018; 234:915-926. [PMID: 30069947 DOI: 10.1002/jcp.26920] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/13/2018] [Indexed: 01/12/2023]
Abstract
Self-renewal and differentiation of male germline stem cells (mGSCs) provide the basic function for continual spermatogenesis. Studies of in vitro culture of germline stem cells are important and meaningful for basic biological research and practical application. Growth factors, such as GDNF, bFGF, CSF1, and EGF, could maintain the self-renewal of mGSCs. Insulin-like growth factor 1 (IGF-1), an important growth factor, and its pathway have been reported to maintain the survival of several types of stem cells and play important roles in male reproduction. However, the mechanism through which the IGF-1 pathway acts to regulate the self-renewal of mGSCs remains unclear. We analyzed the effect of IGF-1 on the proliferation and apoptosis of bovine mGSCs. We evaluated the expression profile of long noncoding RNA (LncRNA) H19 in bovine and mouse tissues. Moreover, we investigated whether LncRNA H19 could regulate the IGF-1 pathway. Results showed that IGF-1 could activate the phosphorylation of AKT and ERK signaling pathways, and the IGF-1 pathway played an important role in regulating the proliferation and apoptosis of bovine mGSCs. The proliferation rate of mGSCs decreased, whereas the apoptosis rate of mGSCs increased when the IGF-1 receptor (IGF-1R) was blocked using the IGF-1R-specific inhibitor (picropodophyllin). LncRNA H19 could regulate the IGF-1 signaling pathway and, consequently, the proliferation and apoptosis of mGSCs. The number of cells in the seminiferous tubule decreased when H19 was interfered by injecting a virus-containing supernatant. Hence, LncRNA H19 participated in the regulation of the proliferation and apoptosis of mGSCs via the IGF-1 signaling pathway.
Collapse
Affiliation(s)
- Qijing Lei
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, China
| | - Qin Pan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, China
| | - Zhe Zhou
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, China
| | - Juqing Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, China
| | - Xin He
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, China
| | - Guangpeng Li
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Kuldip Sidhu
- Centre for Healthy Brain Ageing, UNSW Medicine, High St Randwick, NSW, Australia
| | - Shulin Chen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
38
|
Lord T, Oatley JM. Functional assessment of spermatogonial stem cell purity in experimental cell populations. Stem Cell Res 2018; 29:129-133. [PMID: 29660605 PMCID: PMC6392036 DOI: 10.1016/j.scr.2018.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/07/2018] [Accepted: 03/28/2018] [Indexed: 01/15/2023] Open
Abstract
Historically, research in spermatogonial biology has been hindered by a lack of validated approaches to identify and isolate pure populations of the various spermatogonial subsets for in-depth analysis. In particular, although a number of markers of the undifferentiated spermatogonial population have now been characterized, standardized methodology for assessing their specificity to the spermatogonial stem cell (SSC) and transit amplifying progenitor pools has been lacking. To date, SSC content within an undefined population of spermatogonia has been inferred using either lineage tracing or spermatogonial transplantation analyses which generate qualitative and quantitative data, respectively. Therefore, these techniques are not directly comparable, and are subject to variable interpretations as to a readout that is representative of a 'pure' SSC population. We propose standardization across the field for determining the SSC purity of a population via use of a limiting dilution transplantation assay that would eliminate subjectivity and help to minimize the generation of inconsistent data on 'SSC' populations. In the limiting dilution transplantation assay, a population of LacZ-expressing spermatogonia are selected based on a putative SSC marker, and a small, defined number of cells (i.e. 10 cells) are microinjected into the testis of a germ cell-deficient recipient mouse. Using colony counts and an estimated colonization efficiency of 5%; a quantitative value can be calculated that represents SSC purity in the starting population. The utilization of this technique would not only be useful to link functional relevance to novel markers that will be identified in the future, but also for providing validation of purity for marker-selected populations of spermatogonia that are commonly considered to be SSCs by many researchers in the field of spermatogenesis and stem cell biology.
Collapse
Affiliation(s)
- Tessa Lord
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, United States
| | - Jon M Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, United States.
| |
Collapse
|