1
|
Latta O, Weinert EE, Bechthold A. Heme dependent activity of the Streptomyces c-di-GMP-metabolizing enzyme CdgA. J Inorg Biochem 2025; 269:112874. [PMID: 40056506 DOI: 10.1016/j.jinorgbio.2025.112874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/10/2025]
Abstract
Streptomyces species are vital for producing natural products like antibiotics, with c-di-GMP playing a key role in regulating processes such as differentiation. C-di-GMP metabolism is controlled by diguanylate cyclases (DGCs) and phosphodiesterases (PDEs), which synthesize and hydrolyze c-di-GMP, respectively, to modulate cellular levels. To improve our understanding of c-di-GMP-regulated processes in Streptomyces, we have characterized a c-di-GMP-metabolizing enzyme CdgA from Streptomyces ghanaensis that contains both a diguanylate cyclase and a phosphodiesterase domain. Our studies demonstrate that the enzyme is purified in a form without heme and is only able to degrade c-di-GMP. When reconstituted with heme, it enables c-di-GMP synthesis, and depending on the redox state the synthesis rate is changed. To our knowledge, this is the first heme-dependent activity reported for a c-di-GMP-metabolizing enzyme in Streptomyces and has major implications for understanding the way c-di-GMP is metabolized in vivo in Streptomyces.
Collapse
Affiliation(s)
- Olaf Latta
- Institute for Pharmaceutical Biology and Biotechnology, University of Freiburg, Germany
| | - Emily E Weinert
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andreas Bechthold
- Institute for Pharmaceutical Biology and Biotechnology, University of Freiburg, Germany.
| |
Collapse
|
2
|
Qu S, Dai H. Conjugated STING agonists. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102530. [PMID: 40291379 PMCID: PMC12032345 DOI: 10.1016/j.omtn.2025.102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
An innate immune system is the first line of defense and prevents the host from infection and attacks the invading pathogens. Stimulator of interferon genes (STING) plays a vital role in the innate immune system. STING activation by STING agonists leads to phosphorylation of TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3) with the release of type I interferons and proinflammatory cytokines, further promoting the adaptive immune response and activating T cells by increased antigen presentation. Natural STING agonist cyclic dinucleotides (CDNs) encounter many defects such as high polarity by negative charges, low stability and circulative half-life, off-target systemic toxicity, and low response efficacy in clinical trials. To overcome these challenges, massive efforts have addressed chemical modifications of CDNs, development of non-CDN STING agonists, and delivery of these STING agonists either by conjugation or liposomes/nanoparticles. Considering there have been a great number of reports regarding nanosystem-aided delivery, here, we examine the development of STING agonists, especially for non-CDNs and their delivery specifically by conjugation strategy, with a focus on the STING agonists in clinical trials and current challenges of their potential in cancer immunotherapy.
Collapse
Affiliation(s)
- Shuhao Qu
- School of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Hong Dai
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
3
|
Vennard CS, Oladeji SM, Sintim HO. Inhibitors of Cyclic Dinucleotide Phosphodiesterases and Cyclic Oligonucleotide Ring Nucleases as Potential Drugs for Various Diseases. Cells 2025; 14:663. [PMID: 40358186 PMCID: PMC12072042 DOI: 10.3390/cells14090663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
The phosphodiester linkage is found in DNA, RNA and many signaling molecules, such as cyclic mononucleotide, cyclic dinucleotides (CDNs) and cyclic oligonucleotides (cONs). Enzymes that cleave the phosphodiester linkage (nucleases and phosphodiesterases) play important roles in cell persistence and fitness and have therefore become targets for various diseased states. While various inhibitors have been developed for nucleases and cyclic mononucleotide phosphodiesterases, and some have become clinical successes, there is a paucity of inhibitors of the recently discovered phosphodiesterases or ring nucleases that cleave CDNs and cONs. Inhibitors of bacterial c-di-GMP or c-di-AMP phosphodiesterases have the potential to be used as anti-virulence compounds, while compounds that inhibit the degradation of 3',3'-cGAMP, cA3, cA4, cA6 could serve as antibiotic adjuvants as the accumulation of these second messengers leads to bacterial abortive infection. In humans, 2'3'-cGAMP plays critical roles in antiviral and antitumor responses. ENPP1 (the 2'3'-cGAMP phosphodiesterase) or virally encoded cyclic dinucleotide phosphodiesterases, such as poxin, however, blunt this response. Inhibitors of ENPP1 or poxin-like enzymes have the potential to be used as anticancer and antiviral agents, respectively. This review summarizes efforts made towards the discovery and development of compounds that inhibit CDN phosphodiesterases and cON ring nucleases.
Collapse
Affiliation(s)
- Christopher S. Vennard
- Chemistry Department, Purdue University, West Lafayette, IN 47907, USA; (C.S.V.); (S.M.O.)
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Samson Marvellous Oladeji
- Chemistry Department, Purdue University, West Lafayette, IN 47907, USA; (C.S.V.); (S.M.O.)
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Herman O. Sintim
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
4
|
Martino RA, Volke DC, Tenaglia AH, Tribelli PM, Nikel PI, Smania AM. Genetic Dissection of Cyclic di-GMP Signalling in Pseudomonas aeruginosa via Systematic Diguanylate Cyclase Disruption. Microb Biotechnol 2025; 18:e70137. [PMID: 40172309 PMCID: PMC11963287 DOI: 10.1111/1751-7915.70137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 04/04/2025] Open
Abstract
The second messenger bis-(3' → 5')-cyclic dimeric guanosine monophosphate (c-di-GMP) governs adaptive responses in the opportunistic pathogen Pseudomonas aeruginosa, including biofilm formation and the transition from acute to chronic infections. Understanding the intricate c-di-GMP signalling network remains challenging due to the overlapping activities of numerous diguanylate cyclases (DGCs). In this study, we employed a CRISPR-based multiplex genome-editing tool to disrupt all 32 GGDEF domain-containing proteins (GCPs) implicated in c-di-GMP signalling in P. aeruginosa PA14. Phenotypic and physiological analyses revealed that the resulting mutant was unable to form biofilms and had attenuated virulence. Residual c-di-GMP levels were still detected despite the extensive GCP disruption, underscoring the robustness of this regulatory network. Taken together, these findings provide insights into the complex c-di-GMP metabolism and showcase the importance of functional overlapping in bacterial signalling. Moreover, our approach overcomes the native redundancy in c-di-GMP synthesis, providing a framework to dissect individual DGC functions and paving the way for targeted strategies to address bacterial adaptation and pathogenesis.
Collapse
Affiliation(s)
- Román A. Martino
- Universidad Nacional de CórdobaFacultad de Ciencias Químicas, Departamento de Química Biológica Ranwel CaputtoCórdobaArgentina
- CONICET, Universidad Nacional de CórdobaCentro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC)CórdobaArgentina
| | - Daniel C. Volke
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
| | - Albano H. Tenaglia
- Universidad Nacional de CórdobaFacultad de Ciencias Químicas, Departamento de Química Biológica Ranwel CaputtoCórdobaArgentina
- CONICET, Universidad Nacional de CórdobaCentro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC)CórdobaArgentina
| | - Paula M. Tribelli
- Universidad de Buenos AiresFacultad de Ciencias Exactas y Naturales, Departamento de Química BiológicaBuenos AiresArgentina
- CONICET, Universidad de Buenos AiresInstituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)Buenos AiresArgentina
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
| | - Andrea M. Smania
- Universidad Nacional de CórdobaFacultad de Ciencias Químicas, Departamento de Química Biológica Ranwel CaputtoCórdobaArgentina
- CONICET, Universidad Nacional de CórdobaCentro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC)CórdobaArgentina
| |
Collapse
|
5
|
Cai YM, Hong F, De Craemer A, Malone JG, Crabbé A, Coenye T. Echinacoside reduces intracellular c-di-GMP levels and potentiates tobramycin activity against Pseudomonas aeruginosa biofilm aggregates. NPJ Biofilms Microbiomes 2025; 11:40. [PMID: 40055321 PMCID: PMC11889090 DOI: 10.1038/s41522-025-00673-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/25/2025] [Indexed: 05/13/2025] Open
Abstract
Cyclic diguanylate (c-di-GMP) is a central biofilm regulator in Pseudomonas aeruginosa, where increased intracellular levels promote biofilm formation and antibiotic tolerance. Targeting the c-di-GMP network may be a promising anti-biofilm approach, but most strategies studied so far aimed at eliminating surface-attached biofilms, while in vivo P. aeruginosa biofilms often occur as suspended aggregates. Here, the expression profile of c-di-GMP metabolism-related genes was analysed among 32 P. aeruginosa strains grown as aggregates in synthetic cystic fibrosis sputum. The diguanylate cyclase SiaD proved essential for auto-aggregation under in vivo-like conditions. Virtual screening predicted a high binding affinity of echinacoside towards the active site of SiaD. Echinacoside reduced c-di-GMP levels and aggregate sizes and potentiated tobramycin activity against aggregates in >80% of strains tested. This synergism was also observed in P. aeruginosa-infected 3-D alveolar epithelial cells and murine lungs, demonstrating echinacoside's potential as an adjunctive therapy for recalcitrant P. aeruginosa infections.
Collapse
Affiliation(s)
- Yu-Ming Cai
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, UK.
| | - Feng Hong
- Group of Microbiological Engineering and Biomedical Materials, College of Biological Science and Medical Engineering, Donghua University, North Ren Min Road 2999, 201620, Shanghai, China
- National Advanced Functional Fiber Innovation Centre, Wu Jiang, Su Zhou, China
| | - Amber De Craemer
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Jacob George Malone
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
6
|
Adade NE, Ahator SD, García-Romero I, Algarañás M, Appiah V, Valvano MA, Duodu S. Stress adaptation under in vitro evolution influences survival and metabolic phenotypes of clinical and environmental strains of Vibrio cholerae El-Tor. Microbiol Spectr 2025; 13:e0121124. [PMID: 39932327 PMCID: PMC11878068 DOI: 10.1128/spectrum.01211-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/12/2025] [Indexed: 03/05/2025] Open
Abstract
Bacterial adaptation to stress can lead to phenotypic variants with diverse levels of niche competitiveness, pathogenicity, and antimicrobial resistance. In this work, we employed experimental evolution to investigate whether exposure to various stress conditions results in new phenotypic and metabolic properties in clinical and environmental strains of Vibrio cholerae. Our findings revealed the emergence of variants with metabolic and genetic variations and enhanced survival under stress compared to the parental isolates. Phenotypic changes in the evolved variants included colony morphology, biofilm formation, and the appearance of proteolytic and hemolytic activities. The variants demonstrated metabolic changes in the preferred use of carbon, nitrogen, phosphorous, and sulfur substrates, while the genetic changes included single nucleotide polymorphisms (SNPs), breakpoints, translocations, and single nucleotide insertions and deletions. Mutations in genes encoding EAL and HD-GYP domain-containing proteins correlated with increased biofilm formation and different colony morphotypes. The combined analysis of the metabolic and genomic data pointed to pathways implicated in stress survival. The environmental strains were generally more pathogenic than the clinical strains in the Galleria mellonella infection model prior to the experimental evolution, and these differences did not change in the evolved variants. This study highlights the contribution of stress conditions as drivers for the evolution of genetic modifications and metabolic adaptation in V. cholerae, which may explain the continuous evolution of El-Tor biotype strains toward variants with improved survival in the environment.IMPORTANCEHow Vibrio cholerae, the causative agent of cholera, survives during the periods between outbreaks remains a critical question. Using experimental evolution based on serial bacterial passages in culture media mimicking diverse environmental stress conditions, we investigated whether clinical and environmental isolates of V. cholerae develop changes in survival and in their metabolism. The evolved variants exhibited alterations in colony morphology, biofilm formation, and metabolism, including changes in the preferred use of carbon, nitrogen, phosphorous, and sulfur substrates. These changes were accompanied by various genetic modifications, notably in genes encoding second messenger molecules that regulate multiple biochemical pathways implicated in stress survival and increased pathogenic potential. Our results suggest a continuous evolution of V. cholerae strains toward variants displaying increased survival under environmental stress conditions that may also be encountered in the human host.
