1
|
Albayrak M, Kadioglu Y, Demirkaya-Miloglu F, Borekci B. A simple HPLC method for the determination of plasma progesterone levels in the third trimester of human pregnancy. Lab Med 2024:lmae098. [PMID: 39703165 DOI: 10.1093/labmed/lmae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
Progesterone is a steroid hormone primarily associated with pregnancy. A simple, rapid, and reliable high-performance liquid chromatography (HPLC) method has been developed and validated for the quantification of progesterone in human plasma. The method consists of a simple liquid-liquid extraction of progesterone and internal standard (estriol) from human plasma using a mixture of hexane and diethyl ether. The chromatographic determination of progesterone was performed using an acetonitrile-water (70:30, v/v) mobile phase with a C18 reversed-phase column. The method achieved an extraction recovery of greater than 96.4% from spiked plasma samples. Intra- and inter-day precision were generally acceptable, with relative SD% less than ≤6.60% and accuracy (relative error %) better than 3.64%. The developed and validated method was used to successfully quantify progesterone levels in plasma samples collected from women during the third trimester of pregnancy. Furthermore, a statistical comparison was conducted between progesterone concentrations in plasma samples obtained from 2 groups of pregnant women: group 1 (n = 9) at 30-35 weeks and group 2 (n = 9) at 36-41 weeks. The developed and validated HPLC method described in this study enables the successful determination of progesterone in human plasma, offering advantages such as shorter analysis time, simplicity, cost-effectiveness, and potential routine use during pregnancy.
Collapse
Affiliation(s)
- Mevlut Albayrak
- Ataturk University, School of Vocational School of Health Services, Pharmacy Services, Erzurum, Turkey
| | - Yucel Kadioglu
- Ataturk University, Faculty of Pharmacy, Department of Analytical Chemistry, Erzurum, Turkey
| | - Fatma Demirkaya-Miloglu
- Ataturk University, Faculty of Pharmacy, Department of Analytical Chemistry, Erzurum, Turkey
| | - Bunyamin Borekci
- Atatürk University, Faculty of Medicine, Department of Obstetrics and Gynecology, Erzurum, Turkey
| |
Collapse
|
2
|
Kaleta M, Oklestkova J, Klíčová K, Kvasnica M, Koníčková D, Menšíková K, Strnad M, Novák O. Simultaneous Determination of Selected Steroids with Neuroactive Effects in Human Serum by Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry. ACS Chem Neurosci 2024; 15:1990-2005. [PMID: 38655788 PMCID: PMC11099924 DOI: 10.1021/acschemneuro.3c00824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Neuroactive steroids are a group of steroid molecules that are involved in the regulation of functions of the nervous system. The nervous system is not only the site of their action, but their biosynthesis can also occur there. Neuroactive steroid levels depend not only on the physiological state of an individual (person's sex, age, diurnal variation, etc.), but they are also affected by various pathological processes in the nervous system (some neurological and psychiatric diseases or injuries), and new knowledge can be gained by monitoring these processes. The aim of our research was to develop and validate a comprehensive method for the simultaneous determination of selected steroids with neuroactive effects in human serum. The developed method enables high throughput and a sensitive quantitative analysis of nine neuroactive steroid substances (pregnenolone, progesterone, 5α-dihydroprogesterone, allopregnanolone, testosterone, 5α-dihydrotestosterone, androstenedione, dehydroepiandrosterone, and epiandrosterone) in 150 μL of human serum by ultrahigh-performance liquid chromatography with tandem mass spectrometry. The correlation coefficients above 0.999 indicated that the developed analytical procedure was linear in the range of 0.90 nmol/L to 28.46 μmol/L in human serum. The accuracy and precision of the method for all analytes ranged from 83 to 118% and from 0.9 to 14.1%, respectively. This described method could contribute to a deeper understanding of the pathophysiology of various diseases. Similarly, it can also be helpful in the search for new biomarkers and diagnostic options or therapeutic approaches.
Collapse
Affiliation(s)
- Michal Kaleta
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
| | - Jana Oklestkova
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Kateřina Klíčová
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
- Department
of Neurology, University Hospital Olomouc, Olomouc 779 00, Czech Republic
| | - Miroslav Kvasnica
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Dorota Koníčková
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
- Department
of Neurology, University Hospital Olomouc, Olomouc 779 00, Czech Republic
| | - Kateřina Menšíková
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
- Department
of Neurology, University Hospital Olomouc, Olomouc 779 00, Czech Republic
| | - Miroslav Strnad
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Ondřej Novák
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| |
Collapse
|
3
|
Nunes E, Gallardo E, Morgado-Nunes S, Fonseca-Moutinho J. Steroid hormone levels in postmenopausal hysterectomised women with and without ovarian conservation: the continuous endocrine function of the ovaries. J OBSTET GYNAECOL 2023; 43:2141618. [PMID: 36331514 DOI: 10.1080/01443615.2022.2141618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study aims to clarify the effect of postmenopausal bilateral oophorectomy on plasma steroid hormone levels. Women who were submitted in the postmenopausal period to hysterectomy for uterine benign conditions were divided into two groups: 18 women had isolated hysterectomy and 11 had hysterectomy with bilateral salpingo-oophorectomy. In both groups serum hormone levels were quantified by solid phase extraction and gas chromatography and tandem mass spectrometry. Differences in dehydroepiandrosterone (DHEA), testosterone, androstenedione and oestradiol were determined in both groups. The analysis revealed lower steroid levels in the bilateral salpingo-oophorectomy group when compared to the isolated hysterectomy group with statistically significant differences found for DHEA (5.8 ± 3.2 vs. 9.4 ± 4.4 ng/mL; p = 0.019) and oestradiol (0.69 ± 0.4 vs. 1.48 ± 4.3 ng/mL; p = 0.007). The results are consistent with a significant endocrine activity of the postmenopausal ovary. The clinical consequences of these findings need to be clarified and postmenopausal prophylactic bilateral salpingo-oophorectomy re-evaluated.IMPACT STATEMENTWhat is already known on this subject? Although it is consensual that premenopausal prophylactic bilateral oophorectomy should not be performed because it has harmful effects on women's health, the evidence regarding the effects of postmenopausal prophylactic bilateral oophorectomy is scarce and this procedure continues to be a regular practice. Few studies have demonstrated that postmenopausal ovaries still have endocrine activity that may impact older women's health.What do the results of this study add? This is the first study to compare hormone levels of postmenopausal women based on their hysterectomy and oophorectomy status using GC-MS/MS, a highly sensitive bioanalytical assay for the measurement of steroid hormones. Previous studies relied on immunoassays and did not compare DHEA levels, which according to the intracrinology theory is a precursor for androgens and oestrogens. In this study, statistically significant lower levels of DHEA and oestradiol were found after postmenopausal bilateral salpingo-oophorectomy.What are the implications of these findings for clinical practice and/or further research? This is a pilot study that may lead to further investigation in this area to clarify the impact of the prophylactic removal of postmenopausal ovaries on older women's health and lead to changes in surgical procedures.
Collapse
Affiliation(s)
- Elsa Nunes
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal.,Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Covilhã, Portugal
| | - Sara Morgado-Nunes
- Escola Superior de Gestão, Instituto Politécnico de Castelo Branco, Idanha-a-Nova, Portugal
| | - José Fonseca-Moutinho
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
4
|
Vitku J, Horackova L, Kolatorova L, Duskova M, Skodova T, Simkova M. Derivatized versus non-derivatized LC-MS/MS techniques for the analysis of estrogens and estrogen-like endocrine disruptors in human plasma. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115083. [PMID: 37269613 DOI: 10.1016/j.ecoenv.2023.115083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Bisphenols, parabens, alkylphenols and triclosan are anthropogenic substances with a phenolic group that have been introduced to the environment in recent decades. As they possess hormone-like effects, they have been termed endocrine disruptors (EDs), and can interfere with steroid pathways in organisms. To evaluate the potential impact of EDs on steroid biosynthesis and metabolism, sensitive and robust methods enabling the concurrent measurement of EDs and steroids in plasma are needed. Of crucial importance is the analysis of unconjugated EDs, which possess biological activity. The aim of the study was to develop and validate LC-MS/MS methods with and without a derivatization step for the analysis of unconjugated steroids (estrone-E1, estradiol-E2, estriol-E3, aldosterone-ALDO) and different groups of EDs (bisphenols, parabens, nonylphenol-NP and triclosan-TCS), and compare these methods on a set of 24 human plasma samples using Passing-Bablok regression analysis. Both methods were validated according to FDA and EMA guidelines. The method with dansyl chloride derivatization allowed 17 compounds to be measured: estrogens (E1, E2, E3), bisphenols (bisphenol A-BPA, BPS, BPF, BPAF, BPAP, BPZ, BPP), parabens (methylparaben-MP, ethylparaben-EP, propylparaben-PP, butylparaben-BP, benzylparaben-BenzylP), TCS and NP, with lower limits of quantification (LLOQs) between 4 and 125 pg/mL. The method without derivatization enabled 15 compounds to be analyzed: estrogens (E1, E2, E3), ALDO, bisphenols (BPA, BPS, BPF, BPAF, BPAP, BPZ), parabens (MP, EP, PP, BP, BenzylP) with LLOQs between 2 and 63 pg/mL, and NP and BPP in semiquantitative mode. Adding 6 mM ammonium fluoride post column into mobile phases in the method without derivatization achieved similar or even better LLOQs than the method with the derivatization step. The uniqueness of the methods lies in the simultaneous determination of different classes of unconjugated (bioactive) fraction of EDs together with selected steroids (estrogens + ALDO in the method without derivatization), which provides a useful tool for evaluating the relationships between EDs and steroid metabolism.
