1
|
Montermoso S, Eilers G, Allen A, Sharp R, Hwang Y, Bushman FD, Gupta K, Duyne GV. Structural Impact of Ex Vivo Resistance Mutations on HIV-1 Integrase Polymers Induced by Allosteric Inhibitors. J Mol Biol 2025; 437:169224. [PMID: 40409709 DOI: 10.1016/j.jmb.2025.169224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/15/2025] [Accepted: 05/16/2025] [Indexed: 05/25/2025]
Abstract
HIV-1 integrase (IN) is targeted by two classes of antivirals: integrase strand transfer inhibitors (INSTIs), which bind to the active site within the catalytic core domain (CCD), and allosteric integrase inhibitors (ALLINIs), which bind at the CCD dimer interface. ALLINIs were initially designed to disrupt interactions with the cellular cofactor LEDGF/p75, but it has become clear that ALLINIs primarily act by promoting formation of aberrant integrase polymers. The ALLINIs achieve this by stabilizing ectopic intermolecular interactions between the CCD dimer and the integrase carboxy-terminal domain (CTD), which disrupts viral maturation. Previously, we determined the structure of full-length HIV-1 IN bound to the ALLINI GSK1264 at 4.4 Å resolution, revealing its polymerization mechanism. More recently, we reported the X-ray crystal structure of a minimal ternary complex between CCD, CTD, and the ALLINI BI-224436 at a higher resolution. In this study, we improve the original 4.4 Å structure using this higher-resolution information and report two new structures of full-length HIV-1 IN harboring escape mutations in the CCD (Trp131Cys) or CTD (Asn222Lys) bound with the prototype ALLINI BI-D at 4.5 Å. These structures reveal perturbations to the tertiary organization associated with escape substitutions, which correlate with their reduced ability to form ectopic ALLINI-induced polymers in vitro. These findings suggest a general structural mechanism of ALLINI resistance and provide insights for the design of improved ALLINIs.
Collapse
Affiliation(s)
- Saira Montermoso
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Graduate Group in Biochemistry, Biophysics, and Chemical Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Grant Eilers
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Audrey Allen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Robert Sharp
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Young Hwang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Gregory Van Duyne
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
2
|
Maita H, Nakagawa S. Balancing RNA processing and innate immune response: Possible roles for SMN condensates in snRNP biogenesis. Biochim Biophys Acta Gen Subj 2025; 1869:130764. [PMID: 39826814 DOI: 10.1016/j.bbagen.2025.130764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Biomolecular condensates like U-bodies are specialized cellular structures formed through multivalent interactions among intrinsically disordered regions. U-bodies sequester small nuclear ribonucleoprotein complexes (snRNPs) in the cytoplasm, and their formation in mammalian cells depends on stress conditions. Because of their location adjacent to P-bodies, U-bodies have been considered potential sites for snRNP storage or turnover. SMN, a chaperone for snRNP biogenesis, forms condensates through its Tudor domain. In fly models, defects in SMN trigger innate immune responses similar to those observed with excess cytoplasmic snRNA during viral infection in mammalian cells. Additionally, spinal muscular atrophy (SMA), caused by SMN deficiency, is associated with inflammation. Therefore, SMN may help prevent innate immune aberrant activation due to defective snRNP biogenesis by forming U-bodies to sequester these molecules. Further studies on U-body functions may provide therapeutic insights for diseases related to RNA metabolism.
Collapse
Affiliation(s)
- Hiroshi Maita
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0812, Japan; Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| | - Shinichi Nakagawa
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0812, Japan; Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
3
|
Chi Y, Qiao Y, Ma Y. Spinal muscular atrophy caused by compound heterozygous SMN1 mutations: two cases and literature review. Neurol Sci 2024; 45:5605-5615. [PMID: 38972959 DOI: 10.1007/s10072-024-07651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
Spinal muscular atrophy (SMA) is a rare neuromuscular disease, which is characterized by the degeneration of motor neurons, leading to symmetrical muscle weakness and atrophy. Description of two novel SMN1 mutations (patient1: c.683T > A, p.Leu228Ter; patient2: c.347 T > C, p.Ile116 Thr). We reported two patients with SMN1 mutations with the clinical features, and provided a literature review of the previously reported 22 cases. Two SMA patients showed progressive proximal lower limb weakness and milder clinical symptom. In a total of 22 cases, the most commonly observed SMN1 gene alteration was missense mutation (55%), followed by splicing defect (27%), nonsense (9%) and frameshift (9%). We discuss the possible decisive role of these intragenic mutations in the phenotypic results, which enriched the SMN 1 fine mutation database.
