1
|
Calvert RA, Nyamboya RA, Beavil AJ, Sutton BJ. The evolution of flexibility and function in the Fc domains of IgM, IgY, and IgE. Front Immunol 2024; 15:1389494. [PMID: 39445016 PMCID: PMC11496790 DOI: 10.3389/fimmu.2024.1389494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/20/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Antibody Fc regions harbour the binding sites for receptors that mediate effector functions following antigen engagement by the Fab regions. An extended "hinge" region in IgG allows flexibility between Fab and Fc, but in both the most primitive antibody, IgM, and in the evolutionarily more recent IgE, the hinge is replaced by an additional domain pair in the homodimeric six-domain Fc region. This permits additional flexibility within the Fc region, which has been exploited by nature to modulate antibody effector functions. Thus, in pentameric or hexameric IgM, the Fc regions appear to adopt a planar conformation in solution until antigen binding causes a conformational change and exposes the complement binding sites. In contrast, IgE-Fc principally adopts an acutely bent conformation in solution, but the binding of different receptors is controlled by the degree of bending, and there is allosteric communication between receptor binding sites. Methods We sought to trace the evolution of Fc conformational diversity from IgM to IgE via the intermediate avian IgY by studying the solution conformations of their Fc regions by small-angle X-ray scattering. We compared four extant proteins: human IgM-Fc homodimer, chicken IgY-Fc, platypus IgE-Fc, and human IgE-Fc. These are examples of proteins that first appeared in the jawed fish [425 million years ago (mya)], tetrapod (310 mya), monotreme (166 mya), and hominid (2.5 mya) clades, respectively. Results and discussion We analysed the scattering curves in terms of contributions from a pool of variously bent models chosen by a non-negative linear least-squares algorithm and found that the four proteins form a series in which the proportion of acutely bent material increases: IgM-Fc < IgY-Fc < plIgE-Fc < huIgE-Fc. This follows their order of appearance in evolution. For the huIgM-Fc homodimer, although none are acutely bent, and a significant fraction of the protein is sufficiently bent to expose the C1q-binding site, it predominantly adopts a fully extended conformation. In contrast, huIgE-Fc is found principally to be acutely bent, as expected from earlier studies. IgY-Fc, in this first structural analysis of the complete Fc region, exhibits an ensemble of conformations from acutely bent to fully extended, reflecting IgY's position as an evolutionary intermediate between IgM and IgE.
Collapse
Affiliation(s)
- Rosaleen A. Calvert
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | | | | | - Brian J. Sutton
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
2
|
Van Thillo T, Van Deuren V, Dedecker P. Smart genetically-encoded biosensors for the chemical monitoring of living systems. Chem Commun (Camb) 2023; 59:520-534. [PMID: 36519509 DOI: 10.1039/d2cc05363b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Genetically-encoded biosensors provide the all-optical and non-invasive visualization of dynamic biochemical events within living systems, which has allowed the discovery of profound new insights. Twenty-five years of biosensor development has steadily improved their performance and has provided us with an ever increasing biosensor repertoire. In this feature article, we present recent advances made in biosensor development and provide a perspective on the future direction of the field.
Collapse
Affiliation(s)
- Toon Van Thillo
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| | - Vincent Van Deuren
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| | - Peter Dedecker
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| |
Collapse
|
3
|
Sipieter F, Cappe B, Leray A, De Schutter E, Bridelance J, Hulpiau P, Van Camp G, Declercq W, Héliot L, Vincent P, Vandenabeele P, Riquet FB. Characteristic ERK1/2 signaling dynamics distinguishes necroptosis from apoptosis. iScience 2021; 24:103074. [PMID: 34568795 PMCID: PMC8449238 DOI: 10.1016/j.isci.2021.103074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/21/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
ERK1/2 involvement in cell death remains unclear, although many studies have demonstrated the importance of ERK1/2 dynamics in determining cellular responses. To untangle how ERK1/2 contributes to two cell death programs, we investigated ERK1/2 signaling dynamics during hFasL-induced apoptosis and TNF-induced necroptosis in L929 cells. We observed that ERK1/2 inhibition sensitizes cells to apoptosis while delaying necroptosis. By monitoring ERK1/2 activity by live-cell imaging using an improved ERK1/2 biosensor (EKAR4.0), we reported differential ERK1/2 signaling dynamics between cell survival, apoptosis, and necroptosis. We also decrypted a temporally shifted amplitude- and frequency-modulated (AM/FM) ERK1/2 activity profile in necroptosis versus apoptosis. ERK1/2 inhibition, which disrupted ERK1/2 signaling dynamics, prevented TNF and IL-6 gene expression increase during TNF-induced necroptosis. Using an inducible cell line for activated MLKL, the final executioner of necroptosis, we showed ERK1/2 and its distinctive necroptotic ERK1/2 activity dynamics to be positioned downstream of MLKL.
Collapse
Affiliation(s)
- François Sipieter
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium.,Université de Lille, Lille, France
| | - Benjamin Cappe
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium
| | - Aymeric Leray
- Laboratoire Interdisciplinaire Carnot De Bourgogne, UMR 6303 CNRS-Université de Bourgogne Franche-Comté, 21078 Dijon, France
| | - Elke De Schutter
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium.,Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43/6, Edegem, 2650 Antwerp, Belgium
| | - Jolien Bridelance
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium
| | - Paco Hulpiau
- Data Mining and Modeling for Biomedicine (DaMBi), VIB Center for Inflammation Research, Ghent, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43/6, Edegem, 2650 Antwerp, Belgium.,Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Wim Declercq
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium
| | - Laurent Héliot
- Team Biophotonique Cellulaire Fonctionnelle, Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM), CNRS UMR 8523, 59655 Villeneuve d'Ascq, France
| | - Pierre Vincent
- Sorbonne Université, CNRS, Neurobiology of Adaptative Processes, UMR8256, 75005 Paris, France
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium
| | - Franck B Riquet
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium.,Université de Lille, Lille, France
| |
Collapse
|
4
|
Reinartz I, Sarter M, Otten J, Höfig H, Pohl M, Schug A, Stadler AM, Fitter J. Structural Analysis of a Genetically Encoded FRET Biosensor by SAXS and MD Simulations. SENSORS 2021; 21:s21124144. [PMID: 34208740 PMCID: PMC8234384 DOI: 10.3390/s21124144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/27/2022]
Abstract
Inspired by the modular architecture of natural signaling proteins, ligand binding proteins are equipped with two fluorescent proteins (FPs) in order to obtain Förster resonance energy transfer (FRET)-based biosensors. Here, we investigated a glucose sensor where the donor and acceptor FPs were attached to a glucose binding protein using a variety of different linker sequences. For three resulting sensor constructs the corresponding glucose induced conformational changes were measured by small angle X-ray scattering (SAXS) and compared to recently published single molecule FRET results (Höfig et al., ACS Sensors, 2018). For one construct which exhibits a high change in energy transfer and a large change of the radius of gyration upon ligand binding, we performed coarse-grained molecular dynamics simulations for the ligand-free and the ligand-bound state. Our analysis indicates that a carefully designed attachment of the donor FP is crucial for the proper transfer of the glucose induced conformational change of the glucose binding protein into a well pronounced FRET signal change as measured in this sensor construct. Since the other FP (acceptor) does not experience such a glucose induced alteration, it becomes apparent that only one of the FPs needs to have a well-adjusted attachment to the glucose binding protein.
