1
|
Yanagi T, Phen SF, Ayala J, Aydin DE, Jaramillo S, Truong DM. Termination sequence between an inducible promoter and ubiquitous chromatin opening element (UCOE) reduces gene expression leakage and silencing. J Biol Eng 2025; 19:29. [PMID: 40205378 PMCID: PMC11983960 DOI: 10.1186/s13036-025-00499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Inducible gene expression circuits enable precise control over target gene activation and are widely used in direct reprogramming. However, their usability is often compromised by DNA methylation-induced silencing, especially in iPSCs. This deactivates genetic circuits in engineered iPSCs preventing them from being used for long-term scalable expansion of desired cell types. A2-ubiquitous chromatin opening elements (A2UCOE) have been recognized for their anti-silencing properties, but they have not been used in human iPSCs with inducible systems for direct reprogramming. This study investigates the role of A2UCOE in inducible systems and identifies strategies to eliminate associated gene leakage enabling long-term use of engineered human iPSCs. RESULTS We developed a compact all-in-one gene circuit - containing a doxycycline-inducible Tet-On system, 863 bp of A2UCOE, and FOXN1, a transcription factor critical for thymic epithelial cell (TEC) differentiation - easily deployed to new genomic sites. However, we observed significant FOXN1 gene leakage even without doxycycline, which is a novel limitation of A2UCOE. This leakage resulted in premature differentiation of iPSCs into TECs, limiting its continued use. To further investigate the relationship between A2UCOE and gene leakage, we generated A2UCOE fragments of varying lengths (1337 bp, 749 bp, and 547 bp) and found that all fragments, regardless of length, caused significant gene leakage. To solve this issue, we tested different spacer sequences between A2UCOE and the inducible promoter and found that the SV40 poly-A terminator fully eliminated FOXN1 leakage, and we show this effect is not due to AT- or GC-content. Unexpectedly, this architecture further enhanced anti-silencing effects > 60% providing prolonged stability for at least 30 days. CONCLUSIONS This study reveals a novel limitation of A2UCOE in inducible systems, specifically its contribution to gene leakage, which compromise sensitive systems like direct reprogramming of iPSCs. The inclusion of an SV40 poly-A sequence provides a practical solution and genomic architecture to improve the functionality of A2UCOE-based circuits. It also suggests investigating how termination of transcription modulates gene silencing as a novel design parameter. These findings have significant implications for the design of robust gene circuits, particularly in applications involving iPSCs, regenerative medicine, and cell therapy.
Collapse
Affiliation(s)
- Tomoki Yanagi
- Department of Biomedical Engineering, New York University (NYU) Tandon School of Engineering, Brooklyn, NY, USA
| | - Shean Fu Phen
- Department of Biomedical Engineering, New York University (NYU) Tandon School of Engineering, Brooklyn, NY, USA
- Department of Biology, New York University (NYU) Graduate School of Arts and Sciences, New York, NY, USA
| | - Jonah Ayala
- Department of Biomedical Engineering, New York University (NYU) Tandon School of Engineering, Brooklyn, NY, USA
| | - Deniz Ece Aydin
- Department of Biomedical Engineering, New York University (NYU) Tandon School of Engineering, Brooklyn, NY, USA
| | - Susanna Jaramillo
- Department of Biomedical Engineering, New York University (NYU) Tandon School of Engineering, Brooklyn, NY, USA
| | - David M Truong
- Department of Biomedical Engineering, New York University (NYU) Tandon School of Engineering, Brooklyn, NY, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Schmidt T, Wiesbeck M, Egert L, Truong TT, Danese A, Voshagen L, Imhof S, Iraci Borgia M, Deeksha, Neuner A, Köferle A, Geerlof A, Santos Dias Mourão A, Stricker S. Efficient DNA- and virus-free engineering of cellular transcriptomic states using dCas9 ribonucleoprotein (dRNP) complexes. Nucleic Acids Res 2025; 53:gkaf235. [PMID: 40156858 PMCID: PMC11952960 DOI: 10.1093/nar/gkaf235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 03/03/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
For genome editing, the use of CRISPR ribonucleoprotein (RNP) complexes is well established and often the superior choice over plasmid-based or viral strategies. RNPs containing dCas9 fusion proteins, which enable the targeted manipulation of transcriptomes and epigenomes, remain significantly less accessible. Here, we describe the production, delivery, and optimization of second generation CRISPRa RNPs (dRNPs). We characterize the transcriptional and cellular consequences of dRNP treatments in a variety of human target cells and show that the uptake is very efficient. The targeted activation of genes demonstrates remarkable potency, even for genes that are strongly silenced, such as developmental master transcription factors. In contrast to DNA-based CRISPRa strategies, gene activation is immediate and characterized by a sharp temporal precision. We also show that dRNPs allow very high-target multiplexing, enabling undiminished gene activation of multiple genes simultaneously. Applying these insights, we find that intensive target multiplexing at single promoters synergistically elevates gene transcription. Finally, we demonstrate in human stem and differentiated cells that the preferable features of dRNPs allow to instruct and convert cell fates efficiently without the need for DNA delivery or viral vectors.
Collapse
Affiliation(s)
- Tobias Schmidt
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
| | - Maximilian Wiesbeck
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
| | - Luisa Egert
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
| | - Thi-Tram Truong
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
| | - Anna Danese
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
| | - Lukas Voshagen
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
| | - Simon Imhof
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
| | - Matilde Iraci Borgia
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
| | - Deeksha
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
| | - Andrea M Neuner
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
| | - Anna Köferle
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Centre Munich, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - André Santos Dias Mourão
- Institute of Structural Biology, Helmholtz Centre Munich, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Stefan H Stricker
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
3
|
Sang Y, Xu L, Bao Z. Development of artificial transcription factors and their applications in cell reprograming, genetic screen, and disease treatment. Mol Ther 2024; 32:4208-4234. [PMID: 39473180 PMCID: PMC11638881 DOI: 10.1016/j.ymthe.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/18/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024] Open
Abstract
Gene dysregulations are associated with many human diseases, such as cancers and hereditary diseases. Artificial transcription factors (ATFs) are synthetic molecular tools to regulate the expression of disease-associated genes, which is of great significance in basic biological research and biomedical applications. Recent advances in the engineering of ATFs for regulating endogenous gene expression provide an expanded set of tools for understanding and treating diseases. However, the potential immunogenicity, large size, inefficient delivery, and off-target effects persist as obstacles for ATFs to be developed into therapeutics. Moreover, the activation of an endogenous gene following ATF activity lacks durability. In this review, we first describe the functional components of ATFs, including DNA-binding domains, transcriptional effector domains, and control switches. We then highlight examples of applications of ATFs, including cell reprogramming and differentiation, pathogenic gene screening, and disease treatment. Finally, we analyze and summarize major challenges for the clinical translation of ATFs and propose potential strategies to improve these useful molecular tools.