Collapse
Affiliation(s)
- Yuewei Chi
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Yue Qiao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Ying Ma
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110000, China.
| |
Collapse
|
4
|
Bhattacharya M, Majumder S, Nandi S, Ghosh A, Subba P, Acharyya S, Chakraborty S. Comprehensive analysis of water and sediment from holy water body 'Pokhri' reveals presence of biomolecules that may educe skin, gastroenterological and neurological dysfunction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177373. [PMID: 39500452 DOI: 10.1016/j.scitotenv.2024.177373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/28/2024] [Accepted: 11/01/2024] [Indexed: 11/11/2024]
Abstract
'Pokhri mai' refers to the natural pond amidst the hilly forest slopes of the Buxa tiger reserve (BTR) nearby Jayanti considered to be sacred by the local ethnic groups serving as the prime source of water for wild animals and occasionally by neighbouring inhabitants. However, the water body is designated to be noxious by a group of native people with no scientific validation. This paper focuses to explore its toxicity status and allied environmental concerns through Pokhri water and sediment sample analysis through physicochemical assessment, in vitro antioxidant assay, microbiological investigation followed by AAS, GC-MS and in silico study. pH of soil and water samples were found to be quite high (>6.8) with organic matter, carbon and available nitrogen content being 1.5308 ± 0.28 %, 0.89 ± 0.17 % and 0.072 ± 0.34 % respectively. Profuse microbial growths were observed in both sediment and water samples with consortia obtained exhibiting tolerance against a range of antifungals and antibiotics. Inhibition zone was absent for sediment consortium whereas consortium of water samples portrayed susceptibility against various heavy metals viz. Cu2+, Pb2+, Zn2+, Fe3+ and Al3+ salts with corresponding AAS quantified values of sediment samples being 133, 223.3, 86.8, 1449 and 481.5 ppm. A summative of 18 metabolites were identified by GC-MS in Pokhri lake sediment among which 13 (occupying 96.35 % peak area) were investigated to be potentially toxic with 2,4-Di-tert-butylphenol (53.38 %) as the major compound. Biomolecular characterization, ADMET test and molecular docking study with dermal, gastrointestinal and neural peptides exhibiting high binding affinity scores (ranging between -2.6 to -8.3 kcal/mol) further affirmed the toxicity attributes of the GC-MS deciphered molecules. The findings clearly justifies the local 'myth' of Pokhri water to be deleterious with prospective dermatotoxic, neurotoxic and being evident of gastrointestinal toxicity emphasizing ecological risk to the environment, wildlife and microflora of the adjoining forests.
Collapse
Affiliation(s)
- Malay Bhattacharya
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Raja Rammohunpur, Siliguri 734013, West Bengal, India
| | - Soumya Majumder
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Raja Rammohunpur, Siliguri 734013, West Bengal, India
| | - Sudeshna Nandi
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Raja Rammohunpur, Siliguri 734013, West Bengal, India
| | - Arindam Ghosh
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Raja Rammohunpur, Siliguri 734013, West Bengal, India
| | - Preeti Subba
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Raja Rammohunpur, Siliguri 734013, West Bengal, India
| | - Sukanya Acharyya
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Raja Rammohunpur, Siliguri 734013, West Bengal, India
| | - Sourav Chakraborty
- Plant Biochemistry and Molecular Biology Laboratory, Postgraduate Department of Botany, Darjeeling Government College, Darjeeling 734101, West Bengal, India.
| |
Collapse
|
5
|
Ohazama S, Fujimoto A, Konda D, Yokoyama R, Nakagawa S, Maita H. Dissecting the role of SMN multimerization in its dissociation from the Cajal body using harmine as a tool compound. J Cell Sci 2024; 137:jcs261834. [PMID: 39258320 DOI: 10.1242/jcs.261834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
Survival motor neuron protein (SMN), which is linked to spinal muscular atrophy, is a key component of the Gemin complex, which is essential for the assembly of small nuclear RNA-protein complexes (snRNPs). After initial snRNP assembly in the cytoplasm, both snRNPs and SMN migrate to the nucleus and associate with Cajal bodies, where final snRNP maturation occurs. It is assumed that SMN must be free from the Cajal bodies for continuous snRNP biogenesis. Previous observation of the SMN granules docked in the Cajal bodies suggests the existence of a separation mechanism. However, the precise processes that regulate the spatial separation of SMN complexes from Cajal bodies remain unclear. Here, we have employed a super-resolution microscope alongside the β-carboline alkaloid harmine, which disrupts the Cajal body in a reversible manner. Upon removal of harmine, SMN and Coilin first appear as small interconnected condensates. The SMN condensates mature into spheroidal structures encircled by Coilin, eventually segregating into distinct condensates. Expression of a multimerization-deficient SMN mutant leads to enlarged, atypical Cajal bodies in which SMN is unable to segregate into separate condensates. These findings underscore the importance of multimerization in facilitating the segregation of SMN from Coilin within Cajal bodies.