Collapse
Affiliation(s)
- Ines Reinartz
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany;
- HIDSS4Health-Helmholtz Information and Data Science School for Health, 76344 Eggenstein-Leopoldshafen, Germany
| | - Mona Sarter
- I Physikalisches Institut (IA), AG Biophysik, RWTH Aachen University, 52074 Aachen, Germany; (M.S.); (H.H.)
- Forschungszentrum Jülich, IBI-8/JCNS-1, 52428 Jülich, Germany;
| | - Julia Otten
- Forschungszentrum Jülich, IBG-1, 52426 Jülich, Germany; (J.O.); (M.P.)
| | - Henning Höfig
- I Physikalisches Institut (IA), AG Biophysik, RWTH Aachen University, 52074 Aachen, Germany; (M.S.); (H.H.)
- Forschungszentrum Jülich, IBI-6, 52428 Jülich, Germany
| | - Martina Pohl
- Forschungszentrum Jülich, IBG-1, 52426 Jülich, Germany; (J.O.); (M.P.)
| | - Alexander Schug
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428 Jülich, Germany;
- Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Andreas M. Stadler
- Forschungszentrum Jülich, IBI-8/JCNS-1, 52428 Jülich, Germany;
- Institut für Physikalische Chemie, RWTH Aachen University, 52074 Aachen, Germany
| | - Jörg Fitter
- I Physikalisches Institut (IA), AG Biophysik, RWTH Aachen University, 52074 Aachen, Germany; (M.S.); (H.H.)
- Forschungszentrum Jülich, IBI-6, 52428 Jülich, Germany
- Correspondence: ; Tel.: +49-241-80-27209
| |
Collapse
|
5
|
Single-Molecule Studies on a FRET Biosensor: Lessons from a Comparison of Fluorescent Protein Equipped versus Dye-Labeled Species. Molecules 2018; 23:molecules23123105. [PMID: 30486450 PMCID: PMC6320824 DOI: 10.3390/molecules23123105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 11/16/2022] Open
Abstract
Bacterial periplasmic binding proteins (PBPs) undergo a pronounced ligand-induced conformational change which can be employed to monitor ligand concentrations. The most common strategy to take advantage of this conformational change for a biosensor design is to use a Förster resonance energy transfer (FRET) signal. This can be achieved by attaching either two fluorescent proteins (FPs) or two organic fluorescent dyes of different colors to the PBPs in order to obtain an optical readout signal which is closely related to the ligand concentration. In this study we compare a FP-equipped and a dye-labeled version of the glucose/galactose binding protein MglB at the single-molecule level. The comparison demonstrates that changes in the FRET signal upon glucose binding are more pronounced for the FP-equipped sensor construct as compared to the dye-labeled analog. Moreover, the FP-equipped sensor showed a strong increase of the FRET signal under crowding conditions whereas the dye-labeled sensor was not influenced by crowding. The choice of a labeling scheme should therefore be made depending on the application of a FRET-based sensor.
Collapse
|
6
|
Höfig H, Otten J, Steffen V, Pohl M, Boersma AJ, Fitter J. Genetically Encoded Förster Resonance Energy Transfer-Based Biosensors Studied on the Single-Molecule Level. ACS Sens 2018; 3:1462-1470. [PMID: 29979038 DOI: 10.1021/acssensors.8b00143] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetically encoded Förster resonance energy transfer (FRET)-based biosensors for the quantification of ligand molecules change the magnitude of FRET between two fluorescent proteins upon binding a target metabolite. When highly sensitive sensors are being designed, extensive sensor optimization is essential. However, it is often difficult to verify the ideas of modifications made to a sensor during the sensor optimization process because of the limited information content of ensemble FRET measurements. In contrast, single-molecule detection provides detailed information and higher accuracy. Here, we investigated a set of glucose and crowding sensors on the single-molecule level. We report the first comprehensive single-molecule study of FRET-based biosensors with reasonable counting statistics and identify characteristics in the single-molecule FRET histograms that constitute fingerprints of sensor performance. Hence, our single-molecule approach extends the toolbox of methods aiming to understand and optimize the design of FRET-based biosensors.
Collapse
Affiliation(s)
- Henning Höfig
- I. Physikalisches Institut (IA), RWTH Aachen, 52074 Aachen, Germany
- ICS-5: Molecular Biophysics, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Julia Otten
- IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Victoria Steffen
- IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Martina Pohl
- IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Arnold J. Boersma
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700 AB Groningen, Netherlands
| | - Jörg Fitter
- I. Physikalisches Institut (IA), RWTH Aachen, 52074 Aachen, Germany
- ICS-5: Molecular Biophysics, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
7
|
Alexandrov Y, Nikolic DS, Dunsby C, French PMW. Quantitative time domain analysis of lifetime-based Förster resonant energy transfer measurements with fluorescent proteins: Static random isotropic fluorophore orientation distributions. JOURNAL OF BIOPHOTONICS 2018; 11:e201700366. [PMID: 29582566 DOI: 10.1002/jbio.201700366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
Förster resonant energy transfer (FRET) measurements are widely used to obtain information about molecular interactions and conformations through the dependence of FRET efficiency on the proximity of donor and acceptor fluorophores. Fluorescence lifetime measurements can provide quantitative analysis of FRET efficiency and interacting population fraction. Many FRET experiments exploit the highly specific labelling of genetically expressed fluorescent proteins, applicable in live cells and organisms. Unfortunately, the typical assumption of fast randomization of fluorophore orientations in the analysis of fluorescence lifetime-based FRET readouts is not valid for fluorescent proteins due to their slow rotational mobility compared to their upper state lifetime. Here, previous analysis of effectively static isotropic distributions of fluorophore dipoles on FRET measurements is incorporated into new software for fitting donor emission decay profiles. Calculated FRET parameters, including molar population fractions, are compared for the analysis of simulated and experimental FRET data under the assumption of static and dynamic fluorophores and the intermediate regimes between fully dynamic and static fluorophores, and mixtures within FRET pairs, is explored. Finally, a method to correct the artefact resulting from fitting the emission from static FRET pairs with isotropic angular distributions to the (incorrect) typically assumed dynamic FRET decay model is presented.
Collapse
Affiliation(s)
- Yuriy Alexandrov
- Photonics Group, Department of Physics, Imperial College London, London, UK
- Light Microscopy, Francis Crick Institute, London, UK
| | - Dino S Nikolic
- Quantum Physics and Information Technology Group, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Christopher Dunsby
- Photonics Group, Department of Physics, Imperial College London, London, UK
- Light Microscopy, Francis Crick Institute, London, UK
- Centre for Pathology, Imperial College London, London, UK
| | - Paul M W French
- Photonics Group, Department of Physics, Imperial College London, London, UK
- Light Microscopy, Francis Crick Institute, London, UK
| |
Collapse
|
8
|
Li ZL, Prakash P, Buck M. A "Tug of War" Maintains a Dynamic Protein-Membrane Complex: Molecular Dynamics Simulations of C-Raf RBD-CRD Bound to K-Ras4B at an Anionic Membrane. ACS CENTRAL SCIENCE 2018; 4:298-305. [PMID: 29532030 PMCID: PMC5832993 DOI: 10.1021/acscentsci.7b00593] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Indexed: 06/11/2023]
Abstract
Association of Raf kinase with activated Ras triggers downstream signaling cascades toward regulating transcription in the cells' nucleus. Dysregulation of Ras-Raf signaling stimulates cancers. We investigate the C-Raf RBD and CRD regions when bound to oncogenic K-Ras4B at the membrane. All-atom molecular dynamics simulations suggest that the membrane plays an integral role in regulating the configurational ensemble of the complex. Remarkably, the complex samples a few states dynamically, reflecting a competition between C-Raf CRD- and K-Ras4B- membrane interactions. This competition arises because the interaction between the RBD and K-Ras is strong while the linker between the RBD and CRD is short. Such a mechanism maintains a modest binding for the overall complex at the membrane and is expected to facilitate fast signaling processes. Competition of protein-membrane contacts is likely a common mechanism for other multiprotein complexes, if not multidomain proteins at membranes.