Collapse
Affiliation(s)
- J Vitku
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic.
| | - L Horackova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic; University of Chemistry and Technology, Department of Natural Compounds, Prague, Czech Republic
| | - L Kolatorova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic
| | - M Duskova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic
| | - T Skodova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic
| | - M Simkova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic; University of Chemistry and Technology, Department of Natural Compounds, Prague, Czech Republic
| |
Collapse
|
5
|
Nunes E, Gallardo E, Morgado-Nunes S, Fonseca-Moutinho J. Postmenopausal sexual function and steroid hormone levels: a hospital-based cross-sectional study. Climacteric 2023; 26:143-148. [PMID: 36724827 DOI: 10.1080/13697137.2023.2171286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Steroid hormone levels, particularly androgens, play an important role in sexual function in premenopausal women, but this relationship is not so well determined after menopause. This study aimed to assess the association between steroid hormone levels and sexual function in postmenopausal women. METHODS A total of 84 postmenopausal women with intact ovaries, who had never used systemic hormone therapy, were enrolled in a cross-sectional study. Sexual function was assessed using the Female Sexual Function Index (FSFI) questionnaire and serum levels of steroid hormones were quantified by gas chromatography and tandem mass spectrometry. Associations between estradiol, testosterone, dehydroepiandrosterone, androstenedione and FSFI domain scores were evaluated. RESULTS After adjustment for confounding variables, the analysis revealed a statistically significant association between androstenedione and overall sexual function (β = 1.23, 95% confidence interval [CI] [0.37; 1.98], p = 0.010), arousal (β = 0.19, 95% CI [0.02; 0.37], p = 0.034), orgasm (β = 0.33, 95% CI [0.15; 0.45], p = 0.001) and satisfaction (β = 0.25, 95% CI [0.11; 0.36], p = 0.001). No associations were found between the other hormones and FSFI domains. CONCLUSION The main finding of this study is the association of androstenedione with sexual function in postmenopausal women, not verified for other steroid hormones. Further studies are necessary to determine the importance of androstenedione for postmenopausal sexual function.
Collapse
Affiliation(s)
- E Nunes
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilha, Portugal
| | - E Gallardo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilha, Portugal
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Covilha, Portugal
| | - S Morgado-Nunes
- Escola Superior de Gestão, Instituto Politécnico de Castelo Branco, Castelo Branco, Portugal
| | - J Fonseca-Moutinho
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilha, Portugal
| |
Collapse
|
6
|
Nunes E, Gallardo E, Morgado-Nunes S, Fonseca-Moutinho J. Steroid hormone levels and bone mineral density in women over 65 years of age. Sci Rep 2023; 13:4925. [PMID: 36966199 PMCID: PMC10039944 DOI: 10.1038/s41598-023-32100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023] Open
Abstract
Previous studies using immunoassays for steroid measurements have focused on the association between steroid hormone levels and bone mineral density (BMD) in postmenopausal women, obtaining contradictory results. This study aimed to assess this association using a highly sensitive bioanalytical method. A total of 68 postmenopausal women, aged 65-89 years, were enrolled in a cross-sectional study. Measurements of the BMD of the hip and lumbar spine were performed using dual energy X-ray absorptiometry, and serum hormone levels were quantified by gas chromatography and tandem mass spectrometry. Associations between estradiol (E2), testosterone, dehydroepiandrosterone (DHEA), androstenedione and T score levels of the hip and lumbar spine were evaluated, after adjustment for confounding variables. The analysis revealed a statistically significant association between testosterone and the T score of the hip (p = 0.035), but not that of the lumbar spine. No statistically significant associations were found between E2, DHEA, androstenedione and the T scores of the hip and the lumbar spine. Using a highly sensitive hormone assay method, our study identified a significant association between testosterone and BMD of the hip in women over 65 years of age, suggesting that lower testosterone increases the risk of osteoporosis.
Collapse
Affiliation(s)
- Elsa Nunes
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal.
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, 6200-284, Covilhã, Portugal
| | - Sara Morgado-Nunes
- Escola Superior de Gestão, Instituto Politécnico de Castelo Branco, Avenida Pedro Álvares Cabral 12, 6000-084, Castelo Branco, Portugal
| | - José Fonseca-Moutinho
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal
| |
Collapse
|
7
|
Guo P, Liu C, Zhong F, Xu M, Zhao Y, Xu X, Zhao Y, Xue W, Xu Y, Fan D. Dummy-template Pickering emulsion imprinted microspheres online pretreatment and analysis for the estrogens in cosmetics. J Chromatogr A 2023; 1691:463815. [PMID: 36709550 DOI: 10.1016/j.chroma.2023.463815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/08/2023] [Accepted: 01/20/2023] [Indexed: 01/23/2023]
Abstract
Estrogens are a class of steroid hormone with strong physiological activity. Due to the pronounced beauty effect, such drugs are highly susceptible to illegal addition and cause other adverse effects. To avoid template leakage and the negative impacts on the environment caused by the estrogens, diosgenin was selected as the dummy template due to its similar skeleton structure. The Pickering emulsion polymerization was used to obtain the dummy-template molecularly imprinted polymers (dt-MIPs). Scanning electron microscopy, optical microscopy, specific surface area testing, Fourier transform infrared spectroscopy and adsorption experiments were used to characterize the apparent morphology and the recognition performance of the microspheres. Then, the prepared microspheres and commercial fillers were used to construct an on-line solid phase extraction (on-line SPE) analytical system coupled with HPLC via a two-position switching valve. On-line solid phase extraction-HPLC analytical methods were established and verified, for the simultaneous determination of four estrogens in cosmetic samples. The accuracy and precision RSDs for the established methods using the imprinted sorbents were 92.00-104.02% and less than 9.12%, respectively. All four estrogens exhibited good linearity in the range of 0.05 to 5 µg/mL with a coefficient of determination R2 greater than 0.9810. The method comparison results suggest that the established analytical method is simple in pre-treatment, easy to automate, and has excellent sensitivity to meet the analytical requirements of complex samples.
Collapse
Affiliation(s)
- Pengqi Guo
- School of Chemical Engineering, Northwest University, Xi'an, PR China; "Four Subjects One United" Biopesticide University-Enterprise Joint Engineering Technology Research Center of Shaanxi Province, Xi'an, PR China; Engineering Research Center of Western Resource Innovation Medicine Green Intelligent Manufacturing, Ministry of Education of the People's Republic of China, PR China.
