1
|
Kumar R, Roy C, Datta S. Delineating specific regions of N- terminal domain of T3SS ATPase YsaN of Yersinia enterocolitica governing its different oligomerization states. Front Mol Biosci 2022; 9:967974. [PMID: 36158578 PMCID: PMC9493007 DOI: 10.3389/fmolb.2022.967974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Oligomerization of YsaN, a putative T3SS-ATPase is a necessary and crucial event for T3SS functioning in Y. enterocolitica. Different oligomeric states have been proposed for similar ATPases, yet, the true nature of its activation and formation of different oligomers is still poorly understood. In-vitro studies of YsaN reveal that its activation and oligomerization depend on its N-terminal region and occur as a result of active catalysis of ATP in an ATP concentration-dependent manner following two-step cooperative kinetics. Also, the N-terminal 83 amino acid residues of YsaN are crucial for higher-order oligomer formation while YsaN∆83 is capable of hexamer formation upon oligomerization. Enzyme kinetics study shows reduced ATPase activity of YsaN∆83 (3.19 ± 0.09 μmol/min/mg) in comparison to YsaN (9.076 ± 0.72 μmol/min/mg). Negative-TEM study of YsaN and YsaN∆83 oligomer suggests that the formation of higher-order oligomer (probably dodecamer) occurs by stacking of two hexamers through their N-terminal faces involving N-terminal 83 amino acid residues which have been further supported by the docking of two hexamers during the in-silico study. These results suggest that YsaN is an oligomerization-activated T3SS ATPase, where distinct regions of its N-terminal domain regulate its different oligomeric nature and is essential for its activation.
Collapse
|
2
|
Chanchal, Banerjee P, Raghav S, Goswami HN, Jain D. The antiactivator FleN uses an allosteric mechanism to regulate σ 54-dependent expression of flagellar genes in Pseudomonas aeruginosa. SCIENCE ADVANCES 2021; 7:eabj1792. [PMID: 34669473 PMCID: PMC8528422 DOI: 10.1126/sciadv.abj1792] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/24/2021] [Indexed: 12/09/2023]
Abstract
Diverse sigma factors associate with the RNA polymerase (RNAP) core enzyme to initiate transcription of specific target genes in bacteria. σ54-Mediated transcription uses AAA+ activators that utilize their ATPase activity for transcription initiation. FleQ is a σ54-dependent master transcriptional regulator of flagellar genes in Pseudomonas aeruginosa. The ATPase activity of FleQ is regulated via a P-loop ATPase, FleN, through protein-protein interaction. We report a high-resolution crystal structure of the AAA+ domain of FleQ in complex with antiactivator FleN. The data reveal that FleN allosterically prevents ATP binding to FleQ. Furthermore, FleN remodels the region of FleQ essential for engagement with σ54 for transcription initiation. Disruption of the conserved protein-protein interface, by mutation, shows motility and transcription defects in vivo and multiflagellate phenotype. Our study provides a detailed mechanism used by monoflagellate bacteria to fine-tune the expression of flagellar genes to form and maintain a single flagellum.
Collapse
Affiliation(s)
- Chanchal
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3 Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
- Manipal Academy of Higher Education, Karnataka 576104, India
| | - Priyajit Banerjee
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3 Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
- Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Shikha Raghav
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3 Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| | - Hemant N. Goswami
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3 Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3 Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| |
Collapse
|
3
|
Updegrove TB, Harke J, Anantharaman V, Yang J, Gopalan N, Wu D, Piszczek G, Stevenson DM, Amador-Noguez D, Wang JD, Aravind L, Ramamurthi KS. Reformulation of an extant ATPase active site to mimic ancestral GTPase activity reveals a nucleotide base requirement for function. eLife 2021; 10:65845. [PMID: 33704064 PMCID: PMC7952092 DOI: 10.7554/elife.65845] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/05/2021] [Indexed: 12/23/2022] Open
Abstract
Hydrolysis of nucleoside triphosphates releases similar amounts of energy. However, ATP hydrolysis is typically used for energy-intensive reactions, whereas GTP hydrolysis typically functions as a switch. SpoIVA is a bacterial cytoskeletal protein that hydrolyzes ATP to polymerize irreversibly during Bacillus subtilis sporulation. SpoIVA evolved from a TRAFAC class of P-loop GTPases, but the evolutionary pressure that drove this change in nucleotide specificity is unclear. We therefore reengineered the nucleotide-binding pocket of SpoIVA to mimic its ancestral GTPase activity. SpoIVAGTPase functioned properly as a GTPase but failed to polymerize because it did not form an NDP-bound intermediate that we report is required for polymerization. Further, incubation of SpoIVAGTPase with limiting ATP did not promote efficient polymerization. This approach revealed that the nucleotide base, in addition to the energy released from hydrolysis, can be critical in specific biological functions. We also present data suggesting that increased levels of ATP relative to GTP at the end of sporulation was the evolutionary pressure that drove the change in nucleotide preference in SpoIVA.
Collapse
Affiliation(s)
- Taylor B Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Jailynn Harke
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Jin Yang
- Department of Bacteriology, University of Wisconsin, Madison, United States
| | - Nikhil Gopalan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - David M Stevenson
- Department of Bacteriology, University of Wisconsin, Madison, United States
| | | | - Jue D Wang
- Department of Bacteriology, University of Wisconsin, Madison, United States
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
4
|
ATP Analogues for Structural Investigations: Case Studies of a DnaB Helicase and an ABC Transporter. Molecules 2020; 25:molecules25225268. [PMID: 33198135 PMCID: PMC7698047 DOI: 10.3390/molecules25225268] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022] Open
Abstract
Nucleoside triphosphates (NTPs) are used as chemical energy source in a variety of cell systems. Structural snapshots along the NTP hydrolysis reaction coordinate are typically obtained by adding stable, nonhydrolyzable adenosine triphosphate (ATP) -analogues to the proteins, with the goal to arrest a state that mimics as closely as possible a physiologically relevant state, e.g., the pre-hydrolytic, transition and post-hydrolytic states. We here present the lessons learned on two distinct ATPases on the best use and unexpected pitfalls observed for different analogues. The proteins investigated are the bacterial DnaB helicase from Helicobacter pylori and the multidrug ATP binding cassette (ABC) transporter BmrA from Bacillus subtilis, both belonging to the same division of P-loop fold NTPases. We review the magnetic-resonance strategies which can be of use to probe the binding of the ATP-mimics, and present carbon-13, phosphorus-31, and vanadium-51 solid-state nuclear magnetic resonance (NMR) spectra of the proteins or the bound molecules to unravel conformational and dynamic changes upon binding of the ATP-mimics. Electron paramagnetic resonance (EPR), and in particular W-band electron-electron double resonance (ELDOR)-detected NMR, is of complementary use to assess binding of vanadate. We discuss which analogues best mimic the different hydrolysis states for the DnaB helicase and the ABC transporter BmrA. These might be relevant also to structural and functional studies of other NTPases.
Collapse
|
5
|
Danson AE, Jovanovic M, Buck M, Zhang X. Mechanisms of σ 54-Dependent Transcription Initiation and Regulation. J Mol Biol 2019; 431:3960-3974. [PMID: 31029702 PMCID: PMC7057263 DOI: 10.1016/j.jmb.2019.04.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 02/02/2023]
Abstract
Cellular RNA polymerase is a multi-subunit macromolecular assembly responsible for gene transcription, a highly regulated process conserved from bacteria to humans. In bacteria, sigma factors are employed to mediate gene-specific expression in response to a variety of environmental conditions. The major variant σ factor, σ54, has a specific role in stress responses. Unlike σ70-dependent transcription, which often can spontaneously proceed to initiation, σ54-dependent transcription requires an additional ATPase protein for activation. As a result, structures of a number of distinct functional states during the dynamic process of transcription initiation have been captured using the σ54 system with both x-ray crystallography and cryo electron microscopy, furthering our understanding of σ54-dependent transcription initiation and DNA opening. Comparisons with σ70 and eukaryotic polymerases reveal unique and common features during transcription initiation.
Collapse
Affiliation(s)
- Amy E Danson
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Milija Jovanovic
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Martin Buck
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Xiaodong Zhang
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
6
|
Chada N, Chattrakun K, Marsh BP, Mao C, Bariya P, King GM. Single-molecule observation of nucleotide induced conformational changes in basal SecA-ATP hydrolysis. SCIENCE ADVANCES 2018; 4:eaat8797. [PMID: 30397644 PMCID: PMC6200364 DOI: 10.1126/sciadv.aat8797] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/13/2018] [Indexed: 05/06/2023]
Abstract
SecA is the critical adenosine triphosphatase that drives preprotein transport through the translocon, SecYEG, in Escherichia coli. This process is thought to be regulated by conformational changes of specific domains of SecA, but real-time, real-space measurement of these changes is lacking. We use single-molecule atomic force microscopy (AFM) to visualize nucleotide-dependent conformations and conformational dynamics of SecA. Distinct topographical populations were observed in the presence of specific nucleotides. AFM investigations during basal adenosine triphosphate (ATP) hydrolysis revealed rapid, reversible transitions between a compact and an extended state at the ~100-ms time scale. A SecA mutant lacking the precursor-binding domain (PBD) aided interpretation. Further, the biochemical activity of SecA prepared for AFM was confirmed by tracking inorganic phosphate release. We conclude that ATP-driven dynamics are largely due to PBD motion but that other segments of SecA contribute to this motion during the transition state of the ATP hydrolysis cycle.
