1
|
Kawahara K, Oki H, Iimori M, Muramoto R, Imai T, Gerle C, Shigematsu H, Matsuda S, Iida T, Nakamura S. High-resolution cryo-EM analysis visualizes hydrated type I and IV pilus structures from enterotoxigenic Escherichia coli. Structure 2025:S0969-2126(25)00107-8. [PMID: 40220752 DOI: 10.1016/j.str.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/18/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025]
Abstract
Pathogenic bacteria utilize a variety of pilus filaments to colonize intestinal epithelia, including those synthesized by the chaperone-usher or type IV pilus assembly pathway. Despite the importance of these filaments as potential drug and vaccine targets, their large size and dynamic nature make high-resolution structure determination challenging. Here, we used cryo-electron microscopy (cryo-EM) and whole-genome sequencing to determine the structures of type I and IV pili expressed in enterotoxigenic Escherichia coli. Well-defined cryo-EM maps at resolutions of 2.2 and 1.8 Å for type I and IV pilus, respectively, facilitated the de novo structural modeling for these filaments, revealing side-chain structures in detail. We resolved thousands of hydrated water molecules around and within the inner core of the filaments, which stabilize the otherwise metastable quaternary subunit assembly. The high-resolution structures offer novel insights into subunit-subunit interactions, and provide important clues to understand pilus assembly, stability, and flexibility.
Collapse
Affiliation(s)
- Kazuki Kawahara
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Hiroya Oki
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Minato Iimori
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryuki Muramoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoya Imai
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Christoph Gerle
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Hideki Shigematsu
- Structural Biology Division, Japan Synchrotron Radiation Research Institute, SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Shigeaki Matsuda
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan; Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tetsuya Iida
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan; Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shota Nakamura
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan; Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Smith OER, Bharat TAM. Architectural dissection of adhesive bacterial cell surface appendages from a "molecular machines" viewpoint. J Bacteriol 2024; 206:e0029024. [PMID: 39499080 PMCID: PMC7616799 DOI: 10.1128/jb.00290-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
The ability of bacteria to interact with and respond to their environment is crucial to their lifestyle and survival. Bacterial cells routinely need to engage with extracellular target molecules, in locations spatially separated from their cell surface. Engagement with distant targets allows bacteria to adhere to abiotic surfaces and host cells, sense harmful or friendly molecules in their vicinity, as well as establish symbiotic interactions with neighboring cells in multicellular communities such as biofilms. Binding to extracellular molecules also facilitates transmission of information back to the originating cell, allowing the cell to respond appropriately to external stimuli, which is critical throughout the bacterial life cycle. This requirement of bacteria to bind to spatially separated targets is fulfilled by a myriad of specialized cell surface molecules, which often have an extended, filamentous arrangement. In this review, we compare and contrast such molecules from diverse bacteria, which fulfil a range of binding functions critical for the cell. Our comparison shows that even though these extended molecules have vastly different sequence, biochemical and functional characteristics, they share common architectural principles that underpin bacterial adhesion in a variety of contexts. In this light, we can consider different bacterial adhesins under one umbrella, specifically from the point of view of a modular molecular machine, with each part fulfilling a distinct architectural role. Such a treatise provides an opportunity to discover fundamental molecular principles governing surface sensing, bacterial adhesion, and biofilm formation.
Collapse
Affiliation(s)
- Olivia E. R. Smith
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Tanmay A. M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
3
|
Lee D, Joo J, Choi H, Son S, Bae J, Kim DW, Kim EJ. Variations in the Antivirulence Effects of Fatty Acids and Virstatin against Vibrio cholerae Strains. J Microbiol Biotechnol 2024; 34:1757-1768. [PMID: 39187456 PMCID: PMC11485679 DOI: 10.4014/jmb.2405.05002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 08/28/2024]
Abstract
The expression of two major virulence factors of Vibrio cholerae, cholera toxin (CT) and toxin co-regulated pilus (TCP), is induced by environmental stimuli through a cascade of interactions among regulatory proteins known as the ToxR regulon when the bacteria reach the human small intestine. ToxT is produced via the ToxR regulon and acts as the direct transcriptional activator of CT (ctxAB), TCP (tcp gene cluster), and other virulence genes. Unsaturated fatty acids (UFAs) and several small-molecule inhibitors of ToxT have been developed as antivirulence agents against V. cholerae. This study reports the inhibitory effects of fatty acids and virstatin (a small-molecule inhibitor of ToxT) on the transcriptional activation functions of ToxT in isogenic derivatives of V. cholerae strains containing various toxT alleles. The fatty acids and virstatin had discrete effects depending on the ToxT allele (different by 2 amino acids), V. cholerae strain, and culture conditions, indicating that V. cholerae strains could overcome the effects of UFAs and small-molecule inhibitors by acquiring point mutations in toxT. Our results suggest that small-molecule inhibitors should be examined thoroughly against various V. cholerae strains and toxT alleles during development.
Collapse
Affiliation(s)
- Donghyun Lee
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jayun Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hunseok Choi
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Seonghyeon Son
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jonghyun Bae
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Dong Wook Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Eun Jin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
4
|
Al-Adham ISI, Jaber N, Ali Agha ASA, Al-Remawi M, Al-Akayleh F, Al-Muhtaseb N, Collier PJ. Sporadic regional re-emergent cholera: a 19th century problem in the 21st century. J Appl Microbiol 2024; 135:lxae055. [PMID: 38449342 DOI: 10.1093/jambio/lxae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
Cholera, caused by Vibrio cholerae, is a severe diarrheal disease that necessitates prompt diagnosis and effective treatment. This review comprehensively examines various diagnostic methods, from traditional microscopy and culture to advanced nucleic acid testing like polymerase spiral reaction and rapid diagnostic tests, highlighting their advantages and limitations. Additionally, we explore evolving treatment strategies, with a focus on the challenges posed by antibiotic resistance due to the activation of the SOS response pathway in V. cholerae. We discuss promising alternative treatments, including low-pressure plasma sterilization, bacteriophages, and selenium nanoparticles. The paper emphasizes the importance of multidisciplinary approaches combining novel diagnostics and treatments in managing and preventing cholera, a persistent global health challenge. The current re-emergent 7th pandemic of cholera commenced in 1961 and shows no signs of abeyance. This is probably due to the changing genetic profile of V. cholerae concerning bacterial pathogenic toxins. Given this factor, we argue that the disease is effectively re-emergent, particularly in Eastern Mediterranean countries such as Lebanon, Syria, etc. This review considers the history of the current pandemic, the genetics of the causal agent, and current treatment regimes. In conclusion, cholera remains a significant global health challenge that requires prompt diagnosis and effective treatment. Understanding the history, genetics, and current treatments is crucial in effectively addressing this persistent and re-emergent disease.
Collapse
Affiliation(s)
- Ibrahim S I Al-Adham
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Nisrein Jaber
- Faculty of Pharmacy, Al Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Ahmed S A Ali Agha
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Mayyas Al-Remawi
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Faisal Al-Akayleh
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Najah Al-Muhtaseb
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Phillip J Collier
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| |
Collapse
|
5
|
Gharbi C, Louis H, Essghaier B, Ubah CB, Benjamin I, Kaminsky W, Nasr CB, Khedhiri L. Single crystal X-ray diffraction analysis, spectroscopic measurement, quantum chemical studies, antimicrobial potency and molecular docking of a new [Co(NCS)4]2(C6H17N3)2·4H2O coordination compound based on piperazine-thiocyanate as co-ligand. J Mol Struct 2024; 1298:136997. [DOI: 10.1016/j.molstruc.2023.136997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
|
6
|
Izadi-Pruneyre N, Karami Y, Nilges M. Structure and Dynamics of Type 4a Pili and Type 2 Secretion System Endopili. Subcell Biochem 2024; 104:549-563. [PMID: 38963500 DOI: 10.1007/978-3-031-58843-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Within the highly diverse type four filament (TFF or T4F) superfamily, the machineries of type IVa pili (T4aP) and the type 2 secretion system (T2SS) in diderm bacteria exhibit a substantial sequence similarity despite divergent functions and distinct appearances: T4aP can extend micrometers beyond the outer membrane, whereas the endopili in the T2SS are restricted to the periplasm. The determination of the structure of individual components and entire filaments is crucial to understand how their structure enables them to serve different functions. However, the dynamics of these filaments poses a challenge for their high-resolution structure determination. This review presents different approaches that have been used to study the structure and dynamics of T4aP and T2SS endopili by means of integrative structural biology, cryo-electron microscopy (cryo-EM), and molecular dynamics simulations. Their conserved features and differences are presented. The non-helical stretch in the long-conserved N-terminal helix which is characteristic of all members of the TFF and the impact of calcium on structure, function, and dynamics of these filaments are discussed in detail.
Collapse
Affiliation(s)
- Nadia Izadi-Pruneyre
- Bacterial Transmembrane Systems Unit, Institut Pasteur, Université Paris Cité, CNRS UMR, Paris, France
| | - Yasaman Karami
- Structural Bioinformatics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR, Paris, France
| | - Michael Nilges
- Structural Bioinformatics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR, Paris, France.
| |
Collapse
|
7
|
Sonani RR, Sanchez JC, Baumgardt JK, Kundra S, Wright ER, Craig L, Egelman EH. Tad and toxin-coregulated pilus structures reveal unexpected diversity in bacterial type IV pili. Proc Natl Acad Sci U S A 2023; 120:e2316668120. [PMID: 38011558 PMCID: PMC10710030 DOI: 10.1073/pnas.2316668120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 11/29/2023] Open
Abstract
Type IV pili (T4P) are ubiquitous in both bacteria and archaea. They are polymers of the major pilin protein, which has an extended and protruding N-terminal helix, α1, and a globular C-terminal domain. Cryo-EM structures have revealed key differences between the bacterial and archaeal T4P in their C-terminal domain structure and in the packing and continuity of α1. This segment forms a continuous α-helix in archaeal T4P but is partially melted in all published bacterial T4P structures due to a conserved helix breaking proline at position 22. The tad (tight adhesion) T4P are found in both bacteria and archaea and are thought to have been acquired by bacteria through horizontal transfer from archaea. Tad pilins are unique among the T4 pilins, being only 40 to 60 residues in length and entirely lacking a C-terminal domain. They also lack the Pro22 found in all high-resolution bacterial T4P structures. We show using cryo-EM that the bacterial tad pilus from Caulobacter crescentus is composed of continuous helical subunits that, like the archaeal pilins, lack the melted portion seen in other bacterial T4P and share the packing arrangement of the archaeal T4P. We further show that a bacterial T4P, the Vibrio cholerae toxin coregulated pilus, which lacks Pro22 but is not in the tad family, has a continuous N-terminal α-helix, yet its α1 s are arranged similar to those in other bacterial T4P. Our results highlight the role of Pro22 in helix melting and support an evolutionary relationship between tad and archaeal T4P.
