1
|
Kan WL, Weekley CM, Nero TL, Hercus TR, Yip KH, Tumes DJ, Woodcock JM, Ross DM, Thomas D, Terán D, Owczarek CM, Liu NW, Martelotto LG, Polo JM, Pant H, Tvorogov D, Lopez AF, Parker MW. The β Common Cytokine Receptor Family Reveals New Functional Paradigms From Structural Complexities. Immunol Rev 2025; 329:e13430. [PMID: 39748163 DOI: 10.1111/imr.13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Cytokines are small proteins that are critical for controlling the growth and activity of hematopoietic cells by binding to cell surface receptors and transmitting signals across membranes. The β common (βc) cytokine receptor family, consisting of the granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-3, and IL-5 cytokine receptors, is an architype of the heterodimeric cytokine receptor systems. We now know that signaling by cytokine receptors is not always an "all or none" phenomenon. Subtle alterations of the cytokine:receptor complex can result in differential or selective signaling and underpin a variety of diseases including chronic inflammatory conditions and cancers. Structural biology techniques, such as X-ray crystallography and cryo-electron microscopy alongside cell biology studies, are providing detailed insights into cytokine receptor signaling. Recently, we found that the IL-3 receptor ternary complex forms higher-order assemblies, like those found earlier for the GM-CSF receptor, and demonstrated that functionally distinct biological signals arise from different IL-3 receptor oligomeric assemblies. As we enhance our understanding of the structural nuances of cytokine-receptor interactions, we foresee a new era of theranostics whereby structurally guided mechanism-based manipulation of cytokine signaling through rational/targeted protein engineering will harness the full potential of cytokine biology for precision medicine.
Collapse
Affiliation(s)
- Winnie L Kan
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Claire M Weekley
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Tracy L Nero
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Timothy R Hercus
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Kwok Ho Yip
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Damon J Tumes
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Joanna M Woodcock
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - David M Ross
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, South Australia, Australia
- Acute Leukemia Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Daniel Thomas
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, South Australia, Australia
| | - David Terán
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Catherine M Owczarek
- CSL, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| | - Nora W Liu
- Adelaide Centre for Epigenetics, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Epigenetics Program, South Australian immunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Luciano G Martelotto
- Adelaide Centre for Epigenetics, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Epigenetics Program, South Australian immunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Jose M Polo
- Adelaide Centre for Epigenetics, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Epigenetics Program, South Australian immunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Harshita Pant
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Centre for Epigenetics, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Denis Tvorogov
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Angel F Lopez
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Michael W Parker
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| |
Collapse
|
2
|
Caveney NA, Rodriguez GE, Pollmann C, Meyer T, Borowska MT, Wilson SC, Wang N, Xiang X, Householder KD, Tao P, Su LL, Saxton RA, Piehler J, Garcia KC. Structure of the interleukin-5 receptor complex exemplifies the organizing principle of common beta cytokine signaling. Mol Cell 2024; 84:1995-2005.e7. [PMID: 38614096 PMCID: PMC11102305 DOI: 10.1016/j.molcel.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/20/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Cytokines regulate immune responses by binding to cell surface receptors, including the common subunit beta (βc), which mediates signaling for GM-CSF, IL-3, and IL-5. Despite known roles in inflammation, the structural basis of IL-5 receptor activation remains unclear. We present the cryo-EM structure of the human IL-5 ternary receptor complex, revealing architectural principles for IL-5, GM-CSF, and IL-3. In mammalian cell culture, single-molecule imaging confirms hexameric IL-5 complex formation on cell surfaces. Engineered chimeric receptors show that IL-5 signaling, as well as IL-3 and GM-CSF, can occur through receptor heterodimerization, obviating the need for higher-order assemblies of βc dimers. These findings provide insights into IL-5 and βc receptor family signaling mechanisms, aiding in the development of therapies for diseases involving deranged βc signaling.
Collapse
Affiliation(s)
- Nathanael A Caveney
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.
| | - Grayson E Rodriguez
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christoph Pollmann
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Thomas Meyer
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Marta T Borowska
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven C Wilson
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nan Wang
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xinyu Xiang
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Biophysics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karsten D Householder
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pingdong Tao
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leon L Su
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert A Saxton
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Li S, Wang S, Fordjour E, Liang Y, Wang X, Ye Y, Bai Z, Yang Y, Chen Y. Development and characterization of anti-IL-5 monoclonal antibody Fab fragment for blocking IL-5/IL-5Rα binding. Int Immunopharmacol 2023; 124:111032. [PMID: 37832239 DOI: 10.1016/j.intimp.2023.111032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Interleukin-5 (IL-5) is a homodimeric cytokine that is a crucial regulator of the proliferation, activation, and maturation of eosinophils. Anti-IL-5 monoclonal antibodies, which block the binding of IL-5 to the IL-5 receptor subunit alpha (IL-5Rα), have been successfully used to treat eosinophilic (EOS) asthma. The currently marketed monoclonal antibody drugs require repeated injections for administration, which seriously affect patient compliance and high systemic exposure for injectable drug delivery. Here we successfully screened and developed the Fab (fragment of antigen binding), which is 1/3rd the molecular weight of IgG, favoring inhalation-mediated delivery to the lungs, making it more effective for asthma treatment. The 20A12-Fab-H12L3 can bind to IL-5 with a binding constant of 1.236E-09 M while significantly inhibiting the IL-5/IL-5Rα complex formation. We found that the light chain amino acids (S46 and F71) significantly affected the antibody expression during humanization. The 20A12-Fab-H12L3 significantly inhibited the proliferation of TF-1 cells and blocked the IL-5 binding to the IL-5Rα-overexpressing human embryonic kidney (HEK)-293 cells in vitro. Therefore, based on the mutant IL-5 binding with Fab, we explained why antibodies blocked IL-5 binding to IL-5Rα. Thus, this study provided a candidate pharmaceutical antibody for inhalation drug delivery.
Collapse
Affiliation(s)
- Shijie Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Shijie Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Eric Fordjour
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Yaoji Liang
- Zhuhai Resproly Pharmaceutical Technology Co., Ltd, Zhuhai, 519040, Guangdong, China
| | - Xuelian Wang
- Zhuhai Resproly Pharmaceutical Technology Co., Ltd, Zhuhai, 519040, Guangdong, China
| | - Yonghao Ye
- Zhuhai Resproly Pharmaceutical Technology Co., Ltd, Zhuhai, 519040, Guangdong, China
| | - Zhonghu Bai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China.
| | - Yankun Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China.
| | - Yongqi Chen
- Zhuhai Resproly Pharmaceutical Technology Co., Ltd, Zhuhai, 519040, Guangdong, China.