Collapse
Affiliation(s)
- Nana Eghele Adade
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Infection Biology Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
- Department of Microbiology, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Stephen Dela Ahator
- Centre for New Antibacterial Strategies (CANS) and Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Inmaculada García-Romero
- Infection Biology Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Macarena Algarañás
- Laboratorio de Biofilms Microbianos, CINDEFI-UNLP-CONICET, CCT La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Vincent Appiah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Miguel A. Valvano
- Infection Biology Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Samuel Duodu
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
7
|
Neißner K, Keller H, Kirchner L, Düsterhus S, Duchardt-Ferner E, Averhoff B, Wöhnert J. The structural basis for high-affinity c-di-GMP binding to the GSPII-B domain of the traffic ATPase PilF from Thermus thermophilus. J Biol Chem 2025; 301:108041. [PMID: 39615687 PMCID: PMC11731258 DOI: 10.1016/j.jbc.2024.108041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
c-di-GMP is an important second messenger in bacteria regulating, for example motility, biofilm formation, cell wall biosynthesis, infectivity, and natural transformability. It binds to a multitude of intracellular receptors. This includes proteins containing general secretory pathway II (GSPII) domains such as the N-terminal domain of the Vibrio cholerae ATPase MshE (MshEN) which binds c-di-GMP with two copies of a 24-amino acids sequence motif. The traffic ATPase PilF from Thermus thermophilus is important for type IV pilus biogenesis, twitching motility, surface attachment, and natural DNA-uptake and contains three consecutive homologous GPSII domains. We show that only two of these domains bind c-di-GMP and define the structural basis for the exceptional high affinity of the GSPII-B domain for c-di-GMP, which is 83-fold higher than that of the prototypical MshEN domain. Our work establishes an extended consensus sequence for the c-di-GMP-binding motif and highlights the role of hydrophobic residues for high-affinity recognition of c-di-GMP. Our structure is the first example for a c-di-GMP-binding domain not relying on arginine residues for ligand recognition. We also show that c-di-GMP-binding induces local unwinding of an α-helical turn as well as subdomain reorientation to reinforce intermolecular contacts between c-di-GMP and the C-terminal subdomain. Abolishing c-di-GMP binding to GSPII-B reduces twitching motility and surface attachment but not natural DNA-uptake. Overall, our work contributes to a better characterization of c-di-GMP binding in this class of effector domains, allows the prediction of high-affinity c-di-GMP-binding family members, and advances our understanding of the importance of c-di-GMP binding for T4P-related functions.
Collapse
Affiliation(s)
- Konstantin Neißner
- Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt/M., Frankfurt, Germany
| | - Heiko Keller
- Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt/M., Frankfurt, Germany
| | - Lennart Kirchner
- Molecular Microbiology and Bioenergetics, Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany
| | - Stefanie Düsterhus
- Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany
| | - Elke Duchardt-Ferner
- Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt/M., Frankfurt, Germany
| | - Beate Averhoff
- Molecular Microbiology and Bioenergetics, Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt/M., Frankfurt, Germany.
| |
Collapse
|
8
|
Roberge NA, Burrows LL. Building permits-control of type IV pilus assembly by PilB and its cofactors. J Bacteriol 2024; 206:e0035924. [PMID: 39508682 PMCID: PMC11656802 DOI: 10.1128/jb.00359-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Many bacteria produce type IV pili (T4P), surfaced-exposed protein filaments that enable cells to interact with their environment and transition from planktonic to surface-adapted states. T4P are dynamic, undergoing rapid cycles of filament extension and retraction facilitated by a complex protein nanomachine powered by cytoplasmic motor ATPases. Dedicated assembly motors drive the extension of the pilus fiber into the extracellular space, but like any machine, this process is tightly organized. These motors are coordinated by various ligands and binding partners, which control or optimize their functional associations with T4P machinery before cells commit to the crucial first step of building a pilus. This review focuses on the molecular mechanisms that regulate T4P extension motor function. We discuss secondary messenger-dependent transcriptional or post-translational regulation acting both directly on the motor and through protein effectors. We also discuss the recent discoveries of naturally occurring extension inhibitors as well as alternative mechanisms of pilus assembly and motor-dependent signaling pathways. Given that T4P are important virulence factors for many bacterial pathogens, studying these motor regulatory systems will provide new insights into T4P-dependent physiology and efficient strategies to disable them.
Collapse
Affiliation(s)
- Nathan A. Roberge
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Lori L. Burrows
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Wu W, Kumar P, Brautigam CA, Tso SC, Baniasadi HR, Kober DL, Gilles-Gonzalez MA. Structures of the multi-domain oxygen sensor DosP: remote control of a c-di-GMP phosphodiesterase by a regulatory PAS domain. Nat Commun 2024; 15:9653. [PMID: 39511182 PMCID: PMC11543664 DOI: 10.1038/s41467-024-53942-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
The heme-based direct oxygen sensor DosP degrades c-di-GMP, a second messenger nearly unique to bacteria. In stationary phase Escherichia coli, DosP is the most abundant c-di-GMP phosphodiesterase. Ligation of O2 to a heme-binding PAS domain (hPAS) of the protein enhances the phosphodiesterase through an allosteric mechanism that has remained elusive. We determine six structures of full-length DosP in its aerobic or anaerobic conformations, with or without c-di-GMP. DosP is an elongated dimer with the regulatory heme containing domain and phosphodiesterase separated by nearly 180 Å. In the absence of substrate, regardless of the heme status, DosP presents an equilibrium of two distinct conformations. Binding of substrate induces DosP to adopt a single, ON-state or OFF-state conformation depending on its heme status. Structural and biochemical studies of this multi-domain sensor and its mutants provide insights into signal regulation of second-messenger levels.
Collapse
Affiliation(s)
- Wenbi Wu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Pankaj Kumar
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Chad A Brautigam
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shih-Chia Tso
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hamid R Baniasadi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daniel L Kober
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | | |
Collapse
|
10
|
Wu W, Kumar P, Brautigam CA, Tso SC, Baniasadi HR, Kober DL, Gilles-Gonzalez MA. Structures of the multi-domain oxygen sensor DosP: remote control of a c-di-GMP phosphodiesterase by a regulatory PAS domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604967. [PMID: 39091779 PMCID: PMC11291140 DOI: 10.1101/2024.07.24.604967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The heme-based direct oxygen sensor DosP degrades c-di-GMP, a second messenger nearly unique to bacteria. In stationary phase Escherichia coli, DosP is the most abundant c-di-GMP phosphodiesterase. Ligation of O2 to a heme-binding PAS domain (hPAS) of the protein enhances the phosphodiesterase through an allosteric mechanism that has remained elusive. We determined six structures of full-length DosP in its aerobic or anaerobic conformations, with or without c-di-GMP. DosP is an elongated dimer with the regulatory heme and phosphodiesterase separated by nearly 180 Å. In the absence of substrate, regardless of the heme status, DosP presents an equilibrium of two distinct conformations. Binding of substrate induces DosP to adopt a single, ON-state or OFF-state conformation depending on its heme status. Structural and biochemical studies of this multi-domain sensor and its mutants provide insights into signal regulation of second-messenger levels.
Collapse
Affiliation(s)
- Wenbi Wu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pankaj Kumar
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chad A. Brautigam
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shih-Chia Tso
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hamid R. Baniasadi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel L. Kober
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
11
|
Li X, Yin W, Lin JD, Zhang Y, Guo Q, Wang G, Chen X, Cui B, Wang M, Chen M, Li P, He YW, Qian W, Luo H, Zhang LH, Liu XW, Song S, Deng Y. Regulation of the physiology and virulence of Ralstonia solanacearum by the second messenger 2',3'-cyclic guanosine monophosphate. Nat Commun 2023; 14:7654. [PMID: 37996405 PMCID: PMC10667535 DOI: 10.1038/s41467-023-43461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Previous studies have demonstrated that bis-(3',5')-cyclic diguanosine monophosphate (bis-3',5'-c-di-GMP) is a ubiquitous second messenger employed by bacteria. Here, we report that 2',3'-cyclic guanosine monophosphate (2',3'-cGMP) controls the important biological functions, quorum sensing (QS) signaling systems and virulence in Ralstonia solanacearum through the transcriptional regulator RSp0980. This signal specifically binds to RSp0980 with high affinity and thus abolishes the interaction between RSp0980 and the promoters of target genes. In-frame deletion of RSp0334, which contains an evolved GGDEF domain with a LLARLGGDQF motif required to catalyze 2',3'-cGMP to (2',5')(3',5')-cyclic diguanosine monophosphate (2',3'-c-di-GMP), altered the abovementioned important phenotypes through increasing the intracellular 2',3'-cGMP levels. Furthermore, we found that 2',3'-cGMP, its receptor and the evolved GGDEF domain with a LLARLGGDEF motif also exist in the human pathogen Salmonella typhimurium. Together, our work provides insights into the unusual function of the GGDEF domain of RSp0334 and the special regulatory mechanism of 2',3'-cGMP signal in bacteria.
Collapse
Affiliation(s)
- Xia Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Wenfang Yin
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Junjie Desmond Lin
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yong Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Quan Guo
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Gerun Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xiayu Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Binbin Cui
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Mingfang Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Min Chen
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Peng Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institution of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Haibin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Lian-Hui Zhang
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Shihao Song
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China.