Collapse
Affiliation(s)
- Ravi R. Sonani
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA22903
| | - Juan Carlos Sanchez
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Joseph K. Baumgardt
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Shivani Kundra
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Elizabeth R. Wright
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Lisa Craig
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA22903
| |
Collapse
|
8
|
Kim EJ, Bae J, Ju YJ, Ju DB, Lee D, Son S, Choi H, Ramamurthy T, Yun CH, Kim DW. Inactivated Vibrio cholerae Strains That Express TcpA via the toxT-139F Allele Induce Antibody Responses against TcpA. J Microbiol Biotechnol 2022; 32:1396-1405. [PMID: 36317425 PMCID: PMC9720071 DOI: 10.4014/jmb.2209.09001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Cholera remains a major global public health problem, for which oral cholera vaccines (OCVs) being a valuable strategy. Patients, who have recovered from cholera, develop antibody responses against LPS, cholera toxin (CT), toxin-coregulated pilus (TCP) major subunit A (TcpA) and other antigens; thus, these responses are potentially important contributors to immunity against Vibrio cholerae infection. However, assessments of the efficacy of current OCVs, especially inactivated OCVs, have focused primarily on O-antigen-specific antibody responses, suggesting that more sophisticated strategies are required for inactivated OCVs to induce immune responses against TCP, CT, and other antigens. Previously, we have shown that the toxT-139F allele enables V. cholerae strains to produce CT and TCP under simple laboratory culture conditions. Thus, we hypothesized that V. cholerae strains that express TCP via the toxT-139F allele induce TCP-specific antibody responses. As anticipated, V. cholerae strains that expressed TCP through the toxT-139F allele elicited antibody responses against TCP when the inactivated bacteria were delivered via a mouse model. We have further developed TCP-expressing V. cholerae strains that have been used in inactivated OCVs and shown that they effect an antibody response against TcpA in vivo, suggesting that V. cholerae strains with the toxT-139F allele are excellent candidates for cholera vaccines.
Collapse
Affiliation(s)
- Eun Jin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea,Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jonghyun Bae
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea,Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Young-Jun Ju
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Do-Bin Ju
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Donghyun Lee
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea,Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Seonghyeon Son
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea,Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hunseok Choi
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea,Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | | | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea,Corresponding authors C.-H. Yun Phone: + 82-2-880-4802 E-mail:
| | - Dong Wook Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea,Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea,
D.W. Kim Phone: +82-31-400-5806 E-mail:
| |
Collapse
|
9
|
Oki H, Kawahara K, Iimori M, Imoto Y, Nishiumi H, Maruno T, Uchiyama S, Muroga Y, Yoshida A, Yoshida T, Ohkubo T, Matsuda S, Iida T, Nakamura S. Structural basis for the toxin-coregulated pilus-dependent secretion of Vibrio cholerae colonization factor. SCIENCE ADVANCES 2022; 8:eabo3013. [PMID: 36240278 PMCID: PMC9565799 DOI: 10.1126/sciadv.abo3013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Colonization of the host intestine is the most important step in Vibrio cholerae infection. The toxin-coregulated pilus (TCP), an operon-encoded type IVb pilus (T4bP), plays a crucial role in this process, which requires an additional secreted protein, TcpF, encoded on the same TCP operon; however, its mechanisms of secretion and function remain elusive. Here, we demonstrated that TcpF interacts with the minor pilin, TcpB, of TCP and elucidated the crystal structures of TcpB alone and in complex with TcpF. The structural analyses reveal how TCP recognizes TcpF and its secretory mechanism via TcpB-dependent pilus elongation and retraction. Upon binding to TCP, TcpF forms a flower-shaped homotrimer with its flexible N terminus hooked onto the trimeric interface of TcpB. Thus, the interaction between the minor pilin and the N terminus of the secreted protein, namely, the T4bP secretion signal, is key for V. cholerae colonization and is a new potential therapeutic target.
Collapse
Affiliation(s)
- Hiroya Oki
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kazuki Kawahara
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Minato Iimori
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yuka Imoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Haruka Nishiumi
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Takahiro Maruno
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Susumu Uchiyama
- Graduate School of Engineering, Osaka University, Osaka, Japan
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan
- U-Medico Inc., Suita, Osaka, Japan
| | - Yuki Muroga
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Akihiro Yoshida
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Takuya Yoshida
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Tadayasu Ohkubo
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Shigeaki Matsuda
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tetsuya Iida
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| |
Collapse
|
10
|
Jiang C, Kasai H, Mino S, Romalde JL, Sawabe T. The pan‐genome of Splendidus clade species in the family
Vibrionaceae
: insights into evolution, adaptation, and pathogenicity. Environ Microbiol 2022; 24:4587-4606. [DOI: 10.1111/1462-2920.16209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Chunqi Jiang
- Laboratory of Microbiology, Faculty of Fisheries Sciences Hokkaido University Hakodate Japan
| | - Hisae Kasai
- Laboratory of Marine Biotechnology and Microbiology, Faculty of Fisheries Sciences Hokkaido University Hakodate Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences Hokkaido University Hakodate Japan
| | - Jesús L. Romalde
- Departamento de Microbiología y Parasitología, CRETUS & CIBUS‐Facultad de Biología. Universidade de Santiago de Compostela Spain
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences Hokkaido University Hakodate Japan
| |
Collapse
|
11
|
Yilmaz T, Goluch ED. A comprehensive review of conventional techniques and biosensor systems developed for in situ detection of vibrio cholerae. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Exploiting pilus-mediated bacteria-host interactions for health benefits. Mol Aspects Med 2021; 81:100998. [PMID: 34294411 DOI: 10.1016/j.mam.2021.100998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/30/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023]
Abstract
Surface pili (or fimbriae) are an important but conspicuous adaptation of several genera and species of Gram-negative and Gram-positive bacteria. These long and non-flagellar multi-subunit adhesins mediate the initial contact that a bacterium has with a host or environment, and thus have come to be regarded as a key colonization factor for virulence activity in pathogens or niche adaptation in commensals. Pili in pathogenic bacteria are well recognized for their roles in the adhesion to host cells, colonization of tissues, and establishment of infection. As an 'anti-adhesive' ploy, targeting pilus-mediated attachment for disruption has become a potentially effective alternative to using antibiotics. In this review, we give a description of the several structurally distinct bacterial pilus types thus far characterized, and as well offer details about the intricacy of their individual structure, assembly, and function. With a molecular understanding of pilus biogenesis and pilus-mediated host interactions also provided, we go on to describe some of the emerging new approaches and compounds that have been recently developed to prevent the adhesion, colonization, and infection of piliated bacterial pathogens.
Collapse
|
13
|
Graham KJ, Burrows LL. More than a feeling: microscopy approaches to understanding surface-sensing mechanisms. J Bacteriol 2020; 203:JB.00492-20. [PMID: 33077631 PMCID: PMC8095462 DOI: 10.1128/jb.00492-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The mechanisms by which bacteria sense and respond to surface attachment have long been a mystery. Our understanding of the structure and dynamics of bacterial appendages, notably type IV pili (T4P), provided new insights into the potential ways that bacteria sense surfaces. T4P are ubiquitous, retractable hair-like adhesins that until recently were difficult to image in the absence of fixation due to their nanoscale size. This review focuses on recent microscopy innovations used to visualize T4P in live cells to reveal the dynamics of their retraction and extension. We discuss recently proposed mechanisms by which T4P facilitate bacterial surface sensing, including the role of surface-exposed PilY1, two-component signal transduction pathways, force-induced structural modifications of the major pilin, and altered dynamics of the T4P motor complex.
Collapse
Affiliation(s)
- Katherine J Graham
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton ON Canada L8S4K1
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton ON Canada L8S4K1
| |
Collapse
|
14
|
Hosseini N, Khanahmad H, Esfahani BN, Bandehpour M, Shariati L, Zahedi N, Kazemi B. Targeting of cholera toxin A ( ctxA) gene by zinc finger nuclease: pitfalls of using gene editing tools in prokaryotes. Res Pharm Sci 2020; 15:182-190. [PMID: 32582358 PMCID: PMC7306252 DOI: 10.4103/1735-5362.283818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/22/2019] [Accepted: 04/29/2020] [Indexed: 01/14/2023] Open
Abstract
Background and purpose: The study was launched to use zinc finger nuclease (ZFN) technology to disrupt the cholera toxin gene (ctxA) for inhibiting CT toxin production in Vibrio cholera (V. cholera). Experimental approach: An engineered ZFN was designed to target the catalytic site of the ctxA gene. The coding sequence of ZFN was cloned to pKD46, pTZ57R T/A vector, and E2-crimson plasmid and transformed to Escherichia coli (E. coli) Top10 and V. cholera. The efficiency of ZFN was evaluated by colony counting. Findings/Results: No expression was observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blotting in transformed E. coli. The ctxA gene sequencing did not show any mutation. Polymerase chain reaction on pKD46-ZFN plasmid had negative results. Transformation of E. coli Top10 with T/A vectors containing whole ZFN sequence led to 7 colonies all of which contained bacteria with self-ligated vector. Transformation with left array ZFN led to 24 colonies of which 6 contained bacteria with self-ligated vector and 18 of them contained bacteria with vector/left array. Transformation of V. cholera with E2-crimson vectors containing whole ZFN did not produce any colonies. Transformation with left array vectors led to 17 colonies containing bacteria with vector/left array. Left array protein band was captured using western blot assay. Conclusions and implications: ZFN might have off target on bacterial genome causing lethal double-strand DNA break due to lack of non-homologous end joining (NHEJ) mechanism. It is recommended to develop ZFNs against bacterial genes, engineered packaging host with NHEJ repair system is essential.