| |
Collapse
|
4
|
Kim JH, Kim DS, Park HS, Kim YS. Engineering bispecific T-cell engagers to deplete eosinophils for the treatment of severe eosinophilic asthma. Clin Immunol 2023; 255:109755. [PMID: 37673224 DOI: 10.1016/j.clim.2023.109755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Severe eosinophilic asthma (SEA) is characterized by elevated eosinophil counts in the blood and airway mucosa. While monoclonal antibody therapies targeting interleukin-5 (IL-5) and its receptor (IL-5Rα) have improved treatment, some patients remain unresponsive. We propose an alternative approach to eliminate eosinophils using T cells by engineering IL-5Rα × CD3 bispecific T-cell engagers (bsTCEs) that target both IL-5Rα on eosinophils and CD3 on T cells. We designed different formats of IL-5Rα × CD3 bsTCEs, incorporating variations in valency, geometry, and affinity for the target antigen binding. We identified the single-chain variable fragment (scFv)-Fc format with the highest affinity toward the membrane-proximal domain of IL-5Rα in the IL-5Rα-binding arm showed the most potent cytotoxicity against IL-5Rα-expressing peripheral eosinophils by activating autologous primary T cells from healthy donors. This study proposes IL-5Rα × CD3 bsTCEs as potential alternatives for SEA treatment. Importantly, it demonstrates the first application of bsTCEs in eliminating disease-associated cells, including eosinophils, beyond cancer cells.
Collapse
Affiliation(s)
- Jun-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Dae-Seong Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University Medical School, Suwon 16499, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; Department of Allergy and Clinical Immunology, Ajou University Medical School, Suwon 16499, Republic of Korea.
| |
Collapse
|
5
|
Development of an inhibiting antibody against equine interleukin 5 to treat insect bite hypersensitivity of horses. Sci Rep 2023; 13:4029. [PMID: 36899044 PMCID: PMC10000358 DOI: 10.1038/s41598-023-31173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Insect bite hypersensitivity (IBH) is the most common allergic skin disease of horses. It is caused by insect bites of the Culicoides spp. which mediate a type I/IVb allergy with strong involvement of eosinophil cells. No specific treatment option is available so far. One concept could be the use of a therapeutic antibody targeting equine interleukin 5, the main activator and regulator of eosinophils. Therefore, antibodies were selected by phage display using the naïve human antibody gene libraries HAL9/10, tested in a cellular in vitro inhibition assay and subjected to an in vitro affinity maturation. In total, 28 antibodies were selected by phage display out of which eleven have been found to be inhibiting in the final format as chimeric immunoglobulin G with equine constant domains. The two most promising candidates were further improved by in vitro affinity maturation up to factor 2.5 regarding their binding activity and up to factor 2.0 regarding their inhibition effect. The final antibody named NOL226-2-D10 showed a strong inhibition of the interleukin 5 binding to its receptor (IC50 = 4 nM). Furthermore, a nanomolar binding activity (EC50 = 8.8 nM), stable behavior and satisfactory producibility were demonstrated. This antibody is an excellent candidate for in vivo studies for the treatment of equine IBH.
Collapse
|
6
|
Pant H, Hercus TR, Tumes DJ, Yip KH, Parker MW, Owczarek CM, Lopez AF, Huston DP. Translating the biology of β common receptor-engaging cytokines into clinical medicine. J Allergy Clin Immunol 2023; 151:324-344. [PMID: 36424209 DOI: 10.1016/j.jaci.2022.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022]
Abstract
The family of cytokines that comprises IL-3, IL-5, and GM-CSF was discovered over 30 years ago, and their biological activities and resulting impact in clinical medicine has continued to expand ever since. Originally identified as bone marrow growth factors capable of acting on hemopoietic progenitor cells to induce their proliferation and differentiation into mature blood cells, these cytokines are also recognized as key mediators of inflammation and the pathobiology of diverse immunologic diseases. This increased understanding of the functional repertoire of IL-3, IL-5, and GM-CSF has led to an explosion of interest in modulating their functions for clinical management. Key to the successful clinical translation of this knowledge is the recognition that these cytokines act by engaging distinct dimeric receptors and that they share a common signaling subunit called β-common or βc. The structural determination of how IL-3, IL-5, and GM-CSF interact with their receptors and linking this to their differential biological functions on effector cells has unveiled new paradigms of cell signaling. This knowledge has paved the way for novel mAbs and other molecules as selective or pan inhibitors for use in different clinical settings.
Collapse
Affiliation(s)
- Harshita Pant
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Timothy R Hercus
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Damon J Tumes
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Kwok Ho Yip
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Michael W Parker
- Bio 21 Institute, The University of Melbourne, Melbourne, Australia; St Vincent's Institute of Medical Research, Melbourne, Australia
| | | | - Angel F Lopez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - David P Huston
- Texas A&M University School of Medicine, Houston, Tex; Houston Methodist Hospital and Research Institute, Houston, Tex.
| |
Collapse
|
7
|
Arora P, Nainwal LM, Gupta G, Singh SK, Chellappan DK, Oliver BG, Dua K. Orally administered solasodine, a steroidal glycoalkaloid, suppresses ovalbumin-induced exaggerated Th2-immune response in rat model of bronchial asthma. Chem Biol Interact 2022; 366:110138. [PMID: 36084726 DOI: 10.1016/j.cbi.2022.110138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/03/2022]
Abstract
Bronchial asthma is a chronic lung disorder, that affects an estimated 262 million people worldwide, thereby, causing a large socio-economic burden. Drug molecules from natural sources have exhibited a good promise in providing an alternative therapy in many chronic ailments. Solasodine, a glycoalkaloid has received an immense interest due to its large pharmacological and industrial value, however, its usefulness in asthma control has not been investigated till date. In this work, solasodine was tested for its ability to reverse several characteristics of bronchial asthma induced by intraperitoneal injection of ovalbumin (OVA) and aluminium hydroxide in experimental rats. Treating asthmatic animals with solasodine (1 mg/kg b.w. or 10 mg/kg b.w.) or dexamethasone (2.5 mg/kg b.w.) reversed OVA-induced airway hyperresponsiveness, infiltration of inflammatory cells and histamine levels in the airways. Furthermore, as compared to OVA-control rats, allergen-induced elevated levels of IgE, nitrites, nitric oxide, and pro-inflammatory mediators, including TNF-α, IL-1β, LTD-4, and Th2-cytokines, particularly, IL-4, IL-5 were remarkably reduced in both bronchoalveolar lavage fluid and blood. These findings are supported by significant protection offered by various treatments against OVA-induced airway inflammation and mast cell degranulation in mesenteric tissues. Further, In-silico molecular docking studies performed to determine inhibitory potential of solasodine at IL-4 and IL-5, demonstrated strong affinity of phytocompound for these receptors than observed with antagonists previously reported. Results of current study imply that solasodine has therapeutic promise in allergic asthma, presumably due to its ability to prevent mast cell degranulation and consequent generation of histamine and Th2-associated cytokines in airways.
Collapse
Affiliation(s)
- Poonam Arora
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India; Department of Pharmacognosy and Phytochemistry, SGT College of Pharmacy, SGT University, Gurugram, Haryana, India.
| | - Lalit Mohan Nainwal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India; School of Medical & Allied Sciences, G. D. Goenka University, Sohna Road, Gurugram, Haryana, India.