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
12
|
Khan F, Jeong GJ, Tabassum N, Kim YM. Functional diversity of c-di-GMP receptors in prokaryotic and eukaryotic systems. Cell Commun Signal 2023; 21:259. [PMID: 37749602 PMCID: PMC10519070 DOI: 10.1186/s12964-023-01263-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 09/27/2023] Open
Abstract
Cyclic bis-(3', 5')-dimeric guanosine monophosphate (c-di-GMP) is ubiquitous in many bacterial species, where it functions as a nucleotide-based secondary messenger and is a vital regulator of numerous biological processes. Due to its ubiquity, most bacterial species possess a wide range of downstream receptors that has a binding affinity to c-di-GMP and elicit output responses. In eukaryotes, several enzymes and riboswitches operate as receptors that interact with c-di-GMP and transduce cellular or environmental signals. This review examines the functional variety of receptors in prokaryotic and eukaryotic systems that exhibit distinct biological responses after interacting with c-di-GMP. Evolutionary relationships and similarities in distance among the c-di-GMP receptors in various bacterial species were evaluated to understand their specificities. Furthermore, residues of receptors involved in c-di-GMP binding are summarized. This review facilitates the understanding of how distinct receptors from different origins bind c-di-GMP equally well, yet fulfill diverse biological roles at the interspecies, intraspecies, and interkingdom levels. Furthermore, it also highlights c-di-GMP receptors as potential therapeutic targets, particularly those found in pathogenic microorganisms. Video Abstract.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
13
|
Ghosh M, Raghav S, Ghosh P, Maity S, Mohela K, Jain D. Structural analysis of novel drug targets for mitigation of Pseudomonas aeruginosa biofilms. FEMS Microbiol Rev 2023; 47:fuad054. [PMID: 37771093 DOI: 10.1093/femsre/fuad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen responsible for acute and chronic, hard to treat infections. Persistence of P. aeruginosa is due to its ability to develop into biofilms, which are sessile bacterial communities adhered to substratum and encapsulated in layers of self-produced exopolysaccharides. These biofilms provide enhanced protection from the host immune system and resilience towards antibiotics, which poses a challenge for treatment. Various strategies have been expended for combating biofilms, which involve inhibiting biofilm formation or promoting their dispersal. The current remediation approaches offer some hope for clinical usage, however, treatment and eradication of preformed biofilms is still a challenge. Thus, identifying novel targets and understanding the detailed mechanism of biofilm regulation becomes imperative. Structure-based drug discovery (SBDD) provides a powerful tool that exploits the knowledge of atomic resolution details of the targets to search for high affinity ligands. This review describes the available structural information on the putative target protein structures that can be utilized for high throughput in silico drug discovery against P. aeruginosa biofilms. Integrating available structural information on the target proteins in readily accessible format will accelerate the process of drug discovery.
Collapse
Affiliation(s)
- Moumita Ghosh
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Shikha Raghav
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Puja Ghosh
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Swagatam Maity
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Kavery Mohela
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| |
Collapse
|
14
|
The GGDEF-EAL protein CdgB from Azospirillum baldaniorum Sp245, is a dual function enzyme with potential polar localization. PLoS One 2022; 17:e0278036. [PMID: 36417483 PMCID: PMC9683572 DOI: 10.1371/journal.pone.0278036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
Azospirillum baldaniorum Sp245, a plant growth-promoting rhizobacterium, can form biofilms through a process controlled by the second messenger cyclic diguanylate monophosphate (c-di-GMP). A. baldaniorum has a variety of proteins potentially involved in controlling the turnover of c-di-GMP many of which are coupled to sensory domains that could be involved in establishing a mutualistic relationship with the host. Here, we present in silico analysis and experimental characterization of the function of CdgB (AZOBR_p410089), a predicted MHYT-PAS-GGDEF-EAL multidomain protein from A. baldaniorum Sp245. When overproduced, CdgB behaves predominantly as a c-di-GMP phosphodiesterase (PDE) in A. baldaniorum Sp245. It inhibits biofilm formation and extracellular polymeric substances production and promotes swimming motility. However, a CdgB variant with a degenerate PDE domain behaves as diguanylate cyclase (DGC). This strongly suggest that CdgB is capable of dual activity. Variants with alterations in the DGC domain and the MHYT domain negatively affects extracellular polymeric substances production and induction of swimming motility. Surprisingly, we observed that overproduction of CdgB results in increased c-di-GMP accumulation in the heterologous host Escherichia coli, suggesting under certain conditions, the WT CdgB variant can behave predominantly as a DGC. Furthermore, we also demonstrated that CdgB is anchored to the cell membrane and localizes potentially to the cell poles. This localization is dependent on the presence of the MHYT domain. In summary, our results suggest that CdgB can provide versatility to signaling modules that control motile and sessile lifestyles in response to key environmental signals in A. baldaniorum.
Collapse
|
15
|
Kharadi RR, Sundin GW. CsrD regulates amylovoran biosynthesis and virulence in Erwinia amylovora in a novel cyclic-di-GMP dependent manner. MOLECULAR PLANT PATHOLOGY 2022; 23:1154-1169. [PMID: 35396793 PMCID: PMC9276943 DOI: 10.1111/mpp.13217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Erwinia amylovora is an economically devastating plant pathogen that causes fire blight disease in members of the Rosaceae family, most notably in apple and pear. The exopolysaccharide amylovoran is a pathogenicity determinant in E. amylovora and a major component of the extracellular matrix of biofilms formed within the xylem vasculature of the host plant. The second messenger cyclic-di-GMP (c-di-GMP) has been reported to positively regulate the transcription of amsG (the first gene in the 12-gene amylovoran [ams] biosynthetic operon), thus impacting amylovoran production. However, the regulatory mechanism by which this interaction occurs is largely unknown. Here, we report that c-di-GMP can bind to specific residues in the EAL domain of the E. amylovora protein CsrD. CsrD and RNase E regulate the degradation of the sRNA CsrB in E. amylovora. When CsrD is bound to c-di-GMP, there is an enhancement in the level of RNase E-mediated degradation of CsrB, which then alters amsG transcription. Additionally, csrD was also found to positively contribute to virulence and biofilm formation. We thus present a pathway of conditional regulation of amylovoran production mediated by changing intracellular levels of c-di-GMP, which impacts disease progression.
Collapse
Affiliation(s)
- Roshni R. Kharadi
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - George W. Sundin
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
16
|
Eilers K, Kuok Hoong Yam J, Morton R, Mei Hui Yong A, Brizuela J, Hadjicharalambous C, Liu X, Givskov M, Rice SA, Filloux A. Phenotypic and integrated analysis of a comprehensive Pseudomonas aeruginosa PAO1 library of mutants lacking cyclic-di-GMP-related genes. Front Microbiol 2022; 13:949597. [PMID: 35935233 PMCID: PMC9355167 DOI: 10.3389/fmicb.2022.949597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium that is able to survive and adapt in a multitude of niches as well as thrive within many different hosts. This versatility lies within its large genome of ca. 6 Mbp and a tight control in the expression of thousands of genes. Among the regulatory mechanisms widespread in bacteria, cyclic-di-GMP signaling is one which influences all levels of control. c-di-GMP is made by diguanylate cyclases and degraded by phosphodiesterases, while the intracellular level of this molecule drives phenotypic responses. Signaling involves the modification of enzymes' or proteins' function upon c-di-GMP binding, including modifying the activity of regulators which in turn will impact the transcriptome. In P. aeruginosa, there are ca. 40 genes encoding putative DGCs or PDEs. The combined activity of those enzymes should reflect the overall c-di-GMP concentration, while specific phenotypic outputs could be correlated to a given set of dgc/pde. This notion of specificity has been addressed in several studies and different strains of P. aeruginosa. Here, we engineered a mutant library for the 41 individual dgc/pde genes in P. aeruginosa PAO1. In most cases, we observed a significant to slight variation in the global c-di-GMP pool of cells grown planktonically, while several mutants display a phenotypic impact on biofilm including initial attachment and maturation. If this observation of minor changes in c-di-GMP level correlating with significant phenotypic impact appears to be true, it further supports the idea of a local vs global c-di-GMP pool. In contrast, there was little to no effect on motility, which differs from previous studies. Our RNA-seq analysis indicated that all PAO1 dgc/pde genes were expressed in both planktonic and biofilm growth conditions and our work suggests that c-di-GMP networks need to be reconstructed for each strain separately and cannot be extrapolated from one to another.
Collapse
Affiliation(s)
- Kira Eilers
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Joey Kuok Hoong Yam
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Richard Morton
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Adeline Mei Hui Yong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jaime Brizuela
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
- Department of Medical Microbiology, Amsterdam UMC, Universitair Medische Centra, University of Amsterdam, Amsterdam, Netherlands
| | - Corina Hadjicharalambous
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
- Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Xianghui Liu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Michael Givskov
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Westmead and Microbiomes for One Systems Health, Melbourne, VIC, Australia
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
17
|
Yuan Y, Zhang F, Ai L, Huang Y, Peng R. Insight into the role of a novel c-di-GMP effector protein in Rhodococcus ruber. Biochem Biophys Res Commun 2022; 608:177-182. [DOI: 10.1016/j.bbrc.2022.03.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 11/02/2022]
|
18
|
Characterization of a Novel Regulator of Biofilm Formation in the Pathogen Legionella pneumophila. Biomolecules 2022; 12:biom12020225. [PMID: 35204726 PMCID: PMC8961574 DOI: 10.3390/biom12020225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
Legionella pneumophila is a Gram-negative, facultative intracellular pathogen that causes severe pneumonia known as Legionnaires’ disease. The bacterium causes disease when contaminated water is aerosolized and subsequently inhaled by individuals, which allows the bacteria to gain access to the lungs, where they infect alveolar macrophages. L. pneumophila is ubiquitous in the environment, where it survives by growing in biofilms, intracellularly within protozoa, and planktonically. Biofilms are a major concern for public health because they provide a protective niche that allows for the continuous leaching of bacteria into the water supply. In addition, biofilms enhance the survival of the bacteria by increasing resistance to temperature fluctuations and antimicrobial agents. Currently, there is little known about biofilm formation and regulation by L. pneumophila. Here, we present evidence of a specific gene, bffA, which appears to be involved in the regulation of motility, biofilm formation, cellular replication, and virulence of L. pneumophila. A strain lacking bffA has an enhanced biofilm formation phenotype, forming biofilms that are both faster and thicker than wild type. Additionally, the knockout strain has significantly reduced motility, enhanced uptake into amoebae, and altered growth kinetics on solid media. Our data suggest a potential role for bffA in signaling pathways that govern changes in growth rate and motility in response to environmental conditions.
Collapse
|
19
|
Park S, Sauer K. Controlling Biofilm Development Through Cyclic di-GMP Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:69-94. [PMID: 36258069 PMCID: PMC9891824 DOI: 10.1007/978-3-031-08491-1_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The cyclic di-GMP (c-di-GMP) second messenger represents a signaling system that regulates many bacterial behaviors and is of key importance for driving the lifestyle switch between motile loner cells and biofilm formers. This review provides an up-to-date summary of c-di-GMP pathways connected to biofilm formation by the opportunistic pathogen P. aeruginosa. Emphasis will be on the timing of c-di-GMP production over the course of biofilm formation, to highlight non-uniform and hierarchical increases in c-di-GMP levels, as well as biofilm growth conditions that do not conform with our current model of c-di-GMP.
Collapse
Affiliation(s)
- Soyoung Park
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
- Binghamton Biofilm Research Center (BBRC), Binghamton University, Binghamton, NY, USA
| | - Karin Sauer
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA.