Collapse
Affiliation(s)
- Saki Ohazama
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Akiko Fujimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Daisuke Konda
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Ryota Yokoyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shinichi Nakagawa
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0812, Japan
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hiroshi Maita
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0812, Japan
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
6
|
Polverini E, Squeri P, Gherardi V. Effect of E134K pathogenic mutation of SMN protein on SMN-SmD1 interaction, with implication in spinal muscular atrophy: A molecular dynamics study. Int J Biol Macromol 2024; 275:133663. [PMID: 38969036 DOI: 10.1016/j.ijbiomac.2024.133663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Spinal muscular atrophy (SMA) is a disease that results from mutations in the Survival of Motor Neuron (SMN) gene 1, leading to muscle atrophy due to motor neurons degeneration. SMN plays a crucial role in the assembly of spliceosomal small nuclear ribonucleoprotein complexes via binding to the arginine-glycine rich C-terminal tails of Sm proteins recognized by SMN Tudor domain. E134K Tudor mutation, cause of the more severe type I SMA, compromises the SMN-Sm interaction without a perturbation of the domain fold. By molecular dynamics simulations, we investigated the mechanism of Tudor-SmD1 interaction, and the effects on it of E134K mutation. It was observed that E134 is crucial to catch the positive dimethylated arginines (DMRs) of the SmD1 tail that, wrapping around the acidic Tudor surface, enters a central DMR into an aromatic cage. The flexible cage residue Y130 must be blocked from the wrapped tail to assure a stable binding. The charge inversion in E134K mutation causes the loss of a critical anchor point, disfavoring the tail wrapping and leaving Y130 free to swing, leading to DMR detachments and exposition of the C-terminal region of the tail. This could suggest new hypotheses regarding a possible autoimmune response by anti-Sm autoantibodies.
Collapse
Affiliation(s)
- Eugenia Polverini
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124 Parma, Italy.
| | - Pietro Squeri
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Valeria Gherardi
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
7
|
Akhkiamova M, Polyakov A, Marakhonov A, Voronin S, Saifullina E, Vafina Z, Michalchuk K, Braslavskaya S, Chukhrova A, Ryadninskaya N, Kutsev S, Shchagina O. Rare Variants of the SMN1 Gene Detected during Neonatal Screening. Genes (Basel) 2024; 15:956. [PMID: 39062735 PMCID: PMC11275604 DOI: 10.3390/genes15070956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
During the expanded neonatal screening program conducted in 2023, we analyzed samples obtained from 1,227,130 out of 1,256,187 newborns in the Russian Federation in order to detect 5q spinal muscular atrophy (5q SMA). Within the 253-sample risk group formed based on the results of the first screening stage, 5 samples showed a discrepancy between the examination results obtained via various screening methods and quantitative MLPA (used as reference). The discrepancy between the results was caused by the presence of either a c.835-18C>T intronic variant or a c.842G>C p.(Arg281Thr) missense variant in the SMN1 gene, both of which are located in the region complementary to the sequences of annealing probes for ligation and real-time PCR. Three newborns had the c.835-18C>T variant in a compound heterozygous state with a deletion of exons 7-8 of the SMN1 gene, one newborn with two copies of the SMN1 gene had the same variant in a heterozygous state, and one newborn had both variants-c.835-18C>T and c.842G>C p.(Arg281Thr)-in a compound heterozygous state. Additional examination was carried out for these variants, involving segregation analysis in families, carriage analysis in population cohorts, and RNA analysis. Based on the obtained results, according to the ACMG criteria, the c.835-18C>T intronic variant should be classified as likely benign, and the c.842G>C p.(Arg281Thr) missense substitution as a variant of uncertain clinical significance. All five probands are under dynamic monitoring. No 5q SMA symptoms were detected in these newborns neonatally or during a 1-year follow-up period.
Collapse
Affiliation(s)
- Maria Akhkiamova
- Research Centre for Medical Genetics, Moskvorechie Str., 1, 115522 Moscow, Russia; (A.P.); (A.M.); (S.V.); (K.M.); (S.B.); (A.C.); (N.R.); (S.K.); (O.S.)
| | - Aleksander Polyakov
- Research Centre for Medical Genetics, Moskvorechie Str., 1, 115522 Moscow, Russia; (A.P.); (A.M.); (S.V.); (K.M.); (S.B.); (A.C.); (N.R.); (S.K.); (O.S.)
