1
|
Sharma N, Sharma N, Biswas A, Gupta S, Behura A, Rodriguez GM. Iron-restricted Mycobacterium tuberculosis exports pathogenicity factors packed in extracellular vesicles. PLoS One 2025; 20:e0324919. [PMID: 40445943 PMCID: PMC12124568 DOI: 10.1371/journal.pone.0324919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 05/02/2025] [Indexed: 06/02/2025] Open
Abstract
Mycobacterium tuberculosis, the pathogen responsible for human tuberculosis, responds to iron limitation by increasing the production of extracellular vesicles. This study examined the protein composition of induced M. tuberculosis extracellular membrane vesicles using chromatography coupled with mass spectrometry. The results revealed that vesicles contain key pathogenicity factors, including proteins that enhance bacterial survival, immune evasion, and inflammation. These findings deepen our understanding of the potential role of extracellular vesicles in M. tuberculosis-host interactions. The data can also aid in identifying new biomarkers of infection and developing vesicle-based, culture-independent TB diagnostic platforms.
Collapse
Affiliation(s)
- Nishant Sharma
- The Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Nevadita Sharma
- The Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Ashis Biswas
- The Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Shamba Gupta
- The Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Assirbad Behura
- The Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Gloria Marcela Rodriguez
- The Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| |
Collapse
|
2
|
Jain M, Vyas R. Unveiling the silent defenders: mycobacterial stress sensors at the forefront to combat tuberculosis. Crit Rev Biotechnol 2025:1-19. [PMID: 39880585 DOI: 10.1080/07388551.2024.2449367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/12/2024] [Accepted: 09/14/2024] [Indexed: 01/31/2025]
Abstract
The global escalation in tuberculosis (TB) cases accompanied by the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis (M.tb) emphasizes the critical requirement for novel potent drugs. The M.tb demonstrates extraordinary adaptability, thriving in diverse conditions, and always finds itself in win-win situations regardless of whether the environment is favorable or unfavorable; no matter the magnitude of the challenge, it can endure and survive. This review aims to uncover the role of multiple stress sensors of M.tb that assist bacteria in remaining viable within the host for years against various physiological stresses offered by the host. M.tb is an exceptionally triumphant pathogen, primarily due to its adeptness in developing defense mechanisms against stressful situations. The recent advances emphasize the significance of M.tb stress sensors, including chaperones, proteases, transcription factors, riboswitches, inteins, etc., employed in responding to a spectrum of physiological stresses imposed by the host, encompassing surface stress, host immune responses, osmotic stress, oxidative and nitrosative stresses, cell envelope stress, environmental stress, reductive stress, and drug pressure. These sensors act as silent defenders orchestrating adaptive strategies, with limited comprehensive information in current literature, necessitating a focused review. The M.tb strategies utilizing these stress sensors to mitigate the impact of traumatic conditions demand attention to neutralize this pathogen effectively. Moreover, the intricacies of these stress sensors provide potential targets to design an effective TB drug using structure-based drug design against this formidable global health threat.
Collapse
Affiliation(s)
- Manya Jain
- Department of Life Sciences, Shiv Nadar Institution of Eminence (Deemed to be University), Gautam Buddha Nagar, Uttar Pradesh, India
| | - Rajan Vyas
- Department of Life Sciences, Shiv Nadar Institution of Eminence (Deemed to be University), Gautam Buddha Nagar, Uttar Pradesh, India
| |
Collapse
|
3
|
Brenner EP, Sreevatsan S. Attenuated but immunostimulatory Mycobacterium tuberculosis variant bovis strain Ravenel shows variation in T cell epitopes. Sci Rep 2023; 13:12402. [PMID: 37524777 PMCID: PMC10390569 DOI: 10.1038/s41598-023-39578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis complex (MTBC) organisms, affects a range of humans and animals globally. Mycobacterial pathogenesis involves manipulation of the host immune system, partially through antigen presentation. Epitope sequences across the MTBC are evolutionarily hyperconserved, suggesting their recognition is advantageous for the bacterium. Mycobacterium tuberculosis var. bovis (MBO) strain Ravenel is an isolate known to provoke a robust immune response in cattle, but typically fails to produce lesions and persist. Unlike attenuated MBO BCG strains that lack the critical RD1 genomic region, Ravenel is classic-type MBO structurally, suggesting genetic variation is responsible for defective pathogenesis. This work explores variation in epitope sequences in MBO Ravenel by whole genome sequencing, and contrasts such variation against a fully virulent clinical isolate, MBO strain 10-7428. Validated MTBC epitopes (n = 4818) from the Immune Epitope Database were compared to their sequences in MBO Ravenel and MBO 10-7428. Ravenel yielded 3 modified T cell epitopes, in genes rpfB, argC, and rpoA. These modifications were predicted to have little effect on protein stability. In contrast, T cells epitopes in 10-7428 were all WT. Considering T cell epitope hyperconservation across MTBC variants, these altered MBO Ravenel epitopes support their potential contribution to overall strain attenuation. The affected genes may provide clues on basic pathogenesis, and if so, be feasible targets for reverse vaccinology.
Collapse
Affiliation(s)
- Evan P Brenner
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, East Lansing, MI, 48824, USA
| | - Srinand Sreevatsan
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, East Lansing, MI, 48824, USA.
| |
Collapse
|
4
|
Colombatti Olivieri MA, Fresia P, Graña M, Cuerda MX, Nagel A, Alvarado Pinedo F, Romano MI, Caimi K, Berná L, Santangelo MP. Genomic comparison of two strains of Mycobacterium avium subsp. paratuberculosis with contrasting pathogenic phenotype. Tuberculosis (Edinb) 2023; 138:102299. [PMID: 36587510 DOI: 10.1016/j.tube.2022.102299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
In a previous study, we evaluated the degree of virulence of Mycobacterium avium subsp. paratuberculosis (Map) strains isolated from cattle in Argentina in a murine model. This assay allowed us to differentiate between high-virulent MapARG1347 and low-virulent MapARG1543 strains. To corroborate whether the differences in virulence could be attributed to genetic differences between the strains, we performed Whole Genome Sequencing and compared the genomes and gene content between them and determined the differences related to the reference strain MapK10. We found 233 SNPs/INDELS in one or both strains relative to Map K10. The two strains share most of the variations, but we found 15 mutations present in only one of the strains. Considering NS-SNP/INDELS that produced a severe effect in the coding sequence, we focus the analysis on four predicted proteins, putatively related to virulence. Survival of MapARG1347 strain in bMDM was higher than MapARG1543 and was more resistant to acidic pH and H2O2 stresses than MapK10. The genomic differences between the two strains found in genes MAP1203 (a putative peptidoglycan hydrolase), MAP0403 (a putative serine protease) MAP1003c (a member of the PE-PPE family) and MAP4152 (a putative mycofactocin binding protein) could contribute to explain the contrasting phenotype previously observed in mice models.