Collapse
Affiliation(s)
- Yetong Sang
- Institute of Bioengineering & Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Lingjie Xu
- Institute of Bioengineering & Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Zehua Bao
- Institute of Bioengineering & Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China; Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
4
|
Capelletti S, García Soto SC, Gonçalves MAFV. On RNA-programmable gene modulation as a versatile set of principles targeting muscular dystrophies. Mol Ther 2024; 32:3793-3807. [PMID: 39169620 PMCID: PMC11573585 DOI: 10.1016/j.ymthe.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
The repurposing of RNA-programmable CRISPR systems from genome editing into epigenome editing tools is gaining pace, including in research and development efforts directed at tackling human disorders. This momentum stems from the increasing knowledge regarding the epigenetic factors and networks underlying cell physiology and disease etiology and from the growing realization that genome editing principles involving chromosomal breaks generated by programmable nucleases are prone to unpredictable genetic changes and outcomes. Hence, engineered CRISPR systems are serving as versatile DNA-targeting scaffolds for heterologous and synthetic effector domains that, via locally recruiting transcription factors and chromatin remodeling complexes, seek interfering with loss-of-function and gain-of-function processes underlying recessive and dominant disorders, respectively. Here, after providing an overview about epigenetic drugs and CRISPR-Cas-based activation and interference platforms, we cover the testing of these platforms in the context of molecular therapies for muscular dystrophies. Finally, we examine attributes, obstacles, and deployment opportunities for CRISPR-based epigenetic modulating technologies.
Collapse
Affiliation(s)
- Sabrina Capelletti
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Sofía C García Soto
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
5
|
Liu Y, Wei C, Yang Y, Zhu Z, Ren Y, Pi R. In situ chemical reprogramming of astrocytes into neurons: A new hope for the treatment of central neurodegenerative diseases? Eur J Pharmacol 2024; 982:176930. [PMID: 39179093 DOI: 10.1016/j.ejphar.2024.176930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/18/2024] [Accepted: 08/21/2024] [Indexed: 08/26/2024]
Abstract
Central neurodegenerative disorders (e.g. Alzheimer's disease (AD) and Parkinson's disease (PD)) are tightly associated with extensive neuron loss. Current therapeutic interventions merely mitigate the symptoms of these diseases, falling short of addressing the fundamental issue of neuron loss. Cell reprogramming, involving the transition of a cell from one gene expression profile to another, has made significant strides in the conversion between diverse somatic cell types. This advancement has been facilitated by gene editing techniques or the synergistic application of small molecules, enabling the conversion of glial cells into functional neurons. Despite this progress, the potential for in situ reprogramming of astrocytes in treating neurodegenerative disorders faces challenges such as immune rejection and genotoxicity. A novel avenue emerges through chemical reprogramming of astrocytes utilizing small molecules, circumventing genotoxic effects and unlocking substantial clinical utility. Recent studies have successfully demonstrated the in situ conversion of astrocytes into neurons using small molecules. Nonetheless, these findings have sparked debates, encompassing queries regarding the origin of newborn neurons, pivotal molecular targets, and alterations in metabolic pathways. This review succinctly delineates the background of astrocytes reprogramming, meticulously surveys the principal classes of small molecule combinations employed thus far, and examines the complex signaling pathways they activate. Finally, this article delves into the potential vistas awaiting exploration in the realm of astrocytes chemical reprogramming, heralding a promising future for advancing our understanding and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuan Liu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Cailv Wei
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yang Yang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zeyu Zhu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yu Ren
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Rongbiao Pi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Shenzhen, 518107, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Ng BW, Kaukonen MK, McClements ME, Shamsnajafabadi H, MacLaren RE, Cehajic-Kapetanovic J. Genetic therapies and potential therapeutic applications of CRISPR activators in the eye. Prog Retin Eye Res 2024; 102:101289. [PMID: 39127142 DOI: 10.1016/j.preteyeres.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Conventional gene therapy involving supplementation only treats loss-of-function diseases and is limited by viral packaging sizes, precluding therapy of large genes. The discovery of CRISPR/Cas has led to a paradigm shift in the field of genetic therapy, with the promise of precise gene editing, thus broadening the range of diseases that can be treated. The initial uses of CRISPR/Cas have focused mainly on gene editing or silencing of abnormal variants via utilising Cas endonuclease to trigger the target cell endogenous non-homologous end joining. Subsequently, the technology has evolved to modify the Cas enzyme and even its guide RNA, leading to more efficient editing tools in the form of base and prime editing. Further advancements of this CRISPR/Cas technology itself have expanded its functional repertoire from targeted editing to programmable transactivation, shifting the therapeutic focus to precise endogenous gene activation or upregulation with the potential for epigenetic modifications. In vivo experiments using this platform have demonstrated the potential of CRISPR-activators (CRISPRa) to treat various loss-of-function diseases, as well as in regenerative medicine, highlighting their versatility to overcome limitations associated with conventional strategies. This review summarises the molecular mechanisms of CRISPRa platforms, the current applications of this technology in vivo, and discusses potential solutions to translational hurdles for this therapy, with a focus on ophthalmic diseases.