- Binghamton Biofilm Research Center (BBRC), Binghamton University, Binghamton, NY, USA.
| |
Collapse
|
20
|
Cox CA, Bogacz M, El Abbar FM, Browning DD, Hsueh BY, Waters CM, Lee VT, Thompson SA. The Campylobacter jejuni Response Regulator and Cyclic-Di-GMP Binding CbrR Is a Novel Regulator of Flagellar Motility. Microorganisms 2021; 10:microorganisms10010086. [PMID: 35056537 PMCID: PMC8779298 DOI: 10.3390/microorganisms10010086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/19/2021] [Accepted: 12/29/2021] [Indexed: 01/03/2023] Open
Abstract
A leading cause of bacterial gastroenteritis, Campylobacter jejuni is also associated with broad sequelae, including extragastrointestinal conditions such as reactive arthritis and Guillain-Barré Syndrome (GBS). CbrR is a C. jejuni response regulator that is annotated as a diguanylate cyclase (DGC), an enzyme that catalyzes the synthesis of c-di-GMP, a universal bacterial second messenger, from GTP. In C. jejuni DRH212, we constructed an unmarked deletion mutant, cbrR-, and complemented mutant, cbrR+. Motility assays indicated a hyper-motile phenotype associated with cbrR-, whereas motility was deficient in cbrR+. The overexpression of CbrR in cbrR+ was accompanied by a reduction in expression of FlaA, the major flagellin. Biofilm assays and scanning electron microscopy demonstrated similarities between DRH212 and cbrR-; however, cbrR+ was unable to form significant biofilms. Transmission electron microscopy showed similar cell morphology between the three strains; however, cbrR+ cells lacked flagella. Differential radial capillary action of ligand assays (DRaCALA) showed that CbrR binds GTP and c-di-GMP. Liquid chromatography tandem mass spectrometry detected low levels of c-di-GMP in C. jejuni and in E. coli expressing CbrR. CbrR is therefore a negative regulator of FlaA expression and motility, a critical virulence factor in C. jejuni pathogenesis.
Collapse
Affiliation(s)
- Claudia A. Cox
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA; (C.A.C.); (M.B.); (F.M.E.A.)
| | - Marek Bogacz
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA; (C.A.C.); (M.B.); (F.M.E.A.)
| | - Faiha M. El Abbar
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA; (C.A.C.); (M.B.); (F.M.E.A.)
| | - Darren D. Browning
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA;
| | - Brian Y. Hsueh
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (B.Y.H.); (C.M.W.)
| | - Chris M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (B.Y.H.); (C.M.W.)
| | - Vincent T. Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA;
| | - Stuart A. Thompson
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA; (C.A.C.); (M.B.); (F.M.E.A.)
- Correspondence:
| |
Collapse
|
21
|
Llontop EE, Cenens W, Favaro DC, Sgro GG, Salinas RK, Guzzo CR, Farah CS. The PilB-PilZ-FimX regulatory complex of the Type IV pilus from Xanthomonas citri. PLoS Pathog 2021; 17:e1009808. [PMID: 34398935 PMCID: PMC8389850 DOI: 10.1371/journal.ppat.1009808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/26/2021] [Accepted: 07/17/2021] [Indexed: 11/19/2022] Open
Abstract
Type IV pili (T4P) are thin and flexible filaments found on the surface of a wide range of Gram-negative bacteria that undergo cycles of extension and retraction and participate in a variety of important functions related to lifestyle, defense and pathogenesis. During pilus extensions, the PilB ATPase energizes the polymerization of pilin monomers from the inner membrane. In Xanthomonas citri, two cytosolic proteins, PilZ and the c-di-GMP receptor FimX, are involved in the regulation of T4P biogenesis through interactions with PilB. In vivo fluorescence microscopy studies show that PilB, PilZ and FimX all colocalize to the leading poles of X. citri cells during twitching motility and that this colocalization is dependent on the presence of all three proteins. We demonstrate that full-length PilB, PilZ and FimX can interact to form a stable complex as can PilB N-terminal, PilZ and FimX C-terminal fragments. We present the crystal structures of two binary complexes: i) that of the PilB N-terminal domain, encompassing sub-domains ND0 and ND1, bound to PilZ and ii) PilZ bound to the FimX EAL domain within a larger fragment containing both GGDEF and EAL domains. Evaluation of PilZ interactions with PilB and the FimX EAL domain in these and previously published structures, in conjunction with mutagenesis studies and functional assays, allow us to propose an internally consistent model for the PilB-PilZ-FimX complex and its interactions with the PilM-PilN complex in the context of the inner membrane platform of the X. citri Type IV pilus.
Collapse
Affiliation(s)
- Edgar E. Llontop
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - William Cenens
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Denize C. Favaro
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Química Orgânica, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Germán G. Sgro
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Roberto K. Salinas
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Cristiane R. Guzzo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Chuck S. Farah
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Banerjee P, Sahoo PK, Sheenu, Adhikary A, Ruhal R, Jain D. Molecular and structural facets of c-di-GMP signalling associated with biofilm formation in Pseudomonas aeruginosa. Mol Aspects Med 2021; 81:101001. [PMID: 34311995 DOI: 10.1016/j.mam.2021.101001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/09/2021] [Accepted: 07/16/2021] [Indexed: 12/29/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen and is the primary cause of nosocomial infections. Biofilm formation by this organism results in chronic and hard to eradicate infections. The intracellular signalling molecule bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) is a secondary messenger in bacterial cells crucial for motile to sessile transition. The signalling pathway components encompass two classes of enzymes with antagonistic activities, the diguanylate cyclases (DGCs) and phosphodiesterases (PDEs) that regulate the cellular levels of c-di-GMP at distinct stages of biofilm initiation, maturation and dispersion. This review summarizes the structural analysis and functional studies of the DGCs and PDEs involved in biofilm regulation in P. aeruginosa. In addition, we also describe the effector proteins that sense the perturbations in c-di-GMP levels to elicit a functional output. Finally, we discuss possible mechanisms that allow the dynamic levels of c-di-GMP to regulate cognate cellular response. Uncovering the details of the regulation of the c-di-GMP signalling pathway is vital for understanding the behaviour of the pathogen and characterization of novel targets for anti-biofilm interventions.
Collapse
Affiliation(s)
- Priyajit Banerjee
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India; Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Pankaj Kumar Sahoo
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Sheenu
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Anirban Adhikary
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Rohit Ruhal
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India.
| |
Collapse
|
23
|
Three PilZ Domain Proteins, PlpA, PixA, and PixB, Have Distinct Functions in Regulation of Motility and Development in Myxococcus xanthus. J Bacteriol 2021; 203:e0012621. [PMID: 33875546 PMCID: PMC8316039 DOI: 10.1128/jb.00126-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In bacteria, the nucleotide-based second messenger bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) binds to effectors to generate outputs in response to changes in the environment. In Myxococcus xanthus, c-di-GMP regulates type IV pilus-dependent motility and the starvation-induced developmental program that results in formation of spore-filled fruiting bodies; however, little is known about the effectors that bind c-di-GMP. Here, we systematically inactivated all 24 genes encoding PilZ domain-containing proteins, which are among the most common c-di-GMP effectors. We confirm that the stand-alone PilZ domain protein PlpA is important for regulation of motility independently of the Frz chemosensory system and that Pkn1, which is composed of a Ser/Thr kinase domain and a PilZ domain, is specifically important for development. Moreover, we identify two PilZ domain proteins that have distinct functions in regulating motility and development. PixB, which is composed of two PilZ domains and an acetyltransferase domain, binds c-di-GMP in vitro and regulates type IV pilus-dependent and gliding motility in a Frz-dependent manner as well as development. The acetyltransferase domain is required and sufficient for function during growth, while all three domains and c-di-GMP binding are essential for PixB function during development. PixA is a response regulator composed of a PilZ domain and a receiver domain, binds c-di-GMP in vitro, and regulates motility independently of the Frz system, likely by setting up the polarity of the two motility systems. Our results support a model whereby PlpA, PixA, and PixB act in independent pathways and have distinct functions in regulation of motility. IMPORTANCE c-di-GMP signaling controls bacterial motility in many bacterial species by binding to downstream effector proteins. Here, we identify two PilZ domain-containing proteins in Myxococcus xanthus that bind c-di-GMP. We show that PixB, which contains two PilZ domains and an acetyltransferase domain, acts in a manner that depends on the Frz chemosensory system to regulate motility via the acetyltransferase domain, while the intact protein and c-di-GMP binding are essential for PixB to support development. In contrast, PixA acts in a Frz-independent manner to regulate motility. Taking our results together with previous observations, we conclude that PilZ domain proteins and c-di-GMP act in multiple independent pathways to regulate motility and development in M. xanthus.
Collapse
|
24
|
CRP-Like Transcriptional Regulator MrpC Curbs c-di-GMP and 3',3'-cGAMP Nucleotide Levels during Development in Myxococcus xanthus. mBio 2021; 13:e0004422. [PMID: 35164555 PMCID: PMC8844925 DOI: 10.1128/mbio.00044-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Myxococcus xanthus has a nutrient-regulated biphasic life cycle forming predatory swarms in the presence of nutrients and spore-filled fruiting bodies in the absence of nutrients. The second messenger 3'-5', 3'-5 cyclic di-GMP (c-di-GMP) is essential during both stages of the life cycle; however, different enzymes involved in c-di-GMP synthesis and degradation as well as several c-di-GMP receptors are important during distinct life cycle stages. To address this stage specificity, we determined transcript levels using transcriptome sequencing (RNA-seq) and transcription start sites using Cappable sequencing (Cappable-seq) during growth and development genome wide. All 70 genes encoding c-di-GMP-associated proteins were expressed, with 28 upregulated and 10 downregulated during development. Specifically, the three genes encoding enzymatically active proteins with a stage-specific function were expressed stage specifically. By combining operon mapping with published chromatin immunoprecipitation sequencing (ChIP-seq) data for MrpC (M. Robinson, B. Son, D. Kroos, L. Kroos, BMC Genomics 15:1123, 2014, http://dx.doi.org/10.1186/1471-2164-15-1123), the cAMP receptor protein (CRP)-like master regulator of development, we identified nine developmentally regulated genes as regulated by MrpC. In particular, MrpC directly represses the expression of dmxB, which encodes the diguanylate cyclase DmxB that is essential for development and responsible for the c-di-GMP increase during development. Moreover, MrpC directly activates the transcription of pmxA, which encodes a bifunctional phosphodiesterase that degrades c-di-GMP and 3',3'-cGAMP in vitro and is essential for development. Thereby, MrpC regulates and curbs the cellular pools of c-di-GMP and 3',3'-cGAMP during development. We conclude that temporal regulation of the synthesis of proteins involved in c-di-GMP metabolism contributes to c-di-GMP signaling specificity. MrpC is important for this regulation, thereby being a key regulator of developmental cyclic di-nucleotide metabolism in M. xanthus. IMPORTANCE The second messenger c-di-GMP is important during both stages of the nutrient-regulated biphasic life cycle of Myxococcus xanthus with the formation of predatory swarms in the presence of nutrients and spore-filled fruiting bodies in the absence of nutrients. However, different enzymes involved in c-di-GMP synthesis and degradation are important during distinct life cycle stages. Here, we show that the three genes encoding enzymatically active proteins with a stage-specific function are expressed stage specifically. Moreover, we find that the master transcriptional regulator of development MrpC directly regulates the expression of dmxB, which encodes the diguanylate cyclase DmxB that is essential for development, and of pmxA, which encodes a bifunctional phosphodiesterase that degrades c-di-GMP and 3',3'-cGAMP in vitro and is essential for development. We conclude that temporal regulation of the synthesis of proteins involved in c-di-GMP metabolism contributes to c-di-GMP signaling specificity and that MrpC plays an important role in this regulation.