Collapse
Affiliation(s)
- M A Colombatti Olivieri
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Dr. Nicolás Repetto y De Los Reseros S/Nº B1686IGC, Hurlingham, Buenos Aires, Argentina.
| | - P Fresia
- Unidad Mixta Pasteur+INIA, Institut Pasteur de Montevideo, Mataojo 2020, CP11400, Montevideo, Uruguay.
| | - M Graña
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Mataojo 2020, CP11400, Montevideo, Uruguay.
| | - M X Cuerda
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Dr. Nicolás Repetto y De Los Reseros S/Nº B1686IGC, Hurlingham, Buenos Aires, Argentina.
| | - A Nagel
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Dr. Nicolás Repetto y De Los Reseros S/Nº B1686IGC, Hurlingham, Buenos Aires, Argentina.
| | - F Alvarado Pinedo
- Centro de Diagnóstico e Investigaciones Veterinarias (CEDIVE), Facultad de Ciencias Veterinarias - Universidad de La Plata (UNLP), Chascomus, Buenos Aires, Argentina.
| | - M I Romano
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Dr. Nicolás Repetto y De Los Reseros S/Nº B1686IGC, Hurlingham, Buenos Aires, Argentina.
| | - K Caimi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Dr. Nicolás Repetto y De Los Reseros S/Nº B1686IGC, Hurlingham, Buenos Aires, Argentina.
| | - L Berná
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay.
| | - M P Santangelo
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Dr. Nicolás Repetto y De Los Reseros S/Nº B1686IGC, Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
5
|
García-González G, Ascacio-Martínez JÁ, Hernández-Bello R, González GM, Palma-Nicolás JP. Expression of recombinant protease MarP from Mycobacterium tuberculosis in Pichia pastoris and its effect on human monocytes. Biotechnol Lett 2021; 43:1787-1798. [PMID: 34028659 DOI: 10.1007/s10529-021-03149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Mycobacterial acid-resistant protease (MarP) is a membrane-associated serine protease involved in the survival of Mycobacterium tuberculosis in macrophages; here we produced MarP in the yeast Pichia pastoris and study its involvement in macrophage immune modulation. RESULTS Pichia pastoris vectors, harboring a full-length or a partial sequence of MarP, were constructed. GS115 clones were selected, and homologous recombination at the AOX1 locus was assessed by PCR. Protein was purified by nickel affinity chromatography, and its effect on the cytokine profile was tested in human monocytes. Only the partial MarP protein (121-397 a.a.) lacking the transmembrane domain was successfully expressed as an N-glycosylated proteolytically active protease. In vitro stimulation of THP-1 cells with MarP promoted the release of TNF-α and IL-10. CONCLUSION Mycobacterial MarP was successfully expressed in P. pastoris, and it is capable of cytokine release in vitro.
Collapse
Affiliation(s)
- Gerardo García-González
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Ave. Francisoco I. Madero y Dr. Eduardo Aguirre Pequeño s/n, Col. Mitras Centro, C.P. 64460, Monterrey, Nuevo León, Mexico
| | - Jorge Ángel Ascacio-Martínez
- Departamento de Bioquímica y medicina molecular, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Romel Hernández-Bello
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Ave. Francisoco I. Madero y Dr. Eduardo Aguirre Pequeño s/n, Col. Mitras Centro, C.P. 64460, Monterrey, Nuevo León, Mexico
| | - Gloria María González
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Ave. Francisoco I. Madero y Dr. Eduardo Aguirre Pequeño s/n, Col. Mitras Centro, C.P. 64460, Monterrey, Nuevo León, Mexico
| | - José Prisco Palma-Nicolás
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Ave. Francisoco I. Madero y Dr. Eduardo Aguirre Pequeño s/n, Col. Mitras Centro, C.P. 64460, Monterrey, Nuevo León, Mexico.
| |
Collapse
|
6
|
Liu H, Dang G, Zang X, Cai Z, Cui Z, Song N, Liu S. Characterization and pathogenicity of extracellular serine protease MAP3292c from Mycobacterium avium subsp. paratuberculosis. Microb Pathog 2020; 142:104055. [PMID: 32058021 DOI: 10.1016/j.micpath.2020.104055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/08/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Abstract
Serine protease is the virulence factor of many pathogens. However, there are no prevailing data available for serine protease as a virulence factor derived from Mycobacterium avium subsp. paratuberculosis (MAP). The MAP3292c gene from MAP, the predicted serine protease, was expressed in Escherichia coli and characterized by biochemical methods. MAP3292c protein efficiently hydrolyzed casein at optimal temperature and pH of 41 °C and 9.0, respectively. Furthermore, divalent metal ions of Ca2+ significantly promoted the protease activity of MAP3292c, and MAP3292c had autocleavage activity between serine 86 and asparagine 87. Site-directed mutagenesis studies showed that the serine 238 residue had catalytic roles in MAP3292c. Furthermore, a BALB/c mouse model confirmed that MAP3292c significantly promoted the survival of Mycobacterium smegmatis in vivo; caused damage to the liver, spleen, and lung; and promoted the release of inflammatory cytokines IL-1β, IL-6, and TNF-α in mice. Finally, we confirmed that MAP3292c was relevant to mycobacterial pathogenicity.
Collapse
Affiliation(s)
- Hongxiu Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, PR China
| | - Guanghui Dang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, PR China
| | - Xinxin Zang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, PR China
| | - Zhuming Cai
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, PR China
| | - Ziyin Cui
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, PR China
| | - Ningning Song
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, PR China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, PR China.