Collapse
Affiliation(s)
- Benjamin Wj Ng
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Maria K Kaukonen
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Hoda Shamsnajafabadi
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
7
|
Liu S, Xu X, Omari-Siaw E, Yu J, Deng W. Progress of reprogramming astrocytes into neuron. Mol Cell Neurosci 2024; 130:103947. [PMID: 38862082 DOI: 10.1016/j.mcn.2024.103947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024] Open
Abstract
As the main players in the central nervous system (CNS), neurons dominate most life activities. However, after accidental trauma or neurodegenerative diseases, neurons are unable to regenerate themselves. The loss of this important role can seriously affect the quality of life of patients, ranging from movement disorders to disability and even death. There is no suitable treatment to prevent or reverse this process. Therefore, the regeneration of neurons after loss has been a major clinical problem and the key to treatment. Replacing the lost neurons by transdifferentiation of other cells is the only viable approach. Although much progress has been made in stem cell therapy, ethical issues, immune rejection, and limited cell sources still hinder its clinical application. In recent years, somatic cell reprogramming technology has brought a new dawn. Among them, astrocytes, as endogenously abundant cells homologous to neurons, have good potential and application value for reprogramming into neurons, having been reprogrammed into neurons in vitro and in vivo in a variety of ways.
Collapse
Affiliation(s)
- Sitong Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China
| | - Ximing Xu
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China
| | - Emmanuel Omari-Siaw
- Department of Pharmaceutical Science, Kumasi Technical University, PO Box 854, Kumasi, Ashanti, Ghana
| | - Jiangnan Yu
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China.
| | - Wenwen Deng
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China.
| |
Collapse
|
8
|
Talifu Z, Zhang C, Xu X, Pan Y, Ke H, Li Z, Liu W, Du H, Wang X, Gao F, Yang D, Jing Y, Yu Y, Du L, Li J. Neuronal repair after spinal cord injury by in vivo astrocyte reprogramming mediated by the overexpression of NeuroD1 and Neurogenin-2. Biol Res 2024; 57:53. [PMID: 39135103 PMCID: PMC11318173 DOI: 10.1186/s40659-024-00534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND As a common disabling disease, irreversible neuronal death due to spinal cord injury (SCI) is the root cause of functional impairment; however, the capacity for neuronal regeneration in the developing spinal cord tissue is limited. Therefore, there is an urgent need to investigate how defective neurons can be replenished and functionally integrated by neural regeneration; the reprogramming of intrinsic cells into functional neurons may represent an ideal solution. METHODS A mouse model of transection SCI was prepared by forceps clamping, and an adeno-associated virus (AAV) carrying the transcription factors NeuroD1 and Neurogenin-2(Ngn2) was injected in situ into the spinal cord to specifically overexpress these transcription factors in astrocytes close to the injury site. 5-bromo-2´-deoxyuridine (BrdU) was subsequently injected intraperitoneally to continuously track cell regeneration, neuroblasts and immature neurons marker expression, neuronal regeneration, and glial scar regeneration. In addition, immunoprotein blotting was used to measure the levels of transforming growth factor-β (TGF-β) pathway-related protein expression. We also evaluated motor function, sensory function, and the integrity of the blood-spinal cord barrier(BSCB). RESULTS The in situ overexpression of NeuroD1 and Ngn2 in the spinal cord was achieved by specific AAV vectors. This intervention led to a significant increase in cell regeneration and the proportion of cells with neuroblasts and immature neurons cell properties at the injury site(p < 0.0001). Immunofluorescence staining identified astrocytes with neuroblasts and immature neurons cell properties at the site of injury while neuronal marker-specific staining revealed an increased number of mature astrocytes at the injury site. Behavioral assessments showed that the intervention did not improve The BMS (Basso mouse scale) score (p = 0.0726) and gait (p > 0.05), although the treated mice had more sensory sensitivity and greater voluntary motor ability in open field than the non-intervention mice. We observed significant repair of the BSCB at the center of the injury site (p < 0.0001) and a significant improvement in glial scar proliferation. Electrophysiological assessments revealed a significant improvement in spinal nerve conduction (p < 0.0001) while immunostaining revealed that the levels of TGF-β protein at the site of injury in the intervention group were lower than control group (p = 0.0034); in addition, P70 s6 and PP2A related to the TGF-β pathway showed ascending trend (p = 0.0036, p = 0.0152 respectively). CONCLUSIONS The in situ overexpression of NeuroD1 and Ngn2 in the spinal cord after spinal cord injury can reprogram astrocytes into neurons and significantly enhance cell regeneration at the injury site. The reprogramming of astrocytes can lead to tissue repair, thus improving the reduced threshold and increasing voluntary movements. This strategy can also improve the integrity of the blood-spinal cord barrier and enhance nerve conduction function. However, the simple reprogramming of astrocytes cannot lead to significant improvements in the striding function of the lower limbs.
Collapse
Affiliation(s)
- Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
- University of Health and Rehabilitation Sciences, Shandong, 266113, China
| | - Chunjia Zhang
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
- University of Health and Rehabilitation Sciences, Shandong, 266113, China
- Cheeloo College of Medicine, Shandong University, Shandong Province, Jinan, 250100, China
| | - Yunzhu Pan
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
- University of Health and Rehabilitation Sciences, Shandong, 266113, China
| | - Han Ke
- Cheeloo College of Medicine, Shandong University, Shandong Province, Jinan, 250100, China
| | - Zehui Li
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Wubo Liu
- Cheeloo College of Medicine, Shandong University, Shandong Province, Jinan, 250100, China
| | - Huayong Du
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Xiaoxin Wang
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Degang Yang
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Yingli Jing
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Liangjie Du
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Jianjun Li
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China.
- University of Health and Rehabilitation Sciences, Shandong, 266113, China.