Collapse
Affiliation(s)
- Nafiseh Hosseini
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Bahram Nasr Esfahani
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| | - Laleh Shariati
- Biosensor Research Center, Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Nushin Zahedi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Bahram Kazemi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| |
Collapse
|
15
|
Jacobsen T, Bardiaux B, Francetic O, Izadi-Pruneyre N, Nilges M. Structure and function of minor pilins of type IV pili. Med Microbiol Immunol 2019; 209:301-308. [PMID: 31784891 PMCID: PMC7248040 DOI: 10.1007/s00430-019-00642-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023]
Abstract
Type IV pili are versatile and highly flexible fibers formed on the surface of many Gram-negative and Gram-positive bacteria. Virulence and infection rate of several pathogenic bacteria, such as Neisseria meningitidis and Pseudomonas aeruginosa, are strongly dependent on the presence of pili as they facilitate the adhesion of the bacteria to the host cell. Disruption of the interactions between the pili and the host cells by targeting proteins involved in this interaction could, therefore, be a treatment strategy. A type IV pilus is primarily composed of multiple copies of protein subunits called major pilins. Additional proteins, called minor pilins, are present in lower abundance, but are essential for the assembly of the pilus or for its specific functions. One class of minor pilins is required to initiate the formation of pili, and may form a complex similar to that identified in the related type II secretion system. Other, species-specific minor pilins in the type IV pilus system have been shown to promote additional functions such as DNA binding, aggregation and adherence. Here, we will review the structure and the function of the minor pilins from type IV pili.
Collapse
Affiliation(s)
- Theis Jacobsen
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur, CNRS UMR3528, CNRS USR3756, Paris, France.,Sorbonne Université, Complexité du Vivant, 75005, Paris, France
| | - Benjamin Bardiaux
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur, CNRS UMR3528, CNRS USR3756, Paris, France
| | - Olivera Francetic
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Nadia Izadi-Pruneyre
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur, CNRS UMR3528, CNRS USR3756, Paris, France
| | - Michael Nilges
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur, CNRS UMR3528, CNRS USR3756, Paris, France.
| |
Collapse
|
16
|
Flagellar Mutants Have Reduced Pilus Synthesis in Caulobacter crescentus. J Bacteriol 2019; 201:JB.00031-19. [PMID: 30833355 DOI: 10.1128/jb.00031-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/25/2019] [Indexed: 02/06/2023] Open
Abstract
Surface appendages, such as flagella and type IV pili, mediate a broad range of bacterial behaviors, including motility, attachment, and surface sensing. While many species harbor both flagella and type IV pili, little is known about how or if their syntheses are coupled. Here, we show that deletions of genes encoding different flagellum machinery components result in a reduction of pilus synthesis in Caulobacter crescentus First, we show that different flagellar mutants exhibit different levels of sensitivity to a pilus-dependent phage and that fewer cells within populations of flagellar mutants make pili. Furthermore, we find that single cells within flagellar mutant populations produce fewer pili per cell. We demonstrate that these gene deletions result in reduced transcription of pilus-associated genes and have a slight but significant effect on general transcription profiles. Finally, we show that the decrease in pilus production is due to a reduction in the pool of pilin subunits that are polymerized into pilus fibers. These data demonstrate that mutations in flagellar gene components not only affect motility but also can have considerable and unexpected consequences for other aspects of cell biology.IMPORTANCE Most bacterial species synthesize surface-exposed appendages that are important for environmental interactions and survival under diverse conditions. It is often assumed that these appendages act independently of each other and that mutations in either system can be used to assess functionality in specific processes. However, we show that mutations in flagellar genes can impact the production of type IV pili, as well as alter general RNA transcriptional profiles compared to a wild-type strain. These data demonstrate that seemingly simple mutations can broadly affect cell-regulatory networks.
Collapse
|
17
|
Duong-Nu TM, Jeong K, Hong SH, Puth S, Kim SY, Tan W, Lee KH, Lee SE, Rhee JH. A stealth adhesion factor contributes to Vibrio vulnificus pathogenicity: Flp pili play roles in host invasion, survival in the blood stream and resistance to complement activation. PLoS Pathog 2019; 15:e1007767. [PMID: 31437245 PMCID: PMC6748444 DOI: 10.1371/journal.ppat.1007767] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/17/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
The tad operons encode the machinery required for adhesive Flp (fimbrial low-molecular-weight protein) pili biogenesis. Vibrio vulnificus, an opportunistic pathogen, harbors three distinct tad loci. Among them, only tad1 locus was highly upregulated in in vivo growing bacteria compared to in vitro culture condition. To understand the pathogenic roles of the three tad loci during infection, we constructed single, double and triple tad loci deletion mutants. Interestingly, only the Δtad123 triple mutant cells exhibited significantly decreased lethality in mice. Ultrastructural observations revealed short, thin filamentous projections disappeared on the Δtad123 mutant cells. Since the pilin was paradoxically non-immunogenic, a V5 tag was fused to Flp to visualize the pilin protein by using immunogold EM and immunofluorescence microscopy. The Δtad123 mutant cells showed attenuated host cell adhesion, decreased biofilm formation, delayed RtxA1 exotoxin secretion and subsequently impaired translocation across the intestinal epithelium compared to wild type, which could be partially complemented with each wild type operon. The Δtad123 mutant was susceptible to complement-mediated bacteriolysis, predominantly via the alternative pathway, suggesting stealth hiding role of the Tad pili. Complement depletion by treating with anti-C5 antibody rescued the viable count of Δtad123 in infected mouse bloodstream to the level comparable to wild type strain. Taken together, all three tad loci cooperate to confer successful invasion of V. vulnificus into deeper tissue and evasion from host defense mechanisms, ultimately resulting in septicemia.
Collapse
Affiliation(s)
- Tra-My Duong-Nu
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
| | - Kwangjoon Jeong
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
| | - Seol Hee Hong
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Sao Puth
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Soo Young Kim
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
| | - Wenzhi Tan
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
| | - Kwang Ho Lee
- Center for Research Facilities, Chonnam National University, Gwangju, Republic of Korea
| | - Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Joon Haeng Rhee
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
18
|
Bardiaux B, Cordier F, Brier S, López-Castilla A, Izadi-Pruneyre N, Nilges M. Dynamics of a type 2 secretion system pseudopilus unraveled by complementary approaches. JOURNAL OF BIOMOLECULAR NMR 2019; 73:293-303. [PMID: 31124002 PMCID: PMC6692295 DOI: 10.1007/s10858-019-00246-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Secretion pili, bacterial fibers responsible for transporting proteins to the extracellular milieu in some secretion systems, are very strong structures but at the same time highly flexible. Their flexibility and helical symmetry make structure determination at atomic resolution a challenging task. We have previously used an integrative structural biology approach including liquid-state NMR, cryo-electron microscopy (cryo-EM), and modeling to determine the pseudo-atomic resolution structure of the type 2 secretion system pseudopilus in a mutant form, where we employed NMR to determine the high resolution structure of the pilin (the monomer building block of the pilus). In this work, we determine the pseudo-atomic structure of the wild type pilus, and compare the dynamics of wild type and mutant pili by normal mode analysis. We present a detailed NMR analysis of the dynamics of the pilin in isolation, and compare dynamics and solvent accessibility of isolated and assembled pilins by Hydrogen/Deuterium eXchange Mass Spectrometry (HDX-MS). These complementary approaches provide a comprehensive view of internal and overall dynamics of pili, crucial for their function.
Collapse
Affiliation(s)
- Benjamin Bardiaux
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur; CNRS UMR3528; CNRS USR3756, Paris, France
| | - Florence Cordier
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur; CNRS UMR3528; CNRS USR3756, Paris, France
- Biological NMR Technological Platform, Center for Technological Resources and Research, Department of Structural Biology and Chemistry, Institut Pasteur; CNRS UMR3528, Paris, France
| | - Sébastien Brier
- Biological NMR Technological Platform, Center for Technological Resources and Research, Department of Structural Biology and Chemistry, Institut Pasteur; CNRS UMR3528, Paris, France
| | - Aracelys López-Castilla
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur; CNRS UMR3528; CNRS USR3756, Paris, France
| | - Nadia Izadi-Pruneyre
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur; CNRS UMR3528; CNRS USR3756, Paris, France.
| | - Michael Nilges
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur; CNRS UMR3528; CNRS USR3756, Paris, France.
| |
Collapse
|
19
|
Begum YA, Rydberg HA, Thorell K, Kwak YK, Sun L, Joffré E, Qadri F, Sjöling Å. In Situ Analyses Directly in Diarrheal Stool Reveal Large Variations in Bacterial Load and Active Toxin Expression of Enterotoxigenic Escherichiacoli and Vibrio cholerae. mSphere 2018; 3:e00517-17. [PMID: 29404412 PMCID: PMC5784243 DOI: 10.1128/msphere.00517-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/27/2017] [Indexed: 11/20/2022] Open
Abstract
The bacterial pathogens enterotoxigenic Escherichia coli (ETEC) and Vibrio cholerae are major causes of diarrhea. ETEC causes diarrhea by production of the heat-labile toxin (LT) and heat-stable toxins (STh and STp), while V. cholerae produces cholera toxin (CT). In this study, we determined the occurrence and bacterial doses of the two pathogens and their respective toxin expression levels directly in liquid diarrheal stools of patients in Dhaka, Bangladesh. By quantitative culture and real-time quantitative PCR (qPCR) detection of the toxin genes, the two pathogens were found to coexist in several of the patients, at concentrations between 102 and 108 bacterial gene copies per ml. Even in culture-negative samples, gene copy numbers of 102 to 104 of either ETEC or V. cholerae toxin genes were detected by qPCR. RNA was extracted directly from stool, and gene expression levels, quantified by reverse transcriptase qPCR (RT-qPCR), of the genes encoding CT, LT, STh, and STp showed expression of toxin genes. Toxin enzyme-linked immunosorbent assay (ELISA) confirmed active toxin secretion directly in the liquid diarrhea. Analysis of ETEC isolates by multiplex PCR, dot blot analysis, and genome sequencing suggested that there are genetic ETEC profiles that are more commonly found as dominating single pathogens and others that are coinfectants with lower bacterial loads. The ETEC genomes, including assembled genomes of dominating ETEC isolates expressing LT/STh/CS5/CS6 and LT/CS7, are provided. In addition, this study highlights an emerging important ETEC strain expressing LT/STp and the novel colonization factor CS27b. These findings have implications for investigations of pathogenesis as well as for vaccine development. IMPORTANCE The cause of diarrheal disease is usually determined by screening for several microorganisms by various methods, and sole detection is used to assign the agent as the cause of disease. However, it has become increasingly clear that many infections are caused by coinfections with several pathogens and that the dose of the infecting pathogen is important. We quantified the absolute numbers of enterotoxigenic E. coli (ETEC) and Vibrio cholerae directly in diarrheal fluid. We noted several events where both pathogens were found but also a large dose dependency. In three samples, we found ETEC as the only pathogen sought for. These isolates belonged to globally distributed ETEC clones and were the dominating species in stool with active toxin expression. This suggests that certain superior virulent ETEC lineages are able to outcompete the gut microbiota and be the sole cause of disease and hence need to be specifically monitored.