| |
Collapse
|
7
|
Shahbaaz M, Potemkin V, Grishina M, Bisetty K, Hassan I. The structural basis of acid resistance in Mycobacterium tuberculosis: insights from multiple pH regime molecular dynamics simulations. J Biomol Struct Dyn 2019; 38:4483-4492. [PMID: 31625457 DOI: 10.1080/07391102.2019.1682676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The dormant Mycobacterium tuberculosis is evolved to develop the tolerance against the acidification of phagolysosome by the action of gamma interferon. The molecular mechanism responsible for the development of the resistance towards the acidic conditions in M. tuberculosis is not fully understood. Therefore, the current analysis was performed which studies the mechanism of acid tolerance by correlating the alteration in the protonation state of conserved residues in virulent proteins with changes in their folding states. The pH dependencies of proteins were studied using an efficient computational scheme which enables the understanding of their conformational behavior by molecular dynamics (MD) simulations. The adopted methodology involves cyclically updating of the ionization states of titrable residues in the studied proteins with conventional MD steps, which were applied to the newly generated ionization configuration. Significant pH-dependent protein structural stability parameters consistent with the changes of the protonation states of conserved residues were observed. Among the studied proteins, the peptidoglycan binding protein ompATB, carboxylesterase LipF and two-component systems' transcriptional regulator PhoP showed highest structural conservation in the observed acidic pH range throughout the course of MD simulations. The current study provides a better understanding of acid tolerance mechanisms present in M. tuberculosis and can facilitate the drug development strategies against the dormant protein targets.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Shahbaaz
- South African National Bioinformatics Institute, University of the Western Cape, Bellville, Cape Town, South Africa.,Laboratory of Computational Modeling of Drugs, South Ural State University, Chelyabinsk, Russia
| | - Vladimir Potemkin
- Laboratory of Computational Modeling of Drugs, South Ural State University, Chelyabinsk, Russia
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, South Ural State University, Chelyabinsk, Russia
| | - Krishna Bisetty
- Department of Chemistry, Durban University of Technology, Durban, South Africa
| | - Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
8
|
Squeglia F, Moreira M, Ruggiero A, Berisio R. The Cell Wall Hydrolytic NlpC/P60 Endopeptidases in Mycobacterial Cytokinesis: A Structural Perspective. Cells 2019; 8:cells8060609. [PMID: 31216697 PMCID: PMC6628586 DOI: 10.3390/cells8060609] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
In preparation for division, bacteria replicate their DNA and segregate the newly formed chromosomes. A division septum then assembles between the chromosomes, and the mother cell splits into two identical daughters due to septum degradation. A major constituent of bacterial septa and of the whole cell wall is peptidoglycan (PGN), an essential cell wall polymer, formed by glycan chains of β−(1-4)-linked-N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc), cross-linked by short peptide stems. Depending on the amino acid located at the third position of the peptide stem, PGN is classified as either Lys-type or meso-diaminopimelic acid (DAP)-type. Hydrolytic enzymes play a crucial role in the degradation of bacterial septa to split the cell wall material shared by adjacent daughter cells to promote their separation. In mycobacteria, a key PGN hydrolase, belonging to the NlpC/P60 endopeptidase family and denoted as RipA, is responsible for the degradation of septa, as the deletion of the gene encoding for this enzyme generates abnormal bacteria with multiple septa. This review provides an update of structural and functional data highlighting the central role of RipA in mycobacterial cytokinesis and the fine regulation of its catalytic activity, which involves multiple molecular partners.
Collapse
Affiliation(s)
- Flavia Squeglia
- Institute of Biostructures and Bioimaging (IBB), CNR, 80134 Naples, Italy.
| | - Miguel Moreira
- Institute of Biostructures and Bioimaging (IBB), CNR, 80134 Naples, Italy.
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging (IBB), CNR, 80134 Naples, Italy.
| | - Rita Berisio
- Institute of Biostructures and Bioimaging (IBB), CNR, 80134 Naples, Italy.
| |
Collapse
|
9
|
Nguyen TTH, Myrold DD, Mueller RS. Distributions of Extracellular Peptidases Across Prokaryotic Genomes Reflect Phylogeny and Habitat. Front Microbiol 2019; 10:413. [PMID: 30891022 PMCID: PMC6411800 DOI: 10.3389/fmicb.2019.00413] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/18/2019] [Indexed: 11/19/2022] Open
Abstract
Proteinaceous compounds are abundant forms of organic nitrogen in soil and aquatic ecosystems, and the rate of protein depolymerization, which is accomplished by a diverse range of microbial secreted peptidases, often limits nitrogen turnover in the environment. To determine if the distribution of secreted peptidases reflects the ecological and evolutionary histories of different taxa, we analyzed their distribution across prokaryotic lineages. Peptidase gene sequences of 147 archaeal and 2,191 bacterial genomes from the MEROPS database were screened for secretion signals, resulting in 55,072 secreted peptidases belonging to 148 peptidase families. These data, along with their corresponding 16S rRNA sequences, were used in our analysis. Overall, Bacteria had a much wider collection of secreted peptidases, higher average numbers of secreted peptidases per genome, and more unique peptidase families than Archaea. We found that the distribution of secreted peptidases corresponded to phylogenetic relationships among Bacteria and Archaea and often segregated according to microbial lifestyles, suggesting that the secreted peptidase complements of microbial taxa are optimized for the environmental microhabitats they occupy. Our analyses provide the groundwork for examining the specific functional role of families of secreted peptidases in relationship to the organisms and the corresponding environments in which they function.
Collapse
Affiliation(s)
- Trang T. H. Nguyen
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| | - David D. Myrold
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| | - Ryan S. Mueller
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
10
|
Early J, Ollinger J, Darby C, Alling T, Mullen S, Casey A, Gold B, Ochoada J, Wiernicki T, Masquelin T, Nathan C, Hipskind PA, Parish T. Identification of Compounds with pH-Dependent Bactericidal Activity against Mycobacterium tuberculosis. ACS Infect Dis 2019; 5:272-280. [PMID: 30501173 PMCID: PMC6371205 DOI: 10.1021/acsinfecdis.8b00256] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
To find new inhibitors of Mycobacterium tuberculosis that have novel mechanisms of
action, we miniaturized a high throughput
screen to identify compounds that disrupt pH homeostasis. We adapted
and validated a 384-well format assay to determine intrabacterial
pH using a ratiometric green fluorescent protein. We screened 89000
small molecules under nonreplicating conditions and confirmed 556
hits that reduced intrabacterial pH (below pH 6.5). We selected five
compounds that disrupt intrabacterial pH homeostasis and also showed
some activity against nonreplicating bacteria in a 4-stress model,
but with no (or greatly reduced) activity against replicating bacteria.
The compounds selected were two benzamide sulfonamides, a benzothiadiazole,
a bissulfone, and a thiadiazole, none of which are known antibacterial
agents. All of these five compounds demonstrated bactericidal activity
against nonreplicating bacteria in buffer. Four of the five compounds
demonstrated increased activity under low pH conditions. None of the
five compounds acted as ionophores or as general disrupters of membrane
potential. These compounds are useful starting points for work to
elucidate their mechanism of action and their utility for drug discovery.