Collapse
Affiliation(s)
- Zhen-Lu Li
- Department of Physiology and Biophysics, Department of Neurosciences, Department of Pharmacology, Case Comprehensive
Cancer Center and Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Priyanka Prakash
- Department
of Integrative Biology and Pharmacology, University of Texas Health Science at Houston, Houston, Texas 77225, United States
| | - Matthias Buck
- Department of Physiology and Biophysics, Department of Neurosciences, Department of Pharmacology, Case Comprehensive
Cancer Center and Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
9
|
Nagamune T. Biomolecular engineering for nanobio/bionanotechnology. NANO CONVERGENCE 2017; 4:9. [PMID: 28491487 PMCID: PMC5401866 DOI: 10.1186/s40580-017-0103-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/29/2017] [Indexed: 05/02/2023]
Abstract
Biomolecular engineering can be used to purposefully manipulate biomolecules, such as peptides, proteins, nucleic acids and lipids, within the framework of the relations among their structures, functions and properties, as well as their applicability to such areas as developing novel biomaterials, biosensing, bioimaging, and clinical diagnostics and therapeutics. Nanotechnology can also be used to design and tune the sizes, shapes, properties and functionality of nanomaterials. As such, there are considerable overlaps between nanotechnology and biomolecular engineering, in that both are concerned with the structure and behavior of materials on the nanometer scale or smaller. Therefore, in combination with nanotechnology, biomolecular engineering is expected to open up new fields of nanobio/bionanotechnology and to contribute to the development of novel nanobiomaterials, nanobiodevices and nanobiosystems. This review highlights recent studies using engineered biological molecules (e.g., oligonucleotides, peptides, proteins, enzymes, polysaccharides, lipids, biological cofactors and ligands) combined with functional nanomaterials in nanobio/bionanotechnology applications, including therapeutics, diagnostics, biosensing, bioanalysis and biocatalysts. Furthermore, this review focuses on five areas of recent advances in biomolecular engineering: (a) nucleic acid engineering, (b) gene engineering, (c) protein engineering, (d) chemical and enzymatic conjugation technologies, and (e) linker engineering. Precisely engineered nanobiomaterials, nanobiodevices and nanobiosystems are anticipated to emerge as next-generation platforms for bioelectronics, biosensors, biocatalysts, molecular imaging modalities, biological actuators, and biomedical applications.
Collapse
Affiliation(s)
- Teruyuki Nagamune
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Kravets E, Degrandi D, Ma Q, Peulen TO, Klümpers V, Felekyan S, Kühnemuth R, Weidtkamp-Peters S, Seidel CA, Pfeffer K. Guanylate binding proteins directly attack Toxoplasma gondii via supramolecular complexes. eLife 2016; 5. [PMID: 26814575 PMCID: PMC4786432 DOI: 10.7554/elife.11479] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/26/2016] [Indexed: 12/21/2022] Open
Abstract
GBPs are essential for immunity against intracellular pathogens, especially for Toxoplasma gondii control. Here, the molecular interactions of murine GBPs (mGBP1/2/3/5/6), homo- and hetero-multimerization properties of mGBP2 and its function in parasite killing were investigated by mutational, Multiparameter Fluorescence Image Spectroscopy, and live cell microscopy methodologies. Control of T. gondii replication by mGBP2 requires GTP hydrolysis and isoprenylation thus, enabling reversible oligomerization in vesicle-like structures. mGBP2 undergoes structural transitions between monomeric, dimeric and oligomeric states visualized by quantitative FRET analysis. mGBPs reside in at least two discrete subcellular reservoirs and attack the parasitophorous vacuole membrane (PVM) as orchestrated, supramolecular complexes forming large, densely packed multimers comprising up to several thousand monomers. This dramatic mGBP enrichment results in the loss of PVM integrity, followed by a direct assault of mGBP2 upon the plasma membrane of the parasite. These discoveries provide vital dynamic and molecular perceptions into cell-autonomous immunity.
Collapse
Affiliation(s)
- Elisabeth Kravets
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Degrandi
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Qijun Ma
- Institute for Molecular Physical Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Thomas-Otavio Peulen
- Institute for Molecular Physical Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Verena Klümpers
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Suren Felekyan
- Institute for Molecular Physical Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ralf Kühnemuth
- Institute for Molecular Physical Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | - Claus Am Seidel
- Institute for Molecular Physical Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
11
|
Abstract
Molecular modeling and simulation are useful tools in structural biology, allowing the formulation of functional hypotheses and interpretation of spectroscopy experiments. Here, we describe a method to construct in silico models of a fluorescent fusion protein construct, where a cyan fluorescent protein (CFP) is linked to the actuator domain of the Sarco/Endoplasmic Reticulum Ca(2+)-ATPase (SERCA). This CFP-SERCA construct is a biosensor that can report on structural dynamics in the cytosolic headpiece of SERCA. Molecular modeling and FRET experiments allow us to generate new structural and mechanistic models that better describe the conformational landscape and regulation of SERCA. The methods described here can be applied to the creation of models for any fusion protein constructs and also describe the steps needed to simulate FRET results using molecular models.
Collapse
Affiliation(s)
- Bengt Svensson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN, 55455, USA.
| | - Joseph M Autry
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN, 55455, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN, 55455, USA
| |
Collapse
|
12
|
Abstract
![]()
To
characterize the conformational dynamics of sarcoplasmic reticulum
(SR) calcium pump (SERCA) we performed molecular dynamics simulations
beginning with several different high-resolution structures. We quantified
differences in structural disorder and dynamics for an open conformation
of SERCA versus closed structures and observed that dynamic motions
of SERCA cytoplasmic domains decreased with decreasing domain–domain
separation distance. The results are useful for interpretation of
recent intramolecular Förster resonance energy transfer (FRET)
distance measurements obtained for SERCA fused to fluorescent protein
tags. Those previous physical measurements revealed several discrete
structural substates and suggested open conformations of SERCA are
more dynamic than compact conformations. The present simulations support
this hypothesis and provide additional details of SERCA molecular
mechanisms. Specifically, all-atoms simulations revealed large-scale
translational and rotational motions of the SERCA N-domain relative
to the A- and P-domains during the transition from an open to a closed
headpiece conformation over the course of a 400 ns trajectory. The
open-to-closed structural transition was accompanied by a disorder-to-order
transition mediated by an initial interaction of an N-domain loop
(Nβ5-β6, residues 426–436) with residues 133–139
of the A-domain. Mutation of three negatively charged N-domain loop
residues abolished the disorder-to-order transition and prevented
the initial domain–domain interaction and subsequent closure
of the cytoplasmic headpiece. Coarse-grained molecular dynamics simulations
were in harmony with all-atoms simulations and physical measurements
and revealed a close communication between fluorescent protein tags
and the domain to which they were fused. The data indicate that previous
intramolecular FRET distance measurements report SERCA structure changes
with high fidelity and suggest a structural mechanism that facilitates
the closure of the SERCA cytoplasmic headpiece.