Collapse
Affiliation(s)
- Yasmin Ara Begum
- International Centre for Diarrhoeal Disease Research, Bangladesh, Centre for Health and Population Research, Dhaka, Bangladesh
| | - Hanna A. Rydberg
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Kaisa Thorell
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Young-Keun Kwak
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Lei Sun
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Enrique Joffré
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh, Centre for Health and Population Research, Dhaka, Bangladesh
| | - Åsa Sjöling
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
20
|
Roberts VA, Pique ME, Hsu S, Li S. Combining H/D Exchange Mass Spectrometry and Computational Docking To Derive the Structure of Protein-Protein Complexes. Biochemistry 2017; 56:6329-6342. [PMID: 29099587 DOI: 10.1021/acs.biochem.7b00643] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein-protein interactions are essential for biological function, but structures of protein-protein complexes are difficult to obtain experimentally. To derive the protein complex of the DNA-repair enzyme human uracil-DNA-glycosylase (hUNG) with its protein inhibitor (UGI), we combined rigid-body computational docking with hydrogen/deuterium exchange mass spectrometry (DXMS). Computational docking of the unbound protein structures provides a list of possible three-dimensional models of the complex; DXMS identifies solvent-protected protein residues. DXMS showed that unbound hUNG is compactly folded, but unbound UGI is loosely packed. An increased level of solvent protection of hUNG in the complex was localized to four regions on the same face. The decrease in the number of incorporated deuterons was quantitatively interpreted as the minimum number of main-chain hUNG amides buried in the protein-protein interface. The level of deuteration of complexed UGI decreased throughout the protein chain, indicating both tighter packing and direct solvent protection by hUNG. Three UGI regions showing the greatest decreases were best interpreted leniently, requiring just one main-chain amide from each in the interface. Applying the DXMS constraints as filters to a list of docked complexes gave the correct complex as the largest favorable energy cluster. Thus, identification of approximate protein interfaces was sufficient to distinguish the protein complex. Surprisingly, incorporating the DXMS data as added favorable potentials in the docking calculation was less effective in finding the correct complex. The filtering method has greater flexibility, with the capability to test each constraint and enforce simultaneous contact by multiple regions, but with the caveat that the list from the unbiased docking must include correct complexes.
Collapse
Affiliation(s)
- Victoria A Roberts
- San Diego Supercomputer Center, University of California, San Diego , La Jolla, California 92093, United States
| | - Michael E Pique
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Simon Hsu
- School of Medicine, University of California, San Diego , La Jolla, California 92093, United States
| | - Sheng Li
- School of Medicine, University of California, San Diego , La Jolla, California 92093, United States
| |
Collapse
|
21
|
Abstract
Pili are widespread among bacteria. Type IVa pili (T4aP) are associated with a variety of bacterial functions, including adhesion, motility, natural transformation, biofilm formation, and force-dependent signaling. In pathogenic bacteria, T4aP play a crucial role during infection and have been the subject of hundreds of studies. Methods for the isolation and purification of T4aP were first described in the 1970s. Purified pili have been used for studies of filament protein content, morphology, immunogenicity, post-translational modifications, and X-ray crystallography. We detail a tried-and-true method of isolating large amounts of native T4aP from bacterial surfaces. The method requires supplies and equipment that are available in most microbiology labs.
Collapse
Affiliation(s)
| | - Katrina T Forest
- Department of Bacteriology and Biophysics Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
22
|
Ng D, Harn T, Altindal T, Kolappan S, Marles JM, Lala R, Spielman I, Gao Y, Hauke CA, Kovacikova G, Verjee Z, Taylor RK, Biais N, Craig L. The Vibrio cholerae Minor Pilin TcpB Initiates Assembly and Retraction of the Toxin-Coregulated Pilus. PLoS Pathog 2016; 12:e1006109. [PMID: 27992883 PMCID: PMC5207764 DOI: 10.1371/journal.ppat.1006109] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/03/2017] [Accepted: 12/02/2016] [Indexed: 01/03/2023] Open
Abstract
Type IV pilus (T4P) systems are complex molecular machines that polymerize major pilin proteins into thin filaments displayed on bacterial surfaces. Pilus functions require rapid extension and depolymerization of the pilus, powered by the assembly and retraction ATPases, respectively. A set of low abundance minor pilins influences pilus dynamics by unknown mechanisms. The Vibrio cholerae toxin-coregulated pilus (TCP) is among the simplest of the T4P systems, having a single minor pilin TcpB and lacking a retraction ATPase. Here we show that TcpB, like its homolog CofB, initiates pilus assembly. TcpB co-localizes with the pili but at extremely low levels, equivalent to one subunit per pilus. We used a micropillars assay to demonstrate that TCP are retractile despite the absence of a retraction ATPase, and that retraction relies on TcpB, as a V. cholerae tcpB Glu5Val mutant is fully piliated but does not induce micropillars movements. This mutant is impaired in TCP-mediated autoagglutination and TcpF secretion, consistent with retraction being required for these functions. We propose that TcpB initiates pilus retraction by incorporating into the growing pilus in a Glu5-dependent manner, which stalls assembly and triggers processive disassembly. These results provide a framework for understanding filament dynamics in more complex T4P systems and the closely related Type II secretion system. Bacterial pathogens utilize a number of highly complex and sophisticated molecular systems to colonize their hosts and alter them, creating customized niches in which to reproduce. One such system is the Type IV pilus system, made up of dozens of proteins that form a macromolecular machine to polymerize small pilin proteins into long thin filaments that are displayed on the bacterial surface. These pili have a remarkable array of functions that rely on their ability to (i) adhere to many substrates, including host cell surfaces, pili from nearby bacteria, DNA and bacterial viruses (bacteriophage), and (ii) to depolymerize or retract, which pulls the bacteria along mucosal surfaces, pulls them close together in protective aggregates, and can even draw in substrates like DNA and bacteriophage for nutrition and genetic variation. For most Type IV pilus systems, retraction is an energy-driven process facilitated by a retraction ATPase. We show here that in the simplest of the Type IV pilus systems, the Vibrio cholerae toxin-coregulated pilus, a pilin-like protein initiates pilus retraction by what appears to be mechanical rather than enzymatic means. Our results provide a framework for understanding more complex Type IV pili and the related Type II secretion systems, which represent targets for novel highly specific antibiotics.
Collapse
Affiliation(s)
- Dixon Ng
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Tony Harn
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Tuba Altindal
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Subramania Kolappan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jarrad M. Marles
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Rajan Lala
- Biology Department, Brooklyn College, City University of New York, Brooklyn, New York, United States of America
| | - Ingrid Spielman
- Biology Department, Brooklyn College, City University of New York, Brooklyn, New York, United States of America
| | - Yang Gao
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Caitlyn A. Hauke
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Gabriela Kovacikova
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Zia Verjee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ronald K. Taylor
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Nicolas Biais
- Biology Department, Brooklyn College, City University of New York, Brooklyn, New York, United States of America
- Graduate Center, City University of New York, Brooklyn, New York, United States of America
- * E-mail: (LC); (NB)
| | - Lisa Craig
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail: (LC); (NB)
| |
Collapse
|
23
|
Ban E, Yoshida Y, Wakushima M, Wajima T, Hamabata T, Ichikawa N, Abe H, Horiguchi Y, Hara-Kudo Y, Kage-Nakadai E, Yamamoto T, Wada T, Nishikawa Y. Characterization of unstable pEntYN10 from enterotoxigenic Escherichia coli (ETEC) O169:H41. Virulence 2016; 6:735-44. [PMID: 26575107 DOI: 10.1080/21505594.2015.1094606] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) serotype O169:H41 has been an extremely destructive epidemic ETEC type worldwide. The strain harbors a large unstable plasmid that is regarded as responsible for its virulence, although its etiology has remained unknown. To examine its genetic background specifically on the unstable retention and responsibility in the unique adherence to epithelial cells and enterotoxin production, the complete sequence of a plasmid, pEntYN10, purified from the serotype strain was determined. The length is 145,082 bp; its GC content is 46.15%. It contains 182 CDSs, which include 3 colonization factors (CFs), an enterotoxin, and large number of insertion sequences. The repertory of plasmid stability genes was extraordinarily scant. Uniquely, results showed that 3 CFs, CS6, CS8 (CFA/III)-like, and K88 (F4)-like were encoded redundantly in the plasmid with unique variations among previously known subtypes. These three CFs preserved their respective gene structures similarly to those of other ETEC strains reported previously with unique sequence variations respectively. It is particularly interesting that the K88-like gene cluster of pEntYN10 had 2 paralogous copies of faeG, which encodes the major component of fimbrial structure. It remains to be verified how the unique variations found in the CFs respectively affect the affinity to infected cells, host range, and virulence of the ETEC strain.