Collapse
Affiliation(s)
- Julie Early
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue E, Suite 400, Seattle, Washington 98102, United States
| | - Juliane Ollinger
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue E, Suite 400, Seattle, Washington 98102, United States
| | - Crystal Darby
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, Box 62, New York, New York 10065, United States
| | - Torey Alling
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue E, Suite 400, Seattle, Washington 98102, United States
| | - Steven Mullen
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue E, Suite 400, Seattle, Washington 98102, United States
| | - Allen Casey
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue E, Suite 400, Seattle, Washington 98102, United States
| | - Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, Box 62, New York, New York 10065, United States
| | - Jason Ochoada
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46285, United States
| | - Todd Wiernicki
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46285, United States
| | - Thierry Masquelin
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46285, United States
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, Box 62, New York, New York 10065, United States
| | - Philip A. Hipskind
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46285, United States
| | - Tanya Parish
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue E, Suite 400, Seattle, Washington 98102, United States
| |
Collapse
|
11
|
Wu H, Zhao Y, Du Y, Miao S, Liu J, Li Y, Caiyin Q, Qiao J. Quantitative proteomics of Lactococcus lactis F44 under cross-stress of low pH and lactate. J Dairy Sci 2018; 101:6872-6884. [DOI: 10.3168/jds.2018-14594] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022]
|
12
|
Ouertani A, Chaabouni I, Mosbah A, Long J, Barakat M, Mansuelle P, Mghirbi O, Najjari A, Ouzari HI, Masmoudi AS, Maresca M, Ortet P, Gigmes D, Mabrouk K, Cherif A. Two New Secreted Proteases Generate a Casein-Derived Antimicrobial Peptide in Bacillus cereus Food Born Isolate Leading to Bacterial Competition in Milk. Front Microbiol 2018; 9:1148. [PMID: 29915567 PMCID: PMC5994558 DOI: 10.3389/fmicb.2018.01148] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/14/2018] [Indexed: 02/05/2023] Open
Abstract
Milk and dairy products harbor a wide variety of bacterial species that compete for both limited resources and space. Under these competitive conditions, bacteria develop specialized mechanisms to protect themselves during niche colonization and nutrient acquisition processes. The bacterial antagonism mechanisms include the production of antimicrobial agents or molecules that facilitate competitor dispersal. In the present work, a bacterial strain designated RC6 was isolated from Ricotta and identified as Bacillus cereus. It generates antimicrobial peptide (AMP) when grown in the presence of casein. The AMP was active against several species of Bacillus and Listeria monocytogenes. MALDI-TOF analysis of the RP-HPLC purified fractions and amino acid sequencing revealed a molecular mass of 751 Da comprised of a 6-residue sequence, YPVEPF. BLAST analysis showed that the AMP corresponds to the fractions 114-119 of bovine β-casein and represents the product of a specific proteolysis. Analysis of the purified proteolytic fractions from the B. cereus RC6 culture supernatant indicated that the presence of at least two different endoproteases is crucial for the generation of the AMP. Indeed, we were able to identify two new candidate endoproteases by means of genome sequencing and functional assignment using a 3D structural model and molecular docking of misannotated hypothetical proteins. In this light, the capacity of B. cereus RC6 to generate antimicrobial peptides from casein, through the production of extracellular enzymes, presents a new model of antagonistic competition leading to niche colonization. Hence, as a dairy product contaminant, this strategy may enable proteolytic B. cereus RC6 niche specialization in milk matrices.
Collapse
Affiliation(s)
- Awatef Ouertani
- Université de la Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
- Aix Marseille University, Centre National de la Recherche Scientifique, ICR UMR 7273, Marseille, France
| | - Ines Chaabouni
- Université de la Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Amor Mosbah
- Université de la Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Justine Long
- Aix-Marseille University, CEA, Centre National de la Recherche Scientifique, LEMiRE, UMR 7265, BIAM, Saint-Paul-lez-Durance, France
| | - Mohamed Barakat
- Aix-Marseille University, CEA, Centre National de la Recherche Scientifique, LEMiRE, UMR 7265, BIAM, Saint-Paul-lez-Durance, France
| | - Pascal Mansuelle
- Aix Marseille Univ, Centre National de la Recherche Scientifique, IMM, Plate-Forme Protéomique, MaP IBiSA Labelled, Marseille, France
| | - Olfa Mghirbi
- Université de la Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
- Aix Marseille University, Centre National de la Recherche Scientifique, ICR UMR 7273, Marseille, France
| | - Afef Najjari
- Université Tunis El Manar, FST, LMBA (LR03ES03), Campus Universitaire, Tunis, Tunisia
| | - Hadda-Imene Ouzari
- Université Tunis El Manar, FST, LMBA (LR03ES03), Campus Universitaire, Tunis, Tunisia
| | - Ahmed S. Masmoudi
- Université de la Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Marc Maresca
- Aix-Marseille University, Centre National de la Recherche Scientifique, Centrale Marseille, iSm2, Marseille, France
| | - Philippe Ortet
- Aix-Marseille University, CEA, Centre National de la Recherche Scientifique, LEMiRE, UMR 7265, BIAM, Saint-Paul-lez-Durance, France
| | - Didier Gigmes
- Aix Marseille University, Centre National de la Recherche Scientifique, ICR UMR 7273, Marseille, France
| | - Kamel Mabrouk
- Aix Marseille University, Centre National de la Recherche Scientifique, ICR UMR 7273, Marseille, France
| | - Ameur Cherif
- Université de la Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
| |
Collapse
|
13
|
Abstract
The Mycobacterium tuberculosis (Mtb) serine protease Hip1 (hydrolase important for pathogenesis; Rv2224c) promotes tuberculosis (TB) pathogenesis by impairing host immune responses through proteolysis of a protein substrate, Mtb GroEL2. The cell surface localization of Hip1 and its immunomodulatory functions make Hip1 a good drug target for new adjunctive immune therapies for TB. Here, we report the crystal structure of Hip1 to a resolution of 2.6 Å and the kinetic studies of the enzyme against model substrates and the protein GroEL2. The structure shows a two-domain protein, one of which contains the catalytic residues that are the signature of a serine protease. Surprisingly, a threonine is located within the active site close enough to hydrogen bond with the catalytic residues Asp463 and His490. Mutation of this residue, Thr466, to alanine established its importance for function. Our studies provide insights into the structure of a member of a novel family of proteases. Knowledge of the Hip1 structure will aid in designing inhibitors that could block Hip1 activity.
Collapse
|
14
|
Botella H, Vaubourgeix J, Lee MH, Song N, Xu W, Makinoshima H, Glickman MS, Ehrt S. Mycobacterium tuberculosis protease MarP activates a peptidoglycan hydrolase during acid stress. EMBO J 2017; 36:536-548. [PMID: 28057704 DOI: 10.15252/embj.201695028] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 11/09/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) can persist in the human host in a latent state for decades, in part because it has the ability to withstand numerous stresses imposed by host immunity. Prior studies have established the essentiality of the periplasmic protease MarP for Mtb to survive in acidified phagosomes and establish and maintain infection in mice. However, the proteolytic substrates of MarP that mediate these phenotypes were unknown. Here, we used biochemical methods coupled with supravital chemical probes that facilitate imaging of nascent peptidoglycan to demonstrate that during acid stress MarP cleaves the peptidoglycan hydrolase RipA, a process required for RipA's activation. Failure of RipA processing in MarP-deficient cells leads to cell elongation and chain formation, a hallmark of progeny cell separation arrest. Our results suggest that sustaining peptidoglycan hydrolysis, a process required for cell elongation, separation of progeny cells, and cell wall homeostasis in growing cells, may also be essential for Mtb's survival in acidic conditions.