- Cheeloo College of Medicine, Shandong University, Shandong Province, Jinan, 250100, China.
| |
Collapse
|
9
|
Li ST, Wan Y, Chen L, Ding Y. Advances in neuronal reprogramming for neurodegenerative diseases: Strategies, controversies, and opportunities. Exp Neurol 2024; 378:114817. [PMID: 38763354 DOI: 10.1016/j.expneurol.2024.114817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Neuronal death is often observed in central nervous system injuries and neurodegenerative diseases. The mammalian central nervous system manifests limited neuronal regeneration capabilities, and traditional cell therapies are limited in their potential applications due to finite cell sources and immune rejection. Neuronal reprogramming has emerged as a novel technology, in which non-neuronal cells (e.g. glial cells) are transdifferentiated into mature neurons. This process results in relatively minimal immune rejection. The present review discuss the latest progress in this cutting-edge field, including starter cell selection, innovative technical strategies and methods of neuronal reprogramming for neurodegenerative diseases, as well as the potential problems and controversies. The further development of neuronal reprogramming technology may pave the way for novel therapeutic strategies in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Si-Tong Li
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yue Wan
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Li Chen
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yan Ding
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Qin R, Zhang Y, Yang Y, Chen J, Huang L, Xu W, Qin Q, Liang X, Lai X, Huang X, Xie M, Chen L. Decoding single-cell molecular mechanisms in astrocyte-to-iN reprogramming via Ngn2- and Pax6-mediated direct lineage switching. Eur J Med Res 2024; 29:390. [PMID: 39068473 PMCID: PMC11282629 DOI: 10.1186/s40001-024-01989-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND The limited regenerative capacity of damaged neurons in adult mammals severely restricts neural repair. Although stem cell transplantation is promising, its clinical application remains challenging. Direct reprogramming, which utilizes cell plasticity to regenerate neurons, is an emerging alternative approach. METHODS We utilized primary postnatal cortical astrocytes for reprogramming induced neurons (iNs) through the viral-mediated overexpression of the transcription factors Ngn2 and Pax6 (NP). Fluorescence-activated cell sorting (FACS) was used to enrich successfully transfected cells, followed by single-cell RNA sequencing (scRNA-seq) using the 10 × Genomics platform for comprehensive transcriptomic analysis. RESULTS The scRNA-seq revealed that NP overexpression led to the differentiation of astrocytes into iNs, with percentages of 36% and 39.3% on days 4 and 7 posttransduction, respectively. CytoTRACE predicted the developmental sequence, identifying astrocytes as the reprogramming starting point. Trajectory analysis depicted the dynamic changes in gene expression during the astrocyte-to-iN transition. CONCLUSIONS This study elucidates the molecular dynamics underlying astrocyte reprogramming into iNs, revealing key genes and pathways involved in this process. Our research contributes novel insights into the molecular mechanisms of NP-mediated reprogramming, suggesting avenues for optimizing the efficiency of the reprogramming process.
Collapse
Affiliation(s)
- Rongxing Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yingdan Zhang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yue Yang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Guangxi Medical University, Nanning, 530021, China
| | - Jiafeng Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Guangxi Medical University, Nanning, 530021, China
| | - Lijuan Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Guangxi Medical University, Nanning, 530021, China
| | - Wei Xu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Guangxi Medical University, Nanning, 530021, China
| | - Qingchun Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Guangxi Medical University, Nanning, 530021, China
| | - Xiaojun Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xinyu Lai
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoying Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Minshan Xie
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Li Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
- National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
11
|
Sichani AS, Khoddam S, Shakeri S, Tavakkoli Z, Jafroodi AR, Dabbaghipour R, Sisakht M, Fallahi J. Partial Reprogramming as a Method for Regenerating Neural Tissues in Aged Organisms. Cell Reprogram 2024; 26:10-23. [PMID: 38381402 DOI: 10.1089/cell.2023.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Aging causes numerous age-related diseases, leading the human species to death. Nevertheless, rejuvenating strategies based on cell epigenetic modifications are a possible approach to counteract disease progression while getting old. Cell reprogramming of adult somatic cells toward pluripotency ought to be a promising tool for age-related diseases. However, researchers do not have control over this process as cells lose their fate, and cause potential cancerous cells or unexpected cell phenotypes. Direct and partial reprogramming were introduced in recent years with distinctive applications. Although direct reprogramming makes cells lose their identity, it has various applications in regeneration medicine. Temporary and regulated in vivo overexpression of Yamanaka factors has been shown in several experimental contexts to be achievable and is used to rejuvenate mice models. This regeneration can be accomplished by altering the epigenetic adult cell signature to the signature of a younger cell. The greatest advantage of partial reprogramming is that this method does not allow cells to lose their identity when they are resetting their epigenetic clock. It is a regimen of short-term Oct3/4, Sox2, Klf4, and c-Myc expression in vivo that prevents full reprogramming to the pluripotent state and avoids both tumorigenesis and the presence of unwanted undifferentiated cells. We know that many neurological age-related diseases, such as Alzheimer's disease, stroke, dementia, and Parkinson's disease, are the main cause of death in the last decades of life. Therefore, scientists have a special tendency regarding neuroregeneration methods to increase human life expectancy.
Collapse
Affiliation(s)
- Ali Saber Sichani
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Somayeh Khoddam
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayan Shakeri
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Tavakkoli
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arad Ranji Jafroodi
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Dabbaghipour
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Sisakht
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Huang L, Lai X, Liang X, Chen J, Yang Y, Xu W, Qin Q, Qin R, Huang X, Xie M, Chen L. A promise for neuronal repair: reprogramming astrocytes into neurons in vivo. Biosci Rep 2024; 44:BSR20231717. [PMID: 38175538 PMCID: PMC10830445 DOI: 10.1042/bsr20231717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024] Open
Abstract
Massive loss of neurons following brain injury or disease is the primary cause of central nervous system dysfunction. Recently, much research has been conducted on how to compensate for neuronal loss in damaged parts of the nervous system and thus restore functional connectivity among neurons. Direct somatic cell differentiation into neurons using pro-neural transcription factors, small molecules, or microRNAs, individually or in association, is the most promising form of neural cell replacement therapy available. This method provides a potential remedy for cell loss in a variety of neurodegenerative illnesses, and the development of reprogramming technology has made this method feasible. This article provides a comprehensive review of reprogramming, including the selection and methods of reprogramming starting cell populations as well as the signaling methods involved in this process. Additionally, we thoroughly examine how reprogramming astrocytes into neurons can be applied to treat stroke and other neurodegenerative diseases. Finally, we discuss the challenges of neuronal reprogramming and offer insights about the field.