Collapse
Affiliation(s)
- Erika Ban
- a Department of Food and Human Health Sciences ; Graduate School of Human Life Science; Osaka City University ; Osaka , Japan
| | - Yuka Yoshida
- a Department of Food and Human Health Sciences ; Graduate School of Human Life Science; Osaka City University ; Osaka , Japan
| | - Mitsuko Wakushima
- a Department of Food and Human Health Sciences ; Graduate School of Human Life Science; Osaka City University ; Osaka , Japan
| | - Takeaki Wajima
- b Department of Microbiology ; School of Pharmacy; Tokyo University of Pharmacy and Life Sciences ; Tokyo , Japan
| | - Takashi Hamabata
- c Research Institute; National Center for Global Health and Medicine ; Tokyo , Japan
| | - Naoki Ichikawa
- a Department of Food and Human Health Sciences ; Graduate School of Human Life Science; Osaka City University ; Osaka , Japan
| | - Hiroyuki Abe
- d Department of Molecular Bacteriology ; Research Institute for Microbial Diseases; Osaka University ; Osaka , Japan
| | - Yasuhiko Horiguchi
- d Department of Molecular Bacteriology ; Research Institute for Microbial Diseases; Osaka University ; Osaka , Japan
| | - Yukiko Hara-Kudo
- e Division of Microbiology; National Institute of Health Sciences ; Tokyo , Japan
| | - Eriko Kage-Nakadai
- f The OCU Advanced Research Institute for Natural Science and Technology; Osaka City University ; Osaka , Japan
| | - Taro Yamamoto
- g Department of International Health ; Institute of Tropical Medicine; Nagasaki University ; Nagasaki , Japan
| | - Takayuki Wada
- g Department of International Health ; Institute of Tropical Medicine; Nagasaki University ; Nagasaki , Japan
| | - Yoshikazu Nishikawa
- a Department of Food and Human Health Sciences ; Graduate School of Human Life Science; Osaka City University ; Osaka , Japan
| |
Collapse
|
24
|
Structure of the Neisseria meningitidis Type IV pilus. Nat Commun 2016; 7:13015. [PMID: 27698424 PMCID: PMC5059446 DOI: 10.1038/ncomms13015] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/25/2016] [Indexed: 02/04/2023] Open
Abstract
Neisseria meningitidis use Type IV pili (T4P) to adhere to endothelial cells and breach the blood brain barrier, causing cause fatal meningitis. T4P are multifunctional polymers of the major pilin protein, which share a conserved hydrophobic N terminus that is a curved extended α-helix, α1, in X-ray crystal structures. Here we report a 1.44 Å crystal structure of the N. meningitidis major pilin PilE and a ∼6 Å cryo-electron microscopy reconstruction of the intact pilus, from which we built an atomic model for the filament. This structure reveals the molecular arrangement of the N-terminal α-helices in the filament core, including a melted central portion of α1 and a bridge of electron density consistent with a predicted salt bridge necessary for pilus assembly. This structure has important implications for understanding pilus biology. Type IV pili are present on a wide range of bacterial pathogens and mediate diverse functions. Here the authors report a high resolution crystal structure of the pilin subunit PilE, and a cryoEM reconstruction of the Type IV pilus filament from N. meningitidis that offer insight into pilus assembly and functions.
Collapse
|
25
|
Effects of tcpB Mutations on Biogenesis and Function of the Toxin-Coregulated Pilus, the Type IVb Pilus of Vibrio cholerae. J Bacteriol 2016; 198:2818-28. [PMID: 27481929 DOI: 10.1128/jb.00309-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/23/2016] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Vibrio cholerae is the etiological agent of the acute intestinal disorder cholera. The toxin-coregulated pilus (TCP), a type IVb pilus, is an essential virulence factor of V. cholerae Recent work has shown that TcpB is a large minor pilin encoded within the tcp operon. TcpB contributes to efficient pilus formation and is essential for all TCP functions. Here, we have initiated a detailed targeted mutagenesis approach to further characterize this salient TCP component. We have identified (thus far) 20 residues of TcpB which affect either the steady-state level of TcpB or alter one or more TCP functions. This study provides a solid framework for further understanding of the complex role of TcpB and will be of use upon determination of the crystal structure of TcpB or related minor pilin orthologs of type IVb pilus systems. IMPORTANCE Type IV pili, such as the toxin-coregulated pilus (TCP) in V. cholerae, are bacterial appendages that often act as essential virulence factors. Minor pilins, like TcpB, of these pili systems often play integral roles in pilus assembly and function. In this study, we have generated mutations in tcpB to determine residues of importance for TCP stability and function. Combined with a predicted tertiary structure, characterization of these mutants allows us to better understand critical residues in TcpB and the role they may play in the mechanisms underlying minor pilin functions.
Collapse
|
26
|
Designing an efficient multi-epitope peptide vaccine against Vibrio cholerae via combined immunoinformatics and protein interaction based approaches. Comput Biol Chem 2016; 62:82-95. [DOI: 10.1016/j.compbiolchem.2016.04.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 12/18/2022]
|
27
|
Xiao K, Malvankar NS, Shu C, Martz E, Lovley DR, Sun X. Low Energy Atomic Models Suggesting a Pilus Structure that could Account for Electrical Conductivity of Geobacter sulfurreducens Pili. Sci Rep 2016; 6:23385. [PMID: 27001169 PMCID: PMC4802205 DOI: 10.1038/srep23385] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/03/2016] [Indexed: 12/18/2022] Open
Abstract
The metallic-like electrical conductivity of Geobacter sulfurreducens pili has been documented with multiple lines of experimental evidence, but there is only a rudimentary understanding of the structural features which contribute to this novel mode of biological electron transport. In order to determine if it was feasible for the pilin monomers of G. sulfurreducens to assemble into a conductive filament, theoretical energy-minimized models of Geobacter pili were constructed with a previously described approach, in which pilin monomers are assembled using randomized structural parameters and distance constraints. The lowest energy models from a specific group of predicted structures lacked a central channel, in contrast to previously existing pili models. In half of the no-channel models the three N-terminal aromatic residues of the pilin monomer are arranged in a potentially electrically conductive geometry, sufficiently close to account for the experimentally observed metallic like conductivity of the pili that has been attributed to overlapping pi-pi orbitals of aromatic amino acids. These atomic resolution models capable of explaining the observed conductive properties of Geobacter pili are a valuable tool to guide further investigation of the metallic-like conductivity of the pili, their role in biogeochemical cycling, and applications in bioenergy and bioelectronics.
Collapse
Affiliation(s)
- Ke Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.,Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Nikhil S Malvankar
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Chuanjun Shu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Eric Martz
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Derek R Lovley
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Xiao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
28
|
Kawahara K, Oki H, Fukakusa S, Yoshida T, Imai T, Maruno T, Kobayashi Y, Motooka D, Iida T, Ohkubo T, Nakamura S. Homo-trimeric Structure of the Type IVb Minor Pilin CofB Suggests Mechanism of CFA/III Pilus Assembly in Human Enterotoxigenic Escherichia coli. J Mol Biol 2016; 428:1209-1226. [PMID: 26876601 DOI: 10.1016/j.jmb.2016.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/30/2016] [Accepted: 02/03/2016] [Indexed: 11/18/2022]
Abstract
In gram-negative bacteria, the assembly of type IV pilus (T4P) and the evolutionally related pseudopilus of type II secretion system involves specialized structural proteins called pilins and pseudopilins, respectively, and is dynamically regulated to promote bacterial pathogenesis. Previous studies have suggested that a structural "tip"-like hetero-complex formed through the interaction of at least three minor (pseudo) pilins plays an important role in this process, while some members of the pathogenic type IVb subfamily are known to have only one such minor pilin subunit whose function is still unknown. Here, we determined the crystal structure of the type IVb minor pilin CofB of colonization factor antigen/III from human enterotoxigenic Escherichia coli at 1.88-Å resolution. The crystal structure, in conjunction with physicochemical analysis in solution, reveals a symmetrical homo-trimeric arrangement distinct from the hetero-complexes of minor (pseudo) pilins observed in other T4P and type II secretion systems. Each CofB monomer adopts a unique three-domain architecture, in which the C-terminal β-sheet-rich lectin domain can effectively initiate trimer association of its pilin-like N-terminal domain through extensive hydrophobic interactions followed by domain swapping at the central hinge-like domain. Deletion of cofB produces a phenotype with no detectable pili formation on the cell surface, while molecular modeling indicates that the characteristic homo-trimeric structure of CofB is well situated at the pilus tip of colonization factor antigen/III formed by the major pilin CofA, suggesting a role for the minor pilin in the efficient initiation of T4P assembly.
Collapse
Affiliation(s)
- Kazuki Kawahara
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroya Oki
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shunsuke Fukakusa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takuya Yoshida
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomoya Imai
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takahiro Maruno
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuji Kobayashi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daisuke Motooka
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuya Iida
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tadayasu Ohkubo
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shota Nakamura
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
29
|
Kryshtafovych A, Moult J, Baslé A, Burgin A, Craig TK, Edwards RA, Fass D, Hartmann MD, Korycinski M, Lewis RJ, Lorimer D, Lupas AN, Newman J, Peat TS, Piepenbrink KH, Prahlad J, van Raaij MJ, Rohwer F, Segall AM, Seguritan V, Sundberg EJ, Singh AK, Wilson MA, Schwede T. Some of the most interesting CASP11 targets through the eyes of their authors. Proteins 2015; 84 Suppl 1:34-50. [PMID: 26473983 PMCID: PMC4834066 DOI: 10.1002/prot.24942] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/17/2015] [Accepted: 10/11/2015] [Indexed: 11/17/2022]
Abstract
The Critical Assessment of protein Structure Prediction (CASP) experiment would not have been possible without the prediction targets provided by the experimental structural biology community. In this article, selected crystallographers providing targets for the CASP11 experiment discuss the functional and biological significance of the target proteins, highlight their most interesting structural features, and assess whether these features were correctly reproduced in the predictions submitted to CASP11. Proteins 2016; 84(Suppl 1):34–50. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - John Moult
- Department of Cell Biology and Molecular Genetics, Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850
| | - Arnaud Baslé
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Alex Burgin
- Broad Institute, Cambridge, Massachusetts, 02142
| | | | - Robert A Edwards
- Department of Biology, San Diego State University, San Diego, California, 92182.,Department of Computer Science, San Diego State University, San Diego, California, 92182
| | - Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Mateusz Korycinski
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Richard J Lewis
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | | | - Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Janet Newman
- Biomedical Manufacturing Program, CSIRO, Parkville, VIC, Australia
| | - Thomas S Peat
- Biomedical Manufacturing Program, CSIRO, Parkville, VIC, Australia
| | - Kurt H Piepenbrink
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Janani Prahlad
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588
| | - Mark J van Raaij
- Centro Nactional De Biotecnologia (CNB-CSIC), Madrid, E-28049, Spain
| | - Forest Rohwer
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, California, 92182
| | - Anca M Segall
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, California, 92182
| | | | - Eric J Sundberg
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, 21201.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, 21201.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Abhimanyu K Singh
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Mark A Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588
| | - Torsten Schwede
- Biozentrum, University of Basel, Basel, 4056, Switzerland. .,SIB Swiss Institute of Bioinformatics, Basel, 4056, Switzerland.