Collapse
|
25
|
Shahbaz MU, Qian S, Yun F, Zhang J, Yu C, Tian F, Yang F, Chen H. Identification of the Regulatory Components Mediated by the Cyclic di-GMP Receptor Filp and Its Interactor PilZX3 and Functioning in Virulence of Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1196-1208. [PMID: 32720873 DOI: 10.1094/mpmi-04-20-0088-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The degenerate GGDEF/EAL domain protein Filp was previously shown to function as a cyclic di-GMP (c-di-GMP) signal receptor through its specific interaction with an atypical PilZ domain protein PilZX3 (formerly PXO_02715) and that this interaction is involved in regulating virulence in Xanthomonas oryzae pv. oryzae. As a step toward understanding the regulatory role of Filp/PilZX3-mediated c-di-GMP signaling in the virulence of X. oryzae pv. oryzae, differentially expressed proteins (DEPs) downstream of Filp/PilZX3 were identified by isobaric tagging for relative and absolute quantitation (iTRAQ). A total of 2,346 proteins were identified, of which 157 displayed significant differential expression in different strains. Western blot and quantitative reverse transcription-PCR analyses showed that the expression of HrrP (histidine kinase-response regulator hybrid protein), PhrP (PhoPQ-regulated protein), ProP (prophage Lp2 protein 6) were increased in the ∆filp, ∆pilZX3, and ∆filp∆pilZX3 mutant strains, while expression of CheW1 (chemotaxis protein CheW1), EdpX2 (the second EAL domain protein identified in X. oryzae pv. oryzae), HGdpX2 (the second HD-GYP domain protein identified in X. oryzae pv. oryzae) was decreased in all mutant strains compared with that in the wild type, which was consistent with the iTRAQ data. Deletion of the hrrP and proP genes resulted in significant increases in virulence, whereas deletion of the cheW1, hGdpX2, or tdrX2 genes resulted in decreased virulence. Enzyme assays indicated that EdpX2 and HGdpX2 were active phosphodiesterases (PDEs). This study provides a proteomic description of putative regulatory pathway of Filp and PilZX3 and characterized novel factors that contributed to the virulence of X. oryzae pv. oryzae regulated by c-di-GMP signaling.
Collapse
Affiliation(s)
- Muhammad Umar Shahbaz
- State Key Laboratory for Biology Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Plant Pathology Section, Plant Pathology Research Institute, AARI, Faisalabad 38850, Pakistan
| | - Shanshan Qian
- State Key Laboratory for Biology Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fei Yun
- National Tobacco Cultivation and Physiology and Biochemistry Research Centre/Key Laboratory for Tobacco Cultivation of Tobacco Industry, Henan Agricultural University, Zhengzhou 450002, China
| | - Jie Zhang
- State Key Laboratory for Biology Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chao Yu
- State Key Laboratory for Biology Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fang Tian
- State Key Laboratory for Biology Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fenghuan Yang
- State Key Laboratory for Biology Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huamin Chen
- State Key Laboratory for Biology Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
26
|
The small GTPase MglA together with the TPR domain protein SgmX stimulates type IV pili formation in M. xanthus. Proc Natl Acad Sci U S A 2020; 117:23859-23868. [PMID: 32900945 PMCID: PMC7519303 DOI: 10.1073/pnas.2004722117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many bacteria move across surfaces using type IV pili (T4P). The piliation pattern varies between species; however, the underlying mechanisms governing these patterns remain largely unknown. Here, we demonstrate that in the rod-shaped Myxococcus xanthus cells, the unipolar formation of T4P at the leading cell pole is the result of stimulation by the small GTPase MglA together with the effector protein SgmX, while MglB, the cognate MglA GTPase activating protein (GAP) that localizes to the lagging cell pole, blocks this stimulation at the lagging pole due to its GAP activity. During reversals, MglA/SgmX and MglB switch polarity, laying the foundation for T4P formation at the new leading cell pole and inhibition of T4P formation at the former leading cell pole. Bacteria can move across surfaces using type IV pili (T4P), which undergo cycles of extension, adhesion, and retraction. The T4P localization pattern varies between species; however, the underlying mechanisms are largely unknown. In the rod-shaped Myxococcus xanthus cells, T4P localize at the leading cell pole. As cells reverse their direction of movement, T4P are disassembled at the old leading pole and then form at the new leading pole. Thus, cells can form T4P at both poles but engage only one pole at a time in T4P formation. Here, we address how this T4P unipolarity is realized. We demonstrate that the small Ras-like GTPase MglA stimulates T4P formation in its GTP-bound state by direct interaction with the tetratricopeptide repeat (TPR) domain-containing protein SgmX. SgmX, in turn, is important for polar localization of the T4P extension ATPase PilB. The cognate MglA GTPase activating protein (GAP) MglB, which localizes mainly to the lagging cell pole, indirectly blocks T4P formation at this pole by stimulating the conversion of MglA-GTP to MglA-GDP. Based on these findings, we propose a model whereby T4P unipolarity is accomplished by stimulation of T4P formation at the leading pole by MglA-GTP and SgmX and indirect inhibition of T4P formation at the lagging pole by MglB due to its MglA GAP activity. During reversals, MglA, SgmX, and MglB switch polarity, thus laying the foundation for T4P formation at the new leading pole and inhibition of T4P formation at the new lagging pole.
Collapse
|
27
|
Structures of c-di-GMP/cGAMP degrading phosphodiesterase VcEAL: identification of a novel conformational switch and its implication. Biochem J 2020; 476:3333-3353. [PMID: 31647518 DOI: 10.1042/bcj20190399] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 01/02/2023]
Abstract
Cyclic dinucleotides (CDNs) have emerged as the central molecules that aid bacteria to adapt and thrive in changing environmental conditions. Therefore, tight regulation of intracellular CDN concentration by counteracting the action of dinucleotide cyclases and phosphodiesterases (PDEs) is critical. Here, we demonstrate that a putative stand-alone EAL domain PDE from Vibrio cholerae (VcEAL) is capable to degrade both the second messenger c-di-GMP and hybrid 3'3'-cyclic GMP-AMP (cGAMP). To unveil their degradation mechanism, we have determined high-resolution crystal structures of VcEAL with Ca2+, c-di-GMP-Ca2+, 5'-pGpG-Ca2+ and cGAMP-Ca2+, the latter provides the first structural basis of cGAMP hydrolysis. Structural studies reveal a typical triosephosphate isomerase barrel-fold with substrate c-di-GMP/cGAMP bound in an extended conformation. Highly conserved residues specifically bind the guanine base of c-di-GMP/cGAMP in the G2 site while the semi-conserved nature of residues at the G1 site could act as a specificity determinant. Two metal ions, co-ordinated with six stubbornly conserved residues and two non-bridging scissile phosphate oxygens of c-di-GMP/cGAMP, activate a water molecule for an in-line attack on the phosphodiester bond, supporting two-metal ion-based catalytic mechanism. PDE activity and biofilm assays of several prudently designed mutants collectively demonstrate that VcEAL active site is charge and size optimized. Intriguingly, in VcEAL-5'-pGpG-Ca2+ structure, β5-α5 loop adopts a novel conformation that along with conserved E131 creates a new metal-binding site. This novel conformation along with several subtle changes in the active site designate VcEAL-5'-pGpG-Ca2+ structure quite different from other 5'-pGpG bound structures reported earlier.
Collapse
|
28
|
Feng Q, Ahator SD, Zhou T, Liu Z, Lin Q, Liu Y, Huang J, Zhou J, Zhang LH. Regulation of Exopolysaccharide Production by ProE, a Cyclic-Di-GMP Phosphodiesterase in Pseudomonas aeruginosa PAO1. Front Microbiol 2020; 11:1226. [PMID: 32582123 PMCID: PMC7290235 DOI: 10.3389/fmicb.2020.01226] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/14/2020] [Indexed: 11/13/2022] Open
Abstract
The ubiquitous second messenger c-di-GMP is involved in regulation of multiple biological functions including the important extracellular matrix exopolysaccharides (EPS). But how c-di-GMP metabolic proteins influence EPS and their enzymatic properties are not fully understood. Here we showed that deletion of proE, which encodes a protein with GGDEF-EAL hybrid domains, significantly increased the transcriptional expression of the genes encoding EPS production in Pseudomonas aeruginosa PAO1 and changed the bacterial colony morphology. Our data showed that ProE is a very active phosphodiesterase (PDE), with a high enzyme activity in degradation of c-di-GMP. Interestingly, the optimal activity of ProE was found in the presence of Co2+, unlike other PDEs that commonly rely on Mg2+ or Mn2+ for best performance. Furthermore, we identified three widely conserved novel residues that are critical for the function of ProE through site-directed mutagenesis. Subsequent study showed that ProE, together with other three key PDEs, i.e., RbdA, BifA, and DipA regulate the EPS production in P. aeruginosa PAO1. Moreover, by using the GFP-fusion approach, we observed that these four EPS associated-PDEs showed a polar localization pattern in general. Taken together, our data unveil the molecular mechanisms of ProE in regulation of EPS production, and provide a new insight on its enzymatic properties in degradation of c-di-GMP.
Collapse
Affiliation(s)
- Qishun Feng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Stephen Dela Ahator
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Tian Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhiqing Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Qiqi Lin
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Yang Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Jiahui Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
29
|
Aline Dias da P, Nathalia Marins de A, Gabriel Guarany de A, Robson Francisco de S, Cristiane Rodrigues G. The World of Cyclic Dinucleotides in Bacterial Behavior. Molecules 2020; 25:molecules25102462. [PMID: 32466317 PMCID: PMC7288161 DOI: 10.3390/molecules25102462] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
The regulation of multiple bacterial phenotypes was found to depend on different cyclic dinucleotides (CDNs) that constitute intracellular signaling second messenger systems. Most notably, c-di-GMP, along with proteins related to its synthesis, sensing, and degradation, was identified as playing a central role in the switching from biofilm to planktonic modes of growth. Recently, this research topic has been under expansion, with the discoveries of new CDNs, novel classes of CDN receptors, and the numerous functions regulated by these molecules. In this review, we comprehensively describe the three main bacterial enzymes involved in the synthesis of c-di-GMP, c-di-AMP, and cGAMP focusing on description of their three-dimensional structures and their structural similarities with other protein families, as well as the essential residues for catalysis. The diversity of CDN receptors is described in detail along with the residues important for the interaction with the ligand. Interestingly, genomic data strongly suggest that there is a tendency for bacterial cells to use both c-di-AMP and c-di-GMP signaling networks simultaneously, raising the question of whether there is crosstalk between different signaling systems. In summary, the large amount of sequence and structural data available allows a broad view of the complexity and the importance of these CDNs in the regulation of different bacterial behaviors. Nevertheless, how cells coordinate the different CDN signaling networks to ensure adaptation to changing environmental conditions is still open for much further exploration.
Collapse
|
30
|
Ma GL, Chandra H, Liang ZX. Taming the flagellar motor of pseudomonads with a nucleotide messenger. Environ Microbiol 2020; 22:2496-2513. [PMID: 32329141 DOI: 10.1111/1462-2920.15036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 01/11/2023]
Abstract
Pseudomonads rely on the flagellar motor to rotate a polar flagellum for swimming and swarming, and to sense surfaces for initiating the motile-to-sessile transition to adopt a surface-dwelling lifestyle. Deciphering the function and regulation of the flagellar motor is of paramount importance for understanding the behaviours of environmental and pathogenic pseudomonads. Recent studies disclosed the preeminent role played by the messenger c-di-GMP in controlling the real-time performance of the flagellar motor in pseudomonads. The studies revealed that c-di-GMP controls the dynamic exchange of flagellar stator units to regulate motor torque/speed and modulates the frequency of flagellar motor switching via the chemosensory signalling pathways. Apart from being a rotary motor, the flagellar motor is emerging as a mechanosensor that transduces surface-induced mechanical signals into an increase of cellular c-di-GMP concentration to initiate the cellular programs required for long-term colonization. Collectively, the studies generate long-awaited mechanistic insights into how c-di-GMP regulates bacterial motility and the motile-to-sessile transition. The new findings also raise the fundamental questions of how cellular c-di-GMP concentrations are dynamically coupled to flagellar output and the proton-motive force, and how c-di-GMP signalling is coordinated spatiotemporally to fine-tune flagellar response and the behaviour of pseudomonads in solutions and on surfaces.
