1
|
Corsini A, Ginsberg HN, Chapman MJ. Therapeutic PCSK9 targeting: Inside versus outside the hepatocyte? Pharmacol Ther 2025; 268:108812. [PMID: 39947256 DOI: 10.1016/j.pharmthera.2025.108812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/13/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
As a major regulator of LDL receptor (LDLR) activity and thus of LDL-cholesterol (LDL-C) levels, proprotein convertase subtilisin/kexin type 9 (PCSK9) represents an obvious therapeutic target for lipid lowering. The PCSK9 inhibitors, alirocumab and evolocumab, are human monoclonal antibodies (mAbs) that act outside the cell by complexing circulating PCSK9 and thus preventing its binding to the LDLR. In contrast, inclisiran, a small interfering RNA (siRNA), inhibits hepatic synthesis of PCSK9, thereby resulting in reduced amounts of the protein inside and outside the cell. Both approaches result in decreased plasma LDL-C concentrations and improved cardiovascular outcomes. Marginally superior LDL-C reduction (≈ 60 %) is achieved with mAbs as compared to the siRNA (≈ 50 %); head-to-head comparisons are required to confirm between-class differences in efficacy. Both drug classes have shown variability in LDL-C lowering response between individuals in waterfall analyses. Whereas mAb-mediated inhibition leads to a compensatory increase in plasma PCSK9 levels, siRNA treatment reduces them. These agents differ in their pharmacokinetic and pharmacodynamic features, which may translate into distinct clinical opportunities under acute (e.g. acute coronary syndromes) as compared to chronic conditions. Both drug classes provide additional reduction in LDL-C levels (up to 50 %) beyond those achieved with statin therapy, facilitating attainment of guideline-recommended LDL-C goals in high and very high-risk patients. Additional PCSK9 inhibitors, including an oral macrocyclic peptide, a small PCSK9 binding protein and a novel small molecule, plus hepatic gene editing of PCSK9, are under development. This review critically appraises pharmacological strategies to target PCSK9 either inside or outside the cell.
Collapse
Affiliation(s)
- Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Milan, Italy
| | - Henry N Ginsberg
- Irving Institute for Clinical and Translational Research, Columbia University, New York, USA
| | - M John Chapman
- Sorbonne University Medical Faculty, Lipidology and Cardiovascular Prevention Unit, Pitie-Salpetriere University Hospital, Paris, France.
| |
Collapse
|
2
|
Fujiwara A, Takemura K, Tanaka A, Matsumoto M, Katsuyama M, Okanoue T, Yamaguchi K, Itoh Y, Iwata K, Amagase K, Umemura A. Carfilzomib shows therapeutic potential for reduction of liver fibrosis by targeting hepatic stellate cell activation. Sci Rep 2024; 14:19288. [PMID: 39164386 PMCID: PMC11335859 DOI: 10.1038/s41598-024-70296-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Because hepatic stellate cells (HSCs) play a major role in fibrosis, we focused on HSCs as a potential target for the treatment of liver fibrosis. In this study, we attempted to identify drug candidates to inactivate HSCs and found that several proteasome inhibitors (PIs) reduced HSC viability. Our data showed that a second-generation PI, carfilzomib (CZM), suppressed the expression of fibrotic markers in primary murine HSCs at low concentrations of 5 or 10 nM. Since CZM was not toxic to HSCs up to a concentration of 12.5 nM, we examined its antifibrotic effects further. CZM achieved a clear reduction in liver fibrosis in the carbon tetrachloride (CCl4)-induced mouse model of liver fibrosis without worsening of liver injury. Mechanistically, RNA sequence analysis of primary HSCs revealed that CZM inhibits mitosis in HSCs. In the CCl4-injured liver, amphiregulin, which is known to activate mitogenic signaling pathways and fibrogenic activity and is upregulated in murine and human metabolic dysfunction-associated steatohepatitis (MASH), was downregulated by CZM administration, leading to inhibition of mitosis in HSCs. Thus, CZM and next-generation PIs in development could be potential therapeutic agents for the treatment of liver fibrosis via inactivation of HSCs without liver injury.