Collapse
Affiliation(s)
- Helene Botella
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Julien Vaubourgeix
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Myung Hee Lee
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Naomi Song
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Weizhen Xu
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Hideki Makinoshima
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael S Glickman
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
15
|
Kugadas A, Lamont EA, Bannantine JP, Shoyama FM, Brenner E, Janagama HK, Sreevatsan S. A Mycobacterium avium subsp. paratuberculosis Predicted Serine Protease Is Associated with Acid Stress and Intraphagosomal Survival. Front Cell Infect Microbiol 2016; 6:85. [PMID: 27597934 PMCID: PMC4992679 DOI: 10.3389/fcimb.2016.00085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/05/2016] [Indexed: 11/22/2022] Open
Abstract
The ability to maintain intra-cellular pH is crucial for bacteria and other microbes to survive in diverse environments, particularly those that undergo fluctuations in pH. Mechanisms of acid resistance remain poorly understood in mycobacteria. Although, studies investigating acid stress in M. tuberculosis are gaining traction, few center on Mycobacterium avium subsp. paratuberculosis (MAP), the etiological agent of chronic enteritis in ruminants. We identified a MAP acid stress response network involved in macrophage infection. The central node of this network was MAP0403, a predicted serine protease that shared an 86% amino acid identity with MarP in M. tuberculosis. Previous studies confirmed MarP as a serine protease integral to maintaining intra-bacterial pH and survival in acid in vitro and in vivo. We show that MAP0403 is upregulated in infected macrophages and MAC-T cells that coincided with phagosome acidification. Treatment of mammalian cells with bafilomcyin A1, a potent inhibitor of phagosomal vATPases, diminished MAP0403 transcription. MAP0403 expression was also noted in acidic medium. A surrogate host, M. smegmatis mc(2) 155, was designed to express MAP0403 and when exposed to either macrophages or in vitro acid stress had increased bacterial cell viability, which corresponds to maintenance of intra-bacterial pH in acidic (pH = 5) conditions, compared to the parent strain. These data suggest that MAP0403 may be the equivalent of MarP in MAP. Future studies confirming MAP0403 as a serine protease and exploring its structure and possible substrates are warranted.
Collapse
Affiliation(s)
- Abirami Kugadas
- Division of Infectious Diseases, Brigham and Women's Hospital, University of MinnesotaBoston, MA, USA
| | - Elise A. Lamont
- Department of Veterinary and Biomedical Science, University of MinnesotaSaint Paul, MN, USA
| | - John P. Bannantine
- United States Department of Agriculture, National Animal Disease Center, Agricultural Research ServiceAmes, IA, USA
| | - Fernanda M. Shoyama
- Department of Veterinary Population Medicine, University of MinnesotaSaint Paul, MN, USA
| | - Evan Brenner
- Department of Veterinary Population Medicine, University of MinnesotaSaint Paul, MN, USA
| | | | - Srinand Sreevatsan
- Department of Veterinary and Biomedical Science, University of MinnesotaSaint Paul, MN, USA
- Department of Veterinary Population Medicine, University of MinnesotaSaint Paul, MN, USA
| |
Collapse
|
16
|
Ehrt S, Rhee K, Schnappinger D. Mycobacterial genes essential for the pathogen's survival in the host. Immunol Rev 2015; 264:319-26. [PMID: 25703569 DOI: 10.1111/imr.12256] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mycobacterium tuberculosis (Mtb) has evolved within the human immune system as both host and reservoir. The study of genes required for its growth and persistence in vivo thus offers linked insights into its pathogenicity and host immunity. Studies of Mtb mutants have implicated metabolic adaptation (consisting of carbon, nitrogen, vitamin, and cofactor metabolism), intrabacterial pH homeostasis, and defense against reactive oxygen and reactive nitrogen species, as key determinants of its pathogenicity. However, the mechanisms of host immunity are complex and often combinatorial. Growing evidence has thus begun to reveal that the determinants of Mtb's pathogenicity may serve a broader and more complex array of functions than the isolated experimental settings in which they were initially found. Here, we review select examples, which exemplify this complexity, highlighting the distinct phases of Mtb's life cycle and the diverse microenvironments encountered therein.
Collapse
Affiliation(s)
- Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | | | | |
Collapse
|
17
|
Long X, Gou Y, Luo M, Zhang S, Zhang H, Bai L, Wu S, He Q, Chen K, Huang A, Zhou J, Wang D. Soluble expression, purification, and characterization of active recombinant human tissue plasminogen activator by auto-induction in E. coli. BMC Biotechnol 2015; 15:13. [PMID: 25886739 PMCID: PMC4379951 DOI: 10.1186/s12896-015-0127-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/09/2015] [Indexed: 01/03/2023] Open
Abstract
Background Human tissue plasminogen activator (tPA) belongs to the serine protease family. It converts plasminogen into plasmin and is used clinically to treat thrombosis. Human tPA is composed of 527 amino acids residues and contains 17 disulfide bonds. Escherichia coli has been used only rarely for the efficient production of recombinant tPA. However, the functional expression of full-length tPA that contains multiple disulfide bonds on an industrial scale remains challenging. Here, we describe the soluble expression and characterization of full-length tPA by auto-induction in E. coli. Results We achieved optimal levels of gene expression, minimized negative effects related to the production of heterologous proteins, and optimized cytoplasmic yields. Three different E. coli strains, BL21 (DE3), Rosetta, and Origami 2, could express tPA using an auto-induction mechanism. In addition, similar yields of recombinant protein were produced at temperatures of 33, 35, and 37°C. The E. coli strain origami 2 could increase disulfide bond formation in cytoplasmic tPA and produce purified soluble recombinant protein (~0.9 mg/l medium). The full-length tPA was monomeric in solution, and fibrin plate assays confirmed that the recombinant tPA displayed serine protease activity. Conclusions This is the first report that describes the heterologous expression of correctly folded active full-length tPA. This could provide valuable information for using prokaryotic auto-induction expression systems to produce tPA at industrial and pharmaceutical levels without in vitro refolding during the production step.
Collapse
Affiliation(s)
- Xiaobin Long
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China. .,Key Laboratory of Molecular Biology on Infectious Disease (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| | - Yeran Gou
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China. .,Key Laboratory of Molecular Biology on Infectious Disease (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| | - Miao Luo
- Key Laboratory of Molecular Biology on Infectious Disease (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China. .,Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China. .,Department of Clinical Laboratory, Yubei District People's Hospital, Chongqing, 401120, PR China.
| | - Shaocheng Zhang
- Key Laboratory of Molecular Biology on Infectious Disease (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China. .,Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Hongpeng Zhang
- Key Laboratory of Molecular Biology on Infectious Disease (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China. .,Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Lei Bai
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China. .,Key Laboratory of Molecular Biology on Infectious Disease (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| | - Shuang Wu
- Key Laboratory of Molecular Biology on Infectious Disease (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China. .,Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Quan He
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Ke Chen
- Key Laboratory of Molecular Biology on Infectious Disease (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| | - Ailong Huang
- Key Laboratory of Molecular Biology on Infectious Disease (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| | - Jianzhong Zhou
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Deqiang Wang
- Key Laboratory of Molecular Biology on Infectious Disease (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China. .,Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
18
|
Zhao N, Darby CM, Small J, Bachovchin DA, Jiang X, Burns-Huang KE, Botella H, Ehrt S, Boger DL, Anderson ED, Cravatt BF, Speers AE, Fernandez-Vega V, Hodder PS, Eberhart C, Rosen H, Spicer TP, Nathan CF. Target-based screen against a periplasmic serine protease that regulates intrabacterial pH homeostasis in Mycobacterium tuberculosis. ACS Chem Biol 2015; 10:364-71. [PMID: 25457457 PMCID: PMC4340348 DOI: 10.1021/cb500746z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Mycobacterium tuberculosis (Mtb) maintains its intrabacterial pH (pHIB) near neutrality in the acidic environment of phagosomes within
activated macrophages. A previously reported genetic screen revealed
that Mtb loses this ability when the mycobacterial
acid resistance protease (marP) gene is disrupted.