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Sachin Kumar Singh
- School of Pharmacy and Pharmaceutical Science, Lovely Professional University, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo 2007, NSW, Australia.
| |
Collapse
|
8
|
Kan WL, Cheung Tung Shing KS, Nero TL, Hercus TR, Tvorogov D, Parker MW, Lopez AF. Messing with βc: A unique receptor with many goals. Semin Immunol 2021; 54:101513. [PMID: 34836771 DOI: 10.1016/j.smim.2021.101513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/23/2021] [Indexed: 11/16/2022]
Abstract
Our understanding of the biological role of the βc family of cytokines has evolved enormously since their initial identification as bone marrow colony stimulating factors in the 1960's. It has become abundantly clear over the intervening decades that this family of cytokines has truly astonishing pleiotropic capacity, capable of regulating not only hematopoiesis but also many other normal and pathological processes such as development, inflammation, allergy and cancer. As noted in the current pandemic, βc cytokines contribute to the cytokine storm seen in acutely ill COVID-19 patients. Ongoing studies to discover how these cytokines activate their receptor are revealing insights into the fundamental mechanisms that give rise to cytokine pleiotropy and are providing tantalizing glimpses of how discrete signaling pathways may be dissected for activation with novel ligands for therapeutic benefit.
Collapse
Affiliation(s)
- Winnie L Kan
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia 5000, Australia.
| | - Karen S Cheung Tung Shing
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Tracy L Nero
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Timothy R Hercus
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia 5000, Australia.
| | - Denis Tvorogov
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia 5000, Australia.
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia; Australian Cancer Research Foundation Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.
| | - Angel F Lopez
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia 5000, Australia; Department of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia; Australian Cancer Research Foundation Cancer Genomics Facility, SA Pathology, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
9
|
Abstract
The β common chain (βc) cytokine family includes granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3) and IL-5, all of which use βc as key signaling receptor subunit. GM-CSF, IL-3 and IL-5 have specific roles as hematopoietic growth factors. IL-3 binds with high affinity to the IL-3 receptor α (IL-3Rα/CD123) and then associates with the βc subunit. IL-3 is mainly synthesized by different subsets of T cells, but is also produced by several other immune [basophils, dendritic cells (DCs), mast cells, etc.] and non-immune cells (microglia and astrocytes). The IL-3Rα is also expressed by immune (basophils, eosinophils, mast cells, DCs, monocytes, and megacaryocytes) and non-immune cells (endothelial cells and neuronal cells). IL-3 is the most important growth and activating factor for human and mouse basophils, primary effector cells of allergic disorders. IL-3-activated basophils and mast cells are also involved in different chronic inflammatory disorders, infections, and several types of cancer. IL-3 induces the release of cytokines (i.e., IL-4, IL-13, CXCL8) from human basophils and preincubation of basophils with IL-3 potentiates the release of proinflammatory mediators and cytokines from IgE- and C5a-activated basophils. IL-3 synergistically potentiates IL-33-induced mediator release from human basophils. IL-3 plays a pathogenic role in several hematologic cancers and may contribute to autoimmune and cardiac disorders. Several IL-3Rα/CD123 targeting molecules have shown some efficacy in the treatment of hematologic malignancies.
Collapse
|
10
|
Pérez DJ, Patiño EB, Orozco J. Electrochemical Nanobiosensors as Point‐of‐Care Testing Solution to Cytokines Measurement Limitations. ELECTROANAL 2021. [DOI: 10.1002/elan.202100237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- David J. Pérez
- Max Planck Tandem Group in Nanobioengineering University of Antioquia Complejo Ruta N Calle 67, N° 52–20 050010 Medellín Colombia
- Grupo de Bioquímica Estructural de Macromoléculas Chemistry Institute University of Antioquia Lab 1–314 Calle 67, N° 53–108 050010 Medellín Colombia
| | - Edwin B. Patiño
- Grupo de Bioquímica Estructural de Macromoléculas Chemistry Institute University of Antioquia Lab 1–314 Calle 67, N° 53–108 050010 Medellín Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering University of Antioquia Complejo Ruta N Calle 67, N° 52–20 050010 Medellín Colombia
| |
Collapse
|
11
|
Kim JE, Lee DH, Jung K, Kim EJ, Choi Y, Park HS, Kim YS. Engineering of Humanized Antibodies Against Human Interleukin 5 Receptor Alpha Subunit That Cause Potent Antibody-Dependent Cell-Mediated Cytotoxicity. Front Immunol 2021; 11:593748. [PMID: 33488590 PMCID: PMC7820887 DOI: 10.3389/fimmu.2020.593748] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Patients with severe eosinophilic asthma (SEA; characterized by persistent eosinophilia in blood and airway tissues) experience frequent asthma exacerbations with poor clinical outcomes. Interleukin 5 (IL-5) and IL-5 receptor alpha subunit (IL-5α) play key roles in eosinophilia maintenance, and relevant therapeutic strategies include the development of antibodies (Abs) against IL-5 or IL-5α to control eosinophilia. Benralizumab, an anti–IL-5α Ab that depletes eosinophils mainly via Ab-dependent cell-mediated cytotoxicity and through blockage of IL-5 function on eosinophils, has been clinically approved for patients with SEA. Here, we report engineering of a new humanized anti–IL-5Rα Ab with potent biological activity. We first raised murine Abs against human IL-5Rα, humanized a leading murine Ab, and then further engineered the humanized Abs to enhance their affinity for IL-5Rα using the yeast surface display technology. The finally engineered version of the Ab, 5R65.7, with affinity (KD ≈ 4.64 nM) stronger than that of a clinically relevant benralizumab analogue (KD ≈ 26.8 nM) showed improved neutralizing activity toward IL-5–dependent cell proliferation in a reporter cell system. Domain level Ab epitope mapping revealed that 5R65.7 recognizes membrane-proximal domain 3 of IL-5Rα, distinct from domain I epitope of the benralizumab analogue. In ex vivo assays with peripheral eosinophils from patients with SEA and healthy donors, 5R65.7 manifested more potent biological activities than the benralizumab analogue did, including inhibition of IL-5–dependent proliferation of eosinophils and induction of eosinophil apoptosis through autologous natural-killer-cell–mediated Ab-dependent cell-mediated cytotoxicity. Our study provides a potent anti–IL-5Rα Ab, 5R65.7, which is worthy of further testing in preclinical and clinical trials against SEA as a potential alternative to the current therapeutic arsenal.