| | - Andrey Marakhonov
- Research Centre for Medical Genetics, Moskvorechie Str., 1, 115522 Moscow, Russia; (A.P.); (A.M.); (S.V.); (K.M.); (S.B.); (A.C.); (N.R.); (S.K.); (O.S.)
| | - Sergey Voronin
- Research Centre for Medical Genetics, Moskvorechie Str., 1, 115522 Moscow, Russia; (A.P.); (A.M.); (S.V.); (K.M.); (S.B.); (A.C.); (N.R.); (S.K.); (O.S.)
| | - Elena Saifullina
- Bashkir State Medical University, Lenin Str., 3, 450008 Ufa, Russia;
| | - Zulfiia Vafina
- Republic of Tatarstan Ministry of Healthcare Autonomous Public Healthcare, Institution Republic Clinical Hospital, Orenburgskiy Tract Str., 138, 420064 Kazan, Russia;
| | - Kristina Michalchuk
- Research Centre for Medical Genetics, Moskvorechie Str., 1, 115522 Moscow, Russia; (A.P.); (A.M.); (S.V.); (K.M.); (S.B.); (A.C.); (N.R.); (S.K.); (O.S.)
| | - Svetlana Braslavskaya
- Research Centre for Medical Genetics, Moskvorechie Str., 1, 115522 Moscow, Russia; (A.P.); (A.M.); (S.V.); (K.M.); (S.B.); (A.C.); (N.R.); (S.K.); (O.S.)
| | - Alena Chukhrova
- Research Centre for Medical Genetics, Moskvorechie Str., 1, 115522 Moscow, Russia; (A.P.); (A.M.); (S.V.); (K.M.); (S.B.); (A.C.); (N.R.); (S.K.); (O.S.)
| | - Nina Ryadninskaya
- Research Centre for Medical Genetics, Moskvorechie Str., 1, 115522 Moscow, Russia; (A.P.); (A.M.); (S.V.); (K.M.); (S.B.); (A.C.); (N.R.); (S.K.); (O.S.)
| | - Sergey Kutsev
- Research Centre for Medical Genetics, Moskvorechie Str., 1, 115522 Moscow, Russia; (A.P.); (A.M.); (S.V.); (K.M.); (S.B.); (A.C.); (N.R.); (S.K.); (O.S.)
| | - Olga Shchagina
- Research Centre for Medical Genetics, Moskvorechie Str., 1, 115522 Moscow, Russia; (A.P.); (A.M.); (S.V.); (K.M.); (S.B.); (A.C.); (N.R.); (S.K.); (O.S.)
| |
Collapse
|
8
|
Garcia EL, Steiner RE, Raimer AC, Herring LE, Matera AG, Spring AM. Dysregulation of innate immune signaling in animal models of spinal muscular atrophy. BMC Biol 2024; 22:94. [PMID: 38664795 PMCID: PMC11044505 DOI: 10.1186/s12915-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a devastating neuromuscular disease caused by hypomorphic loss of function in the survival motor neuron (SMN) protein. SMA presents across a broad spectrum of disease severity. Unfortunately, genetic models of intermediate SMA have been difficult to generate in vertebrates and are thus unable to address key aspects of disease etiology. To address these issues, we developed a Drosophila model system that recapitulates the full range of SMA severity, allowing studies of pre-onset biology as well as late-stage disease processes. RESULTS Here, we carried out transcriptomic and proteomic profiling of mild and intermediate Drosophila models of SMA to elucidate molecules and pathways that contribute to the disease. Using this approach, we elaborated a role for the SMN complex in the regulation of innate immune signaling. We find that mutation or tissue-specific depletion of SMN induces hyperactivation of the immune deficiency (IMD) and Toll pathways, leading to overexpression of antimicrobial peptides (AMPs) and ectopic formation of melanotic masses in the absence of an external challenge. Furthermore, the knockdown of downstream targets of these signaling pathways reduced melanotic mass formation caused by SMN loss. Importantly, we identify SMN as a negative regulator of a ubiquitylation complex that includes Traf6, Bendless, and Diap2 and plays a pivotal role in several signaling networks. CONCLUSIONS In alignment with recent research on other neurodegenerative diseases, these findings suggest that hyperactivation of innate immunity contributes to SMA pathology. This work not only provides compelling evidence that hyperactive innate immune signaling is a primary effect of SMN depletion, but it also suggests that the SMN complex plays a regulatory role in this process in vivo. In summary, immune dysfunction in SMA is a consequence of reduced SMN levels and is driven by cellular and molecular mechanisms that are conserved between insects and mammals.
Collapse
Affiliation(s)
- Eric L Garcia
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Rebecca E Steiner
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- RNA Discovery and Lineberger Comprehensive Cancer Centers, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
- Present Address: Lake, Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Amanda C Raimer
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
- Present Address, Radford University, Radford, VA, USA
| | - Laura E Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - A Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA.