Collapse
Affiliation(s)
- Nagaraju Chada
- Department of Physics and Astronomy, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Kanokporn Chattrakun
- Department of Physics and Astronomy, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Brendan P. Marsh
- Department of Physics and Astronomy, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Chunfeng Mao
- Department of Biochemistry, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Priya Bariya
- Department of Biochemistry, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Gavin M. King
- Department of Physics and Astronomy, University of Missouri–Columbia, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri–Columbia, Columbia, MO 65211, USA
- Corresponding author.
| |
Collapse
|
7
|
Elnatan D, Betegon M, Liu Y, Ramelot T, Kennedy MA, Agard DA. Symmetry broken and rebroken during the ATP hydrolysis cycle of the mitochondrial Hsp90 TRAP1. eLife 2017; 6. [PMID: 28742020 PMCID: PMC5550277 DOI: 10.7554/elife.25235] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/22/2017] [Indexed: 12/30/2022] Open
Abstract
Hsp90 is a homodimeric ATP-dependent molecular chaperone that remodels its substrate ‘client’ proteins, facilitating their folding and activating them for biological function. Despite decades of research, the mechanism connecting ATP hydrolysis and chaperone function remains elusive. Particularly puzzling has been the apparent lack of cooperativity in hydrolysis of the ATP in each protomer. A crystal structure of the mitochondrial Hsp90, TRAP1, revealed that the catalytically active state is closed in a highly strained asymmetric conformation. This asymmetry, unobserved in other Hsp90 homologs, is due to buckling of one of the protomers and is most pronounced at the broadly conserved client-binding region. Here, we show that rather than being cooperative or independent, ATP hydrolysis on the two protomers is sequential and deterministic. Moreover, dimer asymmetry sets up differential hydrolysis rates for each protomer, such that the buckled conformation favors ATP hydrolysis. Remarkably, after the first hydrolysis, the dimer undergoes a flip in the asymmetry while remaining in a closed state for the second hydrolysis. From these results, we propose a model where direct coupling of ATP hydrolysis and conformational flipping rearranges client-binding sites, providing a paradigm of how energy from ATP hydrolysis can be used for client remodeling. DOI:http://dx.doi.org/10.7554/eLife.25235.001
Collapse
Affiliation(s)
- Daniel Elnatan
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, United States.,Tetrad Graduate program, University of California, San Francisco, United States
| | - Miguel Betegon
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, United States.,Biophysics Graduate program, University of California, San Francisco, United States
| | - Yanxin Liu
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, United States
| | - Theresa Ramelot
- Department of Chemistry and Biochemistry, Miami University, Oxford, United States
| | - Michael A Kennedy
- Department of Chemistry and Biochemistry, Miami University, Oxford, United States
| | - David A Agard
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, United States
| |
Collapse
|
8
|
Sysoeva TA. Assessing heterogeneity in oligomeric AAA+ machines. Cell Mol Life Sci 2017; 74:1001-1018. [PMID: 27669691 PMCID: PMC11107579 DOI: 10.1007/s00018-016-2374-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 10/20/2022]
Abstract
ATPases Associated with various cellular Activities (AAA+ ATPases) are molecular motors that use the energy of ATP binding and hydrolysis to remodel their target macromolecules. The majority of these ATPases form ring-shaped hexamers in which the active sites are located at the interfaces between neighboring subunits. Structural changes initiate in an active site and propagate to distant motor parts that interface and reshape the target macromolecules, thereby performing mechanical work. During the functioning cycle, the AAA+ motor transits through multiple distinct states. Ring architecture and placement of the catalytic sites at the intersubunit interfaces allow for a unique level of coordination among subunits of the motor. This in turn results in conformational differences among subunits and overall asymmetry of the motor ring as it functions. To date, a large amount of structural information has been gathered for different AAA+ motors, but even for the most characterized of them only a few structural states are known and the full mechanistic cycle cannot be yet reconstructed. Therefore, the first part of this work will provide a broad overview of what arrangements of AAA+ subunits have been structurally observed focusing on diversity of ATPase oligomeric ensembles and heterogeneity within the ensembles. The second part of this review will concentrate on methods that assess structural and functional heterogeneity among subunits of AAA+ motors, thus bringing us closer to understanding the mechanism of these fascinating molecular motors.
Collapse
Affiliation(s)
- Tatyana A Sysoeva
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
9
|
Siegel AR, Wemmer DE. Role of the σ 54 Activator Interacting Domain in Bacterial Transcription Initiation. J Mol Biol 2016; 428:4669-4685. [PMID: 27732872 DOI: 10.1016/j.jmb.2016.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 01/05/2023]
Abstract
Bacterial sigma factors are subunits of RNA polymerase that direct the holoenzyme to specific sets of promoters in the genome and are a central element of regulating transcription. Most polymerase holoenzymes open the promoter and initiate transcription rapidly after binding. However, polymerase containing the members of the σ54 family must be acted on by a transcriptional activator before DNA opening and initiation occur. A key domain in these transcriptional activators forms a hexameric AAA+ ATPase that acts through conformational changes brought on by ATP hydrolysis. Contacts between the transcriptional activator and σ54 are primarily made through an N-terminal σ54 activator interacting domain (AID). To better understand this mechanism of bacterial transcription initiation, we characterized the σ54 AID by NMR spectroscopy and other biophysical methods and show that it is an intrinsically disordered domain in σ54 alone. We identified a minimal construct of the Aquifex aeolicus σ54 AID that consists of two predicted helices and retains native-like binding affinity for the transcriptional activator NtrC1. Using the NtrC1 ATPase domain, bound with the non-hydrolyzable ATP analog ADP-beryllium fluoride, we studied the NtrC1-σ54 AID complex using NMR spectroscopy. We show that the σ54 AID becomes structured after associating with the core loops of the transcriptional activators in their ATP state and that the primary site of the interaction is the first predicted helix. Understanding this complex, formed as the first step toward initiation, will help unravel the mechanism of σ54 bacterial transcription initiation.
Collapse
Affiliation(s)
- Alexander R Siegel
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA
| | - David E Wemmer
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
10
|
Salsi E, Farah E, Ermolenko DN. EF-G Activation by Phosphate Analogs. J Mol Biol 2016; 428:2248-58. [PMID: 27063503 DOI: 10.1016/j.jmb.2016.03.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 01/31/2023]
Abstract
Elongation factor G (EF-G) is a universally conserved translational GTPase that promotes the translocation of tRNA and mRNA through the ribosome. EF-G binds to the ribosome in a GTP-bound form and subsequently catalyzes GTP hydrolysis. The contribution of the ribosome-stimulated GTP hydrolysis by EF-G to tRNA/mRNA translocation remains debated. Here, we show that while EF-G•GDP does not stably bind to the ribosome and induce translocation, EF-G•GDP in complex with phosphate group analogs BeF3(-) and AlF4(-) promotes the translocation of tRNA and mRNA. Furthermore, the rates of mRNA translocation induced by EF-G in the presence of GTP and a non-hydrolyzable analog of GTP, GDP•BeF3(-) are similar. Our results are consistent with the model suggesting that GTP hydrolysis is not directly coupled to mRNA/tRNA translocation. Hence, GTP binding is required to induce the activated, translocation-competent conformation of EF-G while GTP hydrolysis triggers EF-G release from the ribosome.
Collapse
Affiliation(s)
- Enea Salsi
- Department of Biochemistry and Biophysics & Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Elie Farah
- Department of Biochemistry and Biophysics & Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Dmitri N Ermolenko
- Department of Biochemistry and Biophysics & Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
11
|
Darbari VC, Lawton E, Lu D, Burrows PC, Wiesler S, Joly N, Zhang N, Zhang X, Buck M. Molecular basis of nucleotide-dependent substrate engagement and remodeling by an AAA+ activator. Nucleic Acids Res 2014; 42:9249-61. [PMID: 25063294 PMCID: PMC4132715 DOI: 10.1093/nar/gku588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Binding and hydrolysis of ATP is universally required by AAA+ proteins to underpin their mechano-chemical work. Here we explore the roles of the ATPase site in an AAA+ transcriptional activator protein, the phage shock protein F (PspF), by specifically altering the Walker B motif sequence required in catalyzing ATP hydrolysis. One such mutant, the E108Q variant, is defective in ATP hydrolysis but fully remodels target transcription complexes, the RNAP-σ54 holoenzyme, in an ATP dependent manner. Structural analysis of the E108Q variant reveals that unlike wild-type protein, which has distinct conformations for E108 residue in the ATP and ADP bound forms, E108Q adapts the same conformation irrespective of nucleotide bound. Our data show that the remodeling activities of E108Q are strongly favored on pre-melted DNA and engagement with RNAP-σ54 using ATP binding can be sufficient to convert the inactive holoenzyme to an active form, while hydrolysis per se is required for nucleic acid remodeling that leads to transcription bubble formation. Furthermore, using linked dimer constructs, we show that RNAP-σ54 engagement by adjacent subunits within a hexamer are required for this protein remodeling activity while DNA remodeling activity can tolerate defective ATP hydrolysis of alternating subunits.
Collapse
Affiliation(s)
- Vidya C Darbari
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Ed Lawton
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Duo Lu
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Patricia C Burrows
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Simone Wiesler
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Nicolas Joly
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Nan Zhang
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Xiaodong Zhang
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Martin Buck
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
12
|
Bugreev DV, Huang F, Mazina OM, Pezza RJ, Voloshin ON, Camerini-Otero RD, Mazin AV. HOP2-MND1 modulates RAD51 binding to nucleotides and DNA. Nat Commun 2014; 5:4198. [PMID: 24943459 PMCID: PMC4279451 DOI: 10.1038/ncomms5198] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 05/22/2014] [Indexed: 12/21/2022] Open
Abstract
The HOP2-MND1 heterodimer is required for progression of homologous recombination in eukaryotes. In vitro, HOP2-MND1 stimulates the DNA strand exchange activities of RAD51 and DMC1. We demonstrate that HOP2-MND1 induces changes in the conformation of RAD51 that profoundly alter the basic properties of RAD51. HOP2-MND1 enhances the interaction of RAD51 with nucleotide cofactors and modifies its DNA binding specificity in a manner that stimulates DNA strand exchange. It enables RAD51 DNA strand exchange in the absence of divalent metal ions required for ATP binding and offsets the effect of the K133A mutation that disrupts ATP binding. During nucleoprotein formation HOP2-MND1 helps to load RAD51 on ssDNA restricting its dsDNA-binding and during the homology search it promotes dsDNA binding removing the inhibitory effect of ssDNA. The magnitude of the changes induced in RAD51 defines HOP2-MND1 as a “molecular trigger” of RAD51 DNA strand exchange.