Collapse
Affiliation(s)
- Ayana Fujiwara
- Department of Pharmacology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
- Laboratory of Pharmacology and Pharmacotherapeutics, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Keisuke Takemura
- Department of Pharmacology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Anna Tanaka
- Laboratory of Pharmacology and Pharmacotherapeutics, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Misaki Matsumoto
- Department of Pharmacology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
- Department of Clinical Pharmacology and Pharmacotherapy, Wakayama Medical University, Wakayama, Japan
| | - Masato Katsuyama
- Radioisotope Center, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka, Japan
| | - Kanji Yamaguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazumi Iwata
- Department of Pharmacology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kikuko Amagase
- Laboratory of Pharmacology and Pharmacotherapeutics, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Atsushi Umemura
- Department of Pharmacology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
3
|
Hsu CY, Abdulrahim MN, Mustafa MA, Omar TM, Balto F, Pineda I, Khudair TT, Ubaid M, Ali MS. The multifaceted role of PCSK9 in cancer pathogenesis, tumor immunity, and immunotherapy. Med Oncol 2024; 41:202. [PMID: 39008137 DOI: 10.1007/s12032-024-02435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9), a well-known regulator of cholesterol metabolism and cardiovascular diseases, has recently garnered attention for its emerging involvement in cancer biology. The multifunctional nature of PCSK9 extends beyond lipid regulation and encompasses a wide range of cellular processes that can influence cancer progression. Studies have revealed that PCSK9 can modulate signaling pathways, such as PI3K/Akt, MAPK, and Wnt/β-catenin, thereby influencing cellular proliferation, survival, and angiogenesis. Additionally, the interplay between PCSK9 and cholesterol homeostasis may impact membrane dynamics and cellular migration, further influencing tumor aggressiveness. The central role of the immune system in monitoring and controlling cancer is increasingly recognized. Recent research has demonstrated the ability of PCSK9 to modulate immune responses through interactions with immune cells and components of the tumor microenvironment. This includes effects on dendritic cell maturation, T cell activation, and cytokine production, suggesting a role in shaping antitumor immune responses. Moreover, the potential influence of PCSK9 on immune checkpoints such as PD1/PD-L1 lends an additional layer of complexity to its immunomodulatory functions. The growing interest in cancer immunotherapy has prompted exploration into the potential of targeting PCSK9 for therapeutic benefits. Preclinical studies have demonstrated synergistic effects between PCSK9 inhibitors and established immunotherapies, offering a novel avenue for combination treatments. The strategic manipulation of PCSK9 to enhance tumor immunity and improve therapeutic outcomes presents an exciting area for further investigations. Understanding the mechanisms by which PCSK9 influences cancer biology and immunity holds promise for the development of novel immunotherapeutic approaches. This review aims to provide a comprehensive analysis of the intricate connections between PCSK9, cancer pathogenesis, tumor immunity, and the potential implications for immunotherapeutic interventions.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan.
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, 85004, USA.
| | | | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Baghdad, Iraq
- Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Samarra, Iraq
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, Al-Noor University College, Nineveh, Iraq
| | - Franklin Balto
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Indira Pineda
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Teeba Thamer Khudair
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
4
|
Onfray C, Chevolleau S, Moinard E, Girard O, Mahadik K, Allsop R, Georgolopoulos G, Lavigne R, Renoult O, Aksoy I, Lemaitre E, Hulin P, Ouimette JF, Fréour T, Pecqueur C, Pineau C, Pasque V, Rougeulle C, David L. Unraveling hallmark suitability for staging pre- and post-implantation stem cell models. Cell Rep 2024; 43:114232. [PMID: 38761378 DOI: 10.1016/j.celrep.2024.114232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/02/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024] Open
Abstract
The advent of novel 2D and 3D models for human development, including trophoblast stem cells and blastoids, has expanded opportunities for investigating early developmental events, gradually illuminating the enigmatic realm of human development. While these innovations have ushered in new prospects, it has become essential to establish well-defined benchmarks for the cell sources of these models. We aimed to propose a comprehensive characterization of pluripotent and trophoblastic stem cell models by employing a combination of transcriptomic, proteomic, epigenetic, and metabolic approaches. Our findings reveal that extended pluripotent stem cells share many characteristics with primed pluripotent stem cells, with the exception of metabolic activity. Furthermore, our research demonstrates that DNA hypomethylation and high metabolic activity define trophoblast stem cells. These results underscore the necessity of considering multiple hallmarks of pluripotency rather than relying on a single criterion. Multiplying hallmarks alleviate stage-matching bias.