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA.
- RNA Discovery and Lineberger Comprehensive Cancer Centers, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA.
| | - Ashlyn M Spring
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA.
| |
Collapse
|
9
|
Garcia EL, Steiner RE, Raimer AC, Herring LE, Matera AG, Spring AM. Dysregulation of innate immune signaling in animal models of Spinal Muscular Atrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571739. [PMID: 38168196 PMCID: PMC10760185 DOI: 10.1101/2023.12.14.571739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background Spinal Muscular Atrophy (SMA) is a devastating neuromuscular disease caused by hypomorphic loss of function in the Survival Motor Neuron (SMN) protein. SMA presents across broad spectrum of disease severity. Unfortunately, vertebrate models of intermediate SMA have been difficult to generate and are thus unable to address key aspects of disease etiology. To address these issues, we developed a Drosophila model system that recapitulates the full range of SMA severity, allowing studies of pre-onset biology as well as late-stage disease processes. Results Here, we carried out transcriptomic and proteomic profiling of mild and intermediate Drosophila models of SMA to elucidate molecules and pathways that contribute to the disease. Using this approach, we elaborated a role for the SMN complex in the regulation of innate immune signaling. We find that mutation or tissue-specific depletion of SMN induces hyperactivation of the Immune Deficiency (IMD) and Toll pathways, leading to overexpression of antimicrobial peptides (AMPs) and ectopic formation of melanotic masses in the absence of an external challenge. Furthermore, knockdown of downstream targets of these signaling pathways reduced melanotic mass formation caused by SMN loss. Importantly, we identify SMN as a negative regulator of an ubiquitylation complex that includes Traf6, Bendless and Diap2, and plays a pivotal role in several signaling networks. Conclusions In alignment with recent research on other neurodegenerative diseases, these findings suggest that hyperactivation of innate immunity contributes to SMA pathology. This work not only provides compelling evidence that hyperactive innate immune signaling is a primary effect of SMN depletion, but it also suggests that the SMN complex plays a regulatory role in this process in vivo. In summary, immune dysfunction in SMA is a consequence of reduced SMN levels and is driven by cellular and molecular mechanisms that are conserved between insects and mammals.
Collapse
Affiliation(s)
- Eric L. Garcia
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill NC, USA
- Department of Biology, University of Kentucky, Lexington KY, USA
| | - Rebecca E. Steiner
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill NC, USA
- Department of Biology, University of North Carolina at Chapel Hill
| | - Amanda C. Raimer
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill
| | - Laura E. Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill
| | - A. Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill
- Department of Biology, University of North Carolina at Chapel Hill
- Department of Genetics, University of North Carolina at Chapel Hill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Ashlyn M. Spring
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill NC, USA
- Department of Biology, University of North Carolina at Greensboro, Greensboro NC, USA
| |
Collapse
|
10
|
Li L, Perera L, Varghese SA, Shiloh-Malawsky Y, Hunter SE, Sneddon TP, Powell CM, Matera AG, Fan Z. A homozygous missense variant in the YG box domain in an individual with severe spinal muscular atrophy: a case report and variant characterization. Front Cell Neurosci 2023; 17:1259380. [PMID: 37841286 PMCID: PMC10571918 DOI: 10.3389/fncel.2023.1259380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023] Open
Abstract
The vast majority of severe (Type 0) spinal muscular atrophy (SMA) cases are caused by homozygous deletions of survival motor neuron 1 (SMN1). We report a case in which the patient has two copies of SMN1 but clinically presents as Type 0 SMA. The patient is an African American male carrying a homozygous maternally inherited missense variant (c.796T>C) in a cis-oriented SMN1 duplication on one chromosome and an SMN1 deletion on the other chromosome (genotype: 2*+0). Initial extensive genetic workups including exome sequencing were negative. Deletion analysis used in the initial testing for SMA also failed to detect SMA as the patient has two copies of SMN1. Because of high clinical suspicion, SMA diagnosis was finally confirmed based on full-length SMN1 sequencing. The patient was initially treated with risdiplam and later gene therapy with onasemnogene abeparvovec at 5 months without complications. The patient's muscular weakness has stabilized with mild improvement. The patient is now 28 months old and remains stable and diffusely weak, with stable respiratory ventilatory support. This case highlights challenges in the diagnosis of SMA with a non-deletion genotype and provides a clinical example demonstrating that disruption of functional SMN protein polymerization through an amino acid change in the YG-box domain represents a little known but important pathogenic mechanism for SMA. Clinicians need to be mindful about the limitations of the current diagnostic approach for SMA in detecting non-deletion genotypes.