Collapse
Affiliation(s)
- Dmitry V Bugreev
- 1] Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192, USA [2]
| | - Fei Huang
- 1] Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192, USA [2]
| | - Olga M Mazina
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192, USA
| | - Roberto J Pezza
- Oklahoma Medical Research Foundation, Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
| | - Oleg N Voloshin
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - R Daniel Camerini-Otero
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192, USA
| |
Collapse
|
13
|
Sysoeva TA, Chowdhury S, Nixon BT. Breaking symmetry in multimeric ATPase motors. Cell Cycle 2014; 13:1509-10. [PMID: 24755939 PMCID: PMC4050149 DOI: 10.4161/cc.28957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Tatyana A Sysoeva
- Department of Biochemistry and Molecular Biology; The Pennsylvania State University; University Park, PA USA
| | - Saikat Chowdhury
- Department of Biochemistry and Molecular Biology; The Pennsylvania State University; University Park, PA USA
| | - B Tracy Nixon
- Department of Biochemistry and Molecular Biology; The Pennsylvania State University; University Park, PA USA
| |
Collapse
|
14
|
Sharma A, Leach RN, Gell C, Zhang N, Burrows PC, Shepherd DA, Wigneshweraraj S, Smith DA, Zhang X, Buck M, Stockley PG, Tuma R. Domain movements of the enhancer-dependent sigma factor drive DNA delivery into the RNA polymerase active site: insights from single molecule studies. Nucleic Acids Res 2014; 42:5177-90. [PMID: 24553251 PMCID: PMC4005640 DOI: 10.1093/nar/gku146] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recognition of bacterial promoters is regulated by two distinct classes of sequence-specific sigma factors, σ70 or σ54, that differ both in their primary sequence and in the requirement of the latter for activation via enhancer-bound upstream activators. The σ54 version controls gene expression in response to stress, often mediating pathogenicity. Its activator proteins are members of the AAA+ superfamily and use adenosine triphosphate (ATP) hydrolysis to remodel initially auto-inhibited holoenzyme promoter complexes. We have mapped this remodeling using single-molecule fluorescence spectroscopy. Initial remodeling is nucleotide-independent and driven by binding both ssDNA during promoter melting and activator. However, DNA loading into the RNA polymerase active site depends on co-operative ATP hydrolysis by the activator. Although the coupled promoter recognition and melting steps may be conserved between σ70 and σ54, the domain movements of the latter have evolved to require an activator ATPase.
Collapse
Affiliation(s)
- Amit Sharma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Robert N. Leach
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Christopher Gell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Nan Zhang
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Patricia C. Burrows
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Dale A. Shepherd
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Sivaramesh Wigneshweraraj
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - David Alastair Smith
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Xiaodong Zhang
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Martin Buck
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Peter G. Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
- *To whom correspondence should be addressed. Tel: +44 1133 433092; Fax: +44 1133 437897;
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
- Correspondence may also be addressed to Roman Tuma. Tel: +44 1133 433080; Fax: +44 1133 437897;
| |
Collapse
|
15
|
Sysoeva TA, Chowdhury S, Guo L, Nixon BT. Nucleotide-induced asymmetry within ATPase activator ring drives σ54-RNAP interaction and ATP hydrolysis. Genes Dev 2014; 27:2500-11. [PMID: 24240239 PMCID: PMC3841738 DOI: 10.1101/gad.229385.113] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It is largely unknown how the typical homomeric ring geometry of ATPases associated with various cellular activities enables them to perform mechanical work. Small-angle solution X-ray scattering, crystallography, and electron microscopy (EM) reconstructions revealed that partial ATP occupancy caused the heptameric closed ring of the bacterial enhancer-binding protein (bEBP) NtrC1 to rearrange into a hexameric split ring of striking asymmetry. The highly conserved and functionally crucial GAFTGA loops responsible for interacting with σ54-RNA polymerase formed a spiral staircase. We propose that splitting of the ensemble directs ATP hydrolysis within the oligomer, and the ring's asymmetry guides interaction between ATPase and the complex of σ54 and promoter DNA. Similarity between the structure of the transcriptional activator NtrC1 and those of distantly related helicases Rho and E1 reveals a general mechanism in homomeric ATPases whereby complex allostery within the ring geometry forms asymmetric functional states that allow these biological motors to exert directional forces on their target macromolecules.
Collapse
Affiliation(s)
- Tatyana A Sysoeva
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
16
|
Sysoeva TA, Yennawar N, Allaire M, Nixon BT. Crystallization and preliminary X-ray analysis of the ATPase domain of the σ(54)-dependent transcription activator NtrC1 from Aquifex aeolicus bound to the ATP analog ADP-BeFx. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1384-8. [PMID: 24316836 PMCID: PMC3855726 DOI: 10.1107/s174430911302976x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 10/30/2013] [Indexed: 11/10/2022]
Abstract
One way that bacteria regulate the transcription of specific genes to adapt to environmental challenges is to use different σ factors that direct the RNA polymerase holoenzyme to distinct promoters. Unlike σ(70) RNA polymerase (RNAP), σ(54) RNAP is unable to initiate transcription without an activator: enhancer-binding protein (EBP). All EBPs contain one ATPase domain that belongs to the family of ATPases associated with various cellular activities (AAA+ ATPases). AAA+ ATPases use the energy of ATP hydrolysis to remodel different target macromolecules to perform distinct functions. These mechanochemical enzymes are known to form ring-shaped oligomers whose conformations strongly depend upon nucleotide status. Here, the crystallization of the AAA+ ATPase domain of an EBP from Aquifex aeolicus, NtrC1, in the presence of the non-hydrolyzable ATP analog ADP-BeFx is reported. X-ray diffraction data were collected from two crystals from two different protein fractions of the NtrC1 ATPase domain. Previously, this domain was co-crystallized with ADP and ATP, but the latter crystals were grown from the Walker B substitution variant E239A. Therefore, the new data sets are the first for a wild-type EBP ATPase domain co-crystallized with an ATP analog and they reveal a new crystal form. The resulting structure(s) will shed light on the mechanism of EBP-type transcription activators.
Collapse
Affiliation(s)
- Tatyana A. Sysoeva
- Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802, USA
| | - Neela Yennawar
- Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802, USA
| | - Marc Allaire
- NLSL, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - B. Tracy Nixon
- Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
17
|
Zhang N, Gordiyenko Y, Joly N, Lawton E, Robinson CV, Buck M. Subunit dynamics and nucleotide-dependent asymmetry of an AAA(+) transcription complex. J Mol Biol 2013; 426:71-83. [PMID: 24055699 DOI: 10.1016/j.jmb.2013.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/21/2013] [Accepted: 08/24/2013] [Indexed: 01/22/2023]
Abstract
Bacterial enhancer binding proteins (bEBPs) are transcription activators that belong to the AAA(+) protein family. They form higher-order self-assemblies to regulate transcription initiation at stress response and pathogenic promoters. The precise mechanism by which these ATPases utilize ATP binding and hydrolysis energy to remodel their substrates remains unclear. Here we employed mass spectrometry of intact complexes to investigate subunit dynamics and nucleotide occupancy of the AAA(+) domain of one well-studied bEBP in complex with its substrate, the σ(54) subunit of RNA polymerase. Our results demonstrate that the free AAA(+) domain undergoes significant changes in oligomeric states and nucleotide occupancy upon σ(54) binding. Such changes likely correlate with one transition state of ATP and are associated with an open spiral ring formation that is vital for asymmetric subunit function and interface communication. We confirmed that the asymmetric subunit functionality persists for open promoter complex formation using single-chain forms of bEBP lacking the full complement of intact ATP hydrolysis sites. Outcomes reconcile low- and high-resolution structures and yield a partial sequential ATP hydrolysis model for bEBPs.
Collapse
Affiliation(s)
- Nan Zhang
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | - Yuliya Gordiyenko
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Nicolas Joly
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Batiment Buffon, 15 rue Helene Brion, 75205 Paris Cedex 13, France
| | - Edward Lawton
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK.
| | - Martin Buck
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| |
Collapse
|
18
|
The role of bacterial enhancer binding proteins as specialized activators of σ54-dependent transcription. Microbiol Mol Biol Rev 2013; 76:497-529. [PMID: 22933558 DOI: 10.1128/mmbr.00006-12] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial enhancer binding proteins (bEBPs) are transcriptional activators that assemble as hexameric rings in their active forms and utilize ATP hydrolysis to remodel the conformation of RNA polymerase containing the alternative sigma factor σ(54). We present a comprehensive and detailed summary of recent advances in our understanding of how these specialized molecular machines function. The review is structured by introducing each of the three domains in turn: the central catalytic domain, the N-terminal regulatory domain, and the C-terminal DNA binding domain. The role of the central catalytic domain is presented with particular reference to (i) oligomerization, (ii) ATP hydrolysis, and (iii) the key GAFTGA motif that contacts σ(54) for remodeling. Each of these functions forms a potential target of the signal-sensing N-terminal regulatory domain, which can act either positively or negatively to control the activation of σ(54)-dependent transcription. Finally, we focus on the DNA binding function of the C-terminal domain and the enhancer sites to which it binds. Particular attention is paid to the importance of σ(54) to the bacterial cell and its unique role in regulating transcription.
Collapse
|
19
|
Batchelor JD, Lee PS, Wang AC, Doucleff M, Wemmer DE. Structural mechanism of GAF-regulated σ(54) activators from Aquifex aeolicus. J Mol Biol 2013; 425:156-70. [PMID: 23123379 PMCID: PMC3544215 DOI: 10.1016/j.jmb.2012.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/26/2012] [Accepted: 10/26/2012] [Indexed: 11/22/2022]
Abstract
The σ subunits of bacterial RNA polymerase occur in many variant forms and confer promoter specificity to the holopolymerase. Members of the σ(54) family of σ subunits require the action of a 'transcriptional activator' protein to open the promoter and initiate transcription. The activator proteins undergo regulated assembly from inactive dimers to hexamers that are active ATPases. These contact σ(54) directly and, through ATP hydrolysis, drive a conformational change that enables promoter opening. σ(54) activators use several different kinds of regulatory domains to respond to a wide variety of intracellular signals. One common regulatory module, the GAF domain, is used by σ(54) activators to sense small-molecule ligands. The structural basis for GAF domain regulation in σ(54) activators has not previously been reported. Here, we present crystal structures of GAF regulatory domains for Aquifex aeolicus σ(54) activators NifA-like homolog (Nlh)2 and Nlh1 in three functional states-an 'open', ATPase-inactive state; a 'closed', ATPase-inactive state; and a 'closed', ligand-bound, ATPase-active state. We also present small-angle X-ray scattering data for Nlh2-linked GAF-ATPase domains in the inactive state. These GAF domain dimers regulate σ(54) activator proteins by holding the ATPase domains in an inactive dimer conformation. Ligand binding of Nlh1 dramatically remodels the GAF domain dimer interface, disrupting the contacts with the ATPase domains. This mechanism has strong parallels to the response to phosphorylation in some two-component regulated σ(54) activators. We describe a structural mechanism of GAF-mediated enzyme regulation that appears to be conserved among humans, plants, and bacteria.