In the present study, a high throughput screen (HTS) of compounds
against the protease domain of MarP identified benzoxazinones as inhibitors
of MarP. A potent benzoxazinone, BO43 (6-chloro-2-(2′-methylphenyl)-4H-1,3-benzoxazin-4-one),
acylated MarP and lowered Mtb’s pHIB and survival during incubation at pH 4.5. BO43 had similar effects
on MarP-deficient Mtb, suggesting the existence of
additional target(s). Reaction of an alkynyl-benzoxazinone, BO43T,
with Mycobacterium bovis variant bacille
Calmette-Guérin (BCG) followed by
click chemistry with azido-biotin identified both the MarP homologue
and the high temperature requirement A1 (HtrA1) homologue, an essential
protein. Thus, the chemical probe identified through a target-based
screen not only reacted with its intended target in the intact cells
but also implicated an additional enzyme that had eluded a genetic
screen biased against essential genes.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 445 E 69th Street, New York, New York 10021, United States
| | - Crystal M. Darby
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 445 E 69th Street, New York, New York 10021, United States
| | - Jennifer Small
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 445 E 69th Street, New York, New York 10021, United States
| | - Daniel A. Bachovchin
- Department
of Chemical Physiology, The Scripps Research Institute, 10550 N Torrey
Pines Road, La Jolla, California 92037, United States
| | - Xiuju Jiang
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 445 E 69th Street, New York, New York 10021, United States
| | - Kristin E. Burns-Huang
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 445 E 69th Street, New York, New York 10021, United States
| | - Helene Botella
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 445 E 69th Street, New York, New York 10021, United States
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 445 E 69th Street, New York, New York 10021, United States
| | - Dale L. Boger
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey
Pines Road, La Jolla, California 92037, United States
| | - Erin D. Anderson
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey
Pines Road, La Jolla, California 92037, United States
| | - Benjamin F. Cravatt
- Department
of Chemical Physiology, The Scripps Research Institute, 10550 N Torrey
Pines Road, La Jolla, California 92037, United States
| | - Anna E. Speers
- Department
of Chemical Physiology, The Scripps Research Institute, 10550 N Torrey
Pines Road, La Jolla, California 92037, United States
| | | | - Peter S. Hodder
- Department
of Chemical Physiology, The Scripps Research Institute, 10550 N Torrey
Pines Road, La Jolla, California 92037, United States
| | - Christina Eberhart
- Department
of Chemical Physiology, The Scripps Research Institute, 10550 N Torrey
Pines Road, La Jolla, California 92037, United States
| | - Hugh Rosen
- Department
of Chemical Physiology, The Scripps Research Institute, 10550 N Torrey
Pines Road, La Jolla, California 92037, United States
| | - Timothy P. Spicer
- Department
of Chemical Physiology, The Scripps Research Institute, 10550 N Torrey
Pines Road, La Jolla, California 92037, United States
| | - Carl F. Nathan
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 445 E 69th Street, New York, New York 10021, United States
| |
Collapse
|
19
|
Naffin-Olivos JL, Georgieva M, Goldfarb N, Madan-Lala R, Dong L, Bizzell E, Valinetz E, Brandt GS, Yu S, Shabashvili DE, Ringe D, Dunn BM, Petsko GA, Rengarajan J. Mycobacterium tuberculosis Hip1 modulates macrophage responses through proteolysis of GroEL2. PLoS Pathog 2014; 10:e1004132. [PMID: 24830429 PMCID: PMC4022732 DOI: 10.1371/journal.ppat.1004132] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/03/2014] [Indexed: 11/29/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) employs multiple strategies to evade host immune responses and persist within macrophages. We have previously shown that the cell envelope-associated Mtb serine hydrolase, Hip1, prevents robust macrophage activation and dampens host pro-inflammatory responses, allowing Mtb to delay immune detection and accelerate disease progression. We now provide key mechanistic insights into the molecular and biochemical basis of Hip1 function. We establish that Hip1 is a serine protease with activity against protein and peptide substrates. Further, we show that the Mtb GroEL2 protein is a direct substrate of Hip1 protease activity. Cleavage of GroEL2 is specifically inhibited by serine protease inhibitors. We mapped the cleavage site within the N-terminus of GroEL2 and confirmed that this site is required for proteolysis of GroEL2 during Mtb growth. Interestingly, we discovered that Hip1-mediated cleavage of GroEL2 converts the protein from a multimeric to a monomeric form. Moreover, ectopic expression of cleaved GroEL2 monomers into the hip1 mutant complemented the hyperinflammatory phenotype of the hip1 mutant and restored wild type levels of cytokine responses in infected macrophages. Our studies point to Hip1-dependent proteolysis as a novel regulatory mechanism that helps Mtb respond rapidly to changing host immune environments during infection. These findings position Hip1 as an attractive target for inhibition for developing immunomodulatory therapeutics against Mtb.
Collapse
Affiliation(s)
- Jacqueline L. Naffin-Olivos
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Maria Georgieva
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Nathan Goldfarb
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States of America
| | - Ranjna Madan-Lala
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Lauren Dong
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Erica Bizzell
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Ethan Valinetz
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Gabriel S. Brandt
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
- Franklin and Marshall College, Lancaster, Pennsylvania, United States of America
| | - Sarah Yu
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States of America
| | - Daniil E. Shabashvili
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States of America
| | - Dagmar Ringe
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Ben M. Dunn
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States of America
| | - Gregory A. Petsko
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Jyothi Rengarajan
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
20
|
Bohovych I, Donaldson G, Christianson S, Zahayko N, Khalimonchuk O. Stress-triggered activation of the metalloprotease Oma1 involves its C-terminal region and is important for mitochondrial stress protection in yeast. J Biol Chem 2014; 289:13259-72. [PMID: 24648523 DOI: 10.1074/jbc.m113.542910] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Functional integrity of mitochondria is critical for optimal cellular physiology. A suite of conserved mitochondrial proteases known as intramitochondrial quality control represents one of the mechanisms assuring normal mitochondrial function. We previously demonstrated that ATP-independent metalloprotease Oma1 mediates degradation of hypohemylated Cox1 subunit of cytochrome c oxidase and is active in cytochrome c oxidase-deficient mitochondria. Here we show that Oma1 is important for adaptive responses to various homeostatic insults and preservation of normal mitochondrial function under damage-eliciting conditions. Changes in membrane potential, oxidative stress, or chronic hyperpolarization lead to increased Oma1-mediated proteolysis. The stress-triggered induction of Oma1 proteolytic activity appears to be associated with conformational changes within the Oma1 homo-oligomeric complex, and these alterations likely involve C-terminal residues of the protease. Substitutions in the conserved C-terminal region of Oma1 impair its ability to form a labile proteolytically active complex in response to stress stimuli. We demonstrate that Oma1 genetically interacts with other inner membrane-bound quality control proteases. These findings indicate that yeast Oma1 is an important player in IM protein homeostasis and integrity by acting in concert with other intramitochondrial quality control components.