| |
Collapse
|
30
|
Nguyen Y, Harvey H, Sugiman-Marangos S, Bell SD, Buensuceso RNC, Junop MS, Burrows LL. Structural and functional studies of the Pseudomonas aeruginosa minor pilin, PilE. J Biol Chem 2015; 290:26856-65. [PMID: 26359492 PMCID: PMC4646338 DOI: 10.1074/jbc.m115.683334] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/04/2015] [Indexed: 11/06/2022] Open
Abstract
Many bacterial pathogens, including Pseudomonas aeruginosa, use type IVa pili (T4aP) for attachment and twitching motility. T4aP are composed primarily of major pilin subunits, which are repeatedly assembled and disassembled to mediate function. A group of pilin-like proteins, the minor pilins FimU and PilVWXE, prime pilus assembly and are incorporated into the pilus. We showed previously that minor pilin PilE depends on the putative priming subcomplex PilVWX and the non-pilin protein PilY1 for incorporation into pili, and that with FimU, PilE may couple the priming subcomplex to the major pilin PilA, allowing for efficient pilus assembly. Here we provide further support for this model, showing interaction of PilE with other minor pilins and the major pilin. A 1.25 Å crystal structure of PilEΔ1-28 shows a typical type IV pilin fold, demonstrating how it may be incorporated into the pilus. Despite limited sequence identity, PilE is structurally similar to Neisseria meningitidis minor pilins PilXNm and PilVNm, recently suggested via characterization of mCherry fusions to modulate pilus assembly from within the periplasm. A P. aeruginosa PilE-mCherry fusion failed to complement twitching motility or piliation of a pilE mutant. However, in a retraction-deficient strain where surface piliation depends solely on PilE, the fusion construct restored some surface piliation. PilE-mCherry was present in sheared surface fractions, suggesting that it was incorporated into pili. Together, these data provide evidence that PilE, the sole P. aeruginosa equivalent of PilXNm and PilVNm, likely connects a priming subcomplex to the major pilin, promoting efficient assembly of T4aP.
Collapse
Affiliation(s)
- Ylan Nguyen
- From the Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1 and
| | - Hanjeong Harvey
- From the Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1 and
| | - Seiji Sugiman-Marangos
- From the Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1 and
| | - Stephanie D Bell
- From the Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1 and
| | - Ryan N C Buensuceso
- From the Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1 and
| | - Murray S Junop
- the Department of Biochemistry, Western University, London, Ontario N6A 3K7, Canada
| | - Lori L Burrows
- From the Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1 and
| |
Collapse
|
31
|
Predicting Homogeneous Pilus Structure from Monomeric Data and Sparse Constraints. BIOMED RESEARCH INTERNATIONAL 2015; 2015:817134. [PMID: 26064954 PMCID: PMC4434193 DOI: 10.1155/2015/817134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/05/2015] [Indexed: 11/24/2022]
Abstract
Type IV pili (T4P) and T2SS (Type II Secretion System) pseudopili are filaments extending beyond microbial surfaces, comprising homologous subunits called “pilins.” In this paper, we presented a new approach to predict pseudo atomic models of pili combining ambiguous symmetric constraints with sparse distance information obtained from experiments and based neither on electronic microscope (EM) maps nor on accurate a priori symmetric details. The approach was validated by the reconstruction of the gonococcal (GC) pilus from Neisseria gonorrhoeae, the type IVb toxin-coregulated pilus (TCP) from Vibrio cholerae, and pseudopilus of the pullulanase T2SS (the PulG pilus) from Klebsiella oxytoca. In addition, analyses of computational errors showed that subunits should be treated cautiously, as they are slightly flexible and not strictly rigid bodies. A global sampling in a wider range was also implemented and implied that a pilus might have more than one but fewer than many possible intact conformations.
Collapse
|
32
|
Affiliation(s)
- Alain Filloux
- Alain Filloux, MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; E-mail:
| |
Collapse
|
33
|
Structural and evolutionary analyses show unique stabilization strategies in the type IV pili of Clostridium difficile. Structure 2015; 23:385-96. [PMID: 25599642 DOI: 10.1016/j.str.2014.11.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/18/2014] [Accepted: 11/22/2014] [Indexed: 01/17/2023]
Abstract
Type IV pili are produced by many pathogenic Gram-negative bacteria and are important for processes as diverse as twitching motility, biofilm formation, cellular adhesion, and horizontal gene transfer. However, many Gram-positive species, including Clostridium difficile, also produce type IV pili. Here, we identify the major subunit of the type IV pili of C. difficile, PilA1, and describe multiple 3D structures of PilA1, demonstrating the diversity found in three strains of C. difficile. We also model the incorporation of both PilA1 and a minor pilin, PilJ, into the pilus fiber. Although PilA1 contains no cysteine residues, and therefore cannot form the disulfide bonds found in all Gram-negative type IV pilins, it adopts unique strategies to achieve a typical pilin fold. The structures of PilA1 and PilJ exhibit similarities with the type IVb pilins from Gram-negative bacteria that suggest that the type IV pili of C. difficile are involved in microcolony formation.
Collapse
|
34
|
Muschiol S, Balaban M, Normark S, Henriques-Normark B. Uptake of extracellular DNA: competence induced pili in natural transformation of Streptococcus pneumoniae. Bioessays 2015; 37:426-35. [PMID: 25640084 PMCID: PMC4405041 DOI: 10.1002/bies.201400125] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transport of DNA across bacterial membranes involves complex DNA uptake systems. In Gram-positive bacteria, the DNA uptake machinery shares fundamental similarities with type IV pili and type II secretion systems. Although dedicated pilus structures, such as type IV pili in Gram-negative bacteria, are necessary for efficient DNA uptake, the role of similar structures in Gram-positive bacteria is just beginning to emerge. Recently two essentially very different pilus structures composed of the same major pilin protein ComGC were proposed to be involved in transformation of the Gram-positive bacterium Streptococcus pneumoniae – one is a long, thin, type IV pilus-like fiber with DNA binding capacity and the other one is a pilus structure that was thicker, much shorter and not able to bind DNA. Here we discuss how competence induced pili, either by pilus retraction or by a transient pilus-related opening in the cell wall, may mediate DNA uptake in S. pneumoniae.
Collapse
Affiliation(s)
- Sandra Muschiol
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|
35
|
Berry JL, Pelicic V. Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives. FEMS Microbiol Rev 2014; 39:134-54. [PMID: 25793961 PMCID: PMC4471445 DOI: 10.1093/femsre/fuu001] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Prokaryotes have engineered sophisticated surface nanomachines that have allowed them to colonize Earth and thrive even in extreme environments. Filamentous machineries composed of type IV pilins, which are associated with an amazing array of properties ranging from motility to electric conductance, are arguably the most widespread since distinctive proteins dedicated to their biogenesis are found in most known species of prokaryotes. Several decades of investigations, starting with type IV pili and then a variety of related systems both in bacteria and archaea, have outlined common molecular and structural bases for these nanomachines. Using type IV pili as a paradigm, we will highlight in this review common aspects and key biological differences of this group of filamentous structures. Using type IV pili as a paradigm, we review common genetic, structural and mechanistic features (many) as well as differences (few) of the exceptionally widespread and functionally versatile prokaryotic nano-machines composed of type IV pilins.
Collapse
Affiliation(s)
- Jamie-Lee Berry
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Vladimir Pelicic
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
36
|
Abstract
Type IV pili (T4P) are surface-exposed fibers that mediate many functions in bacteria, including locomotion, adherence to host cells, DNA uptake (competence), and protein secretion and that can act as nanowires carrying electric current. T4P are composed of a polymerized protein, pilin, and their assembly apparatuses share protein homologs with type II secretion systems in eubacteria and the flagella of archaea. T4P are found throughout Gram-negative bacterial families and have been studied most extensively in certain model Gram-negative species. Recently, it was discovered that T4P systems are also widespread among Gram-positive species, in particular the clostridia. Since Gram-positive and Gram-negative bacteria have many differences in cell wall architecture and other features, it is remarkable how similar the T4P core proteins are between these organisms, yet there are many key and interesting differences to be found as well. In this review, we compare the two T4P systems and identify and discuss the features they have in common and where they differ to provide a very broad-based view of T4P systems across all eubacterial species.
Collapse
|
37
|
Distinct docking and stabilization steps of the Pseudopilus conformational transition path suggest rotational assembly of type IV pilus-like fibers. Structure 2014; 22:685-96. [PMID: 24685147 DOI: 10.1016/j.str.2014.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 01/07/2023]
Abstract
The closely related bacterial type II secretion (T2S) and type IV pilus (T4P) systems are sophisticated machines that assemble dynamic fibers promoting protein transport, motility, or adhesion. Despite their essential role in virulence, the molecular mechanisms underlying helical fiber assembly remain unknown. Here, we use electron microscopy and flexible modeling to study conformational changes of PulG pili assembled by the Klebsiella oxytoca T2SS. Neural network analysis of 3,900 pilus models suggested a transition path toward low-energy conformations driven by progressive increase in fiber helical twist. Detailed predictions of interprotomer contacts along this path were tested by site-directed mutagenesis, pilus assembly, and protein secretion analyses. We demonstrate that electrostatic interactions between adjacent protomers (P-P+1) in the membrane drive pseudopilin docking, while P-P+3 and P-P+4 contacts determine downstream fiber stabilization steps. These results support a model of a spool-like assembly mechanism for fibers of the T2SS-T4P superfamily.