Collapse
Affiliation(s)
- Joseph D. Batchelor
- Graduate Group in Biophysics and Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720
| | - Peter S. Lee
- Graduate Group in Biophysics and Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720
| | - Andrew C. Wang
- Graduate Group in Biophysics and Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720
| | - Michaeleen Doucleff
- Graduate Group in Biophysics and Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720
| | - David E. Wemmer
- Graduate Group in Biophysics and Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720
| |
Collapse
|
20
|
König SLB, Liyanage PS, Sigel RKO, Rueda D. Helicase-mediated changes in RNA structure at the single-molecule level. RNA Biol 2013; 10:133-48. [PMID: 23353571 DOI: 10.4161/rna.23507] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RNA helicases are a diverse group of RNA-dependent ATPases known to play a large number of biological roles inside the cell, such as RNA unwinding, remodeling, export and degradation. Understanding how helicases mediate changes in RNA structure is therefore of fundamental interest. The advent of single-molecule spectroscopic techniques has unveiled with unprecedented detail the interplay of RNA helicases with their substrates. In this review, we describe the characterization of helicase-RNA interactions by single-molecule approaches. State-of-the-art techniques are presented, followed by a discussion of recent advancements in this exciting field.
Collapse
|
21
|
Zhang N, Joly N, Buck M. A common feature from different subunits of a homomeric AAA+ protein contacts three spatially distinct transcription elements. Nucleic Acids Res 2012; 40:9139-52. [PMID: 22772990 PMCID: PMC3467059 DOI: 10.1093/nar/gks661] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Initiation of σ(54)-dependent transcription requires assistance to melt DNA at the promoter site but is impeded by numerous protein-protein and nucleo-protein interactions. To alleviate these inhibitory interactions, hexameric bacterial enhancer binding proteins (bEBP), a subset of the ATPases associated with various cellular activities (AAA+) protein family, are required to remodel the transcription complex using energy derived from ATP hydrolysis. However, neither the process of energy conversion nor the internal architecture of the closed promoter complex is well understood. Escherichia coli Phage shock protein F (PspF), a well-studied bEBP, contains a surface-exposed loop 1 (L1). L1 is key to the energy coupling process by interacting with Region I of σ(54) (σ(54)(RI)) in a nucleotide dependent manner. Our analyses uncover new levels of complexity in the engagement of a multimeric bEBP with a basal transcription complex via several L1s. The mechanistic implications for these multivalent L1 interactions are elaborated in the light of available structures for the bEBP and its target complexes.
Collapse
Affiliation(s)
- Nan Zhang
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | | | | |
Collapse
|
22
|
Friedman LJ, Gelles J. Mechanism of transcription initiation at an activator-dependent promoter defined by single-molecule observation. Cell 2012; 148:679-89. [PMID: 22341441 DOI: 10.1016/j.cell.2012.01.018] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 09/26/2011] [Accepted: 01/05/2012] [Indexed: 11/17/2022]
Abstract
Understanding the pathway and kinetic mechanisms of transcription initiation is essential for quantitative understanding of gene regulation, but initiation is a multistep process, the features of which can be obscured in bulk analysis. We used a multiwavelength single-molecule fluorescence colocalization approach, CoSMoS, to define the initiation pathway at an activator-dependent bacterial σ(54) promoter that recapitulates characteristic features of eukaryotic promoters activated by enhancer binding proteins. The experiments kinetically characterize all major steps of the initiation process, revealing heretofore unknown features, including reversible formation of two closed complexes with greatly differing stabilities, multiple attempts for each successful formation of an open complex, and efficient release of σ(54) from the polymerase core at the start of transcript synthesis. Open complexes are committed to transcription, suggesting that regulation likely targets earlier steps in the mechanism. CoSMoS is a powerful, generally applicable method to elucidate the mechanisms of transcription and other multistep biochemical processes.
Collapse
Affiliation(s)
- Larry J Friedman
- Department of Biochemistry, Brandeis University, Waltham, MA 02454-9110, USA.
| | | |
Collapse
|
23
|
Phase transitions in the assembly of multivalent signalling proteins. Nature 2012; 483:336-40. [PMID: 22398450 PMCID: PMC3343696 DOI: 10.1038/nature10879] [Citation(s) in RCA: 1809] [Impact Index Per Article: 139.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 01/20/2012] [Indexed: 01/20/2023]
Abstract
Cells are organized on length scales ranging from Angstroms to microns. However, the mechanisms by which Angstrom-scale molecular properties are translated to micron-scale macroscopic properties are not well understood. Here we show that interactions between diverse, synthetic multivalent macromolecules (including multi-domain proteins and RNA) produce sharp, liquid-liquid demixing phase separations, generating micron-sized liquid droplets in aqueous solution. This macroscopic transition corresponds to a molecular transition between small complexes and large, dynamic supramolecular polymers. The concentrations needed for phase transition are directly related to valency of the interacting species. In the case of the actin regulatory protein, neuronal Wiskott-Aldrich Syndrome Protein (N-WASP) interacting with its established biological partners Nck and phosphorylated nephrin1, the phase transition corresponds to a sharp increase in activity toward the actin nucleation factor, Arp2/3 complex. The transition is governed by the degree of phosphorylation of nephrin, explaining how this property of the system can be controlled to regulatory effect by kinases. The widespread occurrence of multivalent systems suggests that phase transitions are likely used to spatially organize and biochemically regulate information throughout biology.
Collapse
|
24
|
Fairman-Williams ME, Jankowsky E. Unwinding initiation by the viral RNA helicase NPH-II. J Mol Biol 2011; 415:819-32. [PMID: 22155080 DOI: 10.1016/j.jmb.2011.11.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/26/2011] [Accepted: 11/29/2011] [Indexed: 12/27/2022]
Abstract
Viral RNA helicases of the NS3/NPH-II group unwind RNA duplexes by processive, directional translocation on one of the duplex strands. The translocation is preceded by a poorly understood unwinding initiation phase. For NPH-II from vaccinia virus, unwinding initiation is rate limiting for the overall unwinding reaction. To develop a mechanistic understanding of the unwinding initiation, we studied kinetic and thermodynamic aspects of this reaction phase for NPH-II in vitro, using biochemical and single molecule fluorescence approaches. Our data show that NPH-II functions as a monomer and that different stages of the ATP hydrolysis cycle dictate distinct binding preferences of NPH-II for duplex versus single-stranded RNA. We further find that the NPH-II-RNA complex does not adopt a single conformation but rather at least two distinct conformations in each of the analyzed stages of ATP hydrolysis. These conformations interconvert with rate constants that depend on the stage of the ATP hydrolysis cycle. Our data establish a basic mechanistic framework for unwinding initiation by NPH-II and suggest that the various stages of the ATP hydrolysis cycle do not induce single, stage-specific conformations in the NPH-II-RNA complex but primarily control transitions between multiple states.
Collapse
Affiliation(s)
- Margaret E Fairman-Williams
- Center for RNA Molecular Biology and Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
25
|
Cho C, Vale RD. The mechanism of dynein motility: insight from crystal structures of the motor domain. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:182-91. [PMID: 22062687 DOI: 10.1016/j.bbamcr.2011.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 10/22/2011] [Accepted: 10/24/2011] [Indexed: 12/30/2022]
Abstract
Dynein is a large cytoskeletal motor protein that belongs to the AAA+ (ATPases associated with diverse cellular activities) superfamily. While dynein has had a rich history of cellular research, its molecular mechanism of motility remains poorly understood. Here we describe recent X-ray crystallographic studies that reveal the architecture of dynein's catalytic ring, mechanical linker element, and microtubule binding domain. This structural information has given rise to new hypotheses on how the dynein motor domain might change its conformation in order to produce motility along microtubules.
Collapse
Affiliation(s)
- Carol Cho
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, USA
| | | |
Collapse
|
26
|
Joly N, Zhang N, Buck M, Zhang X. Coupling AAA protein function to regulated gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:108-16. [PMID: 21906631 DOI: 10.1016/j.bbamcr.2011.08.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
Abstract
AAA proteins (ATPases Associated with various cellular Activities) are involved in almost all essential cellular processes ranging from DNA replication, transcription regulation to protein degradation. One class of AAA proteins has evolved to adapt to the specific task of coupling ATPase activity to activating transcription. These upstream promoter DNA bound AAA activator proteins contact their target substrate, the σ(54)-RNA polymerase holoenzyme, through DNA looping, reminiscent of the eukaryotic enhance binding proteins. These specialised macromolecular machines remodel their substrates through ATP hydrolysis that ultimately leads to transcriptional activation. We will discuss how AAA proteins are specialised for this specific task.