Collapse
Affiliation(s)
- Iryna Bohovych
- From the Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | | | | | | | | |
Collapse
|
21
|
Proteomic approach to reveal the regulatory function of aconitase AcnA in oxidative stress response in the antibiotic producer Streptomyces viridochromogenes Tü494. PLoS One 2014; 9:e87905. [PMID: 24498397 PMCID: PMC3912134 DOI: 10.1371/journal.pone.0087905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/30/2013] [Indexed: 01/16/2023] Open
Abstract
The aconitase AcnA from the phosphinothricin tripeptide producing strain Streptomyces viridochromogenes Tü494 is a bifunctional protein: under iron-sufficiency conditions AcnA functions as an enzyme of the tricarboxylic acid cycle, whereas under iron depletion it is a regulator of iron metabolism and oxidative stress response. As a member of the family of iron regulatory proteins (IRP), AcnA binds to characteristic iron responsive element (IRE) binding motifs and post-transcriptionally controls the expression of respective target genes. A S. viridochromogenes aconitase mutant (MacnA) has previously been shown to be highly sensitive to oxidative stress. In the present paper, we performed a comparative proteomic approach with the S. viridochromogenes wild-type and the MacnA mutant strain under oxidative stress conditions to identify proteins that are under control of the AcnA-mediated regulation. We identified up to 90 differentially expressed proteins in both strains. In silico analysis of the corresponding gene sequences revealed the presence of IRE motifs on some of the respective target mRNAs. From this proteome study we have in vivo evidences for a direct AcnA-mediated regulation upon oxidative stress.
Collapse
|
22
|
Darby CM, Ingólfsson HI, Jiang X, Shen C, Sun M, Zhao N, Burns K, Liu G, Ehrt S, Warren JD, Anderson OS, Brickner SJ, Nathan C. Whole cell screen for inhibitors of pH homeostasis in Mycobacterium tuberculosis. PLoS One 2013; 8:e68942. [PMID: 23935911 PMCID: PMC3728290 DOI: 10.1371/journal.pone.0068942] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/05/2013] [Indexed: 12/17/2022] Open
Abstract
Bacterial pathogens like Mycobacterium tuberculosis (Mtb) encounter acidic microenvironments in the host and must maintain their acid-base homeostasis to survive. A genetic screen identified two Mtb strains that cannot control intrabacterial pH (pHIB) in an acidic environment; infection with either strain led to severe attenuation in mice. To search for additional proteins that Mtb requires to survive at low pH, we introduced a whole-cell screen for compounds that disrupt pHIB, along with counter-screens that identify ionophores and membrane perturbors. Application of these methods to a natural product library identified four compounds of interest, one of which may inhibit novel pathway(s). This approach yields compounds that may lead to the identification of pathways that allow Mtb to survive in acidic environments, a setting in which Mtb is resistant to most of the drugs currently used to treat tuberculosis.
Collapse
Affiliation(s)
- Crystal M. Darby
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Helgi I. Ingólfsson
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, United States of America
| | - Xiuju Jiang
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Chun Shen
- Milstein Chemistry Core Facility, Weill Cornell Medical College, New York, New York, United States of America
| | - Mingna Sun
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Nan Zhao
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Kristin Burns
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Gang Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
- Tsinghua-Peking Center for Life Sciences and Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, P. R. China
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - J. David Warren
- Milstein Chemistry Core Facility, Weill Cornell Medical College, New York, New York, United States of America
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, United States of America
| | - Olaf S. Anderson
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, United States of America
| | - Steven J. Brickner
- SJ Brickner Consulting, LLC, Ledyard, Connecticut, United States of America
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
23
|
Schön T, Lerm M, Stendahl O. Shortening the 'short-course' therapy- insights into host immunity may contribute to new treatment strategies for tuberculosis. J Intern Med 2013; 273:368-82. [PMID: 23331325 DOI: 10.1111/joim.12031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Achieving global control of tuberculosis (TB) is a great challenge considering the current increase in multidrug resistance and mortality rate. Considerable efforts are therefore being made to develop new effective vaccines, more effective and rapid diagnostic tools as well as new drugs. Shortening the duration of TB treatment with revised regimens and modes of delivery of existing drugs, as well as development of new antimicrobial agents and optimization of the host response with adjuvant immunotherapy could have a profound impact on TB cure rates. Recent data show that chronic worm infection and deficiencies in micronutrients such as vitamin D and arginine are potential areas of intervention to optimize host immunity. Nutritional supplementation to enhance nitric oxide production and vitamin D-mediated effector functions as well as the treatment of worm infection to reduce immunosuppressive effects of regulatory T (Treg) lymphocytes may be more suitable and accessible strategies for highly endemic areas than adjuvant cytokine therapy. In this review, we focus mainly on immune control of human TB, and discuss how current treatment strategies, including immunotherapy and nutritional supplementation, could be optimized to enhance the host response leading to more effective treatment.
Collapse
Affiliation(s)
- T Schön
- Department of Infectious Diseases, Kalmar County Hospital, Kalmar, Sweden
| | | | | |
Collapse
|
24
|
Small JL, O'Donoghue AJ, Boritsch EC, Tsodikov OV, Knudsen GM, Vandal O, Craik CS, Ehrt S. Substrate specificity of MarP, a periplasmic protease required for resistance to acid and oxidative stress in Mycobacterium tuberculosis. J Biol Chem 2013; 288:12489-99. [PMID: 23504313 DOI: 10.1074/jbc.m113.456541] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The transmembrane serine protease MarP is important for pH homeostasis in Mycobacterium tuberculosis (Mtb). Previous structural studies revealed that MarP contains a chymotrypsin fold and a disulfide bond that stabilizes the protease active site in the substrate-bound conformation. Here, we determined that MarP is located in the Mtb periplasm and showed that this localization is essential for function. Using the recombinant protease domain of MarP, we identified its substrate specificity using two independent assays: positional-scanning synthetic combinatorial library profiling and multiplex substrate profiling by mass spectrometry. These methods revealed that MarP prefers bulky residues at P4, tryptophan or leucine at P2, arginine or hydrophobic residues at P1, and alanine or asparagine at P1'. Guided by these data, we designed fluorogenic peptide substrates and characterized the kinetic properties of MarP. Finally, we tested the impact of mutating MarP cysteine residues on the peptidolytic activity of recombinant MarP and its ability to complement phenotypes of Mtb ΔMarP. Taken together, our studies provide insight into the enzymatic properties of MarP, its substrate preference, and the importance of its transmembrane helices and disulfide bond.