Collapse
Affiliation(s)
- Nikolai Smolin
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago , Maywood, Illinois 60153, United States
| | | |
Collapse
|
13
|
Yu K, Liu C, Kim BG, Lee DY. Synthetic fusion protein design and applications. Biotechnol Adv 2014; 33:155-164. [PMID: 25450191 DOI: 10.1016/j.biotechadv.2014.11.005] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/10/2014] [Accepted: 11/11/2014] [Indexed: 11/16/2022]
Abstract
Synthetic fusion proteins can be designed to achieve improved properties or new functionality by synergistically incorporating multiple proteins into one complex. The fusion of two or more protein domains enhances bioactivities or generates novel functional combinations with a wide range of biotechnological and (bio)pharmaceutical applications. In this review, initially, we summarize the commonly used approaches for constructing fusion proteins. For each approach, the design strategy and desired properties are elaborated with examples of recent studies in the areas of biocatalysts, protein switches and bio-therapeutics. Subsequently, the progress in structural prediction of fusion proteins is presented, which can potentially facilitate the structure-based systematic design of fusion proteins toward identifying the best combinations of fusion partners. Finally, the current challenges and future directions in this field are discussed.
Collapse
Affiliation(s)
- Kai Yu
- Department of Chemical and Biomolecular Engineering, Synthetic Biology Research Consortium, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Chengcheng Liu
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Singapore 138668, Singapore
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151742, South Korea
| | - Dong-Yup Lee
- Department of Chemical and Biomolecular Engineering, Synthetic Biology Research Consortium, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore; Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Singapore 138668, Singapore.
| |
Collapse
|
14
|
Drinkwater N, Cossins B, Keeble AH, Wright M, Cain K, Hailu H, Oxbrow A, Delgado J, Shuttleworth LK, Kao MWP, McDonnell JM, Beavil AJ, Henry AJ, Sutton BJ. Human immunoglobulin E flexes between acutely bent and extended conformations. Nat Struct Mol Biol 2014; 21:397-404. [PMID: 24632569 PMCID: PMC3977038 DOI: 10.1038/nsmb.2795] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 02/13/2014] [Indexed: 11/17/2022]
Abstract
Crystallographic and solution studies have shown that IgE molecules are acutely bent in their Fc region. Crystal structures reveal the Cɛ2 domain pair folded back onto the Cɛ3-Cɛ4 domains, but is the molecule exclusively bent or can the Cɛ2 domains adopt extended conformations and even 'flip' from one side of the molecule to the other? We report the crystal structure of IgE-Fc captured in a fully extended, symmetrical conformation and show by molecular dynamics, calorimetry, stopped-flow kinetic, surface plasmon resonance (SPR) and Förster resonance energy transfer (FRET) analyses that the antibody can indeed adopt such extended conformations in solution. This diversity of conformational states available to IgE-Fc offers a new perspective on IgE function in allergen recognition, as part of the B-cell receptor and as a therapeutic target in allergic disease.
Collapse
Affiliation(s)
- Nyssa Drinkwater
- King’s College London, Randall Division of Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, London, SE1 1UL, UK
- Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, New Hunt’s House, Guy’s Campus, London, SE1 1UL, UK
| | | | - Anthony H Keeble
- King’s College London, Randall Division of Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, London, SE1 1UL, UK
- Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, New Hunt’s House, Guy’s Campus, London, SE1 1UL, UK
| | | | | | | | | | | | | | - Michael W-P Kao
- King’s College London, Randall Division of Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, London, SE1 1UL, UK
- Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, New Hunt’s House, Guy’s Campus, London, SE1 1UL, UK
| | - James M McDonnell
- King’s College London, Randall Division of Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, London, SE1 1UL, UK
- Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, New Hunt’s House, Guy’s Campus, London, SE1 1UL, UK
| | - Andrew J Beavil
- King’s College London, Randall Division of Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, London, SE1 1UL, UK
- Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, New Hunt’s House, Guy’s Campus, London, SE1 1UL, UK
| | | | - Brian J Sutton
- King’s College London, Randall Division of Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, London, SE1 1UL, UK
- Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, New Hunt’s House, Guy’s Campus, London, SE1 1UL, UK
| |
Collapse
|
15
|
Stender AS, Marchuk K, Liu C, Sander S, Meyer MW, Smith EA, Neupane B, Wang G, Li J, Cheng JX, Huang B, Fang N. Single cell optical imaging and spectroscopy. Chem Rev 2013; 113:2469-527. [PMID: 23410134 PMCID: PMC3624028 DOI: 10.1021/cr300336e] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Anthony S. Stender
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Kyle Marchuk
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Chang Liu
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Suzanne Sander
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Matthew W. Meyer
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Emily A. Smith
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Bhanu Neupane
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Gufeng Wang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Junjie Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Ji-Xin Cheng
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Bo Huang
- Department of Pharmaceutical Chemistry and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| | - Ning Fang
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| |
Collapse
|
16
|
Dedecker P, De Schryver FC, Hofkens J. Fluorescent Proteins: Shine on, You Crazy Diamond. J Am Chem Soc 2013; 135:2387-402. [DOI: 10.1021/ja309768d] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Peter Dedecker
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Frans C. De Schryver
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Johan Hofkens
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| |
Collapse
|
17
|
Goers L, Kylilis N, Tomazou M, Yan Wen K, Freemont P, Polizzi K. Engineering Microbial Biosensors. METHODS IN MICROBIOLOGY 2013. [DOI: 10.1016/b978-0-12-417029-2.00005-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Vogel SS, Nguyen TA, van der Meer BW, Blank PS. The impact of heterogeneity and dark acceptor states on FRET: implications for using fluorescent protein donors and acceptors. PLoS One 2012; 7:e49593. [PMID: 23152925 PMCID: PMC3496711 DOI: 10.1371/journal.pone.0049593] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 10/15/2012] [Indexed: 11/18/2022] Open
Abstract
Förster resonance energy transfer (FRET) microscopy is widely used to study protein interactions in living cells. Typically, spectral variants of the Green Fluorescent Protein (FPs) are incorporated into proteins expressed in cells, and FRET between donor and acceptor FPs is assayed. As appreciable FRET occurs only when donors and acceptors are within 10 nm of each other, the presence of FRET can be indicative of aggregation that may denote association of interacting species. By monitoring the excited-state (fluorescence) decay of the donor in the presence and absence of acceptors, dual-component decay analysis has been used to reveal the fraction of donors that are FRET positive (i.e., in aggregates)._However, control experiments using constructs containing both a donor and an acceptor FP on the same protein repeatedly indicate that a large fraction of these donors are FRET negative, thus rendering the interpretation of dual-component analysis for aggregates between separately donor-containing and acceptor-containing proteins problematic. Using Monte-Carlo simulations and analytical expressions, two possible sources for such anomalous behavior are explored: 1) conformational heterogeneity of the proteins, such that variations in the distance separating donor and acceptor FPs and/or their relative orientations persist on time-scales long in comparison with the excited-state lifetime, and 2) FP dark states.