Collapse
Affiliation(s)
- Nicolas Joly
- Division of Biology, Imperial College London, London, SW7 2AZ, UK
| | | | | | | |
Collapse
|
27
|
Prabha S, Rao DN, Nagaraja V. Distinct properties of hexameric but functionally conserved Mycobacterium tuberculosis transcription-repair coupling factor. PLoS One 2011; 6:e19131. [PMID: 21559463 PMCID: PMC3084762 DOI: 10.1371/journal.pone.0019131] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 03/17/2011] [Indexed: 12/04/2022] Open
Abstract
Transcription coupled nucleotide excision repair (TC-NER) is involved in correcting UV-induced damage and other road-blocks encountered in the transcribed strand. Mutation frequency decline (Mfd) is a transcription repair coupling factor, involved in repair of template strand during transcription. Mfd from M. tuberculosis (MtbMfd) is 1234 amino-acids long harboring characteristic modules for different activities. Mtbmfd complemented Escherichia coli mfd (Ecomfd) deficient strain, enhanced survival of UV irradiated cells and increased the road-block repression in vivo. The protein exhibited ATPase activity, which was stimulated ∼1.5-fold in the presence of DNA. While the C-terminal domain (CTD) comprising amino acids 630 to 1234 showed ∼2-fold elevated ATPase activity than MtbMfd, the N-terminal domain (NTD) containing the first 433 amino acid residues was able to bind ATP but deficient in hydrolysis. Overexpression of NTD of MtbMfd led to growth defect and hypersensitivity to UV light. Deletion of 184 amino acids from the C-terminal end of MtbMfd (MfdΔC) increased the ATPase activity by ∼10-fold and correspondingly exhibited efficient translocation along DNA as compared to the MtbMfd and CTD. Surprisingly, MtbMfd was found to be distributed in monomer and hexamer forms both in vivo and in vitro and the monomer showed increased susceptibility to proteases compared to the hexamer. MfdΔC, on the other hand, was predominantly monomeric in solution implicating the extreme C-terminal region in oligomerization of the protein. Thus, although the MtbMfd resembles EcoMfd in many of its reaction characteristics, some of its hitherto unknown distinct properties hint at its species specific role in mycobacteria during transcription-coupled repair.
Collapse
Affiliation(s)
- Swayam Prabha
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Desirazu N. Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
- * E-mail: (DNR); (VN)
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- * E-mail: (DNR); (VN)
| |
Collapse
|
28
|
Abstract
Bacterial enhancer-binding proteins (bEBPs) are AAA+ ATPases that remodel σ⁵⁴-RNA polymerase holoenzyme for transcription. Chen et al., in this issue of Structure, show the R-finger, a conserved AAA+ arginine residue, drives structural changes that allow the ATP-bound bEBP to engage σ⁵⁴ en route to remodeling.
Collapse
Affiliation(s)
- Martin Buck
- Division of Biology, Room 448, SAFB, Imperial College Road, Imperial College, London SW72AZ, UK.
| | | |
Collapse
|
29
|
Jovanovic M, James EH, Burrows PC, Rego FGM, Buck M, Schumacher J. Regulation of the co-evolved HrpR and HrpS AAA+ proteins required for Pseudomonas syringae pathogenicity. Nat Commun 2011; 2:177. [PMID: 21285955 PMCID: PMC3105312 DOI: 10.1038/ncomms1177] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 01/05/2011] [Indexed: 11/26/2022] Open
Abstract
The bacterial AAA+ enhancer-binding proteins (EBPs) HrpR and HrpS (HrpRS) of Pseudomonas syringae (Ps) activate σ(54)-dependent transcription at the hrpL promoter; triggering type-three secretion system-mediated pathogenicity. In contrast with singly acting EBPs, the evolution of the strictly co-operative HrpRS pair raises questions of potential benefits and mechanistic differences this transcription control system offers. Here, we show distinct properties of HrpR and HrpS variants, indicating functional specialization of these non-redundant, tandemly arranged paralogues. Activities of HrpR, HrpS and their control proteins HrpV and HrpG from Ps pv. tomato DC3000 in vitro establish that HrpRS forms a transcriptionally active hetero-hexamer, that there is a direct negative regulatory role for HrpV through specific binding to HrpS and that HrpG suppresses HrpV. The distinct HrpR and HrpS functionalities suggest how partial paralogue degeneration has potentially led to a novel control mechanism for EBPs and indicate subunit-specific roles for EBPs in σ(54)-RNA polymerase activation.
Collapse
Affiliation(s)
- Milija Jovanovic
- Division of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
- These authors contributed equally to this work
| | - Ellen H. James
- Division of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
- These authors contributed equally to this work
| | - Patricia C. Burrows
- Division of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
- These authors contributed equally to this work
| | - Fabiane G. M. Rego
- Division of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
- Present address: Departamento de Patologia Médica, Universidade Ferderal do Paraná, CEP: 80210-170, Brazil
| | - Martin Buck
- Division of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
| | - Jörg Schumacher
- Division of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
30
|
Murayama Y, Mukaiyama A, Imai K, Onoue Y, Tsunoda A, Nohara A, Ishida T, Maéda Y, Terauchi K, Kondo T, Akiyama S. Tracking and visualizing the circadian ticking of the cyanobacterial clock protein KaiC in solution. EMBO J 2011; 30:68-78. [PMID: 21113137 PMCID: PMC3020118 DOI: 10.1038/emboj.2010.298] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 10/28/2010] [Indexed: 11/09/2022] Open
Abstract
The circadian clock in cyanobacteria persists even without the transcription/translation feedbacks proposed for eukaryotic systems. The period of the cyanobacterial clock is tuned to the circadian range by the ATPase activity of a clock protein known as KaiC. Here, we provide structural evidence on how KaiC ticks away 24 h while coupling the ATPase activity in its N-terminal ring to the phosphorylation state in its C-terminal ring. During the phosphorylation cycle, the C-terminal domains of KaiC are repositioned in a stepwise manner to affect global expansion and contraction motions of the C-terminal ring. Arg393 of KaiC has a critical function in expanding the C-terminal ring and its replacement with Cys affects the temperature compensation of the period--a fundamental property of circadian clocks. The conformational ticking of KaiC observed here in solution serves as a timing cue for assembly/disassembly of other clock proteins (KaiA and KaiB), and is interlocked with its auto-inhibitory ATPase underlying circadian periodicity of cyanobacteria.
Collapse
Affiliation(s)
- Yoriko Murayama
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| | - Atsushi Mukaiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| | - Keiko Imai
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| | - Yasuhiro Onoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| | - Akina Tsunoda
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| | - Atsushi Nohara
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Tatsuro Ishida
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yuichiro Maéda
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kazuki Terauchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| | - Takao Kondo
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| | - Shuji Akiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
- RIKEN SPring-8 Center, Harima Institute, Hyogo, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
31
|
Bush M, Ghosh T, Tucker N, Zhang X, Dixon R. Transcriptional regulation by the dedicated nitric oxide sensor, NorR: a route towards NO detoxification. Biochem Soc Trans 2011; 39:289-93. [PMID: 21265790 DOI: 10.1042/bst0390289] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A flavorubredoxin and its associated oxidoreductase (encoded by norV and norW respectively) detoxify NO (nitric oxide) to form N2O (nitrous oxide) under anaerobic conditions in Escherichia coli. Transcription of the norVW genes is activated in response to NO by the σ54-dependent regulator and dedicated NO sensor, NorR, a member of the bacterial enhancer-binding protein family. In the absence of NO, the catalytic activity of the central ATPase domain of NorR is repressed by the N-terminal regulatory domain that contains a non-haem iron centre. Binding of NO to this centre results in the formation of a mononitrosyl iron species, enabling the activation of ATPase activity. Our studies suggest that the highly conserved GAFTGA loop in the ATPase domain, which engages with the alternative σ factor σ54 to activate transcription, is a target for intramolecular repression by the regulatory domain. Binding of NorR to three conserved enhancer sites upstream of the norVW promoter is essential for transcriptional activation and promotes the formation of a stable higher-order NorR nucleoprotein complex. We propose that enhancer-driven assembly of this oligomeric complex, in which NorR apparently forms a DNA-bound hexamer in the absence of NO, provides a 'poised' system for transcriptional activation that can respond rapidly to nitrosative stress.
Collapse
Affiliation(s)
- Matthew Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney NR4 7UH, UK.
| | | | | | | | | |
Collapse
|
32
|
Chen B, Sysoeva TA, Chowdhury S, Guo L, De Carlo S, Hanson JA, Yang H, Nixon BT. Engagement of arginine finger to ATP triggers large conformational changes in NtrC1 AAA+ ATPase for remodeling bacterial RNA polymerase. Structure 2010; 18:1420-30. [PMID: 21070941 PMCID: PMC3001195 DOI: 10.1016/j.str.2010.08.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/28/2010] [Accepted: 08/30/2010] [Indexed: 11/23/2022]
Abstract
The NtrC-like AAA+ ATPases control virulence and other important bacterial activities through delivering mechanical work to σ54-RNA polymerase to activate transcription from σ54-dependent genes. We report the first crystal structure for such an ATPase, NtrC1 of Aquifex aeolicus, in which the catalytic arginine engages the γ-phosphate of ATP. Comparing the new structure with those previously known for apo and ADP-bound states supports a rigid-body displacement model that is consistent with large-scale conformational changes observed by low-resolution methods. First, the arginine finger induces rigid-body roll, extending surface loops above the plane of the ATPase ring to bind σ54. Second, ATP hydrolysis permits Pi release and retraction of the arginine with a reversed roll, remodeling σ54-RNAP. This model provides a fresh perspective on how ATPase subunits interact within the ring-ensemble to promote transcription, directing attention to structural changes on the arginine-finger side of an ATP-bound interface.
Collapse
Affiliation(s)
- Baoyu Chen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tatyana A. Sysoeva
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Saikat Chowdhury
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Liang Guo
- BioCAT at APS/Argonne National Lab, Illinois Institute of Technology, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Sacha De Carlo
- Chemistry Department and Institute for MacroMolecular Assemblies, Marshak Science Building, City University of New York, NY 10031, USA
| | - Jeffrey A. Hanson
- Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Haw Yang
- Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - B. Tracy Nixon
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
33
|
Abstract
Alternative σ-factors of bacteria bind core RNA polymerase to program the specific promoter selectivity of the holoenzyme. Signal-responsive changes in the availability of different σ-factors redistribute the RNA polymerase among the distinct promoter classes in the genome for appropriate adaptive, developmental and survival responses. The σ(54) -factor is structurally and functionally distinct from all other σ-factors. Consequently, binding of σ(54) to RNA polymerase confers unique features on the cognate holoenzyme, which requires activation by an unusual class of mechano-transcriptional activators, whose activities are highly regulated in response to environmental cues. This review summarizes the current understanding of the mechanisms of transcriptional activation by σ(54) -RNA polymerase and highlights the impact of global regulatory factors on transcriptional efficiency from σ(54) -dependent promoters. These global factors include the DNA-bending proteins IHF and CRP, the nucleotide alarmone ppGpp, and the RNA polymerase-targeting protein DksA.