Collapse
Affiliation(s)
- Constance Onfray
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Simon Chevolleau
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Eva Moinard
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Océane Girard
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Kasturi Mahadik
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, 75013 Paris, France
| | - Ryan Allsop
- KU Leuven - University of Leuven, Department of Development and Regeneration, Leuven Institute for Single Cell Omics and Leuven Stem Cell Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Grigorios Georgolopoulos
- KU Leuven - University of Leuven, Department of Development and Regeneration, Leuven Institute for Single Cell Omics and Leuven Stem Cell Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Régis Lavigne
- University Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000 Rennes, France; University Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, 35000 Rennes, France
| | - Ophélie Renoult
- Nantes Université, CNRS, Inserm, CRCI2NA, 44000 Nantes, France
| | - Irene Aksoy
- University Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Elsa Lemaitre
- Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, SFR Bonamy, 44000 Nantes, France
| | - Philippe Hulin
- Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, SFR Bonamy, 44000 Nantes, France
| | | | - Thomas Fréour
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France; Department of Obstetrics, Gynecology and Reproductive Medicine, Dexeus University Hospital, 08028 Barcelona, Spain; CHU Nantes, Service de Biologie de la Reproduction, 44000 Nantes, France
| | - Claire Pecqueur
- Nantes Université, CNRS, Inserm, CRCI2NA, 44000 Nantes, France
| | - Charles Pineau
- University Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000 Rennes, France; University Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, 35000 Rennes, France
| | - Vincent Pasque
- KU Leuven - University of Leuven, Department of Development and Regeneration, Leuven Institute for Single Cell Omics and Leuven Stem Cell Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Claire Rougeulle
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, 75013 Paris, France
| | - Laurent David
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France; Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, SFR Bonamy, 44000 Nantes, France.
| |
Collapse
|
5
|
Lewek J, Bielecka-Dąbrowa A, Toth PP, Banach M. Dyslipidaemia management in pregnant patients: a 2024 update. EUROPEAN HEART JOURNAL OPEN 2024; 4:oeae032. [PMID: 38784103 PMCID: PMC11114474 DOI: 10.1093/ehjopen/oeae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Over several decades, the approach to treating dyslipidaemias during pregnancy remains essentially unchanged. The lack of advancement in this field is mostly related to the fact that we lack clinical trials of pregnant patients both with available as well as new therapies. While there are numerous novel therapies developed for non-pregnant patients, there are still many limitations in dyslipidaemia treatment during pregnancy. Besides pharmacotherapy and careful clinical assessment, the initiation of behavioural modifications as well as pre-conception management is very important. Among the various lipid-lowering medications, bile acid sequestrants are the only ones officially approved for treating dyslipidaemia in pregnancy. Ezetimibe and fenofibrate can be considered if their benefits outweigh potential risks. Statins are still considered contraindicated, primarily due to animal studies and human case reports. However, recent systematic reviews and meta-analyses as well as data on familial hypercholesterolaemia (FH) in pregnant patients have indicated that their use may not be harmful and could even be beneficial in certain selected cases. This is especially relevant for pregnant patients at very high cardiovascular risk, such as those who have already experienced an acute cardiovascular event or have homozygous or severe forms of heterozygous FH. In these cases, the decision to continue therapy during pregnancy should weigh the potential risks of discontinuation. Bempedoic acid, olezarsen, evinacumab, evolocumab and alirocumab, and inclisiran are options to consider just before and after pregnancy is completed. In conclusion, decisions regarding lipid-lowering therapy for pregnant patients should be personalized. Despite the challenges in designing and conducting studies in pregnant women, there is a strong need to establish the safety and efficacy of dyslipidaemia treatment during pregnancy.