Collapse
Affiliation(s)
- Leping Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Sonia A. Varghese
- Division of Pediatric Neurology, Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yael Shiloh-Malawsky
- Division of Pediatric Neurology, Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Senyene E. Hunter
- Division of Pediatric Neurology, Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Tam P. Sneddon
- Department of Pathology and Lab Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cynthia M. Powell
- Division of Genetics and Metabolism, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - A. Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Zheng Fan
- Division of Pediatric Neurology, Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
11
|
Hu Y, Hou Y, Zhou S, Wang Y, Shen C, Mu L, Su D, Zhang R. Mechanism of assembly of snRNP cores assisted by ICln and the SMN complex in fission yeast. iScience 2023; 26:107604. [PMID: 37664592 PMCID: PMC10470402 DOI: 10.1016/j.isci.2023.107604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/11/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
The spliceosomal snRNP cores, each comprised of a snRNA and a seven-membered Sm ring (D1/D2/F/E/G/D3/B), are assembled by twelve chaperoning proteins in human. However, only six assembly-assisting proteins, ICln and the SMN complex (SMN/Gemin2/Gemin6-8), have been found in Schizosaccharomyces pombe (Sp). Here, we used recombinant proteins to reconstitute the chaperone machinery and investigated the roles of these proteins systematically. We found that, like the human system, the assembly in S. pombe requires ICln and the SMN complex sequentially. However, there are several significant differences. For instance, h_F/E/G forms heterohexamers and heterotrimers, while Sp_F/E/G only forms heterohexamers; h_Gemin2 alone can bind D1/D2/F/E/G, but Sp_Gemin2 cannot. Moreover, we found that Sp_Gemin2 is essential using genetic approaches. These mechanistic studies reveal that these six proteins are necessary and sufficient for Sm core assembly at the molecular level, and enrich our understanding of the chaperone systems in species variation and evolution.
Collapse
Affiliation(s)
- Yan Hu
- Department of Ophthalmology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| | - Yan Hou
- Department of Ophthalmology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| | - Shijie Zhou
- Department of Ophthalmology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| | - Yingzhi Wang
- Department of Ophthalmology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| | - Congcong Shen
- Department of Ophthalmology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| | - Li Mu
- Department of Ophthalmology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| | - Dan Su
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| | - Rundong Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| |
Collapse
|
12
|
Cui Q, Wang W, Namani A, Wang H, Hammad A, Huang P, Gao Y, Elshaer M, Wu Y, Wang XJ, Tang X. NRF2 has a splicing regulatory function involving the survival of motor neuron (SMN) in non-small cell lung cancer. Oncogene 2023; 42:2751-2763. [PMID: 37573407 DOI: 10.1038/s41388-023-02799-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
The nuclear factor erythroid 2-like 2 (NFE2L2; NRF2) signaling pathway is frequently deregulated in human cancers. The critical functions of NRF2, other than its transcriptional activation, in cancers remain largely unknown. Here, we uncovered a previously unrecognized role of NRF2 in the regulation of RNA splicing. Global splicing analysis revealed that NRF2 knockdown in non-small cell lung cancer (NSCLC) A549 cells altered 839 alternative splicing (AS) events in 485 genes. Mechanistic studies demonstrated that NRF2 transcriptionally regulated SMN mRNA expression by binding to two antioxidant response elements in the SMN1 promoter. Post-transcriptionally, NRF2 was physically associated with the SMN protein. The Neh2 domain of NRF2, as well as the YG box and the region encoded by exon 7 of SMN, were required for their interaction. NRF2 formed a complex with SMN and Gemin2 in nuclear gems and Cajal bodies. Furthermore, the NRF2-SMN interaction regulated RNA splicing by expressing SMN in NRF2-knockout HeLa cells, reverting some of the altered RNA splicing. Moreover, SMN overexpression was significantly associated with alterations in the NRF2 pathway in patients with lung squamous cell carcinoma from The Cancer Genome Atlas. Taken together, our findings suggest a novel therapeutic strategy for cancers involving an aberrant NRF2 pathway.
Collapse
Affiliation(s)
- Qinqin Cui
- Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Wei Wang
- Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Akhileshwar Namani
- Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Hongyan Wang
- Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Ahmed Hammad
- Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Pu Huang
- Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Yang Gao
- Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Mohamed Elshaer
- Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Yihe Wu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Xiu Jun Wang
- Department of Pharmacology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, P. R. China.
| | - Xiuwen Tang
- Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China.