Collapse
Affiliation(s)
- Jung-Eun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Dong-Hyun Lee
- Department of Allergy and Clinical Immunology, Ajou University Medical School, Suwon, South Korea
| | - Keunok Jung
- Department of Allergy and Clinical Immunology, Ajou University Medical School, Suwon, South Korea
| | - Eun-Ji Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University Medical School, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University Medical School, Suwon, South Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.,Department of Allergy and Clinical Immunology, Ajou University Medical School, Suwon, South Korea
| |
Collapse
|
12
|
Dougan M, Dranoff G, Dougan SK. GM-CSF, IL-3, and IL-5 Family of Cytokines: Regulators of Inflammation. Immunity 2019; 50:796-811. [PMID: 30995500 DOI: 10.1016/j.immuni.2019.03.022] [Citation(s) in RCA: 297] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 01/27/2023]
Abstract
The β common chain cytokines GM-CSF, IL-3, and IL-5 regulate varied inflammatory responses that promote the rapid clearance of pathogens but also contribute to pathology in chronic inflammation. Therapeutic interventions manipulating these cytokines are approved for use in some cancers as well as allergic and autoimmune disease, and others show promising early clinical activity. These approaches are based on our understanding of the inflammatory roles of these cytokines; however, GM-CSF also participates in the resolution of inflammation, and IL-3 and IL-5 may also have such properties. Here, we review the functions of the β common cytokines in health and disease. We discuss preclinical and clinical data, highlighting the potential inherent in targeting these cytokine pathways, the limitations, and the important gaps in understanding of the basic biology of this cytokine family.
Collapse
Affiliation(s)
- Michael Dougan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Glenn Dranoff
- Novartis Institute for Biomedical Research, Cambridge, MA, USA.
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Scheide-Noeth JP, Rosen M, Baumstark D, Dietz H, Mueller TD. Structural Basis of Interleukin-5 Inhibition by the Small Cyclic Peptide AF17121. J Mol Biol 2018; 431:714-731. [PMID: 30529748 DOI: 10.1016/j.jmb.2018.11.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
Abstract
Interleukin-5 (IL-5) is a T-helper cell of subtype 2 cytokine involved in many aspects of eosinophil life. Eosinophilic granulocytes play a pathogenic role in the progression of atopic diseases, such as allergy, asthma and atopic dermatitis and hypereosinophilic syndromes. Here, eosinophils upon activation degranulate leading to the release of proinflammatory proteins and mediators stored in intracellular vesicles termed granula thereby causing local inflammation, which when persisting leads to tissue damage and organ failure. As a key regulator of eosinophil function, IL-5 therefore presents a major pharmaceutical target and approaches to interfere with IL-5 receptor activation are of great interest. Here we present the structure of the IL-5 inhibiting peptide AF17121 bound to the extracellular domain of the IL-5 receptor IL-5Rα. The small 18mer cyclic peptide snugly fits into the wrench-like cleft of the IL-5 receptor, thereby blocking access of key residues for IL-5 binding. While AF17121 and IL-5 seemingly bind to a similar epitope at IL-5Rα, functional studies show that recognition and binding of both ligands differ. Using the structure data, peptide variants with improved IL-5 inhibition have been generated, which might present valuable starting points for superior peptide-based IL-5 antagonists.
Collapse
Affiliation(s)
- Jan-Philipp Scheide-Noeth
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Julius-von-Sachs-Platz 2, D-97082, Wuerzburg, Germany
| | - Maximilian Rosen
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Julius-von-Sachs-Platz 2, D-97082, Wuerzburg, Germany
| | - David Baumstark
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Julius-von-Sachs-Platz 2, D-97082, Wuerzburg, Germany
| | - Harald Dietz
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Julius-von-Sachs-Platz 2, D-97082, Wuerzburg, Germany
| | - Thomas D Mueller
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Julius-von-Sachs-Platz 2, D-97082, Wuerzburg, Germany.
| |
Collapse
|
14
|
Youn H, Her J, Mok J, Kil B, Kim E, Park H, Ban C. A Novel Eosinophilia Diagnostics Using Label-free Impedimetric Aptasensor for Soluble Interleukin-5 Receptor Alpha. ELECTROANAL 2018. [DOI: 10.1002/elan.201800453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hyungjun Youn
- Department of Chemistry; Pohang University of Science and Technology, 77; Cheongam-Ro Nam-Gu, Pohang, Gyeongbuk 37673 South Korea
| | - Jin Her
- Department of Chemistry; Pohang University of Science and Technology, 77; Cheongam-Ro Nam-Gu, Pohang, Gyeongbuk 37673 South Korea
| | - Jihyun Mok
- Department of Chemistry; Pohang University of Science and Technology, 77; Cheongam-Ro Nam-Gu, Pohang, Gyeongbuk 37673 South Korea
| | - Bareum Kil
- Department of Chemistry; Pohang University of Science and Technology, 77; Cheongam-Ro Nam-Gu, Pohang, Gyeongbuk 37673 South Korea
| | - Eunseon Kim
- Department of Chemistry; Pohang University of Science and Technology, 77; Cheongam-Ro Nam-Gu, Pohang, Gyeongbuk 37673 South Korea
| | - Haesim Park
- Department of Allergy and Clinical Immunology; Ajou University School of Medicine; San-5, Woncheon-dong, Yeongtong-gu Suwon 16499 South Korea
| | - Changill Ban
- Department of Chemistry; Pohang University of Science and Technology, 77; Cheongam-Ro Nam-Gu, Pohang, Gyeongbuk 37673 South Korea
| |
Collapse
|
15
|
|
16
|
Role of the β Common (βc) Family of Cytokines in Health and Disease. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028514. [PMID: 28716883 DOI: 10.1101/cshperspect.a028514] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The β common ([βc]/CD131) family of cytokines comprises granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-3, and IL-5, all of which use βc as their key signaling receptor subunit. This is a prototypic signaling subunit-sharing cytokine family that has unveiled many biological paradigms and structural principles applicable to the IL-2, IL-4, and IL-6 receptor families, all of which also share one or more signaling subunits. Originally identified for their functions in the hematopoietic system, the βc cytokines are now known to be truly pleiotropic, impacting on multiple cell types, organs, and biological systems, and thereby controlling the balance between health and disease. This review will focus on the emerging biological roles for the βc cytokines, our progress toward understanding the mechanisms of receptor assembly and signaling, and the application of this knowledge to develop exciting new therapeutic approaches against human disease.