Collapse
Affiliation(s)
- Steven S Vogel
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | | | |
Collapse
|
19
|
Mertens HDT, Piljić A, Schultz C, Svergun DI. Conformational analysis of a genetically encoded FRET biosensor by SAXS. Biophys J 2012; 102:2866-75. [PMID: 22735537 DOI: 10.1016/j.bpj.2012.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 04/09/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022] Open
Abstract
Genetically encoded FRET (Foerster resonance energy transfer) sensors are exciting tools in modern cell biology. Changes in the conformation of a sensor lead to an altered emission ratio and provide the means to determine both temporal and spatial changes in target molecules, as well as the activity of enzymes. FRET sensors are widely used to follow phosphorylation events and to monitor the effects of elevated calcium levels. Here, we report for the first time, to our knowledge, on the analysis of the conformational changes involved in sensor function at low resolution using a combination of in vitro and in cellulo FRET measurements and small-angle scattering of x rays (SAXS). The large and dynamic structural rearrangements involved in the modification of the calcium- and phosphorylation-sensitive probe CYNEX4 are comprehensively characterized. It is demonstrated that the synergistic use of SAXS and FRET methods allows one to resolve the ambiguities arising due to the rotation of the sensor molecules and the flexibility of the probe.
Collapse
Affiliation(s)
- Haydyn D T Mertens
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o DESY, Hamburg, Germany
| | | | | | | |
Collapse
|
20
|
Hunt J, Keeble AH, Dale RE, Corbett MK, Beavil RL, Levitt J, Swann MJ, Suhling K, Ameer-Beg S, Sutton BJ, Beavil AJ. A fluorescent biosensor reveals conformational changes in human immunoglobulin E Fc: implications for mechanisms of receptor binding, inhibition, and allergen recognition. J Biol Chem 2012; 287:17459-17470. [PMID: 22442150 PMCID: PMC3366799 DOI: 10.1074/jbc.m111.331967] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/08/2012] [Indexed: 11/06/2022] Open
Abstract
IgE binding to its high affinity receptor FcεRI on mast cells and basophils is a key step in the mechanism of allergic disease and a target for therapeutic intervention. Early indications that IgE adopts a bent structure in solution have been confirmed by recent x-ray crystallographic studies of IgEFc, which further showed that the bend, contrary to expectation, is enhanced in the crystal structure of the complex with receptor. To investigate the structure of IgEFc and its conformational changes that accompany receptor binding in solution, we created a Förster resonance energy transfer (FRET) biosensor using biologically encoded fluorescent proteins fused to the N- and C-terminal IgEFc domains (Cε2 and Cε4, respectively) together with the theoretical basis for quantitating its behavior. This revealed not only that the IgEFc exists in a bent conformation in solution but also that the bend is indeed enhanced upon FcεRI binding. No change in the degree of bending was seen upon binding to the B cell receptor for IgE, CD23 (FcεRII), but in contrast, binding of the anti-IgE therapeutic antibody omalizumab decreases the extent of the bend, implying a conformational change that opposes FcεRI engagement. HomoFRET measurements further revealed that the (Cε2)(2) and (Cε4)(2) domain pairs behave as rigid units flanking the conformational change in the Cε3 domains. Finally, modeling of the accessible conformations of the two Fab arms in FcεRI-bound IgE revealed a mutual exclusion not seen in IgG and Fab orientations relative to the membrane that may predispose receptor-bound IgE to cross-linking by allergens.
Collapse
Affiliation(s)
- James Hunt
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Guy's Hospital Campus, London SE1 1UL; The Randall Division of Cell and Molecular Biophysics, Guy's Hospital Campus, London SE1 1UL; The Division of Asthma Allergy and Lung Biology, King's College London, Guy's Hospital Campus, London SE1 1UL
| | - Anthony H Keeble
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Guy's Hospital Campus, London SE1 1UL; The Randall Division of Cell and Molecular Biophysics, Guy's Hospital Campus, London SE1 1UL; The Division of Asthma Allergy and Lung Biology, King's College London, Guy's Hospital Campus, London SE1 1UL
| | - Robert E Dale
- The Randall Division of Cell and Molecular Biophysics, Guy's Hospital Campus, London SE1 1UL
| | - Melissa K Corbett
- The Randall Division of Cell and Molecular Biophysics, Guy's Hospital Campus, London SE1 1UL
| | - Rebecca L Beavil
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Guy's Hospital Campus, London SE1 1UL; The Randall Division of Cell and Molecular Biophysics, Guy's Hospital Campus, London SE1 1UL; The Division of Asthma Allergy and Lung Biology, King's College London, Guy's Hospital Campus, London SE1 1UL
| | - James Levitt
- The Department of Physics, King's College London, Strand, London WC2R 2LS
| | - Marcus J Swann
- Farfield Group Limited, Voyager, Chicago Avenue, Manchester Airport, Manchester, M90 3DQ, United Kingdom
| | - Klaus Suhling
- The Department of Physics, King's College London, Strand, London WC2R 2LS
| | - Simon Ameer-Beg
- The Randall Division of Cell and Molecular Biophysics, Guy's Hospital Campus, London SE1 1UL
| | - Brian J Sutton
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Guy's Hospital Campus, London SE1 1UL; The Randall Division of Cell and Molecular Biophysics, Guy's Hospital Campus, London SE1 1UL
| | - Andrew J Beavil
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Guy's Hospital Campus, London SE1 1UL; The Randall Division of Cell and Molecular Biophysics, Guy's Hospital Campus, London SE1 1UL; The Division of Asthma Allergy and Lung Biology, King's College London, Guy's Hospital Campus, London SE1 1UL.
| |
Collapse
|
21
|
Pham E, Truong K. Engineered regulation of lysozyme by the SH3-CB1 binding interaction. Protein Eng Des Sel 2012; 25:307-11. [PMID: 22532698 DOI: 10.1093/protein/gzs020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ability to design proteins with desired properties by using protein structural information will allow us to create high-value therapeutic and diagnostic products. Using the protein structures of lambda lysozyme and the SH3 domain of human Crk, we designed a synthetic protein switch that controls the activity of lysozyme by sterically hindering its active cleft through the binding of SH3 to its CB1 peptide-binding partner. First, several fusion protein designs with lysozyme and CB1 were modeled to determine the one with greatest steric effect in the presence of SH3. Next, the selected fusion protein was created and tested in vitro. In the absence of SH3, the lysozyme-CB1 fusion protein functioned normally. In the presence of SH3, the lysozyme activity was inhibited and with the addition of excess CB1 peptides to compete for SH3 binding, the lysozyme activity was restored. Lastly, this structure-based strategy can be used to engineer synthetic regulation by peptide-domain-binding interfaces into a variety of proteins.
Collapse
Affiliation(s)
- Elizabeth Pham
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada M5S 3G9
| | | |
Collapse
|
22
|
Qadri YJ, Cormet-Boyaka E, Rooj AK, Lee W, Parpura V, Fuller CM, Berdiev BK. Low temperature and chemical rescue affect molecular proximity of DeltaF508-cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC). J Biol Chem 2012; 287:16781-90. [PMID: 22442149 DOI: 10.1074/jbc.m111.332031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
An imbalance of chloride and sodium ion transport in several epithelia is a feature of cystic fibrosis (CF), an inherited disease that is a consequence of mutations in the cftr gene. The cftr gene codes for a Cl(-) channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Some mutations in this gene cause the balance between Cl(-) secretion and Na(+) absorption to be disturbed in the airways; Cl(-) secretion is impaired, whereas Na(+) absorption is elevated. Enhanced Na(+) absorption through the epithelial sodium channel (ENaC) is attributed to the failure of mutated CFTR to restrict ENaC-mediated Na(+) transport. The mechanism of this regulation is controversial. Recently, we have found evidence for a close association of wild type (WT) CFTR and WT ENaC, further underscoring the role of ENaC along with CFTR in the pathophysiology of CF airway disease. In this study, we have examined the association of ENaC subunits with mutated ΔF508-CFTR, the most common mutation in CF. Deletion of phenylalanine at position 508 (ΔF508) prevents proper processing and targeting of CFTR to the plasma membrane. When ΔF508-CFTR and ENaC subunits were co-expressed in HEK293T cells, we found that individual ENaC subunits could be co-immunoprecipitated with ΔF508-CFTR, much like WT CFTR. However, when we evaluated the ΔF508-CFTR and ENaC association using fluorescence resonance energy transfer (FRET), FRET efficiencies were not significantly different from negative controls, suggesting that ΔF508-CFTR and ENaC are not in close proximity to each other under basal conditions. However, with partial correction of ΔF508-CFTR misprocessing by low temperature and chemical rescue, leading to surface expression as assessed by total internal reflection fluorescence (TIRF) microscopy, we observed a positive FRET signal. Our findings suggest that the ΔF508 mutation alters the close association of CFTR and ENaC.