Collapse
Affiliation(s)
- Guang-Lei Ma
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, S637551, Singapore
| | - Hartono Chandra
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, S637551, Singapore
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, S637551, Singapore.,Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, S637551, Singapore
| |
Collapse
|
31
|
Cho KH, Tryon RG, Kim JH. Screening for Diguanylate Cyclase (DGC) Inhibitors Mitigating Bacterial Biofilm Formation. Front Chem 2020. [DOI: 10.3389/fchem.2020.00264 [doi link]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Cho KH, Tryon RG, Kim JH. Screening for Diguanylate Cyclase (DGC) Inhibitors Mitigating Bacterial Biofilm Formation. Front Chem 2020; 8:264. [PMID: 32373581 PMCID: PMC7186502 DOI: 10.3389/fchem.2020.00264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 03/18/2020] [Indexed: 01/08/2023] Open
Abstract
The majority of bacteria in the natural environment organize themselves into communal biofilms. Biofilm formation benefits bacteria conferring resistance to harmful molecules (e.g., antibiotics, disinfectants, and host immune factors) and coordinating their gene expression through quorum sensing (QS). A primary signaling molecule promoting bacterial biofilm formation is the universal second messenger cyclic di-GMP. This dinucleotide predominantly controls the gene expression of motility, adhesins, and capsule production to coordinate biofilm formation. Cyclic di-GMP is synthesized by diguanylate cyclases (DGCs) that have a GGDEF domain and is degraded by phosphodiesterases (PDEs) containing either an EAL or an HD-GYP domain. Since high cellular c-di-GMP concentrations are correlated with promoting the ability of bacteria to form biofilms, numerous research endeavors to identify chemicals capable of inhibiting the c-di-GMP synthesis activity of DGCs have been performed in order to inhibit bacterial biofilm formation. This review describes currently identified chemical inhibitors that disturb the activity of DGCs and the methods of screening and assay for their discovery.
Collapse
Affiliation(s)
- Kyu Hong Cho
- Department of Biology, Indiana State University, Terre Haute, IN, United States
| | - R Grant Tryon
- Department of Biology, Indiana State University, Terre Haute, IN, United States
| | - Jeong-Ho Kim
- Department of Biology and Chemistry, Liberty University, Lynchburg, VA, United States
| |
Collapse
|
33
|
CdbA is a DNA-binding protein and c-di-GMP receptor important for nucleoid organization and segregation in Myxococcus xanthus. Nat Commun 2020; 11:1791. [PMID: 32286293 PMCID: PMC7156744 DOI: 10.1038/s41467-020-15628-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/19/2020] [Indexed: 01/04/2023] Open
Abstract
Cyclic di-GMP (c-di-GMP) is a second messenger that modulates multiple responses to environmental and cellular signals in bacteria. Here we identify CdbA, a DNA-binding protein of the ribbon-helix-helix family that binds c-di-GMP in Myxococcus xanthus. CdbA is essential for viability, and its depletion causes defects in chromosome organization and segregation leading to a block in cell division. The protein binds to the M. xanthus genome at multiple sites, with moderate sequence specificity; however, its depletion causes only modest changes in transcription. The interactions of CdbA with c-di-GMP and DNA appear to be mutually exclusive and residue substitutions in CdbA regions important for c-di-GMP binding abolish binding to both c-di-GMP and DNA, rendering these protein variants non-functional in vivo. We propose that CdbA acts as a nucleoid-associated protein that contributes to chromosome organization and is modulated by c-di-GMP, thus revealing a link between c-di-GMP signaling and chromosome biology. The second messenger c-di-GMP modulates multiple responses to environmental and cellular signals in bacteria. Here, Skotnicka et al. identify a protein that binds c-di-GMP and contributes to chromosome organization and segregation in Myxococcus xanthus, with DNA-binding activity regulated by c-di-GMP.
Collapse
|
34
|
Cai YM, Hutchin A, Craddock J, Walsh MA, Webb JS, Tews I. Differential impact on motility and biofilm dispersal of closely related phosphodiesterases in Pseudomonas aeruginosa. Sci Rep 2020; 10:6232. [PMID: 32277108 PMCID: PMC7148300 DOI: 10.1038/s41598-020-63008-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 02/28/2020] [Indexed: 12/31/2022] Open
Abstract
In Pseudomonas aeruginosa, the transition between planktonic and biofilm lifestyles is modulated by the intracellular secondary messenger cyclic dimeric-GMP (c-di-GMP) in response to environmental conditions. Here, we used gene deletions to investigate how the environmental stimulus nitric oxide (NO) is linked to biofilm dispersal, focusing on biofilm dispersal phenotype from proteins containing putative c-di-GMP turnover and Per-Arnt-Sim (PAS) sensory domains. We document opposed physiological roles for the genes ΔrbdA and Δpa2072 that encode proteins with identical domain structure: while ΔrbdA showed elevated c-di-GMP levels, restricted motility and promoted biofilm formation, c-di-GMP levels were decreased in Δpa2072, and biofilm formation was inhibited, compared to wild type. A second pair of genes, ΔfimX and ΔdipA, were selected on the basis of predicted impaired c-di-GMP turnover function: ΔfimX showed increased, ΔdipA decreased NO induced biofilm dispersal, and the genes effected different types of motility, with reduced twitching for ΔfimX and reduced swimming for ΔdipA. For all four deletion mutants we find that NO-induced biomass reduction correlates with increased NO-driven swarming, underlining a significant role for this motility in biofilm dispersal. Hence P. aeruginosa is able to differentiate c-di-GMP output using structurally highly related proteins that can contain degenerate c-di-GMP turnover domains.
Collapse
Affiliation(s)
- Yu-Ming Cai
- National Biofilms Innovation Centre, University of Southampton, Southampton, SO17 1BJ, UK.,Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Andrew Hutchin
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.,Structure and Function of Biological Membranes Lab, Université Libre de Bruxelles, Boulevard du Triomphe, 1050, Bruxelles, Belgium
| | - Jack Craddock
- National Biofilms Innovation Centre, University of Southampton, Southampton, SO17 1BJ, UK.,Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Martin A Walsh
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.,Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0FA, UK
| | - Jeremy S Webb
- National Biofilms Innovation Centre, University of Southampton, Southampton, SO17 1BJ, UK.,Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ivo Tews
- National Biofilms Innovation Centre, University of Southampton, Southampton, SO17 1BJ, UK. .,Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
35
|
Chen M, Xu CY, Wang X, Ren CY, Ding J, Li L. Comparative genomics analysis of c-di-GMP metabolism and regulation in Microcystis aeruginosa. BMC Genomics 2020; 21:217. [PMID: 32151246 PMCID: PMC7063779 DOI: 10.1186/s12864-020-6591-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/19/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Cyanobacteria are of special concern because they proliferate in eutrophic water bodies worldwide and affect water quality. As an ancient photosynthetic microorganism, cyanobacteria can survive in ecologically diverse habitats because of their capacity to rapidly respond to environmental changes through a web of complex signaling networks, including using second messengers to regulate physiology or metabolism. A ubiquitous second messenger, bis-(3',5')-cyclic-dimeric-guanosine monophosphate (c-di-GMP), has been found to regulate essential behaviors in a few cyanobacteria but not Microcystis, which are the most dominant species in cyanobacterial blooms. In this study, comparative genomics analysis was performed to explore the genomic basis of c-di-GMP signaling in Microcystis aeruginosa. RESULTS Proteins involved in c-di-GMP metabolism and regulation, such as diguanylate cyclases, phosphodiesterases, and PilZ-containing proteins, were encoded in M. aeruginosa genomes. However, the number of identified protein domains involved in c-di-GMP signaling was not proportional to the size of M. aeruginosa genomes (4.97 Mb in average). Pan-genome analysis showed that genes involved in c-di-GMP metabolism and regulation are conservative in M. aeruginosa strains. Phylogenetic analysis showed good congruence between the two types of phylogenetic trees based on 31 highly conserved protein-coding genes and sensor domain-coding genes. Propensity for gene loss analysis revealed that most of genes involved in c-di-GMP signaling are stable in M. aeruginosa strains. Moreover, bioinformatics and structure analysis of c-di-GMP signal-related GGDEF and EAL domains revealed that they all possess essential conserved amino acid residues that bind the substrate. In addition, it was also found that all selected M. aeruginosa genomes encode PilZ domain containing proteins. CONCLUSIONS Comparative genomics analysis of c-di-GMP metabolism and regulation in M. aeruginosa strains helped elucidating the genetic basis of c-di-GMP signaling pathways in M. aeruginosa. Knowledge of c-di-GMP metabolism and relevant signal regulatory processes in cyanobacteria can enhance our understanding of their adaptability to various environments and bloom-forming mechanism.
Collapse
Affiliation(s)
- Meng Chen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Chun-Yang Xu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Xu Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Chong-Yang Ren
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Jiao Ding
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Li Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
- Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, China
| |
Collapse
|
36
|
Nicastro GG, Kaihami GH, Pulschen AA, Hernandez-Montelongo J, Boechat AL, de Oliveira Pereira T, Rosa CGT, Stefanello E, Colepicolo P, Bordi C, Baldini RL. c-di-GMP-related phenotypes are modulated by the interaction between a diguanylate cyclase and a polar hub protein. Sci Rep 2020; 10:3077. [PMID: 32080219 PMCID: PMC7033161 DOI: 10.1038/s41598-020-59536-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/30/2020] [Indexed: 01/19/2023] Open
Abstract
c-di-GMP is a major player in the switch between biofilm and motile lifestyles. Several bacteria exhibit a large number of c-di-GMP metabolizing proteins, thus a fine-tuning of this nucleotide levels may occur. It is hypothesized that some c-di-GMP metabolizing proteins would provide the global c-di-GMP levels inside the cell whereas others would maintain a localized pool, with the resulting c-di-GMP acting at the vicinity of its production. Although attractive, this hypothesis has yet to be demonstrated in Pseudomonas aeruginosa. We found that the diguanylate cyclase DgcP interacts with the cytosolic region of FimV, a polar peptidoglycan-binding protein involved in type IV pilus assembly. Moreover, DgcP is located at the cell poles in wild type cells but scattered in the cytoplasm of cells lacking FimV. Overexpression of dgcP leads to the classical phenotypes of high c-di-GMP levels (increased biofilm and impaired motilities) in the wild-type strain, but not in a ΔfimV background. Therefore, our findings suggest that DgcP activity is regulated by FimV. The polar localization of DgcP might contribute to a local c-di-GMP pool that can be sensed by other proteins at the cell pole, bringing to light a specialized function for a specific diguanylate cyclase.