Collapse
|
17
|
Yanagibashi T, Satoh M, Nagai Y, Koike M, Takatsu K. Allergic diseases: From bench to clinic - Contribution of the discovery of interleukin-5. Cytokine 2018; 98:59-70. [PMID: 28863833 DOI: 10.1016/j.cyto.2016.11.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/18/2016] [Indexed: 01/21/2023]
Abstract
T helper 2 cells produce a number of cytokines including inteleukin (IL)-5, IL-4 and IL-13. Group 2 innate lymphoid cells (ILC2s) also produce IL-5 under sterile conditions. IL-5 is interdigitating homodimeric glycoprotein and a member of the four α helical bundle motifs conserved among hematopoietic cytokines. IL-5 exerts its effects on target cells via IL-5 receptor (IL-5R), composed of an IL-5R α and βc subunit. The membrane proximal proline-rich motif of the cytoplasmic domain of both IL-5R α and βc subunits is essential for IL-5 signal transduction. Although IL-5 was initially identified by its ability to support the growth and terminal differentiation of mouse B cells into antibody-secreting cells, recombinant IL-5 exerts pleiotropic activities on various target cells. For example, IL-5 is now recognized as the major maturation and differentiation factor for eosinophils in mice and humans. Overexpression of IL-5 in mouse significantly increases eosinophil numbers and antibody levels in vivo, while mice lacking a functional gene for IL-5 or IL-5R display developmental and functional impairments in B cell and eosinophil lineages. In mice, the role of the IL-5/IL-5R system in the production and secretion of Immunoglobulin (Ig) M and IgA in mucosal tissues has been reported. Although eosinophils protect against invading pathogens including virus, bacteria and helminthes, they are also involved in the pathogenesis of various diseases, such as food allergy, asthma, and inflammatory bowel diseases. The recent expansion in our understanding in the context of IL-5 and IL-5-producing ILC2s in eosinophil activation and the pathogenesis of eosinophil-dependent inflammatory diseases has led to advances in therapeutic options. A new therapy currently under invetigarion in clinical trials uses humanized monoclonal antibodies against IL-5 or the IL-5R. In this review, we summarize our current understanding of the functions of IL-5 and its receptor, the innate regulation of IL-5-producing cells, and therapeutic potential of anti-IL-5 and anti-eosinophil (IL-5R) antibodies.
Collapse
Affiliation(s)
- Tsutomu Yanagibashi
- Toyama Prefectural Institute of Pharmaceutical Research, 17-1 Nakataikouyama, Imizu City, Toyama 939-0363, Japan; Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan
| | - Mitsuo Satoh
- Kyowa Hakko Kirin Co., Ltd., Otemachi Finamcial City Grand Cube, 1-9-2, Chiyoda-ku, Tokyo 100-8185, Japan
| | - Yoshinori Nagai
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan; JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Masamichi Koike
- Kyowa Hakko Kirin Co., Ltd., Otemachi Finamcial City Grand Cube, 1-9-2, Chiyoda-ku, Tokyo 100-8185, Japan
| | - Kiyoshi Takatsu
- Toyama Prefectural Institute of Pharmaceutical Research, 17-1 Nakataikouyama, Imizu City, Toyama 939-0363, Japan; Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan.
| |
Collapse
|
18
|
A dual role for the N-terminal domain of the IL-3 receptor in cell signalling. Nat Commun 2018; 9:386. [PMID: 29374162 PMCID: PMC5785977 DOI: 10.1038/s41467-017-02633-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022] Open
Abstract
The interleukin-3 (IL-3) receptor is a cell-surface heterodimer that links the haemopoietic, vascular and immune systems and is overexpressed in acute and chronic myeloid leukaemia progenitor cells. It belongs to the type I cytokine receptor family in which the α-subunits consist of two fibronectin III-like domains that bind cytokine, and a third, evolutionarily unrelated and topologically conserved, N-terminal domain (NTD) with unknown function. Here we show by crystallography that, while the NTD of IL3Rα is highly mobile in the presence of IL-3, it becomes surprisingly rigid in the presence of IL-3 K116W. Mutagenesis, biochemical and functional studies show that the NTD of IL3Rα regulates IL-3 binding and signalling and reveal an unexpected role in preventing spontaneous receptor dimerisation. Our work identifies a dual role for the NTD in this cytokine receptor family, protecting against inappropriate signalling and dynamically regulating cytokine receptor binding and function. The N-terminal domain (NTD) of interleukin-3 receptor α-subunit (IL3Rα) is involved in IL-3 recognition but the underlying mechanism is unknown. Here, the authors present crystal structures of the IL3Rα complex and provide biochemical evidence that the NTD regulates IL-3 binding and signalling complex assembly.
Collapse
|
19
|
Ikutani M, Ogawa S, Yanagibashi T, Nagai T, Okada K, Furuichi Y, Takatsu K. Elimination of eosinophils using anti-IL-5 receptor alpha antibodies effectively suppresses IL-33-mediated pulmonary arterial hypertrophy. Immunobiology 2017; 223:486-492. [PMID: 29269115 DOI: 10.1016/j.imbio.2017.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 12/10/2017] [Accepted: 12/10/2017] [Indexed: 01/03/2023]
Abstract
Interleukin (IL)-5 is a critical regulator of eosinophils and a therapeutic target for asthma. The administration of anti-IL-5 or anti-IL-5 receptor (IL-5R) antibodies has been shown to reduce eosinophil counts and ameliorate asthmatic symptoms in studies on animal models of allergy as well as in human clinical trials. In order to explore other potential clinical uses of IL-5R antibodies, we used an animal model of IL-33-mediated pulmonary arterial hypertrophy. We first generated chimeric monoclonal antibodies against the mouse IL-5 receptor α chain (IL-5Rα), which comprised an Fc region from human IgG1 and a Fab region from a previously established anti-mouse IL-5Rα monoclonal antibody. To investigate the role of antibody-dependent cell-mediated cytotoxicity (ADCC), chimeric antibodies that lacked ADCC were prepared. These antibodies recognized IL-5Rα to the same extent as the ADCC-sufficient antibodies. Administration of chimeric antibodies with ADCC resulted in the elimination of eosinophils from the lung and thus suppressed the development of arterial hypertrophy. This effect was attenuated in mice treated with antibodies lacking ADCC. Taken together, the results of this study provided a potential use for anti-IL-5Rα antibodies in the treatment of arterial hypertrophy, which leads to pulmonary hypertension.
Collapse
Affiliation(s)
- Masashi Ikutani
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan; Department of Immune Regulation, The Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan.
| | - Shinya Ogawa
- R&D Division, Tokyo Research Park, Kyowa Hakko Kirin Co. Ltd, Tokyo, Japan
| | - Tsutomu Yanagibashi
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan; Toyama Prefectural Institute for Pharmaceutical Research, Toyama, Japan
| | - Terumi Nagai
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Kazuki Okada
- R&D Division, Tokyo Research Park, Kyowa Hakko Kirin Co. Ltd, Tokyo, Japan
| | - Yoko Furuichi
- R&D Division, Tokyo Research Park, Kyowa Hakko Kirin Co. Ltd, Tokyo, Japan
| | - Kiyoshi Takatsu
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan; Toyama Prefectural Institute for Pharmaceutical Research, Toyama, Japan.