Collapse
Affiliation(s)
- Yawar J Qadri
- Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina 27511, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Okumoto S, Jones A, Frommer WB. Quantitative imaging with fluorescent biosensors. ANNUAL REVIEW OF PLANT BIOLOGY 2012; 63:663-706. [PMID: 22404462 DOI: 10.1146/annurev-arplant-042110-103745] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Molecular activities are highly dynamic and can occur locally in subcellular domains or compartments. Neighboring cells in the same tissue can exist in different states. Therefore, quantitative information on the cellular and subcellular dynamics of ions, signaling molecules, and metabolites is critical for functional understanding of organisms. Mass spectrometry is generally used for monitoring ions and metabolites; however, its temporal and spatial resolution are limited. Fluorescent proteins have revolutionized many areas of biology-e.g., fluorescent proteins can report on gene expression or protein localization in real time-yet promoter-based reporters are often slow to report physiologically relevant changes such as calcium oscillations. Therefore, novel tools are required that can be deployed in specific cells and targeted to subcellular compartments in order to quantify target molecule dynamics directly. We require tools that can measure enzyme activities, protein dynamics, and biophysical processes (e.g., membrane potential or molecular tension) with subcellular resolution. Today, we have an extensive suite of tools at our disposal to address these challenges, including translocation sensors, fluorescence-intensity sensors, and Förster resonance energy transfer sensors. This review summarizes sensor design principles, provides a database of sensors for more than 70 different analytes/processes, and gives examples of applications in quantitative live cell imaging.
Collapse
Affiliation(s)
- Sakiko Okumoto
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
24
|
A bacteria colony-based screen for optimal linker combinations in genetically encoded biosensors. BMC Biotechnol 2011; 11:105. [PMID: 22074568 PMCID: PMC3225322 DOI: 10.1186/1472-6750-11-105] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 11/10/2011] [Indexed: 11/13/2022] Open
Abstract
Background Fluorescent protein (FP)-based biosensors based on the principle of intramolecular Förster resonance energy transfer (FRET) enable the visualization of a variety of biochemical events in living cells. The construction of these biosensors requires the genetic insertion of a judiciously chosen molecular recognition element between two distinct hues of FP. When the molecular recognition element interacts with the analyte of interest and undergoes a conformational change, the ratiometric emission of the construct is altered due to a change in the FRET efficiency. The sensitivity of such biosensors is proportional to the change in ratiometric emission, and so there is a pressing need for methods to maximize the ratiometric change of existing biosensor constructs in order to increase the breadth of their utility. Results To accelerate the development and optimization of improved FRET-based biosensors, we have developed a method for function-based high-throughput screening of biosensor variants in colonies of Escherichia coli. We have demonstrated this technology by undertaking the optimization of a biosensor for detection of methylation of lysine 27 of histone H3 (H3K27). This effort involved the construction and screening of 3 distinct libraries: a domain library that included several engineered binding domains isolated by phage-display; a lower-resolution linker library; and a higher-resolution linker library. Conclusion Application of this library screening methodology led to the identification of an optimized H3K27-trimethylation biosensor that exhibited an emission ratio change (66%) that was 2.3 × improved relative to that of the initially constructed biosensor (29%).
Collapse
|
25
|
Kozer N, Henderson C, Jackson JT, Nice EC, Burgess AW, Clayton AHA. Evidence for extended YFP-EGFR dimers in the absence of ligand on the surface of living cells. Phys Biol 2011; 8:066002. [PMID: 21946082 DOI: 10.1088/1478-3975/8/6/066002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a member of the erbB tyrosine kinase family of receptors. Structural studies have revealed two distinct conformations of the ectodomain of the EGFR: a compact, tethered, conformation and an untethered extended conformation. In the context of a monomer-dimer transition model, ligand binding is thought to untether the monomeric receptor leading to exposure of a dimerization arm which then facilitates receptor dimerization, kinase activation and signaling. For receptors directed orthogonal to the local plane of the membrane surface, this would lead to a large change in the distance of the receptor N-terminus from the membrane surface. To investigate this experimentally, we produced stable BaF/3 cell lines expressing a biochemically functional yellow fluorescent protein (YFP)-EGFR chimera and determined the vertical separation of the N-terminal YFP tag from the membrane using fluorescence resonance energy transfer (FRET) techniques. Homo-FRET/rFLIM was employed to determine the presence of unliganded dimers and to measure the average distance between the N-terminal tags in those dimers. The results suggest that EGF-induced activation occurs within or between pre-formed and extended dimers with very little change in the extension of the N-terminii from the membrane surface. These results provide constraints on possible models for EGFR activation.
Collapse
Affiliation(s)
- Noga Kozer
- Centre for Microphotonics, Swinburne University of Technology, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Chen X, Pham E, Truong K. TEV protease-facilitated stoichiometric delivery of multiple genes using a single expression vector. Protein Sci 2011; 19:2379-88. [PMID: 20945357 DOI: 10.1002/pro.518] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Delivery and expression of multiple genes is an important requirement in a range of applications such as the engineering of synthetic signaling pathways and the induction of pluripotent stem cells. However, conventional approaches are often inefficient, nonstoichiometric and may limit the maximum number of genes that can be simultaneously expressed. We here describe a versatile approach for multiple gene delivery using a single expression vector by mimicking the protein expression strategy of RNA viruses. This was accomplished by first expressing the genes together with TEV protease as a single fusion protein, then proteolytically self-cleaving the fusion protein into functional components. To demonstrate this method in E. coli cells, we analyzed the translation products using SDS-PAGE and showed that the fusion protein was efficiently cleaved into its components, which can then be purified individually or as a binding complex. To demonstrate this method in mammalian cells, we designed a differential localization scheme and used live cell imaging to observe the distinctive subcellular targeting of the processed products. We also showed that the stoichiometry of the processed products was consistent and corresponded with the frequency of appearance of their genes on the expression vector. In summary, the efficient expression and separation of up to three genes was achieved in both E. coli and mammalian cells using a single TEV protease self-processing vector.