Collapse
Affiliation(s)
- Joanna Lewek
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Rzgowska 281/289, 93-338 Lodz, Poland
- Department of Cardiology and Congenital Diseases of Adults, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Rzgowska 281/289, 93-338 Lodz, Poland
| | - Agata Bielecka-Dąbrowa
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Rzgowska 281/289, 93-338 Lodz, Poland
- Department of Cardiology and Congenital Diseases of Adults, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Rzgowska 281/289, 93-338 Lodz, Poland
| | - Peter P Toth
- The Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Carnegie 591, Baltimore, MD 21287, USA
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Rzgowska 281/289, 93-338 Lodz, Poland
- Department of Cardiology and Congenital Diseases of Adults, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Rzgowska 281/289, 93-338 Lodz, Poland
- The Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Carnegie 591, Baltimore, MD 21287, USA
- Cardiovascular Research Centre, Zyty 28, 65-417 Zielona Góra, Poland
| |
Collapse
|
6
|
Yang QC, Wang S, Liu YT, Song A, Wu ZZ, Wan SC, Li HM, Sun ZJ. Targeting PCSK9 reduces cancer cell stemness and enhances antitumor immunity in head and neck cancer. iScience 2023; 26:106916. [PMID: 37305703 PMCID: PMC10250824 DOI: 10.1016/j.isci.2023.106916] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/01/2023] [Accepted: 05/14/2023] [Indexed: 06/13/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has been demonstrated to play a critical role in regulating cholesterol homeostasis and T cell antitumor immunity. However, the expression, function, and therapeutic value of PCSK9 in head and neck squamous cell carcinoma (HNSCC) remain largely unexplored. Here, we found that the expression of PCSK9 was upregulated in HNSCC tissues, and higher PCSK9 expression indicated poorer prognosis in HNSCC patients. We further found that pharmacological inhibition or siRNA downregulating PCSK9 expression suppressed the stemness-like phenotype of cancer cells in an LDLR-dependent manner. Moreover, PCSK9 inhibition enhanced the infiltration of CD8+ T cells and reduced the myeloid-derived suppressor cells (MDSCs) in a 4MOSC1 syngeneic tumor-bearing mouse model, and it also enhanced the antitumor effect of anti-PD-1 immune checkpoint blockade (ICB) therapy. Together, these results indicated that PCSK9, a traditional hypercholesterolemia target, may be a novel biomarker and therapeutic target to enhance ICB therapy in HNSCC.
Collapse
Affiliation(s)
- Qi-Chao Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuo Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuan-Tong Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - An Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Zhong Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shu-Cheng Wan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hui-Min Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Wu C, Lin D, Ji J, Jiang Y, Jiang F, Wang Y. PCSK9 Inhibition Regulates Infarction-Induced Cardiac Myofibroblast Transdifferentiation via Notch1 Signaling. Cell Biochem Biophys 2023:10.1007/s12013-023-01136-1. [PMID: 37081375 DOI: 10.1007/s12013-023-01136-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
Increasing evidence suggests that PCSK9 inhibition protects cardiomyocytes against ischemia-reperfusion injury after myocardial infarction. However, it is not clear whether PCSK9 inhibitor (PCSK9i) affects cardiac fibroblasts (CFs) activation after MI. In this study we used SBC-115076, an antagonist of PCSK9, to investigate the role of PCSK9i in the conversion of CFs to cardiac myofibroblasts (CMFs) after MI and provided a basic for its clinical application in cardiac fibrosis after MI. In vivo study, PCSK9i was injected into mice 4 days after MI. Cardiac function and degree of fibrosis were evaluated by echocardiographic and tissue staining after treatment. Western blot showed that PCSK9i treatment decreases expression of α-SMA, collagen and increases expression of Notch1 in border infarct area. Vitro studies showed that PCSK9i decreased the degree of fibrosis, migration, and collagen fiber deposition in CFs. Confocal microscopy imaging also showed that hypoxia contributes to the formation of α-SMA stress filaments, and PCSK9i alleviated this state. Moreover, overexpression of Notch1 further suppress the activation of CFs under hypoxia. These results revealed that SBC-115076 ameliorates cardiac fibrosis and ventricular dysfunction post-myocardial infarction through inhibition of the differentiation of cardiac fibroblasts to myofibroblasts via Notch1/Hes1 signaling.