Collapse
Affiliation(s)
- Jennifer L Small
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Forrellad MA, Klepp LI, Gioffré A, Sabio y García J, Morbidoni HR, de la Paz Santangelo M, Cataldi AA, Bigi F. Virulence factors of the Mycobacterium tuberculosis complex. Virulence 2012; 4:3-66. [PMID: 23076359 PMCID: PMC3544749 DOI: 10.4161/viru.22329] [Citation(s) in RCA: 406] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) consists of closely related species that cause tuberculosis in both humans and animals. This illness, still today, remains to be one of the leading causes of morbidity and mortality throughout the world. The mycobacteria enter the host by air, and, once in the lungs, are phagocytated by macrophages. This may lead to the rapid elimination of the bacillus or to the triggering of an active tuberculosis infection. A large number of different virulence factors have evolved in MTBC members as a response to the host immune reaction. The aim of this review is to describe the bacterial genes/proteins that are essential for the virulence of MTBC species, and that have been demonstrated in an in vivo model of infection. Knowledge of MTBC virulence factors is essential for the development of new vaccines and drugs to help manage the disease toward an increasingly more tuberculosis-free world.
Collapse
|
26
|
Bell JA, Ho KL, Farid R. Significant reduction in errors associated with nonbonded contacts in protein crystal structures: automated all-atom refinement with PrimeX. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:935-52. [PMID: 22868759 PMCID: PMC3413210 DOI: 10.1107/s0907444912017453] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/19/2012] [Indexed: 11/12/2022]
Abstract
All-atom models are essential for many applications in molecular modeling and computational chemistry. Nonbonded atomic contacts much closer than the sum of the van der Waals radii of the two atoms (clashes) are commonly observed in such models derived from protein crystal structures. A set of 94 recently deposited protein structures in the resolution range 1.5-2.8 Å were analyzed for clashes by the addition of all H atoms to the models followed by optimization and energy minimization of the positions of just these H atoms. The results were compared with the same set of structures after automated all-atom refinement with PrimeX and with nonbonded contacts in protein crystal structures at a resolution equal to or better than 0.9 Å. The additional PrimeX refinement produced structures with reasonable summary geometric statistics and similar R(free) values to the original structures. The frequency of clashes at less than 0.8 times the sum of van der Waals radii was reduced over fourfold compared with that found in the original structures, to a level approaching that found in the ultrahigh-resolution structures. Moreover, severe clashes at less than or equal to 0.7 times the sum of atomic radii were reduced 15-fold. All-atom refinement with PrimeX produced improved crystal structure models with respect to nonbonded contacts and yielded changes in structural details that dramatically impacted on the interpretation of some protein-ligand interactions.
Collapse
Affiliation(s)
- Jeffrey A. Bell
- Schrödinger, 120 West 45th Street, 17th Floor, New York, NY 10036, USA
| | - Kenneth L. Ho
- Schrödinger, 120 West 45th Street, 17th Floor, New York, NY 10036, USA
| | - Ramy Farid
- Schrödinger, 120 West 45th Street, 17th Floor, New York, NY 10036, USA
| |
Collapse
|
27
|
Xue Y, Chowdhury S, Liu X, Akiyama Y, Ellman J, Ha Y. Conformational change in rhomboid protease GlpG induced by inhibitor binding to its S' subsites. Biochemistry 2012; 51:3723-31. [PMID: 22515733 DOI: 10.1021/bi300368b] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rhomboid protease conducts proteolysis inside the hydrophobic environment of the membrane. The conformational flexibility of the protease is essential for the enzyme mechanism, but the nature of this flexibility is not completely understood. Here we describe the crystal structure of rhomboid protease GlpG in complex with a phosphonofluoridate inhibitor, which is covalently bonded to the catalytic serine and extends into the S' side of the substrate binding cleft. Inhibitor binding causes subtle but extensive changes in the membrane protease. Many transmembrane helices tilt and shift positions, and the gap between S2 and S5 is slightly widened so that the inhibitor can bind between them. The side chain of Phe-245 from a loop (L5) that acts as a cap rotates and uncovers the opening of the substrate binding cleft to the lipid bilayer. A concurrent turn of the polypeptide backbone at Phe-245 moves the rest of the cap and exposes the catalytic serine to the aqueous solution. This study, together with earlier crystallographic investigation of smaller inhibitors, suggests a simple model for explaining substrate binding to rhomboid protease.
Collapse
Affiliation(s)
- Yi Xue
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
28
|
Koo MS, Subbian S, Kaplan G. Strain specific transcriptional response in Mycobacterium tuberculosis infected macrophages. Cell Commun Signal 2012; 10:2. [PMID: 22280836 PMCID: PMC3317440 DOI: 10.1186/1478-811x-10-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 01/26/2012] [Indexed: 11/10/2022] Open
Abstract
Background Tuberculosis (TB), a bacterial infection caused by Mycobacterium tuberculosis (Mtb) remains a significant health problem worldwide with a third of the world population infected and nearly nine million new cases claiming 1.1 million deaths every year. The outcome following infection by Mtb is determined by a complex and dynamic host-pathogen interaction in which the phenotype of the pathogen and the immune status of the host play a role. However, the molecular mechanism by which Mtb strains induce different responses during intracellular infection of the host macrophage is not fully understood. To explore the early molecular events triggered upon Mtb infection of macrophages, we studied the transcriptional responses of murine bone marrow-derived macrophages (BMM) to infection with two clinical Mtb strains, CDC1551 and HN878. These strains have previously been shown to differ in their virulence/immunogenicity in the mouse and rabbit models of pulmonary TB. Results In spite of similar intracellular growth rates, we observed that compared to HN878, infection by CDC1551 of BMM was associated with an increased global transcriptome, up-regulation of a specific early (6 hours) immune response network and significantly elevated nitric oxide production. In contrast, at 24 hours post-infection of BMM by HN878, more host genes involved in lipid metabolism, including cholesterol metabolism and prostaglandin synthesis were up-regulated, compared to infection with CDC1551. In association with the differences in the macrophage responses to infection with the 2 Mtb strains, intracellular CDC1551 expressed higher levels of stress response genes than did HN878. Conclusions In association with the early and more robust macrophage activation, intracellular CDC1551 cells were exposed to a higher level of stress leading to increased up-regulation of the bacterial stress response genes. In contrast, sub-optimal activation of macrophages and induction of a dysregulated host cell lipid metabolism favored a less stressful intracellular environment for HN878. Our findings suggest that the ability of CDC1551 and HN878 to differentially activate macrophages during infection probably determines their ability to either resist host cell immunity and progress to active disease or to succumb to the host protective responses and be driven into a non-replicating latent state in rabbit lungs.
Collapse
Affiliation(s)
- Mi-Sun Koo
- Laboratory of Mycobacterial Immunity and Pathogenesis, The Public Health Research Institute (PHRI) at the University of Medicine and Dentistry of New Jersey (UNDNJ), 225 Warren Street, Newark, New Jersey 07103, USA.
| | | | | |
Collapse
|