Collapse
Affiliation(s)
- Xi Chen
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | | | | |
Collapse
|
27
|
Mills E, Pham E, Truong K. Structure based design of a Ca2+-sensitive RhoA protein that controls cell morphology. Cell Calcium 2011; 48:195-201. [PMID: 20888042 DOI: 10.1016/j.ceca.2010.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 08/31/2010] [Indexed: 01/26/2023]
Abstract
The Rho proteins are important regulators of cell morphology, and the prototypical protein RhoA is known to regulate contraction, blebbing and bleb retraction. We have identified and experimentally confirmed that RhoA has a binding site for calmodulin, a ubiquitous transducer of the Ca(2+) second messenger. Using structural modeling, a fusion protein was designed wherein RhoA activity was controlled by Ca(2+) via calmodulin. Living cells transfected with this synthetic protein underwent Ca(2+) sensitive and calmodulin-dependent bleb retraction within minutes. Further, the modularity of Ca(2+) signaling was exploited to induce bleb retraction in response to blue light (using channelrhodopsin-2) or exogenous chemicals (with acetylcholine receptor), showing input signal versatility. The widespread use of Ca(2+) signaling in nature suggests that fully exploring its signaling potential may allow powerful applications to other synthetic biological systems.
Collapse
Affiliation(s)
- Evan Mills
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada.
| | | | | |
Collapse
|
28
|
Kozer N, Henderson C, Bailey MF, Rothacker J, Nice EC, Burgess AW, Clayton AHA. Creation and Biophysical Characterization of a High-Affinity, Monomeric EGF Receptor Ectodomain Using Fluorescent Proteins. Biochemistry 2010; 49:7459-66. [DOI: 10.1021/bi1008134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Noga Kozer
- Ludwig Institute for Cancer Research, P.O. Box 2008, Royal Melbourne Hospital, Victoria 3050, Australia
- Centre for Microphotonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Christine Henderson
- Ludwig Institute for Cancer Research, P.O. Box 2008, Royal Melbourne Hospital, Victoria 3050, Australia
- Centre for Microphotonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Michael F. Bailey
- Department of Biochemistry and Molecular Biology, BIO21 Institute, The University of Melbourne, Melbourne, Victoria 3050, Australia
| | - Julie Rothacker
- Ludwig Institute for Cancer Research, P.O. Box 2008, Royal Melbourne Hospital, Victoria 3050, Australia
| | - Edouard C. Nice
- Ludwig Institute for Cancer Research, P.O. Box 2008, Royal Melbourne Hospital, Victoria 3050, Australia
| | - Anthony W. Burgess
- Ludwig Institute for Cancer Research, P.O. Box 2008, Royal Melbourne Hospital, Victoria 3050, Australia
| | - Andrew H. A. Clayton
- Ludwig Institute for Cancer Research, P.O. Box 2008, Royal Melbourne Hospital, Victoria 3050, Australia
- Centre for Microphotonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
29
|
Campbell RE. Fluorescent-protein-based biosensors: modulation of energy transfer as a design principle. Anal Chem 2010; 81:5972-9. [PMID: 19552419 DOI: 10.1021/ac802613w] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genetically-encoded biosensors based on FRET between fluorescent proteins of different hues enable quantitative measurement of intracellular enzyme activities and small molecule concentrations. (To listen to a podcast about this feature, please go to the Analytical Chemistry website at pubs.acs.org/journal/ancham.).
Collapse
Affiliation(s)
- Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| |
Collapse
|
30
|
Affiliation(s)
- Mikhail Y. Berezin
- Department of Radiology, Washington University School of Medicine, 4525 Scott Ave, St. Louis, USA, Tel. 314-747-0701, 314-362-8599, fax 314-747-5191
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, 4525 Scott Ave, St. Louis, USA, Tel. 314-747-0701, 314-362-8599, fax 314-747-5191
| |
Collapse
|
31
|
Grünberg R, Ferrar TS, van der Sloot AM, Constante M, Serrano L. Building blocks for protein interaction devices. Nucleic Acids Res 2010; 38:2645-62. [PMID: 20215443 PMCID: PMC2860130 DOI: 10.1093/nar/gkq152] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Here, we propose a framework for the design of synthetic protein networks from modular protein–protein or protein–peptide interactions and provide a starter toolkit of protein building blocks. Our proof of concept experiments outline a general work flow for part–based protein systems engineering. We streamlined the iterative BioBrick cloning protocol and assembled 25 synthetic multidomain proteins each from seven standardized DNA fragments. A systematic screen revealed two main factors controlling protein expression in Escherichia coli: obstruction of translation initiation by mRNA secondary structure or toxicity of individual domains. Eventually, 13 proteins were purified for further characterization. Starting from well-established biotechnological tools, two general–purpose interaction input and two readout devices were built and characterized in vitro. Constitutive interaction input was achieved with a pair of synthetic leucine zippers. The second interaction was drug-controlled utilizing the rapamycin-induced binding of FRB(T2098L) to FKBP12. The interaction kinetics of both devices were analyzed by surface plasmon resonance. Readout was based on Förster resonance energy transfer between fluorescent proteins and was quantified for various combinations of input and output devices. Our results demonstrate the feasibility of parts-based protein synthetic biology. Additionally, we identify future challenges and limitations of modular design along with approaches to address them.
Collapse
Affiliation(s)
- Raik Grünberg
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), UPF, Barcelona and Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
32
|
Okumoto S. Imaging approach for monitoring cellular metabolites and ions using genetically encoded biosensors. Curr Opin Biotechnol 2010; 21:45-54. [PMID: 20167470 PMCID: PMC2843770 DOI: 10.1016/j.copbio.2010.01.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Accepted: 01/20/2010] [Indexed: 11/16/2022]
Abstract
The spatiotemporal patterns of ion and metabolite levels in living cells are important in understanding signal transduction and metabolite flux. Imaging approaches using genetically encoded sensors are ideal for detecting such molecule dynamics, which are hard to capture otherwise. Recent years have seen iterative improvements and evaluations of sensors, which in turn are starting to make applications in more challenging experimental settings possible. In this review, we will introduce recent progress made in the variety and properties of biosensors, and how biosensors are used for the measurement of metabolite and ion in live cells. The emerging field of applications, such as parallel imaging of two separate molecules, high-resolution transport studies and high-throughput screening using biosensors, will be discussed.
Collapse
Affiliation(s)
- Sakiko Okumoto
- Department of Plant Pathology, Physiology and Weed Science, Latham Hall, Virginia Tech, Blacksburg, VA 24061, United States. <>
| |
Collapse
|
33
|
Lavecchia T, Tibuzzi A, Giardi MT. Biosensors for Functional Food Safety and Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 698:267-81. [DOI: 10.1007/978-1-4419-7347-4_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
34
|
Abstract
Many fluorescent probes depend on the fluorescence resonance energy transfer (FRET) between fluorescent protein pairs. The efficiency of energy transfer becomes altered by conformational changes of a fused sensory protein in response to a cellular event. A structure-based approach can be taken to design probes better with improved dynamic ranges by computationally modeling conformational changes and predicting FRET efficiency changes of candidate biosensor constructs. FRET biosensors consist of at least three domains fused together: the donor protein, the sensory domain, and the acceptor protein. To more efficiently subclone fusion proteins containing multiple domains, a cassette-based system can be used. Generating a cassette library of commonly used domains facilitates the rapid subcloning of future fusion biosensor proteins. FRET biosensors can then be used with fluorescence microscopy for real-time monitoring of cellular events within live cells by tracking changes in FRET efficiency. Stimulants can be used to trigger a range of cellular events including Ca(2+) signaling, apoptosis, and subcellular translocations.