Collapse
Affiliation(s)
- Gianlucca G Nicastro
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Gilberto H Kaihami
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - André A Pulschen
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Jacobo Hernandez-Montelongo
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Ciencias Matemáticas y Físicas, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
| | - Ana Laura Boechat
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Caio Gomes Tavares Rosa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Eliezer Stefanello
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Pio Colepicolo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Regina L Baldini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
37
|
Chouhan OP, Roske Y, Heinemann U, Biswas S. Structure of the active GGEEF domain of a diguanylate cyclase from Vibrio cholerae. Biochem Biophys Res Commun 2019; 523:287-292. [PMID: 31862141 DOI: 10.1016/j.bbrc.2019.11.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 01/05/2023]
Abstract
Cyclic-di-GMP (c-di-GMP) synthesized by diguanylate cyclases has been an important and ubiquitous secondary messenger in almost all bacterial systems. In Vibrio cholerae, c-di-GMP plays an intricate role in the production of the exopolysaccharide matrix, and thereby, in biofilm formation. The formation of the surface biofilm enables the bacteria to survive in aquatic bodies, when not infecting a human host. Diguanylate cyclases are the class of enzymes which synthesize c-di-GMP from two molecules of GTP and are endowed with a GGDEF or, a GGEEF signature domain. The VC0395_0300 protein from V. cholerae, has been established as a diguanylate cyclase with a necessary role in biofilm formation. Here we present the structure of an N-terminally truncated form of VC0395_0300, which retains the active GGEEF domain for diguanylate cyclase activity but lacks 160 residues from the poorly organized N-terminal domain. X-ray diffraction data was collected from a crystal of VC0395_0300(161-321) to a resolution of 1.9 Å. The structure displays remarkable topological similarity with diguanylate cyclases from other bacterial systems, but lacks the binding site for c-di-GMP present in its homologues. Finally, we demonstrate the ability of the truncated diguanylate cyclase VC0395_0300(161-321) to produce c-di-GMP, and its role in biofilm formation for the bacteria.
Collapse
Affiliation(s)
| | - Yvette Roske
- Macromolecular Structure and Interaction Laboratory, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Udo Heinemann
- Macromolecular Structure and Interaction Laboratory, Max Delbrück Center for Molecular Medicine, Berlin, Germany; Chemistry and Biochemistry Institute, Freie Universität, Berlin, Germany
| | - Sumit Biswas
- ViStA Lab, BITS, Pilani - K K Birla Goa Campus, Zuarinagar, Goa, India.
| |
Collapse
|
38
|
Been KW, Yoon HJ, Jeon ST, Lee HH. Structural characterization of a putative diguanylate cyclase conserved in hyperthermophiles. Biochem Biophys Res Commun 2019; 518:114-119. [PMID: 31420168 DOI: 10.1016/j.bbrc.2019.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
C-di-GMP, bis-(3'-5')-cyclic dimeric guanosine monophosphate, is a key signaling molecule that regulates many important physiological processes in bacteria. C-di-GMP is synthesized by diguanylate cyclase (DGC) containing the homodimeric GGDEF domain. There are many uncharacterized hypothetical proteins annotated as a putative DGC in bacteria including hyperthermophiles; however, their structures still remain unexplored. Here, we solved the crystal structure of the GGDEF-like domain of Tm0107 protein from Thermotoga maritima at a resolution of 2.1 Å, which shares sequence similarities with DGC proteins in other bacteria. Tm0107 consists of an N-terminal coiled-coil and C-terminal GGDEF-like domain. We showed that the GGDEF-like domain of Tm0107 exists as monomer in solution and is structurally similar to other GGDEF domains. Two zinc ions are coordinated at the interface between two Tm0107 monomers. Based on our measurements of the Stokes radii of Tm0107 by analytical gel filtration, we propose a dimer model of Tm0107 containing both the N-terminal coiled coil and C-terminal GGDEF-like domains. Based on the model, Tm0107 forms a homodimer in a manner different compared to other structurally characterized DGC proteins. These results provide useful structural information about putative DGC proteins containing protein sequences similar to that of Tm0107, which is widely conserved in hyperthermophiles.
Collapse
Affiliation(s)
- Kyung Wook Been
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Taeg Jeon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
39
|
Yang F, Xue D, Tian F, Hutchins W, Yang CH, He C. Identification of c-di-GMP Signaling Components in Xanthomonas oryzae and Their Orthologs in Xanthomonads Involved in Regulation of Bacterial Virulence Expression. Front Microbiol 2019; 10:1402. [PMID: 31354637 PMCID: PMC6637768 DOI: 10.3389/fmicb.2019.01402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 06/04/2019] [Indexed: 11/13/2022] Open
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight of rice, one of the most devastating bacterial diseases of this staple crop worldwide. Xoo produces a range of virulence-related factors to facilitate its pathogenesis in rice, however, the regulatory mechanisms of Xoo virulence expression have been not fully elucidated. Recent studies have revealed that virulence factor production is regulated via cyclic dimeric guanosine monophosphate (c-di-GMP) signaling pathway that is well-conserved in Xoo and other Xanthomonas species. A set of GGDEF, EAL, HD-GYP, and PilZ domain proteins with diverse signal sensory domains for c-di-GMP synthesis, hydrolysis, and binding is encoded in the Xoo genome. Bioinformatic, genetic, and biochemical analysis has identified an array of diguanylate cyclases (DGCs) and phosphodiesterases (PDEs), as well as degenerate GGDEF/EAL, PilZ domain proteins along with a transcription regulator. These signaling components have been characterized to regulate various bacterial cellular processes, such as virulence, exopolysaccharide (EPS) production, biofilm formation, motility, and adaptation at the transcriptional, post-translational, and protein-protein interaction levels. This review summarized the recent progress in understanding the importance and complexity of c-di-GMP signaling in regulating bacterial virulence expression, highlighting the identified key signal elements and orthologs found in Xanthomonads, discussing the diverse functions of GGDEF/EAL/HD-GYP domains, existence of a complicated multifactorial network between DGCs, PDEs, and effectors, and further exploration of the new c-di-GMP receptor domains. These findings and knowledge lay the groundwork for future experimentation to further elucidate c-di-GMP regulatory circuits involved in regulation of bacterial pathogenesis.
Collapse
Affiliation(s)
- Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dingrong Xue
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - William Hutchins
- Department of Biology, Carthage College, Kenosha, WI, United States
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Chenyang He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
40
|
Nonato MC, de Pádua RA, David JS, Reis RA, Tomaleri GP, D'Muniz Pereira H, Calil FA. Structural basis for the design of selective inhibitors for Schistosoma mansoni dihydroorotate dehydrogenase. Biochimie 2019; 158:180-190. [DOI: 10.1016/j.biochi.2019.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/10/2019] [Indexed: 10/27/2022]
|
41
|
McCallum M, Burrows LL, Howell PL. The Dynamic Structures of the Type IV Pilus. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0006-2018. [PMID: 30825300 PMCID: PMC11588161 DOI: 10.1128/microbiolspec.psib-0006-2018] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Indexed: 01/09/2023] Open
Abstract
Type IV pilus (T4P)-like systems have been identified in almost every major phylum of prokaryotic life. They include the type IVa pilus (T4aP), type II secretion system (T2SS), type IVb pilus (T4bP), Tad/Flp pilus, Com pilus, and archaeal flagellum (archaellum). These systems are used for adhesion, natural competence, phage adsorption, folded-protein secretion, surface sensing, swimming motility, and twitching motility. The T4aP allows for all of these functions except swimming and is therefore a good model system for understanding T4P-like systems. Recent structural analyses have revolutionized our understanding of how the T4aP machinery assembles and functions. Here we review the structure and function of the T4aP.
Collapse
Affiliation(s)
- Matthew McCallum
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - P Lynne Howell
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
42
|
Mantoni F, Paiardini A, Brunotti P, D'Angelo C, Cervoni L, Paone A, Cappellacci L, Petrelli R, Ricciutelli M, Leoni L, Rampioni G, Arcovito A, Rinaldo S, Cutruzzolà F, Giardina G. Insights into the GTP-dependent allosteric control of c-di-GMP hydrolysis from the crystal structure of PA0575 protein from Pseudomonas aeruginosa. FEBS J 2018; 285:3815-3834. [PMID: 30106221 DOI: 10.1111/febs.14634] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/25/2018] [Accepted: 08/10/2018] [Indexed: 11/30/2022]
Abstract
Bis-(3'-5')-cyclic diguanylic acid (c-di-GMP) belongs to the class of cyclic dinucleotides, key carriers of cellular information in prokaryotic and eukaryotic signal transduction pathways. In bacteria, the intracellular levels of c-di-GMP and their complex physiological outputs are dynamically regulated by environmental and internal stimuli, which control the antagonistic activities of diguanylate cyclases (DGCs) and c-di-GMP specific phosphodiesterases (PDEs). Allostery is one of the major modulators of the c-di-GMP-dependent response. Both the c-di-GMP molecule and the proteins interacting with this second messenger are characterized by an extraordinary structural plasticity, which has to be taken into account when defining and possibly predicting c-di-GMP-related processes. Here, we report a structure-function relationship study on the catalytic portion of the PA0575 protein from Pseudomonas aeruginosa, bearing both putative DGC and PDE domains. The kinetic and structural studies indicate that the GGDEF-EAL portion is a GTP-dependent PDE. Moreover, the crystal structure confirms the high degree of conformational flexibility of this module. We combined structural analysis and protein engineering studies to propose the possible molecular mechanism guiding the nucleotide-dependent allosteric control of catalysis; we propose that the role exerted by GTP via the GGDEF domain is to allow the two EAL domains to form a dimer, the species competent to enter PDE catalysis.
Collapse
Affiliation(s)
- Federico Mantoni
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Italy.,Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Italy.,Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Paolo Brunotti
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Italy
| | - Cecilia D'Angelo
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Italy
| | - Laura Cervoni
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Italy
| | | | - Riccardo Petrelli
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Italy
| | | | - Livia Leoni
- Department of Science, University Roma Tre, Italy
| | | | - Alessandro Arcovito
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Italy.,Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Italy.,Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Italy.,Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
43
|
Madsen JS, Hylling O, Jacquiod S, Pécastaings S, Hansen LH, Riber L, Vestergaard G, Sørensen SJ. An intriguing relationship between the cyclic diguanylate signaling system and horizontal gene transfer. ISME JOURNAL 2018; 12:2330-2334. [PMID: 29899518 DOI: 10.1038/s41396-018-0183-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/11/2018] [Accepted: 03/20/2018] [Indexed: 11/09/2022]
Abstract
The second messenger cyclic diguanylate (c-di-GMP) is ubiquitously used by bacteria to modulate and shift between different phenotypes including motility, biofilm formation and virulence. Here we show that c-di-GMP-associated genes are widespread on plasmids and that enzymes that synthesize or degrade c-di-GMP are preferentially encoded on transmissible plasmids. Additionally, expression of enzymes that synthesize c-di-GMP was found to increase both biofilm formation and, interestingly, conjugative plasmid transfer rates.