| | - Chenming Liu
- School of Chemical Engineering, Northwest University, Xi'an, PR China; "Four Subjects One United" Biopesticide University-Enterprise Joint Engineering Technology Research Center of Shaanxi Province, Xi'an, PR China; Engineering Research Center of Western Resource Innovation Medicine Green Intelligent Manufacturing, Ministry of Education of the People's Republic of China, PR China
| | - Fanru Zhong
- School of Chemical Engineering, Northwest University, Xi'an, PR China; "Four Subjects One United" Biopesticide University-Enterprise Joint Engineering Technology Research Center of Shaanxi Province, Xi'an, PR China; Engineering Research Center of Western Resource Innovation Medicine Green Intelligent Manufacturing, Ministry of Education of the People's Republic of China, PR China
| | - Mingyang Xu
- School of Chemical Engineering, Northwest University, Xi'an, PR China; "Four Subjects One United" Biopesticide University-Enterprise Joint Engineering Technology Research Center of Shaanxi Province, Xi'an, PR China; Engineering Research Center of Western Resource Innovation Medicine Green Intelligent Manufacturing, Ministry of Education of the People's Republic of China, PR China
| | - Yongze Zhao
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Xinya Xu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Yu Zhao
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Weiming Xue
- School of Chemical Engineering, Northwest University, Xi'an, PR China; "Four Subjects One United" Biopesticide University-Enterprise Joint Engineering Technology Research Center of Shaanxi Province, Xi'an, PR China; Engineering Research Center of Western Resource Innovation Medicine Green Intelligent Manufacturing, Ministry of Education of the People's Republic of China, PR China
| | - Ying Xu
- School of Chemical Engineering, Northwest University, Xi'an, PR China; "Four Subjects One United" Biopesticide University-Enterprise Joint Engineering Technology Research Center of Shaanxi Province, Xi'an, PR China; Engineering Research Center of Western Resource Innovation Medicine Green Intelligent Manufacturing, Ministry of Education of the People's Republic of China, PR China
| | - Daidi Fan
- School of Chemical Engineering, Northwest University, Xi'an, PR China; Engineering Research Center of Western Resource Innovation Medicine Green Intelligent Manufacturing, Ministry of Education of the People's Republic of China, PR China.
| |
Collapse
|
8
|
Troha K, Vozel D, Arko M, Bedina Zavec A, Dolinar D, Hočevar M, Jan Z, Kisovec M, Kocjančič B, Pađen L, Pajnič M, Penič S, Romolo A, Repar N, Spasovski V, Steiner N, Šuštar V, Iglič A, Drobne D, Kogej K, Battelino S, Kralj-Iglič V. Autologous Platelet and Extracellular Vesicle-Rich Plasma as Therapeutic Fluid: A Review. Int J Mol Sci 2023; 24:3420. [PMID: 36834843 PMCID: PMC9959846 DOI: 10.3390/ijms24043420] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
The preparation of autologous platelet and extracellular vesicle-rich plasma (PVRP) has been explored in many medical fields with the aim to benefit from its healing potential. In parallel, efforts are being invested to understand the function and dynamics of PVRP that is complex in its composition and interactions. Some clinical evidence reveals beneficial effects of PVRP, while some report that there were no effects. To optimize the preparation methods, functions and mechanisms of PVRP, its constituents should be better understood. With the intention to promote further studies of autologous therapeutic PVRP, we performed a review on some topics regarding PVRP composition, harvesting, assessment and preservation, and also on clinical experience following PVRP application in humans and animals. Besides the acknowledged actions of platelets, leukocytes and different molecules, we focus on extracellular vesicles that were found abundant in PVRP.
Collapse
Affiliation(s)
- Kaja Troha
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Domen Vozel
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Medicine, SI-1000 Ljubljana, Slovenia
| | - Matevž Arko
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| | - Apolonija Bedina Zavec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubjana, Slovenia
| | - Drago Dolinar
- Department of Orthopedic Surgery, University Medical Centre, Zaloška 9, SI-1000 Ljubljana, Slovenia
- MD-RI Institute for Materials Research in Medicine, Bohoričeva 5, SI-1000 Ljubljana, Slovenia
| | - Matej Hočevar
- Department of Physics and Chemistry of Materials, Institute of Metals and Technology, SI-1000 Ljubljana, Slovenia
| | - Zala Jan
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| | - Matic Kisovec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubjana, Slovenia
| | - Boštjan Kocjančič
- Department of Orthopedic Surgery, University Medical Centre, Zaloška 9, SI-1000 Ljubljana, Slovenia
| | - Ljubiša Pađen
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| | - Manca Pajnič
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| | - Samo Penič
- University of Ljubljana, Laboratory of Physics, Faculty of Electrical Engineering, SI-1000 Ljubljana, Slovenia
| | - Anna Romolo
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
- University of Ljubljana, Laboratory of Physics, Faculty of Electrical Engineering, SI-1000 Ljubljana, Slovenia
| | - Neža Repar
- University of Ljubljana, Research Group for Nanobiology and Nanotoxicology, Biotechnical Faculty, SI-1000 Ljubljana, Slovenia
| | - Vesna Spasovski
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
| | - Nejc Steiner
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Vid Šuštar
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| | - Aleš Iglič
- University of Ljubljana, Laboratory of Physics, Faculty of Electrical Engineering, SI-1000 Ljubljana, Slovenia
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Medicine, SI-1000 Ljubljana, Slovenia
| | - Damjana Drobne
- University of Ljubljana, Research Group for Nanobiology and Nanotoxicology, Biotechnical Faculty, SI-1000 Ljubljana, Slovenia
| | - Ksenija Kogej
- University of Ljubljana, Chair of Physical Chemistry, Faculty of Chemistry and Chemical Technology, SI-1000 Ljubljana, Slovenia
| | - Saba Battelino
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Medicine, SI-1000 Ljubljana, Slovenia
| | - Veronika Kralj-Iglič
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Temerdashev A, Nesterenko P, Dmitrieva E, Zhurkina K, Feng YQ. GC-MS/MS Determination of Steroid Hormones in Urine Using Solid-Phase Derivatization as an Alternative to Conventional Methods. Molecules 2022; 27:molecules27185796. [PMID: 36144530 PMCID: PMC9502991 DOI: 10.3390/molecules27185796] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Solid-phase analytical derivatization (SPAD) is a promising hybrid sample preparation technique combining the clean-up and preconcentration of the sample in a single step. In this work, a novel SPAD method based on the preparation of trimethylsilyl (TMS) derivatives of steroid hormones (testosterone, estrone, DHT, estriol, estradiol, and progesterone) in Phenomenex Strata C18-E (100 mg, 1 mL) cartridges has been developed and applied for their GC-MS/MS determination in human urine samples. The proposed procedure allows the detection and quantification of steroids with limits of 1.0–2.5 and 2.5–5 ng/mL, respectively. These characteristics are comparable with those obtained with a conventional liquid–liquid extraction, while the recovery of analytes in the proposed SPAD procedure is higher. The major advantages of SPAD are a short derivatization time, high efficiency, and the possibility to automatize the procedure. However, its cost-effectiveness in routine practice is still questionable.
Collapse
Affiliation(s)
- Azamat Temerdashev
- Analytical Chemistry Department, Kuban State University, Stavropolskaya st., 149, 350040 Krasnodar, Russia
- Correspondence:
| | - Pavel Nesterenko
- Physical Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory, 1, 119991 Moscow, Russia
| | - Ekaterina Dmitrieva
- Analytical Chemistry Department, Kuban State University, Stavropolskaya st., 149, 350040 Krasnodar, Russia
| | - Kseniya Zhurkina
- Analytical Chemistry Department, Kuban State University, Stavropolskaya st., 149, 350040 Krasnodar, Russia
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
10
|
Kozak J, Tyszczuk-Rotko K, Wójciak M, Sowa I, Rotko M. Electrochemically Pretreated Sensor Based on Screen-Printed Carbon Modified with Pb Nanoparticles for Determination of Testosterone. MATERIALS 2022; 15:ma15144948. [PMID: 35888414 PMCID: PMC9320313 DOI: 10.3390/ma15144948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023]
Abstract
Testosterone (TST), despite its good properties, may be harmful to the human organism and the environment. Therefore, monitoring biological fluids and environmental samples is important. An electrochemically pretreated screen-printed carbon sensor modified with Pb nanoparticles (pSPCE/PbNPs) was successfully prepared and used for the determination of TST. The surface morphology and electrochemical properties of unmodified and modified sensors were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning and transmission electron microscopy (SEM and TEM), and energy-dispersive X-ray spectroscopy (EDS). Selective determinations of TST at the pSPCE/PbNPs were carried out by differential pulse adsorptive stripping voltammetry (DPAdSV, EPb dep.and TST acc. of −1.1 V, t Pb dep.and TST acc. of 120 s, ΔEA of 50 mV, ν of 175 mV s−1, and tm of 5 ms) in a solution containing 0.075 mol L−1 acetate buffer of pH = 4.6 ± 0.1, and 7.5 × 10−5 mol L−1 Pb(NO3)2. The analytical signal obtained at the potential around −1.42 V (vs. silver pseudo-reference electrode) is related to the reduction process of TST adsorbed onto the electrode surface. The use of pSPCE/PbNPs allows obtaining a very low limit of TST detection (2.2 × 10−12 mol L−1) and wide linear ranges of the calibration graph (1.0 × 10−11–1.0 × 10−10, 1.0 × 10−10–2.0 × 10−9, and 2.0 × 10−9–2.0 × 10−8 mol L−1). The pSPCE/PbNPs were successfully applied for the determination of TST in reference material of human urine and wastewater purified in a sewage treatment plant without preliminary preparation.