Collapse
|
38
|
Piepenbrink KH, Maldarelli GA, de la Peña CFM, Mulvey GL, Snyder GA, De Masi L, von Rosenvinge EC, Günther S, Armstrong GD, Donnenberg MS, Sundberg EJ. Structure of Clostridium difficile PilJ exhibits unprecedented divergence from known type IV pilins. J Biol Chem 2014; 289:4334-45. [PMID: 24362261 PMCID: PMC3924296 DOI: 10.1074/jbc.m113.534404] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/20/2013] [Indexed: 12/21/2022] Open
Abstract
Type IV pili are produced by many pathogenic Gram-negative bacteria and are important for processes as diverse as twitching motility, cellular adhesion, and colonization. Recently, there has been an increased appreciation of the ability of Gram-positive species, including Clostridium difficile, to produce Type IV pili. Here we report the first three-dimensional structure of a Gram-positive Type IV pilin, PilJ, demonstrate its incorporation into Type IV pili, and offer insights into how the Type IV pili of C. difficile may assemble and function. PilJ has several unique structural features, including a dual-pilin fold and the incorporation of a structural zinc ion. We show that PilJ is incorporated into Type IV pili in C. difficile and present a model in which the incorporation of PilJ into pili exposes the C-terminal domain of PilJ to create a novel interaction surface.
Collapse
Affiliation(s)
| | | | - Claudia F. Martinez de la Peña
- Department of Microbiology, Immunology, and Infectious Disease and Alberta Glycomics Centre, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - George L. Mulvey
- Department of Microbiology, Immunology, and Infectious Disease and Alberta Glycomics Centre, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Greg A. Snyder
- From the Institute of Human Virology
- Department of Medicine, and
| | | | | | | | - Glen D. Armstrong
- Department of Microbiology, Immunology, and Infectious Disease and Alberta Glycomics Centre, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Michael S. Donnenberg
- Department of Medicine, and
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Eric J. Sundberg
- From the Institute of Human Virology
- Department of Medicine, and
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| |
Collapse
|
39
|
The 1.59Å resolution structure of the minor pseudopilin EpsH of Vibrio cholerae reveals a long flexible loop. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:406-15. [DOI: 10.1016/j.bbapap.2013.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/01/2013] [Accepted: 11/24/2013] [Indexed: 01/25/2023]
|
40
|
Abstract
Type IV pili (T4P) are multifunctional protein fibers produced on the surfaces of a wide variety of bacteria and archaea. The major subunit of T4P is the type IV pilin, and structurally related proteins are found as components of the type II secretion (T2S) system, where they are called pseudopilins; of DNA uptake/competence systems in both Gram-negative and Gram-positive species; and of flagella, pili, and sugar-binding systems in the archaea. This broad distribution of a single protein family implies both a common evolutionary origin and a highly adaptable functional plan. The type IV pilin is a remarkably versatile architectural module that has been adopted widely for a variety of functions, including motility, attachment to chemically diverse surfaces, electrical conductance, acquisition of DNA, and secretion of a broad range of structurally distinct protein substrates. In this review, we consider recent advances in this research area, from structural revelations to insights into diversity, posttranslational modifications, regulation, and function.
Collapse
|
41
|
Yuen ASW, Kolappan S, Ng D, Craig L. Structure and secretion of CofJ, a putative colonization factor of enterotoxigenic Escherichia coli. Mol Microbiol 2013; 90:898-918. [PMID: 24106767 DOI: 10.1111/mmi.12407] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2013] [Indexed: 01/19/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) colonize the human gut, causing severe cholera-like diarrhoea. ETEC utilize a diverse array of pili and fimbriae for host colonization, including the Type IVb pilus CFA/III. The CFA/III pilus machinery is encoded on the cof operon, which is similar in gene sequence and synteny to the tcp operon that encodes another Type IVb pilus, the Vibrio cholerae toxin co-regulated pilus (TCP). Both pilus operons possess a syntenic gene encoding a protein of unknown function. In V. cholerae, this protein, TcpF, is a critical colonization factor secreted by the TCP apparatus. Here we show that the corresponding ETEC protein, CofJ, is a soluble protein secreted via the CFA/III apparatus. We present a 2.6 Å resolution crystal structure of CofJ, revealing a large β-sandwich protein that bears no sequence or structural homology to TcpF. CofJ has a cluster of exposed hydrophobic side-chains at one end and structural homology to the pore-forming proteins perfringolysin O and α-haemolysin. CofJ binds to lipid vesicles and epithelial cells, suggesting a role in membrane attachment during ETEC colonization.
Collapse
Affiliation(s)
- Alex S W Yuen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | | | | | | |
Collapse
|
42
|
Baker JL, Biais N, Tama F. Steered molecular dynamics simulations of a type IV pilus probe initial stages of a force-induced conformational transition. PLoS Comput Biol 2013; 9:e1003032. [PMID: 23592974 PMCID: PMC3623709 DOI: 10.1371/journal.pcbi.1003032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 02/28/2013] [Indexed: 02/03/2023] Open
Abstract
Type IV pili are long, protein filaments built from a repeating subunit that protrudes from the surface of a wide variety of infectious bacteria. They are implicated in a vast array of functions, ranging from bacterial motility to microcolony formation to infection. One of the most well-studied type IV filaments is the gonococcal type IV pilus (GC-T4P) from Neisseria gonorrhoeae, the causative agent of gonorrhea. Cryo-electron microscopy has been used to construct a model of this filament, offering insights into the structure of type IV pili. In addition, experiments have demonstrated that GC-T4P can withstand very large tension forces, and transition to a force-induced conformation. However, the details of force-generation, and the atomic-level characteristics of the force-induced conformation, are unknown. Here, steered molecular dynamics (SMD) simulation was used to exert a force in silico on an 18 subunit segment of GC-T4P to address questions regarding the nature of the interactions that lead to the extraordinary strength of bacterial pili. SMD simulations revealed that the buried pilin α1 domains maintain hydrophobic contacts with one another within the core of the filament, leading to GC-T4P's structural stability. At the filament surface, gaps between pilin globular head domains in both the native and pulled states provide water accessible routes between the external environment and the interior of the filament, allowing water to access the pilin α1 domains as reported for VC-T4P in deuterium exchange experiments. Results were also compared to the experimentally observed force-induced conformation. In particular, an exposed amino acid sequence in the experimentally stretched filament was also found to become exposed during the SMD simulations, suggesting that initial stages of the force induced transition are well captured. Furthermore, a second sequence was shown to be initially hidden in the native filament and became exposed upon stretching. There are a large number of infectious bacteria that can be harmful to humans. Some bacterial infections are facilitated by long, tether-like filaments called type IV pili which extend from the surface of bacterial cells and attach to the surface of host cells. Type IV pilus filaments can grow to be many micrometers in length (bacterial cells themselves, on average, are only a couple of micrometers in length and half a micrometer in diameter), and can exert very large forces (up to 100,000 times the bodyweight of the bacteria). Because they extend from the surface of the cell, type IV pili are very good candidates for drug targeting. Computer simulation was used to exert forces on a segment of one of these filaments, in an effort to mimic the effects of tension that would be experienced by the pilus upon binding during infection. Regions of the filament that become exposed to the external environment in the pulled state were determined, in an attempt to identify amino acid sequences that could act as targets for drug design.
Collapse
Affiliation(s)
- Joseph L. Baker
- Department of Physics, University of Arizona, Tucson, Arizona, United States of America
| | - Nicolas Biais
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Florence Tama
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
43
|
Secretion of TcpF by the Vibrio cholerae toxin-coregulated pilus biogenesis apparatus requires an N-terminal determinant. J Bacteriol 2013; 195:2718-27. [PMID: 23564177 DOI: 10.1128/jb.01122-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Type IV pili are important for microcolony formation, biofilm formation, twitching motility, and attachment. We and others have shown that type IV pili are important for protein secretion across the outer membrane, similar to type II secretion systems. This study explored the relationship between protein secretion and pilus formation in Vibrio cholerae. The toxin-coregulated pilus (TCP), a type IV pilus required for V. cholerae pathogenesis, is necessary for the secretion of the colonization factor TcpF (T. J. Kirn, N. Bose, and R. K. Taylor, Mol. Microbiol. 49:81-92, 2003). This phenomenon is not unique to V. cholerae; secreted virulence factors that are dependent on the presence of components of the type IV pilus biogenesis apparatus for secretion have been reported with Dichelobacter nodosus (R. M. Kennan, O. P. Dhungyel, R. J. Whittington, J. R. Egerton, and J. I. Rood, J. Bacteriol. 183:4451-4458, 2001) and Francisella tularensis (A. J. Hager et al., Mol. Microbiol. 62:227-237, 2006). Using site-directed mutagenesis, we demonstrated that the secretion of TcpF is dependent on the presence of selected amino acid R groups at position five. We were unable to find other secretion determinants, suggesting that Y5 is the major secretion determinant within TcpF. We also report that proteins secreted in a type IV pilus biogenesis apparatus-dependent manner have a YXS motif within the first 15 amino acids following the Sec cleavage site. The YXS motif is not present in proteins secreted by type II secretion systems, indicating that this is unique to type IV pilus-mediated secretion. Moreover, we show that TcpF interacts with the pilin TcpA, suggesting that these proteins are secreted by the type IV pilus biogenesis system. These data provide a starting point for understanding how type IV pili can mediate secretion of virulence factors important for bacterial pathogenesis.
Collapse
|
44
|
Thanassi DG, Bliska JB, Christie PJ. Surface organelles assembled by secretion systems of Gram-negative bacteria: diversity in structure and function. FEMS Microbiol Rev 2012; 36:1046-82. [PMID: 22545799 PMCID: PMC3421059 DOI: 10.1111/j.1574-6976.2012.00342.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 03/08/2012] [Accepted: 04/13/2012] [Indexed: 11/29/2022] Open
Abstract
Gram-negative bacteria express a wide variety of organelles on their cell surface. These surface structures may be the end products of secretion systems, such as the hair-like fibers assembled by the chaperone/usher (CU) and type IV pilus pathways, which generally function in adhesion to surfaces and bacterial-bacterial and bacterial-host interactions. Alternatively, the surface organelles may be integral components of the secretion machinery itself, such as the needle complex and pilus extensions formed by the type III and type IV secretion systems, which function in the delivery of bacterial effectors inside host cells. Bacterial surface structures perform functions critical for pathogenesis and have evolved to withstand forces exerted by the external environment and cope with defenses mounted by the host immune system. Given their essential roles in pathogenesis and exposed nature, bacterial surface structures also make attractive targets for therapeutic intervention. This review will describe the structure and function of surface organelles assembled by four different Gram-negative bacterial secretion systems: the CU pathway, the type IV pilus pathway, and the type III and type IV secretion systems.