| |
Collapse
|
20
|
Yamaguchi T, Schares S, Fischer U, Dijkstra JM. Identification of a fourth ancient member of the IL-3/IL-5/GM-CSF cytokine family, KK34, in many mammals. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:268-279. [PMID: 27492645 DOI: 10.1016/j.dci.2016.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
The related cytokine genes IL-3, IL-5 and GM-CSF map to the (extended) TH2 cytokine locus of the mammalian genome. For chicken an additional related cytokine gene, KK34, was reported downstream of the IL-3 plus GM-CSF cluster, but hitherto it was believed that mammalian genomes lack this gene. However, the present study identifies an intact orthologue of chicken KK34 gene in many mammals like cattle and pig, while remnants of KK34 can be found in human and mouse. Bovine KK34 was found to be transcribed, and its recombinant protein could induce STAT5 phosphorylation and proliferation of lymphocytes upon incubation with bovine PBMCs. This concludes that KK34 is a fourth functional cytokine of the IL-3/IL-5/GM-CSF/KK34-family (alias IL-5 family) in mammals. While analyzing KK34, the present study also made new identifications of cytokine genes in the extended TH2 cytokine loci for reptiles, birds and marsupials. This includes a hitherto unknown cytokine gene in birds and reptiles which we designated "IL-5famE". Other newly identified genes are KK34, GM-CSF(-like), IL-5, and IL-13 in reptiles, and IL-3 in marsupials.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Susann Schares
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Uwe Fischer
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Dengakugakubo 1-98, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
21
|
Broughton SE, Hercus TR, Nero TL, Dottore M, McClure BJ, Dhagat U, Taing H, Gorman MA, King-Scott J, Lopez AF, Parker MW. Conformational Changes in the GM-CSF Receptor Suggest a Molecular Mechanism for Affinity Conversion and Receptor Signaling. Structure 2016; 24:1271-1281. [PMID: 27396825 DOI: 10.1016/j.str.2016.05.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 05/02/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022]
Abstract
The GM-CSF, IL-3, and IL-5 receptors constitute the βc family, playing important roles in inflammation, autoimmunity, and cancer. Typical of heterodimeric type I cytokine receptors, signaling requires recruitment of the shared subunit to the initial cytokine:α subunit binary complex through an affinity conversion mechanism. This critical process is poorly understood due to the paucity of crystal structures of both binary and ternary receptor complexes for the same cytokine. We have now solved the structure of the binary GM-CSF:GMRα complex at 2.8-Å resolution and compared it with the structure of the ternary complex, revealing distinct conformational changes. Guided by these differences we performed mutational and functional studies that, importantly, show GMRα interactions playing a major role in receptor signaling while βc interactions control high-affinity binding. These results support the notion that conformational changes underlie the mechanism of GM-CSF receptor activation and also suggest how related type I cytokine receptors signal.
Collapse
Affiliation(s)
- Sophie E Broughton
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Timothy R Hercus
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia
| | - Tracy L Nero
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Mara Dottore
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia
| | - Barbara J McClure
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia
| | - Urmi Dhagat
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Houng Taing
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia
| | - Michael A Gorman
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Jack King-Scott
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Angel F Lopez
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia.
| | - Michael W Parker
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
22
|
Craven TW, Cho MK, Traaseth NJ, Bonneau R, Kirshenbaum K. A Miniature Protein Stabilized by a Cation-π Interaction Network. J Am Chem Soc 2016; 138:1543-50. [PMID: 26812069 PMCID: PMC4867217 DOI: 10.1021/jacs.5b10285] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The design of folded miniature proteins is predicated on establishing noncovalent interactions that direct the self-assembly of discrete thermostable tertiary structures. In this work, we describe how a network of cation-π interactions present in proteins containing "WSXWS motifs" can be emulated to stabilize the core of a miniature protein. This 19-residue protein sequence recapitulates a set of interdigitated arginine and tryptophan residues that stabilize a distinctive β-strand:loop:PPII-helix topology. Validation of the compact fold determined by NMR was carried out by mutagenesis of the cation-π network and by comparison to the corresponding disulfide-bridged structure. These results support the involvement of a coordinated set of cation-π interactions that stabilize the tertiary structure.
Collapse
Affiliation(s)
- Timothy W. Craven
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Pl., New York, NY
| | - Min-Kyu Cho
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY
| | - Nathaniel J. Traaseth
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY
| | - Richard Bonneau
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Pl., New York, NY
- Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York, NY
- Simons Center for Data Analysis, New York, NY
| | - Kent Kirshenbaum
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY
| |
Collapse
|
23
|
Broughton SE, Nero TL, Dhagat U, Kan WL, Hercus TR, Tvorogov D, Lopez AF, Parker MW. The βc receptor family – Structural insights and their functional implications. Cytokine 2015; 74:247-58. [DOI: 10.1016/j.cyto.2015.02.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 11/25/2022]
|
24
|
Spangler JB, Moraga I, Mendoza JL, Garcia KC. Insights into cytokine-receptor interactions from cytokine engineering. Annu Rev Immunol 2014; 33:139-67. [PMID: 25493332 DOI: 10.1146/annurev-immunol-032713-120211] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytokines exert a vast array of immunoregulatory actions critical to human biology and disease. However, the desired immunotherapeutic effects of native cytokines are often mitigated by toxicity or lack of efficacy, either of which results from cytokine receptor pleiotropy and/or undesired activation of off-target cells. As our understanding of the structural principles of cytokine-receptor interactions has advanced, mechanism-based manipulation of cytokine signaling through protein engineering has become an increasingly feasible and powerful approach. Modified cytokines, both agonists and antagonists, have been engineered with narrowed target cell specificities, and they have also yielded important mechanistic insights into cytokine biology and signaling. Here we review the theory and practice of cytokine engineering and rationalize the mechanisms of several engineered cytokines in the context of structure. We discuss specific examples of how structure-based cytokine engineering has opened new opportunities for cytokines as drugs, with a focus on the immunotherapeutic cytokines interferon, interleukin-2, and interleukin-4.
Collapse
Affiliation(s)
- Jamie B Spangler
- Howard Hughes Medical Institute, Department of Molecular and Cellular Physiology, Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305; , , ,
| | | | | | | |
Collapse
|
25
|
Broughton SE, Hercus TR, Hardy MP, McClure BJ, Nero TL, Dottore M, Huynh H, Braley H, Barry EF, Kan WL, Dhagat U, Scotney P, Hartman D, Busfield SJ, Owczarek CM, Nash AD, Wilson NJ, Parker MW, Lopez AF. Dual mechanism of interleukin-3 receptor blockade by an anti-cancer antibody. Cell Rep 2014; 8:410-9. [PMID: 25043189 DOI: 10.1016/j.celrep.2014.06.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/16/2014] [Accepted: 06/20/2014] [Indexed: 10/25/2022] Open
Abstract
Interleukin-3 (IL-3) is an activated T cell product that bridges innate and adaptive immunity and contributes to several immunopathologies. Here, we report the crystal structure of the IL-3 receptor α chain (IL3Rα) in complex with the anti-leukemia antibody CSL362 that reveals the N-terminal domain (NTD), a domain also present in the granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-5, and IL-13 receptors, adopting unique "open" and classical "closed" conformations. Although extensive mutational analyses of the NTD epitope of CSL362 show minor overlap with the IL-3 binding site, CSL362 only inhibits IL-3 binding to the closed conformation, indicating alternative mechanisms for blocking IL-3 signaling. Significantly, whereas "open-like" IL3Rα mutants can simultaneously bind IL-3 and CSL362, CSL362 still prevents the assembly of a higher-order IL-3 receptor-signaling complex. The discovery of open forms of cytokine receptors provides the framework for development of potent antibodies that can achieve a "double hit" cytokine receptor blockade.