Collapse
|
34
|
Abstract
Gene transcription is a fundamental cellular process carried out by RNA polymerase (RNAP) enzymes and is highly regulated through the action of gene regulatory complexes. Important mechanistic insights have been gained from structural studies on multisubunit RNAP from bacteria, yeast and archaea, although the initiation process that involves the conversion of the inactive transcription complex to an active one has yet to be fully understood. RNAPs are unambiguously closely related in structure and function across all kingdoms of life and have conserved mechanisms. In bacteria, sigma (sigma) factors direct RNAP to specific promoter sites and the RNAP/sigma holoenzyme can either form a stable closed complex that is incompetent for transcription (as in the case of sigma(54)) or can spontaneously proceed to an open complex that is competent for transcription (as in the case of sigma(70)). The conversion of the RNAP/sigma(54) closed complex to an open complex requires ATP hydrolysis by enhancer-binding proteins, hence providing an ideal model system for studying the initiation process biochemically and structurally. In this review, we present recent structural studies of the two major bacterial RNAP holoenzymes and focus on mechanistic advances in the transcription initiation process via enhancer-binding proteins.
Collapse
Affiliation(s)
- Tamaswati Ghosh
- Department of Life Sciences, Centre for Structural Biology, Division of Molecular Biosciences, Imperial College London, London, UK
| | | | | |
Collapse
|
35
|
Joly N, Engl C, Jovanovic G, Huvet M, Toni T, Sheng X, Stumpf MPH, Buck M. Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiol Rev 2010; 34:797-827. [PMID: 20636484 DOI: 10.1111/j.1574-6976.2010.00240.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The bacterial phage shock protein (Psp) response functions to help cells manage the impacts of agents impairing cell membrane function. The system has relevance to biotechnology and to medicine. Originally discovered in Escherichia coli, Psp proteins and homologues are found in Gram-positive and Gram-negative bacteria, in archaea and in plants. Study of the E. coli and Yersinia enterocolitica Psp systems provides insights into how membrane-associated sensory Psp proteins might perceive membrane stress, signal to the transcription apparatus and use an ATP-hydrolysing transcription activator to produce effector proteins to overcome the stress. Progress in understanding the mechanism of signal transduction by the membrane-bound Psp proteins, regulation of the psp gene-specific transcription activator and the cell biology of the system is presented and discussed. Many features of the action of the Psp system appear to be dominated by states of self-association of the master effector, PspA, and the transcription activator, PspF, alongside a signalling pathway that displays strong conditionality in its requirement.
Collapse
Affiliation(s)
- Nicolas Joly
- Division of Biology, Imperial College London, South Kensington, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Bush M, Ghosh T, Tucker N, Zhang X, Dixon R. Nitric oxide-responsive interdomain regulation targets the σ54-interaction surface in the enhancer binding protein NorR. Mol Microbiol 2010; 77:1278-88. [PMID: 20624215 PMCID: PMC2941729 DOI: 10.1111/j.1365-2958.2010.07290.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2010] [Indexed: 12/03/2022]
Abstract
Bacterial enhancer binding proteins (bEBPs) are specialized transcriptional activators that assemble as hexameric rings in their active forms and utilize ATP hydrolysis to remodel the conformation of RNA polymerase containing the alternative sigma factor σ(54). Transcriptional activation by the NorR bEBP is controlled by a regulatory GAF domain that represses the ATPase activity of the central AAA+ domain in the absence of nitric oxide. Here, we investigate the mechanism of interdomain repression in NorR by characterizing substitutions in the AAA+ domain that bypass repression by the regulatory domain. Most of these substitutions are located in the vicinity of the surface-exposed loops that engage σ(54) during the ATP hydrolysis cycle or in the highly conserved GAFTGA motif that directly contacts σ(54). Biochemical studies suggest that the bypass mutations in the GAFTGA loop do not influence the DNA binding properties of NorR or the assembly of higher order oligomers in the presence of enhancer DNA, and as expected these variants retain the ability to activate open complex formation in vitro. We identify a crucial arginine residue in the GAF domain that is essential for interdomain repression and demonstrate that hydrophobic substitutions at this position suppress the bypass phenotype of the GAFTGA substitutions. These observations suggest a novel mechanism for negative regulation in bEBPs in which the GAF domain targets the σ(54)-interaction surface to prevent access of the AAA+ domain to the sigma factor.
Collapse
Affiliation(s)
- Matthew Bush
- Department of Molecular Microbiology, John Innes CentreNorwich Research Park, Colney NR4 7UH, UK
| | - Tamaswati Ghosh
- Division of Molecular Bioscience, Imperial College LondonLondon SW7 2AZ, UK
| | - Nicholas Tucker
- Department of Molecular Microbiology, John Innes CentreNorwich Research Park, Colney NR4 7UH, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde161 Cathedral Street, Glasgow G4 0RE, UK
| | - Xiaodong Zhang
- Division of Molecular Bioscience, Imperial College LondonLondon SW7 2AZ, UK
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes CentreNorwich Research Park, Colney NR4 7UH, UK
| |
Collapse
|
37
|
Mertens HDT, Svergun DI. Structural characterization of proteins and complexes using small-angle X-ray solution scattering. J Struct Biol 2010; 172:128-41. [PMID: 20558299 DOI: 10.1016/j.jsb.2010.06.012] [Citation(s) in RCA: 396] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 06/08/2010] [Accepted: 06/10/2010] [Indexed: 01/27/2023]
Abstract
Small-angle scattering of X-rays (SAXS) is an established method for the low-resolution structural characterization of biological macromolecules in solution. The technique provides three-dimensional low-resolution structures, using ab initio and rigid body modeling, and allow one to assess the oligomeric state of proteins and protein complexes. In addition, SAXS is a powerful tool for structure validation and the quantitative analysis of flexible systems, and is highly complementary to the high resolution methods of X-ray crystallography and NMR. At present, SAXS analysis methods have reached an advanced state, allowing for automated and rapid characterization of protein solutions in terms of low-resolution models, quaternary structure and oligomeric composition. In this communication, main approaches to the characterization of proteins and protein complexes using SAXS are reviewed. The tools for the analysis of proteins in solution are presented, and the impact that these tools have made in modern structural biology is discussed.
Collapse
Affiliation(s)
- Haydyn D T Mertens
- European Molecular Biology Laboratory-Hamburg Outstation, c/o DESY, Notkestrasse 85, Hamburg, Germany
| | | |
Collapse
|
38
|
A prehydrolysis state of an AAA+ ATPase supports transcription activation of an enhancer-dependent RNA polymerase. Proc Natl Acad Sci U S A 2010; 107:9376-81. [PMID: 20439713 DOI: 10.1073/pnas.1001188107] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATP hydrolysis-dependent molecular machines and motors often drive regulated conformational transformations in cell signaling and gene regulation complexes. Conformational reorganization of a gene regulation complex containing the major variant form of bacterial RNA polymerase (RNAP), Esigma(54), requires engagement with its cognate ATP-hydrolyzing activator protein. Importantly, this activated RNAP is essential for a number of adaptive responses, including those required for bacterial pathogenesis. Here we characterize the initial encounter between the enhancer-dependent Esigma(54) and its cognate activator AAA+ ATPase protein, before ADP+P(i) formation, using a small primed RNA (spRNA) synthesis assay. The results show that in a prehydrolysis state, sufficient activator-dependent rearrangements in Esigma(54) have occurred to allow engagement of the RNAP active site with single-stranded promoter DNA to support spRNA synthesis, but not to melt the promoter DNA. This catalytically competent transcription intermediate has similarity with the open promoter complex, in that the RNAP dynamics required for DNA scrunching should be occurring. Significantly, this work highlights that prehydrolysis states of ATPases are functionally important in the molecular transformations they drive.
Collapse
|
39
|
McKenney RJ, Vershinin M, Kunwar A, Vallee RB, Gross SP. LIS1 and NudE induce a persistent dynein force-producing state. Cell 2010; 141:304-14. [PMID: 20403325 PMCID: PMC2881166 DOI: 10.1016/j.cell.2010.02.035] [Citation(s) in RCA: 274] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 12/18/2009] [Accepted: 02/18/2010] [Indexed: 12/29/2022]
Abstract
Cytoplasmic dynein is responsible for many aspects of cellular and subcellular movement. LIS1, NudE, and NudEL are dynein interactors initially implicated in brain developmental disease but now known to be required in cell migration, nuclear, centrosomal, and microtubule transport, mitosis, and growth cone motility. Identification of a specific role for these proteins in cytoplasmic dynein motor regulation has remained elusive. We find that NudE stably recruits LIS1 to the dynein holoenzyme molecule, where LIS1 interacts with the motor domain during the prepowerstroke state of the dynein crossbridge cycle. NudE abrogates dynein force production, whereas LIS1 alone or with NudE induces a persistent-force dynein state that improves ensemble function of multiple dyneins for transport under high-load conditions. These results likely explain the requirement for LIS1 and NudE in the transport of nuclei, centrosomes, chromosomes, and the microtubule cytoskeleton as well as the particular sensitivity of migrating neurons to reduced LIS1 expression.