Collapse
Affiliation(s)
- David G Thanassi
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794-5120, USA.
| | | | | |
Collapse
|
45
|
Fukakusa S, Kawahara K, Nakamura S, Iwashita T, Baba S, Nishimura M, Kobayashi Y, Honda T, Iida T, Taniguchi T, Ohkubo T. Structure of the CFA/III major pilin subunit CofA from human enterotoxigenic Escherichia coli determined at 0.90 Å resolution by sulfur-SAD phasing. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1418-29. [PMID: 22993096 DOI: 10.1107/s0907444912034464] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 08/02/2012] [Indexed: 11/11/2022]
Abstract
CofA, a major pilin subunit of colonization factor antigen III (CFA/III), forms pili that mediate small-intestinal colonization by enterotoxigenic Escherichia coli (ETEC). In this study, the crystal structure of an N-terminally truncated version of CofA was determined by single-wavelength anomalous diffraction (SAD) phasing using five sulfurs in the protein. Given the counterbalance between anomalous signal strength and the undesired X-ray absorption of the solvent, diffraction data were collected at 1.5 Å resolution using synchrotron radiation. These data were sufficient to elucidate the sulfur substructure at 1.38 Å resolution. The low solvent content (29%) of the crystal necessitated that density modification be performed with an additional 0.9 Å resolution data set to reduce the phase error caused by the small sulfur anomalous signal. The CofA structure showed the αβ-fold typical of type IVb pilins and showed high structural homology to that of TcpA for toxin-coregulated pili of Vibrio cholerae, including spatial distribution of key residues critical for pilin self-assembly. A pilus-filament model of CofA was built by computational docking and molecular-dynamics simulation using the previously reported filament model of TcpA as a structural template. This model revealed that the CofA filament surface was highly negatively charged and that a 23-residue-long loop between the α1 and α2 helices filled the gap between the pilin subunits. These characteristics could provide a unique binding epitope for the CFA/III pili of ETEC compared with other type IVb pili.
Collapse
Affiliation(s)
- Shunsuke Fukakusa
- Department of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Roberts VA, Pique ME, Hsu S, Li S, Slupphaug G, Rambo RP, Jamison JW, Liu T, Lee JH, Tainer JA, Ten Eyck LF, Woods VL. Combining H/D exchange mass spectroscopy and computational docking reveals extended DNA-binding surface on uracil-DNA glycosylase. Nucleic Acids Res 2012; 40:6070-81. [PMID: 22492624 PMCID: PMC3401472 DOI: 10.1093/nar/gks291] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 02/21/2012] [Accepted: 03/15/2012] [Indexed: 12/21/2022] Open
Abstract
X-ray crystallography provides excellent structural data on protein-DNA interfaces, but crystallographic complexes typically contain only small fragments of large DNA molecules. We present a new approach that can use longer DNA substrates and reveal new protein-DNA interactions even in extensively studied systems. Our approach combines rigid-body computational docking with hydrogen/deuterium exchange mass spectrometry (DXMS). DXMS identifies solvent-exposed protein surfaces; docking is used to create a 3-dimensional model of the protein-DNA interaction. We investigated the enzyme uracil-DNA glycosylase (UNG), which detects and cleaves uracil from DNA. UNG was incubated with a 30 bp DNA fragment containing a single uracil, giving the complex with the abasic DNA product. Compared with free UNG, the UNG-DNA complex showed increased solvent protection at the UNG active site and at two regions outside the active site: residues 210-220 and 251-264. Computational docking also identified these two DNA-binding surfaces, but neither shows DNA contact in UNG-DNA crystallographic structures. Our results can be explained by separation of the two DNA strands on one side of the active site. These non-sequence-specific DNA-binding surfaces may aid local uracil search, contribute to binding the abasic DNA product and help present the DNA product to APE-1, the next enzyme on the DNA-repair pathway.
Collapse
Affiliation(s)
- Victoria A Roberts
- San Diego Supercomputer Center, University of California, San Diego, 9500 Gilman Drive, MC 0505, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Brock A. Fragmentation hydrogen exchange mass spectrometry: A review of methodology and applications. Protein Expr Purif 2012; 84:19-37. [DOI: 10.1016/j.pep.2012.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 04/13/2012] [Indexed: 01/19/2023]
|
48
|
Structural characterization of CFA/III and Longus type IVb pili from enterotoxigenic Escherichia coli. J Bacteriol 2012; 194:2725-35. [PMID: 22447901 DOI: 10.1128/jb.00282-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type IV pili are helical filaments found on many Gram-negative pathogenic bacteria, with multiple diverse roles in pathogenesis, including microcolony formation, adhesion, and twitching motility. Many pathogenic enterotoxigenic Escherichia coli (ETEC) isolates express one of two type IV pili belonging to the type IVb subclass: CFA/III or Longus. Here we show a direct correlation between CFA/III expression and ETEC aggregation, suggesting that these pili, like the Vibrio cholerae toxin-coregulated pili (TCP), mediate microcolony formation. We report a 1.26-Å resolution crystal structure of CofA, the major pilin subunit from CFA/III. CofA is very similar in structure to V. cholerae TcpA but possesses a 10-amino-acid insertion that replaces part of the α2-helix with an irregular loop containing a 3(10)-helix. Homology modeling suggests a very similar structure for the Longus LngA pilin. A model for the CFA/III pilus filament was generated using the TCP electron microscopy reconstruction as a template. The unique 3(10)-helix insert fits perfectly within the gap between CofA globular domains. This insert, together with differences in surface-exposed residues, produces a filament that is smoother and more negatively charged than TCP. To explore the specificity of the type IV pilus assembly apparatus, CofA was expressed heterologously in V. cholerae by replacing the tcpA gene with that of cofA within the tcp operon. Although CofA was synthesized and processed by V. cholerae, no CFA/III filaments were detected, suggesting that the components of the type IVb pilus assembly system are highly specific to their pilin substrates.
Collapse
|
49
|
Li J, Egelman EH, Craig L. Structure of the Vibrio cholerae Type IVb Pilus and stability comparison with the Neisseria gonorrhoeae type IVa pilus. J Mol Biol 2012; 418:47-64. [PMID: 22361030 DOI: 10.1016/j.jmb.2012.02.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 02/10/2012] [Accepted: 02/14/2012] [Indexed: 01/08/2023]
Abstract
Type IV pili are multifunctional filaments displayed on many bacterial pathogens. Members of the Type IVa pilus subclass are found on a diverse group of human pathogens, whereas Type IVb pili are found almost exclusively on enteric bacteria. The Type IVa and IVb subclasses are distinguished by differences in the pilin subunits, including the fold of the globular domain. To understand the implications of the distinct pilin folds, we compared the stabilities of pilin subunits and pilus filaments for the Type IVa GC pilus from Neisseria gonorrhoeae and the Type IVb toxin-coregulated pilus (TCP) from Vibrio cholerae. We show that while recombinant TCP pilin is more stable than GC pilin, the GC pili are more resistant to proteolysis, heat and chemical denaturation than TCP, remaining intact in 8 M urea. To understand these differences, we determined the TCP structure by electron microscopy and three-dimensional image reconstruction. TCP have an architecture similar to that of GC pili, with subunits arranged in a right-handed 1-start helix and related by an 8.4-Å axial rise and a 96.8° azimuthal rotation. However, the TCP subunits are not as tightly packed as GC pilins, and the distinct Type IVb pilin fold exposes a segment of the α-helical core of TCP. Hydrophobic interactions dominate for both pilus subtypes, but base stacking by aromatic residues conserved among the Type IVa pilins may contribute to GC pilus stability. The extraordinary stability of GC pili may represent an adaptation of the Type IVa pili to harsh environments and the need to retract against external forces.
Collapse
Affiliation(s)
- Juliana Li
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | | | | |
Collapse
|
50
|
Megli CJ, Yuen ASW, Kolappan S, Richardson MR, Dharmasena MN, Krebs SJ, Taylor RK, Craig L. Crystal structure of the Vibrio cholerae colonization factor TcpF and identification of a functional immunogenic site. J Mol Biol 2011; 409:146-58. [PMID: 21440558 PMCID: PMC3098003 DOI: 10.1016/j.jmb.2011.03.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/10/2011] [Accepted: 03/14/2011] [Indexed: 01/09/2023]
Abstract
Vibrio cholerae relies on two main virulence factors--toxin-coregulated pilus (TCP) and cholera toxin--to cause the gastrointestinal disease cholera. TCP is a type IV pilus that mediates bacterial autoagglutination and colonization of the intestine. TCP is encoded by the tcp operon, which also encodes TcpF, a protein of unknown function that is secreted by V. cholerae in a TCP-dependent manner. Although TcpF is not required for TCP biogenesis, a tcpF mutant has a colonization defect in the infant mouse cholera model that is as severe as a pilus mutant. Furthermore, TcpF antisera protect against V. cholerae infection. TcpF has no apparent sequence homology to any known protein. Here, we report the de novo X-ray crystal structure of TcpF and the identification of an epitope that is critical for its function as a colonization factor. A monoclonal antibody recognizing this epitope is protective against V. cholerae challenge and adds to the protection provided by an anti-TcpA antibody. These data suggest that TcpF has a novel function in V. cholerae colonization and define a region crucial for this function.
Collapse
Affiliation(s)
- Christina J. Megli
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Alex S. W. Yuen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, B. C. Canada V5A 1S6
| | - Subramaniapillai Kolappan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, B. C. Canada V5A 1S6
| | - Malcolm R. Richardson
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Madushini N. Dharmasena
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Shelly J. Krebs
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Ronald K. Taylor
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Lisa Craig
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, B. C. Canada V5A 1S6
| |
Collapse
|