Collapse
Affiliation(s)
- Lijuan Huang
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xinyu Lai
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiaojun Liang
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Jiafeng Chen
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yue Yang
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Wei Xu
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Qingchun Qin
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Rongxing Qin
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xiaoying Huang
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Minshan Xie
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Li Chen
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
13
|
Tai W, Zhang CL. In vivo cell fate reprogramming for spinal cord repair. Curr Opin Genet Dev 2023; 82:102090. [PMID: 37506560 PMCID: PMC11025462 DOI: 10.1016/j.gde.2023.102090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/07/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Spinal cord injury (SCI) can lead to the loss of motor, sensory, or autonomic function due to neuronal death. Unfortunately, the adult mammalian spinal cord has limited intrinsic regenerative capacity, making it difficult to rebuild the neural circuits necessary for functional recovery. However, recent evidence suggests that in vivo fate reprogramming of resident cells that are normally non-neurogenic can generate new neurons. This process also improves the pathological microenvironment, and the new neurons can integrate into the local neural network, resulting in better functional outcomes in SCI animal models. In this concise review, we focus on recent advances while also discussing the challenges, pitfalls, and opportunities in the field of in vivo cell fate reprogramming for spinal cord repair.
Collapse
Affiliation(s)
- Wenjiao Tai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
14
|
Punjani N, Deska-Gauthier D, Hachem LD, Abramian M, Fehlings MG. Neuroplasticity and regeneration after spinal cord injury. NORTH AMERICAN SPINE SOCIETY JOURNAL 2023; 15:100235. [PMID: 37416090 PMCID: PMC10320621 DOI: 10.1016/j.xnsj.2023.100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
Spinal cord injury (SCI) is a debilitating condition with significant personal, societal, and economic burden. The highest proportion of traumatic injuries occur at the cervical level, which results in severe sensorimotor and autonomic deficits. Following the initial physical damage associated with traumatic injuries, secondary pro-inflammatory, excitotoxic, and ischemic cascades are initiated further contributing to neuronal and glial cell death. Additionally, emerging evidence has begun to reveal that spinal interneurons undergo subtype specific neuroplastic circuit rearrangements in the weeks to months following SCI, contributing to or hindering functional recovery. The current therapeutic guidelines and standards of care for SCI patients include early surgery, hemodynamic regulation, and rehabilitation. Additionally, preclinical work and ongoing clinical trials have begun exploring neuroregenerative strategies utilizing endogenous neural stem/progenitor cells, stem cell transplantation, combinatorial approaches, and direct cell reprogramming. This review will focus on emerging cellular and noncellular regenerative therapies with an overview of the current available strategies, the role of interneurons in plasticity, and the exciting research avenues enhancing tissue repair following SCI.
Collapse
Affiliation(s)
- Nayaab Punjani
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Dylan Deska-Gauthier
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Laureen D. Hachem
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Neurosurgery and Spine Program, University of Toronto, Toronto, ON, Canada
| | - Madlene Abramian
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Neurosurgery and Spine Program, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
15
|
Fang YM, Chen WC, Zheng WJ, Yang YS, Zhang Y, Chen XL, Pei MQ, Lin S, He HF. A cutting-edge strategy for spinal cord injury treatment: resident cellular transdifferentiation. Front Cell Neurosci 2023; 17:1237641. [PMID: 37711511 PMCID: PMC10498389 DOI: 10.3389/fncel.2023.1237641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Spinal cord injury causes varying degrees of motor and sensory function loss. However, there are no effective treatments for spinal cord repair following an injury. Moreover, significant preclinical advances in bioengineering and regenerative medicine have not yet been translated into effective clinical therapies. The spinal cord's poor regenerative capacity makes repairing damaged and lost neurons a critical treatment step. Reprogramming-based neuronal transdifferentiation has recently shown great potential in repair and plasticity, as it can convert mature somatic cells into functional neurons for spinal cord injury repair in vitro and in vivo, effectively halting the progression of spinal cord injury and promoting functional improvement. However, the mechanisms of the neuronal transdifferentiation and the induced neuronal subtypes are not yet well understood. This review analyzes the mechanisms of resident cellular transdifferentiation based on a review of the relevant recent literature, describes different molecular approaches to obtain different neuronal subtypes, discusses the current challenges and improvement methods, and provides new ideas for exploring therapeutic approaches for spinal cord injury.
Collapse
Affiliation(s)
- Yu-Ming Fang
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wei-Can Chen
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wan-Jing Zheng
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yu-Shen Yang
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yan Zhang
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xin-Li Chen
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Meng-Qin Pei
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Neuroendocrinology Group, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - He-Fan He
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
16
|
Bazarek SF, Thaqi M, King P, Mehta AR, Patel R, Briggs CA, Reisenbigler E, Yousey JE, Miller EA, Stutzmann GE, Marr RA, Peterson DA. Engineered neurogenesis in naïve adult rat cortex by Ngn2-mediated neuronal reprogramming of resident oligodendrocyte progenitor cells. Front Neurosci 2023; 17:1237176. [PMID: 37662111 PMCID: PMC10471311 DOI: 10.3389/fnins.2023.1237176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Adult tissue stem cells contribute to tissue homeostasis and repair but the long-lived neurons in the human adult cerebral cortex are not replaced, despite evidence for a limited regenerative response. However, the adult cortex contains a population of proliferating oligodendrocyte progenitor cells (OPCs). We examined the capacity of rat cortical OPCs to be re-specified to a neuronal lineage both in vitro and in vivo. Expressing the developmental transcription factor Neurogenin2 (Ngn2) in OPCs isolated from adult rat cortex resulted in their expression of early neuronal lineage markers and genes while downregulating expression of OPC markers and genes. Ngn2 induced progression through a neuronal lineage to express mature neuronal markers and functional activity as glutamatergic neurons. In vivo retroviral gene delivery of Ngn2 to naive adult rat cortex ensured restricted targeting to proliferating OPCs. Ngn2 expression in OPCs resulted in their lineage re-specification and transition through an immature neuronal morphology into mature pyramidal cortical neurons with spiny dendrites, axons, synaptic contacts, and subtype specification matching local cytoarchitecture. Lineage re-specification of rat cortical OPCs occurred without prior injury, demonstrating these glial progenitor cells need not be put into a reactive state to achieve lineage reprogramming. These results show it may be feasible to precisely engineer additional neurons directly in adult cerebral cortex for experimental study or potentially for therapeutic use to modify dysfunctional or damaged circuitry.