Collapse
Affiliation(s)
- Elizabeth Pham
- Institute of Biomaterials and Biomedical Engineering and Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
35
|
Mutoh H, Perron A, Dimitrov D, Iwamoto Y, Akemann W, Chudakov DM, Knöpfel T. Spectrally-resolved response properties of the three most advanced FRET based fluorescent protein voltage probes. PLoS One 2009; 4:e4555. [PMID: 19234605 PMCID: PMC2641041 DOI: 10.1371/journal.pone.0004555] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 01/09/2009] [Indexed: 11/18/2022] Open
Abstract
Genetically-encoded optical probes for membrane potential hold the promise of monitoring electrical signaling of electrically active cells such as specific neuronal populations in intact brain tissue. The most advanced class of these probes was generated by molecular fusion of the voltage sensing domain (VSD) of Ci-VSP with a fluorescent protein (FP) pair. We quantitatively compared the three most advanced versions of these probes (two previously reported and one new variant), each involving a spectrally distinct tandem of FPs. Despite these different FP tandems and dissimilarities within the amino acid sequence linking the VSD to the FPs, the amplitude and kinetics of voltage dependent fluorescence changes were surprisingly similar. However, each of these fluorescent probes has specific merits when considering different potential applications.
Collapse
Affiliation(s)
- Hiroki Mutoh
- RIKEN Brain Science Institute, Laboratory for Neuronal Circuit Dynamics, Wako-Shi, Japan
| | - Amelie Perron
- RIKEN Brain Science Institute, Laboratory for Neuronal Circuit Dynamics, Wako-Shi, Japan
| | - Dimitar Dimitrov
- RIKEN Brain Science Institute, Laboratory for Neuronal Circuit Dynamics, Wako-Shi, Japan
| | - Yuka Iwamoto
- RIKEN Brain Science Institute, Laboratory for Neuronal Circuit Dynamics, Wako-Shi, Japan
| | - Walther Akemann
- RIKEN Brain Science Institute, Laboratory for Neuronal Circuit Dynamics, Wako-Shi, Japan
| | - Dmitriy M. Chudakov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS Miklukho-Maklaya, Moscow, Russia
| | - Thomas Knöpfel
- RIKEN Brain Science Institute, Laboratory for Neuronal Circuit Dynamics, Wako-Shi, Japan
| |
Collapse
|
36
|
Li ITS, Pham E, Chiang JJH, Truong K. FRET evidence that an isoform of caspase-7 binds but does not cleave its substrate. Biochem Biophys Res Commun 2008; 373:325-9. [PMID: 18571498 DOI: 10.1016/j.bbrc.2008.06.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 06/10/2008] [Indexed: 11/19/2022]
Abstract
A caspase-7 biosensor (vDEVDc) based on FRET (fluorescence resonance energy transfer) was used to study the proteolytic properties of caspase-7, an executioner protease in cellular apoptosis. An active isoform of caspase-7 with the 56 N-terminal residues truncated (57casp7) cleaved vDEVDc at the recognition sequence, resulting in a FRET efficiency decrease of 61%. In contrast, an isoform with the 23 N-terminal residues truncated (24casp7) bound to vDEVDc but did not cleave the substrate, resulting in a FRET increase of 15%. Kinetic results showed an exponential substrate cleavage and binding curve for the 57casp7 and 24casp7 isoforms, respectively. FRET changes of the vDEVDc biosensor were also monitored in cos-7 cells upon STS-induced apoptosis. Finally, we modeled caspase-7 binding to vDEVDc and estimated a FRET emission ratio increase of 31.7%, which agrees with the 15% experimental result. We showed that two differently truncated isoforms of caspase-7 exhibit different enzymatic properties, namely binding by 24casp7 and hydrolysis by 57casp7.
Collapse
Affiliation(s)
- Isaac T S Li
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Rosebrugh Building, 164 College Street, Room 407, Toronto, Ont., Canada.
| | | | | | | |
Collapse
|
37
|
Winters DL, Autry JM, Svensson B, Thomas DD. Interdomain fluorescence resonance energy transfer in SERCA probed by cyan-fluorescent protein fused to the actuator domain. Biochemistry 2008; 47:4246-56. [PMID: 18338856 DOI: 10.1021/bi702089j] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have used a biosynthetically incorporated fluorescent probe to monitor domain movements involved in ion transport by the sarcoendoplasmic reticulum Ca-ATPase (SERCA) from rabbit fast-twitch skeletal muscle. X-ray crystal structures suggest that the nucleotide-binding (N) and actuator (A) domains of SERCA move apart by several nanometers upon Ca binding. To test this hypothesis, cDNA constructs were created to fuse cyan-fluorescent protein (CFP) to the N terminus of SERCA (A domain). This CFP-SERCA fluorescent fusion protein retained activity when expressed in Sf21 insect cells using the baculovirus system. Fluorescence resonance energy transfer (FRET) was used to monitor the A-N interdomain distance for CFP-SERCA selectively labeled with fluorescein isothiocyanate (FITC) at Lys 515 in the N domain. At low [Ca (2+)] (E2 biochemical state), the measured FRET efficiency between CFP (donor in A domain) and FITC (acceptor in N domain) was 0.34 +/- 0.03, indicating a mean distance of 61.6 +/- 2.0 A between probes on the two domains. An increase of [Ca (2+)] to 0.1 mM (E1-Ca biochemical state) decreased the FRET efficiency by 0.06 +/- 0.03, indicating an increase in the mean distance by 3.0 +/- 1.2 A. Quantitative molecular modeling of dual-labeled SERCA, including an accurate calculation of the orientation factor, shows that the FRET data observed in the absence of Ca is consistent with the E2 crystal structure, but the increase in distance (decrease in FRET) induced by Ca is much less than predicted by the E1 crystal structure. We conclude that the E1 crystal structure does not reflect the predominant structure of SERCA under physiological conditions in a functional membrane bilayer.
Collapse
Affiliation(s)
- Deborah L Winters
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
38
|
Okumoto S, Takanaga H, Frommer WB. Quantitative imaging for discovery and assembly of the metabo-regulome. THE NEW PHYTOLOGIST 2008; 180:271-295. [PMID: 19138219 PMCID: PMC2663047 DOI: 10.1111/j.1469-8137.2008.02611.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Little is known about regulatory networks that control metabolic flux in plant cells. Detailed understanding of regulation is crucial for synthetic biology. The difficulty of measuring metabolites with cellular and subcellular precision is a major roadblock. New tools have been developed for monitoring extracellular, cytosolic, organellar and vacuolar ion and metabolite concentrations with a time resolution of milliseconds to hours. Genetically encoded sensors allow quantitative measurement of steady-state concentrations of ions, signaling molecules and metabolites and their respective changes over time. Fluorescence resonance energy transfer (FRET) sensors exploit conformational changes in polypeptides as a proxy for analyte concentrations. Subtle effects of analyte binding on the conformation of the recognition element are translated into a FRET change between two fused green fluorescent protein (GFP) variants, enabling simple monitoring of analyte concentrations using fluorimetry or fluorescence microscopy. Fluorimetry provides information averaged over cell populations, while microscopy detects differences between cells or populations of cells. The genetically encoded sensors can be targeted to subcellular compartments or the cell surface. Confocal microscopy ultimately permits observation of gradients or local differences within a compartment. The FRET assays can be adapted to high-throughput analysis to screen mutant populations in order to systematically identify signaling networks that control individual steps in metabolic flux.
Collapse
Affiliation(s)
- Sakiko Okumoto
- Plant Pathology, Physiology, and Weed Science Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Hitomi Takanaga
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
| | - Wolf B. Frommer
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
- Joint Bioenergy Institute, Feedstocks Division, Emerystation East, 5885 Hollis Street Emeryville, CA 94608, USA
| |
Collapse
|
39
|
Dorman N. Citations. Biotechniques 2007. [DOI: 10.2144/000112521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|