Collapse
Affiliation(s)
- Chen Wu
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dawei Lin
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Ji
- Department of Cardiology, Chongming Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yiweng Jiang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Jiang
- Clinical Research & Innovation Unit, Chongming Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yaosheng Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Cardiology, Chongming Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China.
- Clinical Research & Innovation Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Ozcan I, Akkoc S, Alici H, Capanlar S, Sahin O, Tahtaci H. Novel Thioether-Bridged 2,6-Disubstituted and 2,5,6-Trisubstituted Imidazothiadiazole Analogues: Synthesis, Antiproliferative Activity, ADME, and Molecular Docking Studies. Chem Biodivers 2023; 20:e202200884. [PMID: 36445849 DOI: 10.1002/cbdv.202200884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
In this study, starting from 2-amino-1,3,4-thiadiazole derivatives (3-5), a new series of 2,6-disubstituted (compounds 7-15) and 2,5,6-trisubstituted (compounds 16-33) imidazo[2,1-b][1,3,4]-thiadiazole derivatives were synthesized using cyclization and Mannich reaction mechanisms, respectively. All synthesized compounds were characterized by 1 H-NMR, 13 C-NMR, FT-IR, elemental analysis, and mass spectroscopy techniques. Also, X-ray diffraction analysis were used for compounds 4, 7, 11, 17, and 19. The cytotoxic effects of the new compounds on the viability of colon cancer cells (DLD-1), lung cancer cells (A549), and liver cancer cells (HepG2) were investigated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method in vitro. Compound 15 was found to be the most potent anticancer drug candidate in this series with an IC50 value of 3.63 μM against HepG2 for 48 h. Moreover, the absorption, distribution, metabolism, and excretion (ADME) parameters of the synthesized compounds were calculated and thus, their potential to be safe drugs was evaluated. Finally, to support the biological activity experiments, molecular docking studies of these compounds were carried out on three different target cancer protein structures (PDB IDs: 5ETY, 1M17, and 3GCW), and the amino acids that play key roles in the binding of the compounds to these proteins were determined.
Collapse
Affiliation(s)
- Ibrahim Ozcan
- Karabuk University, Faculty of Science, Department of Chemistry, 78050, Karabuk, Türkiye
| | - Senem Akkoc
- Süleyman Demirel University, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, 32260, Isparta, Türkiye.,Bahcesehir University, Faculty of Engineering and Natural Sciences, 34353, Istanbul, Türkiye
| | - Hakan Alici
- Zonguldak Bülent Ecevit University, Faculty of Science, Department of Physics, 67100, Zonguldak, Türkiye
| | - Seval Capanlar
- Zonguldak Bülent Ecevit University, Faculty of Science, Department of Chemistry, 67100, Zonguldak, Türkiye
| | - Onur Sahin
- Sinop University, Faculty of Health Sciences, Department of Occupational Health & Safety, 57000, Sinop, Türkiye
| | - Hakan Tahtaci
- Karabuk University, Faculty of Science, Department of Chemistry, 78050, Karabuk, Türkiye