Collapse
Affiliation(s)
- Stanley F. Bazarek
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Mentor Thaqi
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Patrick King
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Amol R. Mehta
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Ronil Patel
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Clark A. Briggs
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Emily Reisenbigler
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Jonathon E. Yousey
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Elis A. Miller
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Grace E. Stutzmann
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Robert A. Marr
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Daniel A. Peterson
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
17
|
Bendixen L, Jensen TI, Bak RO. CRISPR-Cas-mediated transcriptional modulation: The therapeutic promises of CRISPRa and CRISPRi. Mol Ther 2023; 31:1920-1937. [PMID: 36964659 PMCID: PMC10362391 DOI: 10.1016/j.ymthe.2023.03.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023] Open
Abstract
The CRISPR-Cas system is commonly known for its ability to cleave DNA in a programmable manner, which has democratized gene editing and facilitated recent breakthroughs in gene therapy. However, newer iterations of the technology using nuclease-disabled Cas enzymes have spurred a variety of different types of genetic engineering platforms such as transcriptional modulation using the CRISPR activation (CRISPRa) and CRISPR interference (CRISPRi) systems. This review introduces the creation of these programmable transcriptional modulators, various methods of delivery utilized for these systems, and recent technological developments. CRISPRa and CRISPRi have also been implemented in genetic screens for interrogating gene function and discovering genes involved in various biological pathways. We describe recent compelling examples of how these tools have become powerful means to unravel genetic networks and uncovering important information about devastating diseases. Finally, we provide an overview of preclinical studies in which transcriptional modulation has been used therapeutically, and we discuss potential future directions of these novel modalities.
Collapse
Affiliation(s)
- Louise Bendixen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Trine I Jensen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
18
|
Delgado L, Navarrete M. Shining the Light on Astrocytic Ensembles. Cells 2023; 12:1253. [PMID: 37174653 PMCID: PMC10177371 DOI: 10.3390/cells12091253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
While neurons have traditionally been considered the primary players in information processing, the role of astrocytes in this mechanism has largely been overlooked due to experimental constraints. In this review, we propose that astrocytic ensembles are active working groups that contribute significantly to animal conduct and suggest that studying the maps of these ensembles in conjunction with neurons is crucial for a more comprehensive understanding of behavior. We also discuss available methods for studying astrocytes and argue that these ensembles, complementarily with neurons, code and integrate complex behaviors, potentially specializing in concrete functions.
Collapse
Affiliation(s)
| | - Marta Navarrete
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
| |
Collapse
|
19
|
Talifu Z, Liu JY, Pan YZ, Ke H, Zhang CJ, Xu X, Gao F, Yu Y, Du LJ, Li JJ. In vivo astrocyte-to-neuron reprogramming for central nervous system regeneration: a narrative review. Neural Regen Res 2023; 18:750-755. [PMID: 36204831 PMCID: PMC9700087 DOI: 10.4103/1673-5374.353482] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The inability of damaged neurons to regenerate within the mature central nervous system (CNS) is a significant neuroscientific challenge. Astrocytes are an essential component of the CNS and participate in many physiological processes including blood-brain barrier formation, axon growth regulation, neuronal support, and higher cognitive functions such as memory. Recent reprogramming studies have confirmed that astrocytes in the mature CNS can be transformed into functional neurons. Building on in vitro work, many studies have demonstrated that astrocytes can be transformed into neurons in different disease models to replace damaged or lost cells. However, many findings in this field are controversial, as the source of new neurons has been questioned. This review summarizes progress in reprogramming astrocytes into neurons in vivo in animal models of spinal cord injury, brain injury, Huntington's disease, Parkinson's disease, Alzheimer's disease, and other neurodegenerative conditions.
Collapse
Affiliation(s)
- Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Jia-Yi Liu
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yun-Zhu Pan
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chun-Jia Zhang
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liang-Jie Du
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| |
Collapse
|
20
|
Chen XD, Liu HL, Li S, Hu KB, Wu QY, Liao P, Wang HY, Long ZY, Lu XM, Wang YT. The latest role of nerve-specific splicing factor PTBP1 in the transdifferentiation of glial cells into neurons. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1740. [PMID: 35574699 DOI: 10.1002/wrna.1740] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/16/2022] [Accepted: 04/21/2022] [Indexed: 11/07/2022]
Abstract
Central nervous system injury diseases can cause the loss of many neurons, and it is difficult to regenerate. The field of regenerative medicine believes that supplementing the missing neurons may be an ideal method for nerve injury repair. Recent studies have found that down-regulation of polypyrimidine tract binding protein 1 (PTBP1) expression can make glial cells transdifferentiate into different types of neurons, which is expected to be an alternative therapy to restore neuronal function. This article summarized the research progress on the structure and biological function of the PTBP family, the mutual regulation of PTBP1 and PTBP2, their role in neurogenesis, and the latest research progress in targeting PTBP1 to mediate the transdifferentiation of glial cells into neurons, which may provide some new strategies and new ideas for the future treatment of central nervous system injury and neurodegenerative diseases. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Xing-Dong Chen
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Hui-Lin Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Sen Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Kai-Bin Hu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Qing-Yun Wu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Ping Liao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Zai-Yun Long
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Yong-Tang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
21
|
Chen G, Yang RY, Chai R, Pan JY, Bao JY, Xia PH, Wang YK, Chen Y, Li Y, Wu J. Knockdown of polypyrimidine tract binding protein facilitates motor function recovery after spinal cord injury. Neural Regen Res 2023; 18:396-403. [PMID: 35900436 PMCID: PMC9396513 DOI: 10.4103/1673-5374.346463] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
After spinal cord injury (SCI), a fibroblast- and microglia-mediated fibrotic scar is formed in the lesion core, and a glial scar is formed around the fibrotic scar as a result of the activation and proliferation of astrocytes. Simultaneously, a large number of neurons are lost in the injured area. Regulating the dense glial scar and replenishing neurons in the injured area are essential for SCI repair. Polypyrimidine tract binding protein (PTB), known as an RNA-binding protein, plays a key role in neurogenesis. Here, we utilized short hairpin RNAs (shRNAs) and antisense oligonucleotides (ASOs) to knock down PTB expression. We found that reactive spinal astrocytes from mice were directly reprogrammed into motoneuron-like cells by PTB downregulation in vitro. In a mouse model of compression-induced SCI, adeno-associated viral shRNA-mediated PTB knockdown replenished motoneuron-like cells around the injured area. Basso Mouse Scale scores and forced swim, inclined plate, cold allodynia, and hot plate tests showed that PTB knockdown promoted motor function recovery in mice but did not improve sensory perception after SCI. Furthermore, ASO-mediated PTB knockdown improved motor function restoration by not only replenishing motoneuron-like cells around the injured area but also by modestly reducing the density of the glial scar without disrupting its overall structure. Together, these findings suggest that PTB knockdown may be a promising therapeutic strategy to promote motor function recovery during spinal cord repair.