Collapse
Affiliation(s)
- Sophie E Broughton
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Timothy R Hercus
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia
| | | | - Barbara J McClure
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia
| | - Tracy L Nero
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Mara Dottore
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia
| | - Huy Huynh
- CSL Limited, Parkville, VIC 3010, Australia
| | - Hal Braley
- CSL Limited, Parkville, VIC 3010, Australia
| | - Emma F Barry
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia
| | - Winnie L Kan
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia
| | - Urmi Dhagat
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | | | | | | | | | | | | | - Michael W Parker
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Angel F Lopez
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
26
|
Brister M, Pandey AK, Bielska AA, Zondlo NJ. OGlcNAcylation and phosphorylation have opposing structural effects in tau: phosphothreonine induces particular conformational order. J Am Chem Soc 2014; 136:3803-16. [PMID: 24559475 PMCID: PMC4004249 DOI: 10.1021/ja407156m] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Indexed: 01/12/2023]
Abstract
Phosphorylation and OGlcNAcylation are dynamic intracellular protein post-translational modifications that frequently are alternatively observed on the same serine and threonine residues. Phosphorylation and OGlcNAcylation commonly occur in natively disordered regions of proteins, and often have opposing functional effects. In the microtubule-associated protein tau, hyperphosphorylation is associated with protein misfolding and aggregation as the neurofibrillary tangles of Alzheimer's disease, whereas OGlcNAcylation stabilizes the soluble form of tau. A series of peptides derived from the proline-rich domain (residues 174-251) of tau was synthesized, with free Ser/Thr hydroxyls, phosphorylated Ser/Thr (pSer/pThr), OGlcNAcylated Ser/Thr, and diethylphosphorylated Ser/Thr. Phosphorylation and OGlcNAcylation were found by CD and NMR to have opposing structural effects on polyproline helix (PPII) formation, with phosphorylation favoring PPII, OGlcNAcylation opposing PPII, and the free hydroxyls intermediate in structure, and with phosphorylation structural effects greater than OGlcNAcylation. For tau196-209, phosphorylation and OGlcNAcylation had similar structural effects, opposing a nascent α-helix. Phosphomimic Glu exhibited PPII-favoring structural effects. Structural changes due to Thr phosphorylation were greater than those of Ser phosphorylation or Glu, with particular conformational restriction as the dianion, with mean (3)JαN = 3.5 Hz (pThr) versus 5.4 Hz (pSer), compared to 7.2, 6.8, and 6.2 Hz for Thr, Ser, and Glu, respectively, values that correlate with the backbone torsion angle ϕ. Dianionic phosphothreonine induced strong phosphothreonine amide protection and downfield amide chemical shifts (δmean = 9.63 ppm), consistent with formation of a stable phosphate-amide hydrogen bond. These data suggest potentially greater structural importance of threonine phosphorylation than serine phosphorylation due to larger induced structural effects.
Collapse
Affiliation(s)
| | | | - Agata A. Bielska
- Department of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Neal J. Zondlo
- Department of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
27
|
Lee CV, Koenig P, Fuh G. A two-in-one antibody engineered from a humanized interleukin 4 antibody through mutation in heavy chain complementarity-determining regions. MAbs 2014; 6:622-7. [PMID: 24618680 DOI: 10.4161/mabs.28483] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A mono-specific antibody may recruit a second antigen binding specificity, thus converting to a dual-specific Two-in-One antibody through mutation at the light chain complementarity-determining regions (CDRs). It is, however, unknown whether mutation at the heavy chain CDRs may evolve such dual specificity. Herein, we examined the CDRs of a humanized interleukin 4 (IL4) antibody using alanine scanning and structural modeling, designed libraries of mutants in regions that tolerate mutation, and isolated dual specific antibodies harboring mutation at the heavy chain CDRs only. We then affinity improved an IL4/IL5 dual specific antibody to variants with dissociation constants in the low nanomolar range for both antigens. The results demonstrate the full capacity of antibodies to evolve dual binding specificity.
Collapse
Affiliation(s)
- Chingwei V Lee
- Department of Antibody Engineering; Genentech Inc.; South San Francisco, CA USA
| | - Patrick Koenig
- Department of Antibody Engineering; Genentech Inc.; South San Francisco, CA USA
| | - Germaine Fuh
- Department of Antibody Engineering; Genentech Inc.; South San Francisco, CA USA
| |
Collapse
|
28
|
Broughton SE, Hercus TR, Nero TL, Dhagat U, Owczarek CM, Hardy MP, Fabri LJ, Scotney PD, Nash AD, Wilson NJ, Lopez AF, Parker MW. Crystallization and preliminary X-ray diffraction analysis of the interleukin-3 alpha receptor bound to the Fab fragment of antibody CSL362. Acta Crystallogr F Struct Biol Commun 2014; 70:358-61. [PMID: 24598927 PMCID: PMC3944702 DOI: 10.1107/s2053230x14002593] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/04/2014] [Indexed: 11/10/2022] Open
Abstract
Interleukin-3 (IL-3) is a member of the beta common family of cytokines that regulate multiple functions of myeloid cells. The IL-3 receptor-specific alpha subunit (IL3Rα) is overexpressed on stem cells/progenitor cells of patients with acute myeloid leukaemia, where elevated receptor expression correlates clinically with a reduced patient survival rate. The monoclonal antibody (MAb) CSL362 is a humanized MAb derived from the murine MAb 7G3, originally identified for its ability to specifically recognize the human IL-3 receptor and for blocking the signalling of IL-3 in myeloid and endothelial cells. In order to elucidate the molecular mechanism of CSL362 antagonism, a preliminary structure of human IL3Rα in complex with the MAb CSL362 has been determined.