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Since the discovery of PCSK9 in 2003, this proprotein convertase was shown to target specific receptors for degradation in endosomes/lysosomes, including LDLR and other family members and hence to enhance the levels of circulating LDL-cholesterol (LDLc). Accordingly, inhibitors of PCSK9, including monoclonal antibodies blocking its circulating activity and siRNA silencers of its hepatic expression, are now used in clinics worldwide to treat hypercholesterolemia patients effectively and safely in combination with statins and/or ezetimibe. These powerful treatments reduce the incidence of atherosclerosis by at least 20%. Since 2008, novel targets of PCSK9 began to be defined, thereby expanding its roles beyond LDLc regulation into the realm of inflammation, pathogen infections and cellular proliferation in various cancers and associated metastases. RECENT FINDINGS Some pathogens such as dengue virus exploit the ability of PCSK9 to target the LDLR for degradation to enhance their ability to infect cells. Aside from increasing the degradation of the LDLR and its family members VLDLR, ApoER2 and LRP1, circulating PCSK9 also reduces the levels of other receptors such as CD36 (implicated in fatty acid uptake), oxidized LDLR receptor (that clears oxidized LDLc) as well as major histocompatibility class-I (MHC-I) receptors (implicated in the immune response to antigens). Thus, these novel targets provided links between PCSK9 and inflammation/atherosclerosis, viral infections and cancer/metastasis. The functional activities of PCSK9, accelerated the development of novel therapies to inhibit PCSK9 functions, including small molecular inhibitors, long-term vaccines, and possibly CRISPR-based silencing of hepatic expression of PCSK9. The future of inhibitors/silencers of PCSK9 function or expression looks bright, as these are expected to provide a modern armamentarium to treat various pathologies beyond hypercholesterolemia and its effects on atherosclerosis.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W 1R7, Canada.
| | - Damien Garçon
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W 1R7, Canada
| |
Collapse
|
10
|
Caillaud A, Lévêque A, Thédrez A, Girardeau A, Canac R, Bray L, Baudic M, Barc J, Gaborit N, Lamirault G, Gardie B, Idriss S, Rimbert A, Le May C, Cariou B, Si-Tayeb K. FACS-assisted CRISPR-Cas9 genome editing of human induced pluripotent stem cells. STAR Protoc 2022; 3:101680. [PMID: 36115027 PMCID: PMC9490201 DOI: 10.1016/j.xpro.2022.101680] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/30/2022] [Accepted: 08/09/2022] [Indexed: 01/25/2023] Open
Abstract
This manuscript proposes an efficient and reproducible protocol for the generation of genetically modified human induced pluripotent stem cells (hiPSCs) by genome editing using CRISPR-Cas9 technology. Here, we describe the experimental strategy for generating knockout (KO) and knockin (KI) clonal populations of hiPSCs using single-cell sorting by flow cytometry. We efficiently achieved up to 15 kb deletions, molecular tag insertions, and single-nucleotide editing in hiPSCs. We emphasize the efficacy of this approach in terms of cell culture time. For complete details on the use and execution of this protocol, please refer to Canac et al. (2022) and Bray et al. (2022).