Collapse
|
22
|
Yang R, Pan J, Wang Y, Xia P, Tai M, Jiang Z, Chen G. Application and prospects of somatic cell reprogramming technology for spinal cord injury treatment. Front Cell Neurosci 2022; 16:1005399. [PMID: 36467604 PMCID: PMC9712200 DOI: 10.3389/fncel.2022.1005399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/02/2022] [Indexed: 08/10/2023] Open
Abstract
Spinal cord injury (SCI) is a serious neurological trauma that is challenging to treat. After SCI, many neurons in the injured area die due to necrosis or apoptosis, and astrocytes, oligodendrocytes, microglia and other non-neuronal cells become dysfunctional, hindering the repair of the injured spinal cord. Corrective surgery and biological, physical and pharmacological therapies are commonly used treatment modalities for SCI; however, no current therapeutic strategies can achieve complete recovery. Somatic cell reprogramming is a promising technology that has gradually become a feasible therapeutic approach for repairing the injured spinal cord. This revolutionary technology can reprogram fibroblasts, astrocytes, NG2 cells and neural progenitor cells into neurons or oligodendrocytes for spinal cord repair. In this review, we provide an overview of the transcription factors, genes, microRNAs (miRNAs), small molecules and combinations of these factors that can mediate somatic cell reprogramming to repair the injured spinal cord. Although many challenges and questions related to this technique remain, we believe that the beneficial effect of somatic cell reprogramming provides new ideas for achieving functional recovery after SCI and a direction for the development of treatments for SCI.
Collapse
Affiliation(s)
- Riyun Yang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Jingying Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Yankai Wang
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - Panhui Xia
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - Mingliang Tai
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - Zhihao Jiang
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - Gang Chen
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
23
|
Clark IH, Roman A, Fellows E, Radha S, Var SR, Roushdy Z, Borer SM, Johnson S, Chen O, Borgida JS, Steevens A, Shetty A, Strell P, Low WC, Grande AW. Cell Reprogramming for Regeneration and Repair of the Nervous System. Biomedicines 2022; 10:2598. [PMID: 36289861 PMCID: PMC9599606 DOI: 10.3390/biomedicines10102598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
A persistent barrier to the cure and treatment of neurological diseases is the limited ability of the central and peripheral nervous systems to undergo neuroregeneration and repair. Recent efforts have turned to regeneration of various cell types through cellular reprogramming of native cells as a promising therapy to replenish lost or diminished cell populations in various neurological diseases. This review provides an in-depth analysis of the current viral vectors, genes of interest, and target cellular populations that have been studied, as well as the challenges and future directions of these novel therapies. Furthermore, the mechanisms by which cellular reprogramming could be optimized as treatment in neurological diseases and a review of the most recent cellular reprogramming in vitro and in vivo studies will also be discussed.
Collapse
Affiliation(s)
- Isaac H. Clark
- Department of Biomedical Engineering, Biomedical Engineering Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alex Roman
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neuroscience, Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emily Fellows
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Swathi Radha
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Susanna R. Var
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zachary Roushdy
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samuel M. Borer
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samantha Johnson
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Olivia Chen
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jacob S. Borgida
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Aleta Steevens
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anala Shetty
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Molecular, Cell, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Phoebe Strell
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Comparative and Molecular Sciences Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Walter C. Low
- Department of Biomedical Engineering, Biomedical Engineering Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neuroscience, Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Molecular, Cell, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Comparative and Molecular Sciences Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andrew W. Grande
- Department of Biomedical Engineering, Biomedical Engineering Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neuroscience, Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
24
|
Zhou M, Cao Y, Sui M, Shu X, Wan F, Zhang B. Dead Cas(t) light on new life: CRISPRa-mediated reprogramming of somatic cells into neurons. Cell Mol Life Sci 2022; 79:315. [PMID: 35610381 PMCID: PMC11073076 DOI: 10.1007/s00018-022-04324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/28/2022] [Accepted: 04/21/2022] [Indexed: 11/03/2022]
Abstract
Overexpression of exogenous lineage-specific transcription factors could directly induce terminally differentiated somatic cells into target cell types. However, the low conversion efficiency and the concern about introducing exogenous genes limit the clinical application. With the rapid progress in genome editing, the application of CRISPR/dCas9 has been expanding rapidly, including converting somatic cells into other types of cells in vivo and in vitro. Using the CRISPR/dCas9 system, direct neuronal reprogramming could be achieved by activating endogenous genes. Here, we will discuss the latest progress, new insights, and future challenges of the application of the dCas9 system in direct neuronal reprogramming.