Collapse
Affiliation(s)
- Jędrzej Kozak
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland; (J.K.); (M.R.)
| | - Katarzyna Tyszczuk-Rotko
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland; (J.K.); (M.R.)
- Correspondence:
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.W.); (I.S.)
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.W.); (I.S.)
| | - Marek Rotko
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland; (J.K.); (M.R.)
| |
Collapse
|
11
|
Karashima S, Osaka I. Rapidity and Precision of Steroid Hormone Measurement. J Clin Med 2022; 11:jcm11040956. [PMID: 35207229 PMCID: PMC8879901 DOI: 10.3390/jcm11040956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Steroids are present in all animals and plants, from mammals to prokaryotes. In the medical field, steroids are commonly classified as glucocorticoids, mineralocorticoids, and gonadal steroid hormones. Monitoring of hormones is useful in clinical and research fields for the assessment of physiological changes associated with aging, disease risk, and the diagnostic and therapeutic effects of various diseases. Since the discovery and isolation of steroid hormones, measurement methods for steroid hormones in biological samples have advanced substantially. Although immunoassays (IAs) are widely used in daily practice, mass spectrometry (MS)-based methods have been reported to be more specific. Steroid hormone measurement based on MS is desirable in clinical practice; however, there are several drawbacks, including the purchase and maintenance costs of the MS instrument and the need for specialized training of technicians. In this review, we discuss IA- and MS-based methods currently in use and briefly present the history of steroid hormone measurement. In addition, we describe recent advances in IA- and MS-based methods and future applications and considerations.
Collapse
Affiliation(s)
- Shigehiro Karashima
- Institute of Liberal Arts and Science, Kanazawa University, Kanazawa 921-1192, Japan
- Correspondence: (S.K.); (I.O.)
| | - Issey Osaka
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu 939-0398, Japan
- Correspondence: (S.K.); (I.O.)
| |
Collapse
|
12
|
Verma R, Dhingra G, Malik AK. A Comprehensive Review on Metal Organic Framework Based Preconcentration Strategies for Chromatographic Analysis of Organic Pollutants. Crit Rev Anal Chem 2021; 53:415-441. [PMID: 34435923 DOI: 10.1080/10408347.2021.1964344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Organic pollutants (OPs) are of worldwide concern for being hazardous to human existence and natural flora and fauna in view of their contaminating nature, bio-aggregation properties and long range movement abilities in environment. Metal organic frameworks (MOFs) are a new kind of crystalline porous material, composed of metal ions and multi dentate organic ligands with well-defined co-ordination geometry exhibiting promising application respect to adsorptive evacuation of OPs for chromatographic analysis. Applications of MOFs as preconcentration material and column packing material are reviewed. Key analytical characteristics of MOF based preconcentration techniques and coupled chromatographic procedures are summarized in detail. MOF based preconcentration strategies are compared with conventional sorbent based extraction techniques for thorough evaluation of performance of MOF materials.
Collapse
Affiliation(s)
- Rajpal Verma
- Department of Chemistry, Punjabi University, Patiala, Punjab, India
| | - Gaurav Dhingra
- Punjabi University Constituent College, Patiala, Punjab, India
| | | |
Collapse
|
13
|
Junker J, Kamp F, Winkler E, Steiner H, Bracher F, Müller C. Effective sample preparation procedure for the analysis of free neutral steroids, free steroid acids and sterol sulfates in different tissues by GC-MS. J Steroid Biochem Mol Biol 2021; 211:105880. [PMID: 33757894 DOI: 10.1016/j.jsbmb.2021.105880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Steroids play an important role in cell regulation and homeostasis. Many diseases like Alzheimer's disease or Smith-Lemli-Opitz syndrome are known to be associated with deviations in the steroid profile. Most published methods only allow the analysis of small subgroups of steroids and cannot give an overview of the total steroid profile. We developed and validated a method that allows the analysis of free neutral steroids, including intermediates of cholesterol biosynthesis, free oxysterols, C19 and C21 steroids, free steroid acids, including bile acids, and sterol sulfates using gas chromatography-mass spectrometry. Samples were analyzed in scan mode for screening purposes and in dynamic multiple reaction monitoring mode for highly sensitive quantitative analysis. The method was validated for mouse brain and liver tissue and consists of sample homogenization, lipid extraction, steroid group separation, deconjugation, derivatization and gas chromatography-mass spectrometry analysis. We applied the method on brain and liver samples of mice (10 months and 3 weeks old) and cultured N2a cells and report the endogenous concentrations of 29 physiological steroids.
Collapse
Affiliation(s)
- Julia Junker
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University-Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Frits Kamp
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians University-Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Edith Winkler
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians University-Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Harald Steiner
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians University-Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University-Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Christoph Müller
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University-Munich, Butenandtstraße 5-13, 81377, Munich, Germany.
| |
Collapse
|
14
|
Song Y, Feng XS. Sample Preparation and Analytical Methods for Steroid Hormones in Environmental and Food Samples: An Update Since 2012. Crit Rev Anal Chem 2021; 53:69-87. [PMID: 34152888 DOI: 10.1080/10408347.2021.1936446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Steroid hormones (SHs) have been widely used over the past few decades as both human and veterinary drugs to prevent or treat infectious diseases and anti-inflammatory benefits in clinical. Unfortunately, their residues in foodstuffs and environmental samples can produce adverse effects on human and animal life such as disrupting the endocrine system. For these reasons, sensitive, simple and efficient methods have been developed for the determination of these compounds in various matrices. This critical review summarized the articles published in the period from 2012 to 2019 and can be used to help researchers to understand development of the sample pretreatment protocols and analytical methods used to detect SHs. The developed extraction and purification techniques used for steroids in different samples, such as cloud point extraction, solid phase extraction based on different novel materials, microextraction methods, QuEChERS and other methods are summarized and discussed. Analytical methods used to quantify these compounds, such as different chromatography methods, electrochemical methods, as well as other methods, are illustrated and compared. We focused on the latest advances in SHs pretreatment, and the application of new technologies in SHs analysis.
Collapse
Affiliation(s)
- Yang Song
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
15
|
Podolskiy II, Mochalova ES, Temerdashev AZ, Gashimova EM. Application of Statistical Data Analysis Methods to Test the Degradation of Urine Samples for Doping Control Purposes. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821060071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Zhang C, Zhang Q, Yin Z, Hu J, Chen G, Zheng L, Ma A. Determination of acetylgestagens in animal-derived matrix samples using enhanced matrix removal lipid clean-up in combination with ultra performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2021; 1649:462227. [PMID: 34038780 DOI: 10.1016/j.chroma.2021.462227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 11/30/2022]
Abstract
A robust and confirmative method was established for the determination of six acetylgestagen residues, namely, flurogestone acetate (FGA), megestrol (MA), melengestrol acetate (MGA), chlormadinone acetate (CMA), medroxyprogesterone (MPA), and hydroxyprogesterone acetate (HPA) in animal-derived matrix samples by utilizing enhanced matrix removal lipid (EMR-lipid) clean-up in combination with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The analytes were extracted with acetonitrile, purified with a EMR-lipid cartridge, and separated with a reversed-phase C18 column. The limit of quantification (S/N ≥ 10) for CMA, FGA, HPA, MA, and MGA in all matrices was 0.5 ng/g, and for MPA, it was 1.0 ng/g; the limit of detection (S/N ≥ 3) for CMA, FGA, HPA, MA, and MGA in all matrices was 0.1 ng/g, and for MPA, it was 0.2 ng/g. The recoveries were between 61.0% and 114.8%, and the relative standard deviations (RSDs) were below 12%. The method was calibrated in a matrix-assisted standard solution in various linear ranges for the analytes and matrices, and the correlation coefficients (R2) exceeded 0.99 for all the matrices.
Collapse
Affiliation(s)
- Congcong Zhang
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingyang Zhang
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zenghao Yin
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jian Hu
- Agricultural and Rural Affair Bureau, Fengnan District, Tangshan City, Hebei Province, 063300, China
| | - Gang Chen
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lufei Zheng
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
17
|
Kaleta M, Oklestkova J, Novák O, Strnad M. Analytical Methods for the Determination of Neuroactive Steroids. Biomolecules 2021; 11:553. [PMID: 33918915 PMCID: PMC8068886 DOI: 10.3390/biom11040553] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 12/27/2022] Open
Abstract
Neuroactive steroids are a family of all steroid-based compounds, of both natural and synthetic origin, which can affect the nervous system functions. Their biosynthesis occurs directly in the nervous system (so-called neurosteroids) or in peripheral endocrine tissues (hormonal steroids). Steroid hormone levels may fluctuate due to physiological changes during life and various pathological conditions affecting individuals. A deeper understanding of neuroactive steroids' production, in addition to reliable monitoring of their levels in various biological matrices, may be useful in the prevention, diagnosis, monitoring, and treatment of some neurodegenerative and psychiatric diseases. The aim of this review is to highlight the most relevant methods currently available for analysis of neuroactive steroids, with an emphasis on immunoanalytical methods and gas, or liquid chromatography combined with mass spectrometry.