Collapse
Affiliation(s)
- Amandine Caillaud
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France,Corresponding author
| | - Antoine Lévêque
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Aurélie Thédrez
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Aurore Girardeau
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Robin Canac
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Lise Bray
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Manon Baudic
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Julien Barc
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Nathalie Gaborit
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Guillaume Lamirault
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Betty Gardie
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France,Ecole Pratique des Hautes Etudes, EPHE, Université Paris Sciences et Lettres, Paris, France
| | - Salam Idriss
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Antoine Rimbert
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Cédric Le May
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Bertrand Cariou
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France,Corresponding author
| | - Karim Si-Tayeb
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| |
Collapse
|
11
|
Wang R, Liu H, He P, An D, Guo X, Zhang X, Feng M. Inhibition of PCSK9 enhances the antitumor effect of PD-1 inhibitor in colorectal cancer by promoting the infiltration of CD8+ T cells and the exclusion of Treg cells. Front Immunol 2022; 13:947756. [PMID: 36003387 PMCID: PMC9393481 DOI: 10.3389/fimmu.2022.947756] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/15/2022] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy especially immune checkpoint inhibitors (ICIs) has brought favorable clinical results for numerous cancer patients. However, the efficacy of ICIs in colorectal cancer (CRC) is still unsatisfactory due to the poor median progression-free survival and overall survival. Here, based on the CRC models, we tried to elucidate novel relapse mechanisms during anti-PD-1 therapy. We found that PD-1 blockade elicited a mild antitumor effect in these tumor models with both increased CD8+ T cells and Treg cells. Gene mapping analysis indicated that proprotein convertase subtilisin/kexin type 9 (PCSK9), low-density lipoprotein receptor, transforming growth factor-β (TGF-β), and CD36 were unexpectedly upregulated during PD-1 blockade. To investigate the critical role of these proteins especially PCSK9 in tumor growth, anti-PCSK9 antibody in combination with anti-PD-1 antibody was employed to block PCSK9 and PD-1 simultaneously in CRC. Data showed that neutralizing PCSK9 during anti-PD-1 therapy elicited a synergetic antitumor effect with increased CD8+ T-cell infiltration and inflammatory cytokine releases. Moreover, the proportion of Treg cells was significantly reduced by co-inhibiting PCSK9 and PD-1. Overall, inhibiting PCSK9 can further enhance the antitumor effect of anti-PD-1 therapy in CRC, indicating that targeting PCSK9 could be a promising approach to potentiate ICI efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuyao Zhang
- *Correspondence: Xuyao Zhang, ; Meiqing Feng,
| | | |
Collapse
|
12
|
Zhang W, Zhang Y, Li X, Cao Z, Mo Q, Sheng R, Ling C, Chi J, Yao Q, Chen J, Wang H. Multifunctional polyphenol-based silk hydrogel alleviates oxidative stress and enhances endogenous regeneration of osteochondral defects. Mater Today Bio 2022; 14:100251. [PMID: 35469254 PMCID: PMC9034395 DOI: 10.1016/j.mtbio.2022.100251] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 01/25/2023] Open
Abstract
In osteochondral defects, oxidative stress caused by elevated levels of reactive oxygen species (ROS) can disrupt the normal endogenous repair process. In this study, a multifunctional hydrogel composed of silk fibroin (SF) and tannic acid (TA), the FDA-approved ingredients, was developed to alleviate oxidative stress and enhance osteochondral regeneration. In this proposed hydrogel, SF first interacts with TA to form a hydrogen-bonded supramolecular structure, which is subsequently enzymatically crosslinked to form a stable hydrogel. Furthermore, TA had multiple phenolic hydroxyl groups that formed interactions with the therapeutic molecule E7 peptide for controlled drug delivery. In vitro investigations showed that SF-TA and SF-TA-E7 hydrogels exhibited a multitude of biological effects including scavenging of ROS, maintaining cell viability, and promoting the proliferation of bone marrow mesenchymal stem cells (BMSCs) against oxidative stress. The proteomic analysis indicated that SF-TA and SF-TA-E7 hydrogels suppressed oxidative stress, which in turn improved cell proliferation in multiple proliferation and apoptosis-related pathways. In rabbit osteochondral defect model, SF-TA and SF-TA-E7 hydrogels promoted enhanced regeneration of both cartilage and subchondral bone as compared to hydrogel without TA incorporation. These findings indicated that the multifunctional SF-TA hydrogel provided a microenvironment suitable for the endogenous regeneration of osteochondral defects.
Collapse
Affiliation(s)
- Wei Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
| | - Yanan Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Xiaolong Li
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Zhicheng Cao
- School of Medicine, Southeast University, 210009, Nanjing, China
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Qingyun Mo
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Renwang Sheng
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Chen Ling
- School of Medicine, Southeast University, 210009, Nanjing, China
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Jiayu Chi
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
| | - Hongmei Wang
- School of Medicine, Southeast University, 210009, Nanjing, China
- Department of Pharmaceutical Sciences, Binzhou Medical University, 264003, Yantai, Shandong, China
| |
Collapse
|