Collapse
Affiliation(s)
- Richard J. McKenney
- Department of Pathology and Cell Biology, Columbia University. New York, NY 10032, USA
| | - Michael Vershinin
- Department of Developmental and Cell Biology, University of California, Irvine. Irvine CA 92697, USA
| | - Ambarish Kunwar
- Department of Neurobiology, Physiology & Behavior, University Of California, Davis. Davis CA 95616, USA
| | - Richard B. Vallee
- Department of Pathology and Cell Biology, Columbia University. New York, NY 10032, USA
| | - Steven P. Gross
- Department of Developmental and Cell Biology, University of California, Irvine. Irvine CA 92697, USA
| |
Collapse
|
40
|
Batchelor JD, Sterling HJ, Hong E, Williams ER, Wemmer DE. Receiver domains control the active-state stoichiometry of Aquifex aeolicus sigma54 activator NtrC4, as revealed by electrospray ionization mass spectrometry. J Mol Biol 2009; 393:634-43. [PMID: 19699748 PMCID: PMC2763505 DOI: 10.1016/j.jmb.2009.08.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 08/12/2009] [Accepted: 08/12/2009] [Indexed: 11/16/2022]
Abstract
A common challenge with studies of proteins in vitro is determining which constructs and conditions are most physiologically relevant. sigma(54) activators are proteins that undergo regulated assembly to form an active ATPase ring that enables transcription by sigma(54)-polymerase. Previous studies of AAA(+) ATPase domains from sigma(54) activators have shown that some are heptamers, while others are hexamers. Because active oligomers assemble from off-state dimers, it was thought that even-numbered oligomers should dominate, and that heptamer formation would occur when individual domains of the activators, rather than the intact proteins, were studied. Here we present results from electrospray ionization mass spectrometry experiments characterizing the assembly states of intact NtrC4 (a sigma(54) activator from Aquifex aeolicus, an extreme thermophile), as well as its ATPase domain alone, and regulatory-ATPase and ATPase-DNA binding domain combinations. We show that the full-length and activated regulatory-ATPase proteins form hexamers, whereas the isolated ATPase domain, unactivated regulatory-ATPase, and ATPase-DNA binding domain form heptamers. Activation of the N-terminal regulatory domain is the key factor stabilizing the hexamer form of the ATPase, relative to the heptamer.
Collapse
Affiliation(s)
- Joseph D. Batchelor
- Graduate Group in Biophysics, University of California, Berkeley, CA 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Harry J. Sterling
- Department of Chemistry and QB3 Institute, University of California, Berkeley, CA 94720, USA
| | - Eunmi Hong
- Department of Chemistry and QB3 Institute, University of California, Berkeley, CA 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Evan R. Williams
- Graduate Group in Biophysics, University of California, Berkeley, CA 94720, USA
- Department of Chemistry and QB3 Institute, University of California, Berkeley, CA 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - David E. Wemmer
- Graduate Group in Biophysics, University of California, Berkeley, CA 94720, USA
- Department of Chemistry and QB3 Institute, University of California, Berkeley, CA 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| |
Collapse
|
41
|
Del Campo M, Lambowitz AM. Structure of the Yeast DEAD box protein Mss116p reveals two wedges that crimp RNA. Mol Cell 2009; 35:598-609. [PMID: 19748356 DOI: 10.1016/j.molcel.2009.07.032] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 06/22/2009] [Accepted: 07/16/2009] [Indexed: 11/25/2022]
Abstract
The yeast DEAD box protein Mss116p is a general RNA chaperone that functions in mitochondrial group I and II intron splicing, translational activation, and RNA end processing. Here we determined high-resolution X-ray crystal structures of Mss116p complexed with an RNA oligonucleotide and ATP analogs AMP-PNP, ADP-BeF(3)(-), or ADP-AlF(4)(-). The structures show the entire helicase core acting together with a functionally important C-terminal extension. In all structures, the helicase core is in a closed conformation with a wedge alpha helix bending RNA 3' of the central bound nucleotides, as in previous DEAD box protein structures. Notably, Mss116p's C-terminal extension also bends RNA 5' of the central nucleotides, resulting in RNA crimping. Despite reported functional differences, we observe few structural changes in ternary complexes with different ATP analogs. The structures constrain models of DEAD box protein function and reveal a strand separation mechanism in which a protein uses two wedges to act as a molecular crimper.
Collapse
Affiliation(s)
- Mark Del Campo
- Institute for Cellular and Molecular Biology, University of Texas at Austin, 78712, USA
| | | |
Collapse
|
42
|
Hura GL, Menon AL, Hammel M, Rambo RP, Poole FL, Tsutakawa SE, Jenney FE, Classen S, Frankel KA, Hopkins RC, Yang SJ, Scott JW, Dillard BD, Adams MWW, Tainer JA. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat Methods 2009; 6:606-12. [PMID: 19620974 PMCID: PMC3094553 DOI: 10.1038/nmeth.1353] [Citation(s) in RCA: 525] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 06/09/2009] [Indexed: 11/15/2022]
Abstract
We present an efficient pipeline enabling high-throughput analysis of protein structure in solution with small angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling of microliter volumes, temperature and anaerobic control, rapid data collection and data analysis, and couples structural analysis with automated archiving. We subjected 50 representative proteins, mostly from Pyrococcus furiosus, to this pipeline and found that 30 were multimeric structures in solution. SAXS analysis allowed us to distinguish aggregated and unfolded proteins, define global structural parameters and oligomeric states for most samples, identify shapes and similar structures for 25 unknown structures, and determine envelopes for 41 proteins. We believe that high-throughput SAXS is an enabling technology that may change the way that structural genomics research is done.
Collapse
Affiliation(s)
- Greg L. Hura
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Angeli L. Menon
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | - Michal Hammel
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Robert P. Rambo
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Farris L. Poole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | - Susan E. Tsutakawa
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Francis E. Jenney
- Georgia Campus Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024
| | - Scott Classen
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Kenneth A. Frankel
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Robert C. Hopkins
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | - Sung-jae Yang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | - Joseph W. Scott
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | - Bret D. Dillard
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | - John A. Tainer
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
43
|
Burrows PC, Schumacher J, Amartey S, Ghosh T, Burgis TA, Zhang X, Nixon BT, Buck M. Functional roles of the pre-sensor I insertion sequence in an AAA+ bacterial enhancer binding protein. Mol Microbiol 2009; 73:519-33. [PMID: 19486295 PMCID: PMC2745333 DOI: 10.1111/j.1365-2958.2009.06744.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2009] [Indexed: 11/28/2022]
Abstract
Molecular machines belonging to the AAA+ superfamily of ATPases use NTP hydrolysis to remodel their versatile substrates. The presence of an insertion sequence defines the major phylogenetic pre-sensor I insertion (pre-SIi) AAA+ superclade. In the bacterial sigma(54)-dependent enhancer binding protein phage shock protein F (PspF) the pre-SIi loop adopts different conformations depending on the nucleotide-bound state. Single amino acid substitutions within the dynamic pre-SIi loop of PspF drastically change the ATP hydrolysis parameters, indicating a structural link to the distant hydrolysis site. We used a site-specific protein-DNA proximity assay to measure the contribution of the pre-SIi loop in sigma(54)-dependent transcription and demonstrate that the pre-SIi loop is a major structural feature mediating nucleotide state-dependent differential engagement with Esigma(54). We suggest that much, if not all, of the action of the pre-SIi loop is mediated through the L1 loop and relies on a conserved molecular switch, identified in a crystal structure of one pre-SIi variant and in accordance with the high covariance between some pre-SIi residues and distinct residues outside the pre-SIi sequence.
Collapse
Affiliation(s)
- Patricia C Burrows
- Department of Life Sciences, Division of Biology, Imperial College LondonLondon, SW7 2AZ, UK
| | - Jörg Schumacher
- Department of Life Sciences, Division of Biology, Imperial College LondonLondon, SW7 2AZ, UK
| | - Samuel Amartey
- Department of Life Sciences, Division of Biology, Imperial College LondonLondon, SW7 2AZ, UK
| | - Tamaswati Ghosh
- Department of Life Sciences, Division of Molecular Biosciences, Imperial College LondonLondon, SW7 2AZ, UK
| | - Timothy A Burgis
- Center for Bioinformatics, Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College LondonLondon, SW7 2AZ, UK
| | - Xiaodong Zhang
- Department of Life Sciences, Division of Molecular Biosciences, Imperial College LondonLondon, SW7 2AZ, UK
| | - B Tracy Nixon
- 406 Frear South Building, The Pennsylvania State University, University ParkPA 16802, USA
| | - Martin Buck
- Department of Life Sciences, Division of Biology, Imperial College LondonLondon, SW7 2AZ, UK
| |
Collapse
|
44
|
Burrows PC, Joly N, Nixon BT, Buck M. Comparative analysis of activator-Esigma54 complexes formed with nucleotide-metal fluoride analogues. Nucleic Acids Res 2009; 37:5138-50. [PMID: 19553192 PMCID: PMC2731916 DOI: 10.1093/nar/gkp541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/08/2009] [Accepted: 06/09/2009] [Indexed: 11/14/2022] Open
Abstract
Bacterial RNA polymerase (RNAP) containing the major variant sigma(54) factor forms open promoter complexes in a reaction in which specialized activator proteins hydrolyse ATP. Here we probe binding interactions between sigma(54)-RNAP (Esigma(54)) and the ATPases associated with various cellular activities (AAA+) domain of the Escherichia coli activator protein, PspF, using nucleotide-metal fluoride (BeF and AlF) analogues representing ground and transition states of ATP, which allow complexes (that are otherwise too transient with ATP) to be captured. We show that the organization and functionality of the ADP-BeF- and ADP-AlF-dependent complexes greatly overlap. Our data support an activation pathway in which the initial ATP-dependent binding of the activator to the Esigma(54) closed complex results in the re-organization of Esigma(54) with respect to the transcription start-site. However, the nucleotide-dependent binding interactions between the activator and the Esigma(54) closed complex are in themselves insufficient for forming open promoter complexes when linear double-stranded DNA is present in the initial closed complex.