Collapse
Affiliation(s)
| | - Jana Oklestkova
- Laboratory of Growth Regulators, Faculty of Science and Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; (M.K.); (O.N.); (M.S.)
| | | | | |
Collapse
|
18
|
Lee W, Lee H, Kim YL, Lee YC, Chung BC, Hong J. Profiling of Steroid Metabolic Pathways in Human Plasma by GC-MS/MS Combined with Microwave-Assisted Derivatization for Diagnosis of Gastric Disorders. Int J Mol Sci 2021; 22:ijms22041872. [PMID: 33668551 PMCID: PMC7918215 DOI: 10.3390/ijms22041872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/17/2022] Open
Abstract
Steroid hormones are associated in depth to cellular signaling, inflammatory immune responses, and reproductive functions, and their metabolism alterations incur various diseases. In particular, quantitative profiling of steroids in plasma of patients with gastric cancer can provide a vast information to understand development of gastric cancer, since both sex hormones and glucocorticoids might be correlated with the pathological mechanisms of gastric cancer. Here, we developed a gas chromatography-tandem mass spectrometry-dynamic multiple reaction monitoring (GC-MS/MS-dMRM) method combined with solid-phase extraction (SPE) and microwave-assisted derivatization (MAD) to determine 20 endogenous steroids in human plasma. In this study, MAD conditions were optimized with respect to irradiation power and time. The SPE enabled effective cleanup and extraction for profiling of steroid hormones in human plasma samples. The MAD could improve laborious and time-consuming derivatization procedure, since dielectric heating using microwave directly increase molecular energy of reactants by penetrating through medium. Furthermore, dMRM method provided more sensitive determination of 20 steroids, compared to traditional MRM detection. The limits of quantification of steroids were below 1.125 ng/mL and determination coefficients of calibration curves were higher than 0.9925. Overall precision and accuracy results were below 19.93% and within ±17.04%, respectively. The developed method provided sufficient detection sensitivities and reliable quantification results. The established method was successfully applied to profile steroid metabolism pathways in plasma of patients with chronic superficial gastritis (CSG), intestinal metaplasia (IM), and gastric cancer. Statistical significances of steroid plasma levels between gastric disorder groups were investigated. In conclusion, this method provided comprehensive profiling of 20 steroids in human plasma samples and will be helpful to discover potential biomarkers for the development of gastric cancer and to further understand metabolic syndrome.
Collapse
Affiliation(s)
- Wonwoong Lee
- Department of Pharmacy, College of Pharmacy, Woosuk University, Wanju 55338, Korea;
| | - Hyunjung Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (H.L.); (Y.L.K.)
| | - You Lee Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (H.L.); (Y.L.K.)
| | - Yong Chan Lee
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Bong Chul Chung
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea
- Correspondence: (B.C.C.); (J.H.); Tel.: +82-2-961-9255 (J.H.); Fax: +82-2-961-0357 (J.H.)
| | - Jongki Hong
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (H.L.); (Y.L.K.)
- Correspondence: (B.C.C.); (J.H.); Tel.: +82-2-961-9255 (J.H.); Fax: +82-2-961-0357 (J.H.)
| |
Collapse
|
19
|
Dissociation of endocrine responses to the Trier Social Stress Test in Virtual Reality (VR-TSST) by the benzodiazepine alprazolam and the translocator protein 18 kDa (TSPO) ligand etifoxine. Psychoneuroendocrinology 2021; 124:105100. [PMID: 33338971 DOI: 10.1016/j.psyneuen.2020.105100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/29/2020] [Accepted: 12/01/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND Activity of the two major stress systems, the hypothalamic-pituitary-adrenal (HPA) and the sympathetic-adrenal-medullary (SAM) axis, has already been shown to be modulated by different compounds that bind to the central benzodiazepine receptor. Less is known about ligands that modulate the peripheral benzodiazepine receptor - meanwhile known as the translocator protein 18 kDa (TSPO) - which constitute promising candidates in the search of novel anxiolytics. To close this gap, the present study compared the effects of the benzodiazepine alprazolam and the TSPO ligand etifoxine on responses of the HPA and SAM axes to the Trier Social Stress Test, a standardized paradigm to induce acute psychosocial stress in humans, performed in Virtual Reality (VR-TSST). METHODS Sixty healthy males, aged between 18 and 55 years, were randomly assigned to receive either a daily dose of 1.5 mg alprazolam, 150 mg etifoxine, or placebo over five days. On the last day of intake, they were exposed to the VR-TSST. We assessed changes of salivary cortisol, allopregnanolone, (nor-) epinephrine in serum, TSPO expression in platelets as well as heart rate (HR), skin conductance level (SCL) and self-reports in response to the stress task. Repeated measures ANOVAs were conducted to examine treatment effects on these stress response variables during the course of VR-TSST. RESULTS The response of salivary cortisol to the VR-TSST was significantly blunted in participants pre-treated with alprazolam but was not affected by etifoxine. While levels of allopregnanolone, epinephrine and norepinephrine increased in response to stress, TSPO expression decreased. None of those endocrine stress markers was affected by the active treatments, whereas TSPO expression increased after etifoxine administration over all study days. There were no effects of the two anxiolytics on HR, SCL or any self-report measurement. CONCLUSION The current study confirmed the attenuating effects of benzodiazepines on stress-induced HPA axis activity but did not reveal a comparable effect of the TSPO ligand etifoxine. The long-term consequences of a pharmacologically blunted response of the HPA axis to an acute stressor should be further elucidated. Due to the missing effects of etifoxine on stress-related parameters in our sample of healthy subjects, it might be concluded that the therapeutic effects of this TSPO ligand are restricted to stronger or pathological stress responses, respectively.
Collapse
|
20
|
Dmitrieva E, Temerdashev A, Azaryan A, Gashimova E. Quantification of steroid hormones in human urine by DLLME and UHPLC-HRMS detection. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1159:122390. [PMID: 33126074 DOI: 10.1016/j.jchromb.2020.122390] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/21/2020] [Accepted: 09/20/2020] [Indexed: 10/23/2022]
Abstract
A procedure for the quantification of steroid hormones of various classes in human urine (androgens, estrogens, progestins, corticosteroids) has been described consisting of sample preparation by means of dispersive liquid-liquid extraction after enzymatic hydrolysis with β-glucuronidase from E. Coli followed by ultra-high performance liquid chromatography-high resolution mass spectrometry (quadrupole time-of-flight) detection. Both one-variable-at-a-time and multivariate approaches (full factorial and Box-Behnken designs) were applied to optimize sample preparation conditions. The procedure was validated using synthetic urine in the concentration range of 0.25-500 ng/mL. Then, it was applied to the analysis of real urine samples and the results were compared with those of a common liquid-liquid extraction procedure. The results obtained proved its applicability to the quantification of steroid hormones in human urine with high sensitivity and accuracy.
Collapse
Affiliation(s)
- Ekaterina Dmitrieva
- Department of Analytical Chemistry, Kuban State University, 149 Stavropolskaya St., Krasnodar 350040, Russia
| | - Azamat Temerdashev
- Department of Analytical Chemistry, Kuban State University, 149 Stavropolskaya St., Krasnodar 350040, Russia.
| | - Alice Azaryan
- Department of Analytical Chemistry, Kuban State University, 149 Stavropolskaya St., Krasnodar 350040, Russia
| | - Elina Gashimova
- Department of Analytical Chemistry, Kuban State University, 149 Stavropolskaya St., Krasnodar 350040, Russia
| |
Collapse
|
21
|
Du B, Zhang J, Dong Y, Wang J, Lei L, Shi R. Determination of testosterone/epitestosterone concentration ratio in human urine by capillary electrophoresis. Steroids 2020; 161:108691. [PMID: 32603755 DOI: 10.1016/j.steroids.2020.108691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 11/29/2022]
Abstract
A novel method for determining the testosterone/epitestosterone concentration ratio in human urine was established by capillary electrophoresis with diode-array detector. The urine samples were firstly purified by the solid extraction. The optimal experimental conditions were: running buffer pH = 4.74, 15.0 mmol L-1 HAc-NaAc, separation voltage 25 kV, temperature 25 °C, sample injection pressure 3.43 × 103 Pa, and duration 10 s. The testosterone and epitestosterone linear range were determined as 8.0-960.0 ng mL-1, respectively. The testosterone and epitestosterone detection limits were determined as 4.6 and 4.5 ng mL-1, respectively. The relative standard deviation was less than 0.36%.