Collapse
Affiliation(s)
- Jonas S Madsen
- Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
| | - Ole Hylling
- Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark.,Department of Environment Sciences, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Samuel Jacquiod
- Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
| | - Sophia Pécastaings
- Laboratoire de Génie Chimique UMR 5503, BioSym Department, Université Paul Sabatier, Université de Toulouse, 35 chemin des Maraîchers, 31062, Toulouse, France
| | - Lars H Hansen
- Department of Environment Sciences, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Leise Riber
- Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
| | - Gisle Vestergaard
- Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
| | - Søren J Sørensen
- Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
44
|
Gourinchas G, Heintz U, Winkler A. Asymmetric activation mechanism of a homodimeric red light-regulated photoreceptor. eLife 2018; 7:e34815. [PMID: 29869984 PMCID: PMC6005682 DOI: 10.7554/elife.34815] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/03/2018] [Indexed: 12/18/2022] Open
Abstract
Organisms adapt to environmental cues using diverse signaling networks. In order to sense and integrate light for regulating various biological functions, photoreceptor proteins have evolved in a modular way. This modularity is targeted in the development of optogenetic tools enabling the control of cellular events with high spatiotemporal precision. However, the limited understanding of signaling mechanisms impedes the rational design of innovative photoreceptor-effector couples. Here, we reveal molecular details of signal transduction in phytochrome-regulated diguanylyl cyclases. Asymmetric structural changes of the full-length homodimer result in a functional heterodimer featuring two different photoactivation states. Structural changes around the cofactors result in a quasi-translational rearrangement of the distant coiled-coil sensor-effector linker. Eventually, this regulates enzymatic activity by modulating the dimer interface of the output domains. Considering the importance of phytochrome heterodimerization in plant signaling, our mechanistic details of asymmetric photoactivation in a bacterial system reveal novel aspects of the evolutionary adaptation of phytochromes.
Collapse
Affiliation(s)
| | - Udo Heintz
- Max Planck Institute for Medical ResearchHeidelbergGermany
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of TechnologyGrazAustria
| |
Collapse
|
45
|
Opoku-Temeng C, Sintim HO. Targeting c-di-GMP Signaling, Biofilm Formation, and Bacterial Motility with Small Molecules. Methods Mol Biol 2018; 1657:419-430. [PMID: 28889311 DOI: 10.1007/978-1-4939-7240-1_31] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteria possess several signaling molecules that regulate distinct phenotypes. Cyclic di-GMP (c-di-GMP) has emerged as a ubiquitous second messenger that regulates bacterial virulence, cell cycle, motility, and biofilm formation. The link between c-di-GMP signaling and biofilm formation affords novel strategies for treatment of biofilm-associated infections, which is a major public health problem. The complex c-di-GMP signaling pathway creates a hurdle in the development of small molecule modulators. Nonetheless, some progress has been made in this regard and inhibitors of c-di-GMP metabolizing enzymes that affect biofilm formation and motility have been documented. Herein we discuss the components of c-di-GMP signaling, their correlation with biofilm formation as well as motility and reported small molecule inhibitors of c-di-GMP signaling.
Collapse
Affiliation(s)
- Clement Opoku-Temeng
- Purdue Institute for Drug Discovery, Purdue University, 500 Oval Drive, West Lafayette, IN, 47907, USA.,Biochemistry Graduate Program, University of Maryland, College Park, MD, 20742, USA.,Department of Chemistry, Center for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - Herman O Sintim
- Purdue Institute for Drug Discovery, Purdue University, 500 Oval Drive, West Lafayette, IN, 47907, USA. .,Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA. .,Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN, 47907, USA.
| |
Collapse
|
46
|
Isothermal Titration Calorimetry to Determine Apparent Dissociation Constants (K d) and Stoichiometry of Interaction (n) of C-di-GMP Binding Proteins. Methods Mol Biol 2018; 1657:403-416. [PMID: 28889310 DOI: 10.1007/978-1-4939-7240-1_30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Isothermal titration calorimetry (ITC) is a commonly used biophysical technique that enables the quantitative characterization of intermolecular interactions in solution. Based on enthalpy changes (ΔH) upon titration of the binding partner (e.g., a small-molecule ligand such as c-di-GMP) to the molecule of interest (e.g., a receptor protein), the resulting binding isotherms provide information on the equilibrium association/dissociation constants (K a, K d) and stoichiometry of binding (n), as well as on changes in the Gibbs free energy (ΔG) and entropy (ΔS) along the interaction. Here we present ITC experiments used for the characterization of c-di-GMP binding proteins and discuss advantages and potential caveats in the interpretation of results.
Collapse
|
47
|
A Multimodal Strategy Used by a Large c-di-GMP Network. J Bacteriol 2018; 200:JB.00703-17. [PMID: 29311282 DOI: 10.1128/jb.00703-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/31/2017] [Indexed: 01/05/2023] Open
Abstract
The Pseudomonas fluorescens genome encodes more than 50 proteins predicted to be involved in c-di-GMP signaling. Here, we demonstrated that, tested across 188 nutrients, these enzymes and effectors appeared capable of impacting biofilm formation. Transcriptional analysis of network members across ∼50 nutrient conditions indicates that altered gene expression can explain a subset of but not all biofilm formation responses to the nutrients. Additional organization of the network is likely achieved through physical interaction, as determined via probing ∼2,000 interactions by bacterial two-hybrid assays. Our analysis revealed a multimodal regulatory strategy using combinations of ligand-mediated signals, protein-protein interaction, and/or transcriptional regulation to fine-tune c-di-GMP-mediated responses. These results create a profile of a large c-di-GMP network that is used to make important cellular decisions, opening the door to future model building and the ability to engineer this complex circuitry in other bacteria.IMPORTANCE Cyclic diguanylate (c-di-GMP) is a key signaling molecule regulating bacterial biofilm formation, and many microbes have up to dozens of proteins that make, break, or bind this dinucleotide. A major open issue in the field is how signaling specificity is conferred in the unpartitioned space of a bacterial cell. Here, we took a systems approach, using mutational analysis, transcriptional studies, and bacterial two-hybrid analysis to interrogate this network. We found that a majority of enzymes are capable of impacting biofilm formation in a context-dependent manner, and we revealed examples of two or more modes of regulation (i.e., transcriptional control with protein-protein interaction) being utilized to generate an observable impact on biofilm formation.
Collapse
|
48
|
Insights into Biofilm Dispersal Regulation from the Crystal Structure of the PAS-GGDEF-EAL Region of RbdA from Pseudomonas aeruginosa. J Bacteriol 2018; 200:JB.00515-17. [PMID: 29109186 DOI: 10.1128/jb.00515-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/26/2017] [Indexed: 01/02/2023] Open
Abstract
RbdA is a positive regulator of biofilm dispersal of Pseudomonas aeruginosa Its cytoplasmic region (cRbdA) comprises an N-terminal Per-ARNT-Sim (PAS) domain followed by a diguanylate cyclase (GGDEF) domain and an EAL domain, whose phosphodiesterase activity is allosterically stimulated by GTP binding to the GGDEF domain. We report crystal structures of cRbdA and of two binary complexes: one with GTP/Mg2+ bound to the GGDEF active site and one with the EAL domain bound to the c-di-GMP substrate. These structures unveil a 2-fold symmetric dimer stabilized by a closely packed N-terminal PAS domain and a noncanonical EAL dimer. The autoinhibitory switch is formed by an α-helix (S-helix) immediately N-terminal to the GGDEF domain that interacts with the EAL dimerization helix (α6-E) of the other EAL monomer and maintains the protein in a locked conformation. We propose that local conformational changes in cRbdA upon GTP binding lead to a structure with the PAS domain and S-helix shifted away from the GGDEF-EAL domains, as suggested by small-angle X-ray scattering (SAXS) experiments. Domain reorientation should be facilitated by the presence of an α-helical lever (H-helix) that tethers the GGDEF and EAL regions, allowing the EAL domain to rearrange into an active dimeric conformation.IMPORTANCE Biofilm formation by bacterial pathogens increases resistance to antibiotics. RbdA positively regulates biofilm dispersal of Pseudomonas aeruginosa The crystal structures of the cytoplasmic region of the RbdA protein presented here reveal that two evolutionarily conserved helices play an important role in regulating the activity of RbdA, with implications for other GGDEF-EAL dual domains that are abundant in the proteomes of several bacterial pathogens. Thus, this work may assist in the development of small molecules that promote bacterial biofilm dispersal.
Collapse
|
49
|
Wang B, Wang Z, Javornik U, Xi Z, Plavec J. Computational and NMR spectroscopy insights into the conformation of cyclic di-nucleotides. Sci Rep 2017; 7:16550. [PMID: 29185472 PMCID: PMC5707406 DOI: 10.1038/s41598-017-16794-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/17/2017] [Indexed: 11/13/2022] Open
Abstract
Cyclic di-nucleotides (CDNs) are second messengers in bacteria and metazoan that are as such controlling important biological processes. Here the conformational space of CDNs was explored systematically by a combination of extensive conformational search and DFT calculations as well as NMR methods. We found that CDNs adopt pre-organized conformations in solution in which the ribose conformations are North type and glycosidic bond conformations are anti type. The overall flexibility of CDNs as well as the backbone torsion angles depend on the cyclization of the phosphodiester bond. Compared to di-nucleotides, CDNs display high rigidity in the macrocyclic moieties. Structural comparison studies demonstrate that the pre-organized conformations of CDNs highly resemble the biologically active conformations. These findings provide information for the design of small molecules to modulate CDNs signalling pathways in bacteria or as vaccine adjuvants. The rigidity of the backbone of CDNs enables the design of high order structures such as molecular cages based on CDNs analogues.
Collapse
Affiliation(s)
- Baifan Wang
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Zhenghua Wang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300071, P. R. China
| | - Uroš Javornik
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300071, P. R. China.
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia.
- EN-FIST Center of Excellence, Trg OF 13, 1000, Ljubljana, Slovenia.
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana, Slovenia.
| |
Collapse
|
50
|
Schumacher MA, Zeng W, Findlay KC, Buttner MJ, Brennan RG, Tschowri N. The Streptomyces master regulator BldD binds c-di-GMP sequentially to create a functional BldD2-(c-di-GMP)4 complex. Nucleic Acids Res 2017; 45:6923-6933. [PMID: 28449057 PMCID: PMC5499655 DOI: 10.1093/nar/gkx287] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/12/2017] [Indexed: 01/05/2023] Open
Abstract
Streptomyces are ubiquitous soil bacteria that undergo a complex developmental transition coinciding with their production of antibiotics. This transition is controlled by binding of a novel tetrameric form of the second messenger, 3΄-5΄ cyclic diguanylic acid (c-di-GMP) to the master repressor, BldD. In all domains of life, nucleotide-based second messengers allow a rapid integration of external and internal signals into regulatory pathways that control cellular responses to changing conditions. c-di-GMP can assume alternative oligomeric states to effect different functions, binding to effector proteins as monomers, intercalated dimers or, uniquely in the case of BldD, as a tetramer. However, at physiological concentrations c-di-GMP is a monomer and little is known about how higher oligomeric complexes assemble on effector proteins and if intermediates in assembly pathways have regulatory significance. Here, we show that c-di-GMP binds BldD using an ordered, sequential mechanism and that BldD function necessitates the assembly of the BldD2-(c-di-GMP)4 complex.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27701, USA
| | - Wenjie Zeng
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27701, USA
| | - Kim C Findlay
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Mark J Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard G Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27701, USA
| | - Natalia Tschowri
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|