Collapse
Affiliation(s)
- Patricia C. Burrows
- Department of Life Sciences, Division of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London, SW7 2AZ, UK and Department of Biochemistry and Molecular Biology, 406 Frear South Building, Pennsylvania State University, University Park, PA 16802, USA
| | - Nicolas Joly
- Department of Life Sciences, Division of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London, SW7 2AZ, UK and Department of Biochemistry and Molecular Biology, 406 Frear South Building, Pennsylvania State University, University Park, PA 16802, USA
| | - B. Tracy Nixon
- Department of Life Sciences, Division of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London, SW7 2AZ, UK and Department of Biochemistry and Molecular Biology, 406 Frear South Building, Pennsylvania State University, University Park, PA 16802, USA
| | - Martin Buck
- Department of Life Sciences, Division of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London, SW7 2AZ, UK and Department of Biochemistry and Molecular Biology, 406 Frear South Building, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
45
|
Hong E, Doucleff M, Wemmer DE. Structure of the RNA polymerase core-binding domain of sigma(54) reveals a likely conformational fracture point. J Mol Biol 2009; 390:70-82. [PMID: 19426742 PMCID: PMC3195411 DOI: 10.1016/j.jmb.2009.04.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 04/24/2009] [Accepted: 04/28/2009] [Indexed: 11/22/2022]
Abstract
Transcription initiation by bacterial sigma(54)-RNA polymerase requires a conformational change of the holopolymerase-DNA complex, driven by an enhancer-binding protein. Although structures of the core polymerase and the more common sigma(70) factor have been determined, little is known about the structure of the sigma(54) variant. We report here the structure of an Aquifex aeolicus sigma(54) domain (residues 69-198), which binds core RNA polymerase. The structure is composed of two distinct subdomains held together by a small, conserved hydrophobic interface that appears to act as a fracture point in the structure. The N-terminal, four-helical subdomain has a negative surface and conserved residues that likely contact the core polymerase, while the C-terminal, three-helical bundle has a strongly positive patch that could contact DNA. Sequence conservation indicates that these structural features are conserved and are important for the role of sigma(54) in the polymerase complex.
Collapse
Affiliation(s)
- Eunmi Hong
- Dept. of Chemistry, University of California, Berkeley, CA, 94720-1460, U.S.A
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, U.S.A
| | - Michaeleen Doucleff
- Dept. of Chemistry, University of California, Berkeley, CA, 94720-1460, U.S.A
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, U.S.A
| | - David E. Wemmer
- Dept. of Chemistry, University of California, Berkeley, CA, 94720-1460, U.S.A
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, U.S.A
| |
Collapse
|
46
|
Burrows PC, Joly N, Cannon WV, Cámara BP, Rappas M, Zhang X, Dawes K, Nixon BT, Wigneshweraraj SR, Buck M. Coupling sigma factor conformation to RNA polymerase reorganisation for DNA melting. J Mol Biol 2009; 387:306-19. [PMID: 19356588 PMCID: PMC2688459 DOI: 10.1016/j.jmb.2009.01.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 01/24/2009] [Accepted: 01/26/2009] [Indexed: 11/18/2022]
Abstract
ATP-driven remodelling of initial RNA polymerase (RNAP) promoter complexes occurs as a major post recruitment strategy used to control gene expression. Using a model-enhancer-dependent bacterial system (sigma54-RNAP, Esigma54) and a slowly hydrolysed ATP analogue (ATPgammaS), we provide evidence for a nucleotide-dependent temporal pathway leading to DNA melting involving a small set of sigma54-DNA conformational states. We demonstrate that the ATP hydrolysis-dependent remodelling of Esigma54 occurs in at least two distinct temporal steps. The first detected remodelling phase results in changes in the interactions between the promoter specificity sigma54 factor and the promoter DNA. The second detected remodelling phase causes changes in the relationship between the promoter DNA and the core RNAP catalytic beta/beta' subunits, correlating with the loading of template DNA into the catalytic cleft of RNAP. It would appear that, for Esigma54 promoters, loading of template DNA within the catalytic cleft of RNAP is dependent on fast ATP hydrolysis steps that trigger changes in the beta' jaw domain, thereby allowing acquisition of the open complex status.
Collapse
Affiliation(s)
- Patricia C Burrows
- Division of Biology, Department of Life Sciences, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chen B, Sysoeva TA, Chowdhury S, Guo L, Nixon BT. ADPase activity of recombinantly expressed thermotolerant ATPases may be caused by copurification of adenylate kinase of Escherichia coli. FEBS J 2009; 276:807-15. [PMID: 19143839 PMCID: PMC2673103 DOI: 10.1111/j.1742-4658.2008.06825.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Except for apyrases, ATPases generally target only the gamma-phosphate of a nucleotide. Some non-apyrase ATPases from thermophilic microorganisms are reported to hydrolyze ADP as well as ATP, which has been described as a novel property of the ATPases from extreme thermophiles. Here, we describe an apparent ADP hydrolysis by highly purified preparations of the AAA+ ATPase NtrC1 from an extremely thermophilic bacterium, Aquifex aeolicus. This activity is actually a combination of the activities of the ATPase and contaminating adenylate kinase (AK) from Escherichia coli, which is present at 1/10,000 of the level of the ATPase. AK catalyzes conversion of two molecules of ADP into AMP and ATP, the latter being a substrate for the ATPase. We raise concern that the observed thermotolerance of E. coli AK and its copurification with thermostable proteins by commonly used methods may confound studies of enzymes that specifically catalyze hydrolysis of nucleoside diphosphates or triphosphates. For example, contamination with E. coli AK may be responsible for reported ADPase activities of the ATPase chaperonins from Pyrococcus furiosus, Pyrococcus horikoshii, Methanococcus jannaschii and Thermoplasma acidophilum; the ATP/ADP-dependent DNA ligases from Aeropyrum pernix K1 and Staphylothermus marinus; or the reported ATP-dependent activities of ADP-dependent phosphofructokinase of P. furiosus. Purification methods developed to separate NtrC1 ATPase from AK also revealed two distinct forms of the ATPase. One is tightly bound to ADP or GDP and able to bind to Q but not S ion exchange matrixes. The other is nucleotide-free and binds to both Q and S ion exchange matrixes.
Collapse
Affiliation(s)
- Baoyu Chen
- Integrative Biosciences Graduate Degree Program - Chemical Biology, The Pennsylvania State University, University Park, PA, USA
| | - Tatyana A. Sysoeva
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Saikat Chowdhury
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Liang Guo
- BioCAT, Advanced Photon Source, Argonne National Lab and Illinois Institute of Technology, Chicago, IL, USA
| | - B. Tracy Nixon
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
48
|
Organization of an activator-bound RNA polymerase holoenzyme. Mol Cell 2008; 32:337-46. [PMID: 18995832 PMCID: PMC2680985 DOI: 10.1016/j.molcel.2008.09.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 05/30/2008] [Accepted: 09/05/2008] [Indexed: 12/31/2022]
Abstract
Transcription initiation involves the conversion from closed promoter complexes, comprising RNA polymerase (RNAP) and double-stranded promoter DNA, to open complexes, in which the enzyme is able to access the DNA template in a single-stranded form. The complex between bacterial RNAP and its major variant sigma factor σ54 remains as a closed complex until ATP hydrolysis-dependent remodeling by activator proteins occurs. This remodeling facilitates DNA melting and allows the transition to the open complex. Here we present cryoelectron microscopy reconstructions of bacterial RNAP in complex with σ54 alone, and of RNAP-σ54 with an AAA+ activator. Together with photo-crosslinking data that establish the location of promoter DNA within the complexes, we explain why the RNAP-σ54 closed complex is unable to access the DNA template and propose how the structural changes induced by activator binding can initiate conformational changes that ultimately result in formation of the open complex.
Collapse
|
49
|
Liu F, Putnam A, Jankowsky E. ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding. Proc Natl Acad Sci U S A 2008; 105:20209-14. [PMID: 19088201 PMCID: PMC2629341 DOI: 10.1073/pnas.0811115106] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Indexed: 11/18/2022] Open
Abstract
DEAD-box proteins, the largest helicase family, catalyze ATP-dependent remodeling of RNA-protein complexes and the unwinding of RNA duplexes. Because DEAD-box proteins hydrolyze ATP in an RNA-dependent fashion, the energy provided by ATP hydrolysis is commonly assumed to drive the energetically unfavorable duplex unwinding. Here, we show efficient unwinding of stable duplexes by several DEAD-box proteins in the presence of the nonhydrolyzable ATP analog ADP-beryllium fluoride. Another ATP analog, ADP-aluminum fluoride, does not promote unwinding. The findings show that the energy from ATP hydrolysis is dispensable for strand separation. ATP binding, however, appears necessary. ATP hydrolysis is found to be required for fast enzyme release from the RNA and multiple substrate turnovers and thus for enzyme recycling.
Collapse
Affiliation(s)
- Fei Liu
- Department of Biochemistry and Center for RNA Molecular Biology, School of Medicine, and
- Department of Physics, College of Arts and Sciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106
| | - Andrea Putnam
- Department of Biochemistry and Center for RNA Molecular Biology, School of Medicine, and
| | - Eckhard Jankowsky
- Department of Biochemistry and Center for RNA Molecular Biology, School of Medicine, and
| |
Collapse
|
50
|
Batchelor JD, Doucleff M, Lee CJ, Matsubara K, De Carlo S, Heideker J, Lamers MH, Pelton JG, Wemmer DE. Structure and regulatory mechanism of Aquifex aeolicus NtrC4: variability and evolution in bacterial transcriptional regulation. J Mol Biol 2008; 384:1058-75. [PMID: 18955063 DOI: 10.1016/j.jmb.2008.10.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 10/06/2008] [Accepted: 10/06/2008] [Indexed: 10/21/2022]
Abstract
Genetic changes lead gradually to altered protein function, making deduction of the molecular basis for activity from a sequence difficult. Comparative studies provide insights into the functional consequences of specific changes. Here we present structural and biochemical studies of NtrC4, a sigma-54 activator from Aquifex aeolicus, and compare it with NtrC1 (a paralog) and NtrC (a homolog from Salmonella enterica) to provide insight into how a substantial change in regulatory mechanism may have occurred. Activity assays show that assembly of NtrC4's active oligomer is repressed by the N-terminal receiver domain, and that BeF3- addition (mimicking phosphorylation) removes this repression. Observation of assembly without activation for NtrC4 indicates that it is much less strongly repressed than NtrC1. The crystal structure of the unactivated receiver-ATPase domain combination shows a partially disrupted interface. NMR structures of the regulatory domain show that its activation mechanism is very similar to that of NtrC1. The crystal structure of the NtrC4 DNA-binding domain shows that it is dimeric and more similar in structure to NtrC than NtrC1. Electron microscope images of the ATPase-DNA-binding domain combination show formation of oligomeric rings. Sequence alignments provide insights into the distribution of activation mechanisms in this family of proteins.
Collapse
Affiliation(s)
- Joseph D Batchelor
- Graduate Group in Biophysics, Physical Biosciences Division, Lawrence Berkeley National Laboratory and the Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|