Collapse
Affiliation(s)
- Bairen Du
- College of Sport, Anqing Normal University, Anqing 246011, Anhui, China
| | - Jingjing Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yanjie Dong
- College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing City 246011, Anhui, China
| | - Junwei Wang
- College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing City 246011, Anhui, China
| | - Longwen Lei
- College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing City 246011, Anhui, China
| | - Rengfei Shi
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
22
|
The Potential of Steroid Profiling by Mass Spectrometry in the Management of Adrenocortical Carcinoma. Biomedicines 2020; 8:biomedicines8090314. [PMID: 32872281 PMCID: PMC7555975 DOI: 10.3390/biomedicines8090314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022] Open
Abstract
Radiological and endocrinological work up of adrenal neoplasms is aimed at distinguishing between frequent non-functioning adenomas and rare but very aggressive adrenocortical carcinoma (ACC). Relevant research has addressed the identification of molecular, genetic and hormonal markers that could have clinical significance for malignancy, as well as a prognostic value. Regarding endocrine aspects, attention has been paid to the pattern of steroid secretion that can be affected by altered steroidogenic pathway in ACC. The advent of mass spectrometry techniques has overcome many limitations usually associated with immunoassays, allowing the determination of both common and rarely measured steroids in a single analysis with high specificity and sensitivity. Indeed, mass spectrometry strategies may be able to identify an individualized steroid profile of ACC, allowing a rapid diagnosis and a specific follow-up. In this review, insights, strengths and limitations of mass spectrometry-based approaches in steroid profiling, as well as of immunoassay in steroid measurements, will be specifically discussed. Moreover, the latest findings on steroid profiling by mass spectrometry-based techniques, the most promising analytical tool, will be summarized to evaluate if steroid profiling might be the clue for solving the clinical dilemma in differentiating ACC from non-functioning adrenocortical adenomas (ACA).
Collapse
|
23
|
Conklin SE, Knezevic CE. Advancements in the gold standard: Measuring steroid sex hormones by mass spectrometry. Clin Biochem 2020; 82:21-32. [PMID: 32209333 DOI: 10.1016/j.clinbiochem.2020.03.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
Sex hormones, such as testosterone and estrogens, play an essential role in regulating physiological and reproductive development throughout the lifetime of the individual. Although variation in levels of these hormones are observed throughout the distinct stages in life, significant deviations from reference ranges can result in detrimental effects to the individual. Alterations, by either an increase or decrease, in hormone levels are associated with physiological changes, decreased reproductive capabilities, and increased risk for diseases. Hormone therapies (HTs) and assisted reproductive technologies (ARTs) are commonly used to address these factors. In addition to these treatments, gender-affirming therapies, an iteration of HTs, are also a prominent treatment for transgender individuals. Considering that the effectiveness of these treatments relies on achieving therapeutic hormone levels, monitoring of hormones has served as a way of assessing therapeutic efficay. The need for reliable methods to achieve this task has led to great advancements in methods for evaluating hormone concentrations in biological matrices. Although immunoassays are the more widely used method, mass spectrometry (MS)-based methods have proven to be more sensitive, specific, and reliable. Advances in MS technology and its applications for therapeutic hormone monitoring have been significant, hence integration of these methods in the clinical setting is desired. Here, we provide a general overview of HT and ART, and the immunoassay and MS-based methods currently utilized for monitoring sex hormones. Additionally, we highlight recent advances in MS-based methods and discuss future applications and considerations for MS-based hormone assays.
Collapse
Affiliation(s)
- Steven E Conklin
- Department of Pathology, The Johns Hopkins University School of Medicine, 1800 Orleans St. Zayed B1020, Baltimore, MD 21287, USA.
| | - Claire E Knezevic
- Department of Pathology, The Johns Hopkins University School of Medicine, 1800 Orleans St. Zayed B1020, Baltimore, MD 21287, USA.
| |
Collapse
|
24
|
Grova N, Wang X, Hardy E, Palazzi P, Chata C, Appenzeller B. Ultra performance liquid chromatography – tandem mass spectrometer method applied to the analysis of both thyroid and steroid hormones in human hair. J Chromatogr A 2020; 1612:460648. [DOI: 10.1016/j.chroma.2019.460648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 10/25/2022]
|
25
|
Hill M, Hána V, Velíková M, Pařízek A, Kolátorová L, Vítků J, Škodová T, Šimková M, Šimják P, Kancheva R, Koucký M, Kokrdová Z, Adamcová K, Černý A, Hájek Z, Dušková M, Bulant J, Stárka L. A method for determination of one hundred endogenous steroids in human serum by gas chromatography-tandem mass spectrometry. Physiol Res 2019; 68:179-207. [PMID: 31037947 DOI: 10.33549/physiolres.934124] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Steroid profiling helps various pathologies to be rapidly diagnosed. Results from analyses investigating steroidogenic pathways may be used as a tool for uncovering pathology causations and proposals of new therapeutic approaches. The purpose of this study was to address still underutilized application of the advanced GC-MS/MS platform for the multicomponent quantification of endogenous steroids. We developed and validated a GC-MS/MS method for the quantification of 58 unconjugated steroids and 42 polar conjugates of steroids (after hydrolysis) in human blood. The present method was validated not only for blood of men and non-pregnant women but also for blood of pregnant women and for mixed umbilical cord blood. The spectrum of analytes includes common hormones operating via nuclear receptors as well as other bioactive substances like immunomodulatory and neuroactive steroids. Our present results are comparable with those from our previously published GC-MS method as well as the results of others. The present method was extended for corticoids and 17alpha-hydroxylated 5alpha/ß-reduced pregnanes, which are useful for the investigation of alternative "backdoor" pathway. When comparing the analytical characteristics of the present and previous method, the first exhibit by far higher selectivity, and generally higher sensitivity and better precision particularly for 17alpha-hydroxysteroids.
Collapse
Affiliation(s)
- M Hill
- Department of Steroid Hormones and Proteohormones, Institute of Endocrinology, Národní 8, 116 94, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang J, Liang Y, Mao Y, Liu Q, Jiang G. A selective adsorption-based separation of low-mass molecules from biological samples towards high-throughput mass spectrometry analysis in a single drop of human whole blood. Talanta 2019; 202:237-243. [DOI: 10.1016/j.talanta.2019.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/16/2019] [Accepted: 05/02/2019] [Indexed: 01/30/2023]
|
27
|
Zhang T, Yuan D, Xie J, Lei Y, Li J, Fang G, Tian L, Liu J, Cui Y, Zhang M, Xiao Y, Xu Y, Zhang J, Zhu M, Zhan S, Li S. Evolution of the cholesterol biosynthesis pathway in animals. Mol Biol Evol 2019; 36:2548-2556. [PMID: 31397867 DOI: 10.1093/molbev/msz167] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/10/2019] [Accepted: 07/03/2019] [Indexed: 01/11/2023] Open
Abstract
Cholesterol plays essential roles in animal development and disease progression. Here, we characterize the evolutionary pattern of the canonical cholesterol biosynthesis pathway (CBP) in the animal kingdom using both genome-wide analyses and functional experiments. CBP genes in the basal metazoans were inherited from their last common eukaryotic ancestor and evolutionarily conserved for cholesterol biosynthesis. The genomes of both the basal metazoans and deuterostomes retain almost the full set of CBP genes, while Cnidaria and many protostomes have independently experienced multiple massive losses of CBP genes that might be due to the geologic events during the Ediacaran period, such as the appearance of an exogenous sterol supply and the frequent perturbation of ocean oxygenation. Meanwhile, the indispensable utilization processes of cholesterol potentially strengthened the maintenance of the complete set of CBP genes in vertebrates. These results strengthen both biotic and abiotic roles in the macroevolution of a biosynthesis pathway in animals.