Collapse
Affiliation(s)
- Sophie E. Broughton
- Australian Cancer Research Foundation Rational Drug Discovery Centre and Biota Structural Biology Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Timothy R. Hercus
- Division of Human Immunology, The Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Tracy L. Nero
- Australian Cancer Research Foundation Rational Drug Discovery Centre and Biota Structural Biology Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Urmi Dhagat
- Australian Cancer Research Foundation Rational Drug Discovery Centre and Biota Structural Biology Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Catherine M. Owczarek
- CSL Limited, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Matthew P. Hardy
- CSL Limited, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Louis J. Fabri
- CSL Limited, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Pierre D. Scotney
- CSL Limited, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew D. Nash
- CSL Limited, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas J. Wilson
- CSL Limited, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Angel F. Lopez
- Division of Human Immunology, The Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Michael W. Parker
- Australian Cancer Research Foundation Rational Drug Discovery Centre and Biota Structural Biology Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
29
|
Ikutani M, Takatsu K. Roles of IL-5-producing group 2 innate lymphoid cells in eosinophil regulation. Inflamm Regen 2014. [DOI: 10.2492/inflammregen.34.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
30
|
Signalling by the βc family of cytokines. Cytokine Growth Factor Rev 2013; 24:189-201. [DOI: 10.1016/j.cytogfr.2013.03.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/05/2013] [Indexed: 02/07/2023]
|
31
|
Characterization of pathogenic human monoclonal autoantibodies against GM-CSF. Proc Natl Acad Sci U S A 2013; 110:7832-7. [PMID: 23620516 DOI: 10.1073/pnas.1216011110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The origin of pathogenic autoantibodies remains unknown. Idiopathic pulmonary alveolar proteinosis is caused by autoantibodies against granulocyte-macrophage colony-stimulating factor (GM-CSF). We generated 19 monoclonal autoantibodies against GM-CSF from six patients with idiopathic pulmonary alveolar proteinosis. The autoantibodies used multiple V genes, excluding preferred V-gene use as an etiology, and targeted at least four nonoverlapping epitopes on GM-CSF, suggesting that GM-CSF is driving the autoantibodies and not a B-cell epitope on a pathogen cross-reacting with GM-CSF. The number of somatic mutations in the autoantibodies suggests that the memory B cells have been helped by T cells and re-entered germinal centers. All autoantibodies neutralized GM-CSF bioactivity, with general correlations to affinity and off-rate. The binding of certain autoantibodies was changed by point mutations in GM-CSF that reduced binding to the GM-CSF receptor. Those monoclonal autoantibodies that potently neutralize GM-CSF may be useful in treating inflammatory disease, such as rheumatoid arthritis and multiple sclerosis, cancer, and pain.
Collapse
|
32
|
Broughton SE, Dhagat U, Hercus TR, Nero TL, Grimbaldeston MA, Bonder CS, Lopez AF, Parker MW. The GM-CSF/IL-3/IL-5 cytokine receptor family: from ligand recognition to initiation of signaling. Immunol Rev 2013; 250:277-302. [PMID: 23046136 DOI: 10.1111/j.1600-065x.2012.01164.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 are members of a discrete family of cytokines that regulates the growth, differentiation, migration and effector function activities of many hematopoietic cells and immunocytes. These cytokines are involved in normal responses to infectious agents, bridging innate and adaptive immunity. However, in certain cases, the overexpression of these cytokines or their receptors can lead to excessive or aberrant initiation of signaling resulting in pathological conditions, with chronic inflammatory diseases and myeloid leukemias the most notable examples. Recent crystal structures of the GM-CSF receptor ternary complex and the IL-5 binary complex have revealed new paradigms of cytokine receptor activation. Together with a wealth of associated structure-function studies, they have significantly enhanced our understanding of how these receptors recognize cytokines and initiate signals across cell membranes. Importantly, these structures provide opportunities for structure-based approaches for the discovery of novel and disease-specific therapeutics. In addition, recent biochemical evidence has suggested that the GM-CSF/IL-3/IL-5 receptor family is capable of interacting productively with other membrane proteins at the cell surface. Such interactions may afford additional or unique biological activities and might be harnessed for selective modulation of the function of these receptors in disease.
Collapse
|
33
|
Amini-Vaughan ZJ, Martinez-Moczygemba M, Huston DP. Therapeutic strategies for harnessing human eosinophils in allergic inflammation, hypereosinophilic disorders, and cancer. Curr Allergy Asthma Rep 2012; 12:402-12. [PMID: 22875242 PMCID: PMC3729434 DOI: 10.1007/s11882-012-0290-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The eosinophil is a multifunctional granulocyte best known for providing host defense against parasites. Paradoxically, eosinophils are also implicated in the pathogenesis of allergic inflammation, asthma, and hypereosinophilic syndromes. Emerging evidence also supports the potential for harnessing the cytotoxic power of eosinophils and redirecting it to kill solid tumors. Central to eosinophil physiology is interleukin-5 (IL-5) and its receptor (IL-5R) which is composed of a ligand-specific alpha chain (IL-5Rα) and the common beta chain (βc). Eosinophil activation can lead to their degranulation, resulting in rapid release of an arsenal of tissue-destructive proinflammatory mediators and cytotoxic proteins that can be both beneficial and detrimental to the host. This review discusses eosinophil immunobiology and therapeutic strategies for targeting of IL-5 and IL-5R, as well as the potential for harnessing eosinophil cytotoxicity as a tumoricide.
Collapse
Affiliation(s)
- Zhaleh J Amini-Vaughan
- Department of Microbial and Molecular Pathogenesis, Texas A&M College of Medicine, Clinical Science and Translational Research Institute, Texas A&M Health Science Center, 2121 West Holcombe Boulevard, Houston, TX 77030, USA
| | | | | |
Collapse
|
34
|
Broughton SE, Hercus TR, Lopez AF, Parker MW. Cytokine receptor activation at the cell surface. Curr Opin Struct Biol 2012; 22:350-9. [DOI: 10.1016/j.sbi.2012.03.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/28/2012] [Indexed: 12/19/2022]
|
35
|
Kusano S, Kukimoto-Niino M, Hino N, Ohsawa N, Ikutani M, Takaki S, Sakamoto K, Hara-Yokoyama M, Shirouzu M, Takatsu K, Yokoyama S. Structural basis of interleukin-5 dimer recognition by its α receptor. Protein Sci 2012; 21:850-64. [PMID: 22528658 DOI: 10.1002/pro.2072] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/22/2012] [Indexed: 11/08/2022]
Abstract
Interleukin-5 (IL-5), a major hematopoietin, stimulates eosinophil proliferation, migration, and activation, which have been implicated in the pathogenesis of allergic inflammatory diseases, such as asthma. The specific IL-5 receptor (IL-5R) consists of the IL-5 receptor α subunit (IL-5RA) and the common receptor β subunit (βc). IL-5 binding to IL-5R on target cells induces rapid tyrosine phosphorylation and activation of various cellular proteins, including JAK1/JAK2 and STAT1/STAT5. Here, we report the crystal structure of dimeric IL-5 in complex with the IL-5RA extracellular domains. The structure revealed that IL-5RA sandwiches the IL-5 homodimer by three tandem domains, arranged in a "wrench-like" architecture. This association mode was confirmed for human cells expressing IL-5 and the full-length IL-5RA by applying expanded genetic code technology: protein photo-cross-linking experiments revealed that the two proteins interact with each other in vivo in the same manner as that in the crystal structure. Furthermore, a comparison with the previously reported, partial GM-CSF•GM-CSFRA•βc structure enabled us to propose complete structural models for the IL-5 and GM-CSF receptor complexes, and to identify the residues conferring the cytokine-specificities of IL-5RA and GM-CSFRA.
Collapse
Affiliation(s)
- Seisuke Kusano
- RIKEN Systems and Structural Biology Center, Tsurumi-ku, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|