Collapse
Affiliation(s)
- Meiling Zhou
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Yu Cao
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Ming Sui
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiji Shu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Feng Wan
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Bin Zhang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
25
|
Ng N, Newbery M, Maksour S, Dottori M, Sluyter R, Ooi L. Transgene and Chemical Transdifferentiation of Somatic Cells for Rapid and Efficient Neurological Disease Cell Models. Front Cell Neurosci 2022; 16:858432. [PMID: 35634469 PMCID: PMC9130549 DOI: 10.3389/fncel.2022.858432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/15/2022] [Indexed: 11/23/2022] Open
Abstract
For neurological diseases, molecular and cellular research relies on the use of model systems to investigate disease processes and test potential therapeutics. The last decade has witnessed an increase in the number of studies using induced pluripotent stem cells to generate disease relevant cell types from patients. The reprogramming process permits the generation of a large number of cells but is potentially disadvantaged by introducing variability in clonal lines and the removal of phenotypes of aging, which are critical to understand neurodegenerative diseases. An under-utilized approach to disease modeling involves the transdifferentiation of aged cells from patients, such as fibroblasts or blood cells, into various neural cell types. In this review we discuss techniques used for rapid and efficient direct conversion to neural cell types. We examine the limitations and future perspectives of this rapidly advancing field that could improve neurological disease modeling and drug discovery.
Collapse
Affiliation(s)
- Neville Ng
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
- *Correspondence: Neville Ng,
| | - Michelle Newbery
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Simon Maksour
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Mirella Dottori
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
- Lezanne Ooi,
| |
Collapse
|
26
|
Havelikova K, Smejkalova B, Jendelova P. Neurogenesis as a Tool for Spinal Cord Injury. Int J Mol Sci 2022; 23:ijms23073728. [PMID: 35409088 PMCID: PMC8998995 DOI: 10.3390/ijms23073728] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury is a devastating medical condition with no effective treatment. One approach to SCI treatment may be provided by stem cells (SCs). Studies have mainly focused on the transplantation of exogenous SCs, but the induction of endogenous SCs has also been considered as an alternative. While the differentiation potential of neural stem cells in the brain neurogenic regions has been known for decades, there are ongoing debates regarding the multipotent differentiation potential of the ependymal cells of the central canal in the spinal cord (SCECs). Following spinal cord insult, SCECs start to proliferate and differentiate mostly into astrocytes and partly into oligodendrocytes, but not into neurons. However, there are several approaches concerning how to increase neurogenesis in the injured spinal cord, which are discussed in this review. The potential treatment approaches include drug administration, the reduction of neuroinflammation, neuromodulation with physical factors and in vivo reprogramming.
Collapse
Affiliation(s)
- Katerina Havelikova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (K.H.); (B.S.)
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Barbora Smejkalova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (K.H.); (B.S.)
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Pavla Jendelova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (K.H.); (B.S.)
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
- Correspondence: ; Tel.: +420-24-106-2828
| |
Collapse
|
27
|
Hulme AJ, Maksour S, St-Clair Glover M, Miellet S, Dottori M. Making neurons, made easy: The use of Neurogenin-2 in neuronal differentiation. Stem Cell Reports 2021; 17:14-34. [PMID: 34971564 PMCID: PMC8758946 DOI: 10.1016/j.stemcr.2021.11.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Directed neuronal differentiation of human pluripotent stem cells (hPSCs), neural progenitors, or fibroblasts using transcription factors has allowed for the rapid and highly reproducible differentiation of mature and functional neurons. Exogenous expression of the transcription factor Neurogenin-2 (NGN2) has been widely used to generate different populations of neurons, which have been used in neurodevelopment studies, disease modeling, drug screening, and neuronal replacement therapies. Could NGN2 be a “one-glove-fits-all” approach for neuronal differentiations? This review summarizes the cellular roles of NGN2 and describes the applications and limitations of using NGN2 for the rapid and directed differentiation of neurons.
Collapse
Affiliation(s)
- Amy J Hulme
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Simon Maksour
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Mitchell St-Clair Glover
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Sara Miellet
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Mirella Dottori
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
28
|
Optimization of Neurite Tracing and Further Characterization of Human Monocyte-Derived-Neuronal-like Cells. Brain Sci 2021; 11:brainsci11111372. [PMID: 34827371 PMCID: PMC8615477 DOI: 10.3390/brainsci11111372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022] Open
Abstract
Deficits in neuronal structure are consistently associated with neurodevelopmental illnesses such as autism and schizophrenia. Nonetheless, the inability to access neurons from clinical patients has limited the study of early neurostructural changes directly in patients’ cells. This obstacle has been circumvented by differentiating stem cells into neurons, although the most used methodologies are time consuming. Therefore, we recently developed a relatively rapid (~20 days) protocol for transdifferentiating human circulating monocytes into neuronal-like cells. These monocyte-derived-neuronal-like cells (MDNCs) express several genes and proteins considered neuronal markers, such as MAP-2 and PSD-95. In addition, these cells conduct electrical activity. We have also previously shown that the structure of MDNCs is comparable with that of human developing neurons (HDNs) after 5 days in culture. Moreover, the neurostructure of MDNCs responds similarly to that of HDNs when exposed to colchicine and dopamine. In this manuscript, we expanded our characterization of MDNCs to include the expression of 12 neuronal genes, including tau. Following, we compared three different tracing approaches (two semi-automated and one automated) that enable tracing using photographs of live cells. This comparison is imperative for determining which neurite tracing method is more efficient in extracting neurostructural data from MDNCs and thus allowing researchers to take advantage of the faster yield provided by these neuronal-like cells. Surprisingly, it was one of the semi-automated methods that was the fastest, consisting of tracing only the longest primary and the longest secondary neurite. This tracing technique also detected more structural deficits. The only automated method tested, Volocity, detected MDNCs but failed to trace the entire neuritic length. Other advantages and disadvantages of the three tracing approaches are also presented and discussed.
Collapse
|