Collapse
Affiliation(s)
- Tingting Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.,Research Institute of Applied Biology, Shanxi University, Taiyuan, China.,CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Dongwei Yuan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.,CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Xie
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yongxing Lei
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jianguo Li
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Gangqi Fang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ling Tian
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiacheng Liu
- University of Chinese Academy of Sciences, Beijing, China.,The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yingying Cui
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Min Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Youli Xiao
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yongzhen Xu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Maoyan Zhu
- State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
28
|
Comparison of Strategies for the Determination of Sterol Sulfates via GC-MS Leading to a Novel Deconjugation-Derivatization Protocol. Molecules 2019; 24:molecules24132353. [PMID: 31247920 PMCID: PMC6651411 DOI: 10.3390/molecules24132353] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/03/2019] [Accepted: 06/21/2019] [Indexed: 11/17/2022] Open
Abstract
Sulfoconjugates of sterols play important roles as neurosteroids, neurotransmitters, and ion channel ligands in health and disease. In most cases, sterol conjugate analysis is performed with liquid chromatography-mass spectrometry. This is a valuable tool for routine analytics with the advantage of direct sterol sulfates analysis without previous cleavage and/or derivatization. The complementary technique gas chromatography-mass spectrometry (GC-MS) is a preeminent discovery tool in the field of sterolomics, but the analysis of sterol sulfates is hampered by mandatory deconjugation and derivatization. Despite the difficulties in sample workup, GC-MS is an indispensable tool for untargeted analysis and steroid profiling. There are no general sample preparation protocols for sterol sulfate analysis using GC-MS. In this study we present a reinvestigation and evaluation of different deconjugation and derivatization procedures with a set of representative sterol sulfates. The advantages and disadvantages of trimethylsilyl (TMS), methyloxime-trimethylsilyl (MO-TMS), and trifluoroacetyl (TFA) derivatives were examined. Different published procedures of sterol sulfate deconjugation, including enzymatic and chemical cleavage, were reinvestigated and examined for diverse sterol sulfates. Finally, we present a new protocol for the chemical cleavage of sterol sulfates, allowing for simultaneous deconjugation and derivatization, simplifying GC-MS based sterol sulfate analysis.
Collapse
|
29
|
Kunz S, Matysik S. A comprehensive method to determine sterol species in human faeces by GC-triple quadrupole MS. J Steroid Biochem Mol Biol 2019; 190:99-103. [PMID: 30923016 DOI: 10.1016/j.jsbmb.2019.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/23/2019] [Indexed: 01/12/2023]
Abstract
The human gut microbiome plays a crucial role in both health and disease. Metabolites in human faeces related to microbial activity might therefore be attractive surrogate markers to track changes of microbiota induced by diet or disease. The hyphenation of gas chromatography with triple quadrupole mass spectrometry is a promising approach to increase sensitivity and selectivity as compared to single quad MS instruments. The versatility of gas chromatography-tandem mass spectrometry (GC-MS/MS) can be advantageously exploited in clinical laboratory medicine, e.g. for quantification of sterols in biological material. In this paper, we present the application of GC-MS/MS for determination of sterol components in human faeces. A serious problem of analysis of faeces is preanalytics. Uncontrolled degradation of metabolites during transport and storage of faeces before entering the clinical laboratory might occur. In our experiments we did not observe any increasing or decreasing concentration after storage of native faeces material even at room temperature. Furthermore, we answer the question of how personal metabolic responses with respect to sterols are and address the importance of sampling strategies. From a pilot study it is concluded that differentiation between high and low metabolizers is independent of the type of sampling and constant over several days.
Collapse
Affiliation(s)
- Sonja Kunz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Silke Matysik
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
30
|
Honour JW, Conway E, Hodkinson R, Lam F. The evolution of methods for urinary steroid metabolomics in clinical investigations particularly in childhood. J Steroid Biochem Mol Biol 2018; 181:28-51. [PMID: 29481855 DOI: 10.1016/j.jsbmb.2018.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 12/15/2022]
Abstract
The metabolites of cortisol, and the intermediates in the pathways from cholesterol to cortisol and the adrenal sex steroids can be analysed in a single separation of steroids by gas chromatography (GC) coupled to MS to give a urinary steroid profile (USP). Steroids individually and in profile are now commonly measured in plasma by liquid chromatography (LC) coupled with MS/MS. The steroid conjugates in urine can be determined after hydrolysis and derivative formation and for the first time without hydrolysis using GC-MS, GC-MS/MS and liquid chromatography with mass spectrometry (LC-MS/MS). The evolution of the technology, practicalities and clinical applications are examined in this review. The patterns and quantities of steroids changes through childhood. Information can be obtained on production rates, from which children with steroid excess and deficiency states can be recognised when presenting with obesity, adrenarche, adrenal suppression, hypertension, adrenal tumours, intersex condition and early puberty, as examples. Genetic defects in steroid production and action can be detected by abnormalities from the GC-MS of steroids in urine. New mechanisms of steroid synthesis and metabolism have been recognised through steroid profiling. GC with tandem mass spectrometry (GC-MS/MS) has been used for the tentative identification of unknown steroids in urine from newborn infants with congenital adrenal hyperplasia. Suggestions are made as to areas for future research and for future applications of steroid profiling. As routine hospital laboratories become more familiar with the problems of chromatographic and MS analysis they can consider steroid profiling in their test repertoire although with LC-MS/MS of urinary steroids this is unlikely to become a routine test because of the availability, cost and purity of the internal standards and the complexity of data interpretation. Steroid profiling with quantitative analysis by mass spectrometry (MS) after chromatography now provides the most versatile of tests of adrenal function in childhood.
Collapse
Affiliation(s)
- John W Honour
- Institute for Women's Health, University College London, 74 Huntley Street, London, WC1E 6AU, UK.
| | - E Conway
- Clinical Biochemistry, HSL Analytics LLP, Floor 2, 1 Mabledon Place, London, WC1H 9AX, UK
| | - R Hodkinson
- Clinical Biochemistry, HSL Analytics LLP, Floor 2, 1 Mabledon Place, London, WC1H 9AX, UK
| | - F Lam
- Clinical Biochemistry, HSL Analytics LLP, Floor 2, 1 Mabledon Place, London, WC1H 9AX, UK
| |
Collapse
|
31
|
Kosicka K, Siemiątkowska A, Szpera-Goździewicz A, Krzyścin M, Bręborowicz G, Główka F. High-performance liquid chromatography methods for the analysis of endogenous cortisol and cortisone in human urine: comparison of mass spectrometry and fluorescence detection. Ann Clin Biochem 2018; 56:82-89. [PMID: 29848040 DOI: 10.1177/0004563218783789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The analysis of steroids in biological matrices is challenging. One can apply immunoassay as well as gas and liquid chromatography with various types of detection, depending on the available equipment and the experience of the analyst. The question is how the methods are interchangeable between themselves. Doubts were reported having compared immunoassays and chromatography-mass spectrometry, but there are scarce data on chromatographic methods with detection types other than mass spectrometry. METHODS Here, we present the detailed comparison of two liquid chromatographic methods for the determination of free urinary cortisol and cortisone: one with fluorescence detection (high-performance liquid chromatography [HPLC-FLD]) and the other with tandem mass spectrometry (HPLC-MS/MS). The comparison was made with 199 human urine samples. The data analysis included Passing-Bablok and Deming regression, Bland-Altman test, Wilcoxon test, mountain plot and Lin's concordance correlation coefficient. RESULTS The validation data indicated that both methods met the requirements of the European Medicines Agency. However, the statistical analysis revealed the systematic bias between the two assays. The Passing-Bablok and the Deming tests showed that the HPLC-FLD method overestimated results for cortisol and underestimated measurements for cortisone. The Bland-Altman analysis estimated the mean differences between the methods: 18.8 nmol/L for cortisol and -16.9 nmol/L for cortisone measurement. CONCLUSIONS Both methods' results led to the same conclusion in observational studies, but the techniques are not interchangeable. The literature data, the observations from the clinical setting and our experience clearly indicate that the future of steroid measurements will belong to chromatography coupled with mass spectrometry.
Collapse
Affiliation(s)
- Katarzyna Kosicka
- 1 Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Anna Siemiątkowska
- 1 Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Agata Szpera-Goździewicz
- 2 Department of Perinatology and Gynecology, Poznan University of Medical Sciences, Poznań, Poland
| | - Mariola Krzyścin
- 2 Department of Perinatology and Gynecology, Poznan University of Medical Sciences, Poznań, Poland
| | - Grzegorz Bręborowicz
- 2 Department of Perinatology and Gynecology, Poznan University of Medical Sciences, Poznań, Poland
| | - Franciszek Główka
- 1 Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
32
|
Moon JY, McNamara KM, Lee JJ, Chung BC, Sasano H, Choi MH. Improved detectability of sex steroids from frozen sections of breast cancer tissue using GC-triple quadrupole-MS. J Steroid Biochem Mol Biol 2018; 178:185-192. [PMID: 29269263 DOI: 10.1016/j.jsbmb.2017.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/10/2017] [Accepted: 12/14/2017] [Indexed: 11/18/2022]
Abstract
Sex steroids in clinical endocrinology have been mainly investigated with peripheral blood and urine samples, while there is limited information regarding the local levels within tissues. To improve analytical properties of sex steroids from trace amounts of tissue samples, two-phase extractive ethoxycarbonlyation and subsequent pentafluoropropionyl derivatization coupled to gas chromatography-tandem mass spectrometry (GC-MS/MS) was developed. The optimized analytical conditions led to excellent chromatographic separation of 15 estrogens, 6 androgens, and 2 progestins. The quantitative results were calculated based on in-house control samples as the steroid-free tissues, and the precision and accuracy were 4.2%-26.8% and 90.8%-116.4%, respectively. The on-column limit of quantification was from 180 fg to 0.5 pg for androgens and estrogens, and 1.25 pg for progestins, which were found to be linear (r2 > 0.990). The validated method was then applied to quantify 7 sex steroids from three 100-μm-thick frozen breast tissue slices from postmenopausal patients with breast cancer. This is the first report on the improved GC-MS/MS method for the detection of androgens and pregnenolone from breast cancer tissues, and it can be a useful technique to measure the local levels of sex steroids, thus, enhancing our understanding of the pathophysiological significances of steroidogenesis.
Collapse
Affiliation(s)
- Ju-Yeon Moon
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Keely May McNamara
- Department of Pathology, Tohoku University School of Medicine, Sendai, 980-8575, Japan
| | - Jung-Jin Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Bong Chul Chung
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, 980-8575, Japan
| | - Man Ho Choi
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
33
|
Kannenberg F, Fobker M, Schulte E, Pierściński G, Kelsch R, Zitzmann M, Nofer JR, Schüring AN. The Simultaneous measurement of serum testosterone and 5α-dihydrotestosterone by gas chromatography-mass spectrometry (GC-MS). Clin Chim Acta 2017; 476:15-24. [PMID: 29122541 DOI: 10.1016/j.cca.2017.10.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 10/09/2017] [Accepted: 10/29/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Simultaneous measurement of testosterone (T) and 5α-dihydrotestosterone (DHT) is important for diagnosing androgen deficiency states and hyperandrogenism in males and females, respectively. However, immunoassays used for T and DHT determination suffer from inadequate specificity and sensitivity, while tandem mass spectrometry is expensive and demanding in use. METHODS AND RESULTS We developed a selective gas chromatography-mass spectrometry (GC-MS) method for parallel T and DHT measurement. The assay showed a linear response up to 46.5nmol/L, intra- and interassay imprecision and inaccuracy <15% and recoveries in spiked samples >90% for both analytes. The limit of quantitation was 0.117nmol/L for T and 0.168nmol/L for DHT. Comparison with immunoassays revealed good agreement for T in males, but a bias in favour of immunoassays at low concentrations for T in females and DHT in both sexes. We established reference ranges for T and DHT and suggest interval partitioning for T according to age in men and menstrual cycle in women. Assay validation in a clinical setting suggests that measuring DHT or T/DHT ratio may help identify patients with polycystic ovary syndrome. CONCLUSION We developed a selective, simple and inexpensive GC-MS method for parallel measurement of T and DHT with potential use in the clinical laboratory.
Collapse
Affiliation(s)
- Frank Kannenberg
- Center for Laboratory Medicine, University Hospital Münster, Münster, Germany
| | - Manfred Fobker
- Center for Laboratory Medicine, University Hospital Münster, Münster, Germany
| | - Erhard Schulte
- Center for Laboratory Medicine, University Hospital Münster, Münster, Germany
| | | | - Reinhard Kelsch
- Institute for Transfusion Medicine and Transplantation Immunology, University Hospital Münster, Münster, Germany
| | - Michael Zitzmann
- Center for Reproductive Medicine and Andrology, Department of Clinical Andrology, University Hospital Münster, Münster, Germany
| | - Jerzy-Roch Nofer
- Center for Laboratory Medicine, University Hospital Münster, Münster, Germany.
| | - Andreas N Schüring
- UKM Kinderwunschzentrum, Department of Gynaecology and Obstetrics, University Hospital Münster, Münster, Germany
| |
Collapse
|
34
|
Xu W, Li H, Guan Q, Shen Y, Cheng L. A rapid and simple liquid chromatography-tandem mass spectrometry method for the measurement of testosterone, androstenedione, and dehydroepiandrosterone in human serum. J Clin Lab Anal 2016; 31. [PMID: 27911021 DOI: 10.1002/jcla.22102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/29/2016] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The assay of androgens plays an important role for the differential diagnosis of androgen-related endocrine diseases. We developed a rapid and simple liquid chromatography tandem mass spectrometry (LC-MS/MS) method with small sample volume and simple sample preparation for simultaneous determination of serum testosterone, androstenedione and dehydroepiandrosterone (DHEA) in adults. METHODS We spiked 100 μL of serum with 200 μL of internal standard solution, which was prepared in methanol, for matrix effect relief and protein precipitation. The obtained supernatant was used directly for LC-MS/MS analysis. RESULTS The validated method exhibits excellent linearity for each analyte with linear correlation coefficient above 0.992. The total precisions at three concentrations were 15.66%, 8.81% and 4.34% for testosterone, 13.60%, 6.62% and 5.96% for androstenedione, 14.35%, 15.34% and 13.92% for DHEA, respectively. Recovery, carryover, matrix effect and analytical specificity were also performed for well validation of this LC-MS/MS method with satisfied results. Reference intervals (5th-95th centile) were also established for adult men and women. DISCUSSION This method offers simpler implement for quantification of steroids in clinical laboratories with minimal manual sample manipulation and minimized sample volume requirements. CONCLUSION It is demonstrated that a reliable, simple, sensitive and potential method for steroids assay in clinical laboratories had been successfully developed by LC-MS/MS.
Collapse
Affiliation(s)
- Wenjuan Xu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huijun Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Guan
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Kozlik P, Tircova B. Development of the fast, simple and fully validated high performance liquid chromatographic method with diode array detector for quantification of testosterone esters in an oil-based injectable dosage form. Steroids 2016; 115:34-39. [PMID: 27521801 DOI: 10.1016/j.steroids.2016.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/05/2016] [Accepted: 08/03/2016] [Indexed: 01/22/2023]
Abstract
Counterfeit steroids are available on the black market, ultimately to consumers who believe they are buying a legitimate pharmaceutical item from the labeled company. In many cases, counterfeit steroids can contain lower doses or some products can be overdosed. This can unwittingly expose users to a significant health risks. The mixture of testosterone propionate, phenylpropionate, isocaproate and decanoate in an oil-based injectable dosage form belongs to the one of the most misused illicit drugs by a variety of athletes. This study developed a new, fast, simple and reliable HPLC method combined with a simple sample preparation step to determine testosterone propionate, phenylpropionate, isocaproate and decanoate in an oil-based injectable dosage form without the use of sophisticated and expensive instrumentation. The developed analytical procedure provides high throughput of samples where LC analysis takes only 6min and sample preparation of oil matrix in one step takes approximately 10min with precision ranging from 1.03 to 3.38% (RSD), and accuracy (relative error %) within ±2.01%. This method was found to be precise, linear, accurate, sensitive, selective and robust for routine application in screening of commercial pharmaceutical products based on content of mentioned testosterone esters in their oil-based injectable dosage form for counterfeit drugs. This method was successfully applied to the analysis of nine samples of commercial testosterone mixtures purchased from various sources and will be further used as an effective screening method for determination of previously mentioned testosterone esters in samples confiscated by Institute of Forensic Science (Slovakia) during the illegal trade.
Collapse
Affiliation(s)
- Petr Kozlik
- Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic.
| | - Barbora Tircova
- Department of Chemistry, Faculty of Natural Science, Matej Bel University in Banska Bystrica, Banska Bystrica, Slovakia
| |
Collapse
|
36
|
Abstract
Steroid hormones are measured clinically to determine if a patient has a pathological process occurring in the adrenal gland, or other hormone responsive organs. They are very similar in structure making them analytically challenging to measure. Additionally, these hormones have vast concentration differences in human serum adding to the measurement complexity. GC–MS was the gold standard methodology used to measure steroid hormones clinically, followed by radioimmunoassay, but that was replaced by immunoassay due to ease of use. LC–MS/MS has now become a popular alternative owing to simplified sample preparation than for GC–MS and increased specificity and sensitivity over immunoassay. This review will discuss these methodologies and some new developments that could simplify and improve steroid hormone analysis in serum.
Collapse
|