- Zhejiang Provincial Key Laboratory of Immunity and Inflammatory Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China.
| |
Collapse
|
13
|
Nishio H, Niba ETE, Saito T, Okamoto K, Takeshima Y, Awano H. Spinal Muscular Atrophy: The Past, Present, and Future of Diagnosis and Treatment. Int J Mol Sci 2023; 24:11939. [PMID: 37569314 PMCID: PMC10418635 DOI: 10.3390/ijms241511939] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a lower motor neuron disease with autosomal recessive inheritance. The first cases of SMA were reported by Werdnig in 1891. Although the phenotypic variation of SMA led to controversy regarding the clinical entity of the disease, the genetic homogeneity of SMA was proved in 1990. Five years later, in 1995, the gene responsible for SMA, SMN1, was identified. Genetic testing of SMN1 has enabled precise epidemiological studies, revealing that SMA occurs in 1 of 10,000 to 20,000 live births and that more than 95% of affected patients are homozygous for SMN1 deletion. In 2016, nusinersen was the first drug approved for treatment of SMA in the United States. Two other drugs were subsequently approved: onasemnogene abeparvovec and risdiplam. Clinical trials with these drugs targeting patients with pre-symptomatic SMA (those who were diagnosed by genetic testing but showed no symptoms) revealed that such patients could achieve the milestones of independent sitting and/or walking. Following the great success of these trials, population-based newborn screening programs for SMA (more precisely, SMN1-deleted SMA) have been increasingly implemented worldwide. Early detection by newborn screening and early treatment with new drugs are expected to soon become the standards in the field of SMA.
Collapse
Affiliation(s)
- Hisahide Nishio
- Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan
| | - Emma Tabe Eko Niba
- Laboratory of Molecular and Biochemical Research, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Toshio Saito
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka 560-8552, Japan;
| | - Kentaro Okamoto
- Department of Pediatrics, Ehime Prefectural Imabari Hospital, 4-5-5 Ishi-cho, Imabari 794-0006, Japan;
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| | - Hiroyuki Awano
- Organization for Research Initiative and Promotion, Research Initiative Center, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan;
| |
Collapse
|
14
|
Eilers G, Gupta K, Allen A, Montermoso S, Murali H, Sharp R, Hwang Y, Bushman FD, Van Duyne G. Structure of a HIV-1 IN-Allosteric inhibitor complex at 2.93 Å resolution: Routes to inhibitor optimization. PLoS Pathog 2023; 19:e1011097. [PMID: 36867659 PMCID: PMC10016701 DOI: 10.1371/journal.ppat.1011097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/15/2023] [Accepted: 01/03/2023] [Indexed: 03/04/2023] Open
Abstract
HIV integrase (IN) inserts viral DNA into the host genome and is the target of the strand transfer inhibitors (STIs), a class of small molecules currently in clinical use. Another potent class of antivirals is the allosteric inhibitors of integrase, or ALLINIs. ALLINIs promote IN aggregation by stabilizing an interaction between the catalytic core domain (CCD) and carboxy-terminal domain (CTD) that undermines viral particle formation in late replication. Ongoing challenges with inhibitor potency, toxicity, and viral resistance motivate research to understand their mechanism. Here, we report a 2.93 Å X-ray crystal structure of the minimal ternary complex between CCD, CTD, and the ALLINI BI-224436. This structure reveals an asymmetric ternary complex with a prominent network of π-mediated interactions that suggest specific avenues for future ALLINI development and optimization.
Collapse
Affiliation(s)
- Grant Eilers
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Audrey Allen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Saira Montermoso
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hemma Murali
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert Sharp
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Young Hwang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gregory Van Duyne
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
15
|
Riboldi GM, Faravelli I, Rinchetti P, Lotti F. SMN post-translational modifications in spinal muscular atrophy. Front Cell Neurosci 2023; 17:1092488. [PMID: 36874214 PMCID: PMC9981653 DOI: 10.3389/fncel.2023.1092488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/26/2023] [Indexed: 02/19/2023] Open
Abstract
Since its first identification as the gene responsible for spinal muscular atrophy (SMA), the range of survival motor neuron (SMN) protein functions has increasingly expanded. This multimeric complex plays a crucial role in a variety of RNA processing pathways. While its most characterized function is in the biogenesis of ribonucleoproteins, several studies have highlighted the SMN complex as an important contributor to mRNA trafficking and translation, axonal transport, endocytosis, and mitochondria metabolism. All these multiple functions need to be selectively and finely modulated to maintain cellular homeostasis. SMN has distinct functional domains that play a crucial role in complex stability, function, and subcellular distribution. Many different processes were reported as modulators of the SMN complex activities, although their contribution to SMN biology still needs to be elucidated. Recent evidence has identified post-translational modifications (PTMs) as a way to regulate the pleiotropic functions of the SMN complex. These modifications include phosphorylation, methylation, ubiquitination, acetylation, sumoylation, and many other types. PTMs can broaden the range of protein functions by binding chemical moieties to specific amino acids, thus modulating several cellular processes. Here, we provide an overview of the main PTMs involved in the regulation of the SMN complex with a major focus on the functions that have been linked to SMA pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Francesco Lotti
- Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology, and Neurology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
16
|
Binda O, Juillard F, Ducassou JN, Kleijwegt C, Paris G, Didillon A, Baklouti F, Corpet A, Couté Y, Côté J, Lomonte P. SMA-linked SMN mutants prevent phase separation properties and SMN interactions with FMRP family members. Life Sci Alliance 2022; 6:6/1/e202201429. [PMID: 36375840 PMCID: PMC9684302 DOI: 10.26508/lsa.202201429] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Although recent advances in gene therapy provide hope for spinal muscular atrophy (SMA) patients, the pathology remains the leading genetic cause of infant mortality. SMA is a monogenic pathology that originates from the loss of the SMN1 gene in most cases or mutations in rare cases. Interestingly, several SMN1 mutations occur within the TUDOR methylarginine reader domain of SMN. We hypothesized that in SMN1 mutant cases, SMA may emerge from aberrant protein-protein interactions between SMN and key neuronal factors. Using a BioID proteomic approach, we have identified and validated a number of SMN-interacting proteins, including fragile X mental retardation protein (FMRP) family members (FMRFM). Importantly, SMA-linked SMNTUDOR mutant forms (SMNST) failed to interact with FMRFM In agreement with the recent work, we define biochemically that SMN forms droplets in vitro and these droplets are stabilized by RNA, suggesting that SMN could be involved in the formation of membraneless organelles, such as Cajal nuclear bodies. Finally, we found that SMN and FMRP co-fractionate with polysomes, in an RNA-dependent manner, suggesting a potential role in localized translation in motor neurons.
Collapse
Affiliation(s)
- Olivier Binda
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, LabEx DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle, Team Chromatin Dynamics, Nuclear Domains, Virus, Lyon, France .,University of Ottawa, Faculty of Medicine, Department of Cellular and Molecular Medicine, Ottawa, Canada
| | - Franceline Juillard
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, LabEx DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle, Team Chromatin Dynamics, Nuclear Domains, Virus, Lyon, France
| | - Julia Novion Ducassou
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, Grenoble, France
| | - Constance Kleijwegt
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, LabEx DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle, Team Chromatin Dynamics, Nuclear Domains, Virus, Lyon, France,Université de Montpellier, CNRS UMR 9002, Institut de Génétique Humaine, Montpellier, France
| | - Geneviève Paris
- University of Ottawa, Faculty of Medicine, Department of Cellular and Molecular Medicine, Ottawa, Canada
| | - Andréanne Didillon
- University of Ottawa, Faculty of Medicine, Department of Cellular and Molecular Medicine, Ottawa, Canada
| | - Faouzi Baklouti
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, LabEx DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle, Team Chromatin Dynamics, Nuclear Domains, Virus, Lyon, France
| | - Armelle Corpet
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, LabEx DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle, Team Chromatin Dynamics, Nuclear Domains, Virus, Lyon, France
| | - Yohann Couté
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, Grenoble, France
| | - Jocelyn Côté
- University of Ottawa, Faculty of Medicine, Department of Cellular and Molecular Medicine, Ottawa, Canada
| | - Patrick Lomonte
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, LabEx DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle, Team Chromatin Dynamics, Nuclear Domains, Virus, Lyon, France
| |
Collapse
|
17
|
Detering NT, Schüning T, Hensel N, Claus P. The phospho-landscape of the survival of motoneuron protein (SMN) protein: relevance for spinal muscular atrophy (SMA). Cell Mol Life Sci 2022; 79:497. [PMID: 36006469 PMCID: PMC11071818 DOI: 10.1007/s00018-022-04522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022]
Abstract
Spinal muscular atrophy (SMA) is caused by low levels of the survival of motoneuron (SMN) Protein leading to preferential degeneration of lower motoneurons in the ventral horn of the spinal cord and brain stem. However, the SMN protein is ubiquitously expressed and there is growing evidence of a multisystem phenotype in SMA. Since a loss of SMN function is critical, it is important to decipher the regulatory mechanisms of SMN function starting on the level of the SMN protein itself. Posttranslational modifications (PTMs) of proteins regulate multiple functions and processes, including activity, cellular trafficking, and stability. Several PTM sites have been identified within the SMN sequence. Here, we map the identified SMN PTMs highlighting phosphorylation as a key regulator affecting localization, stability and functions of SMN. Furthermore, we propose SMN phosphorylation as a crucial factor for intracellular interaction and cellular distribution of SMN. We outline the relevance of phosphorylation of the spinal muscular atrophy (SMA) gene product SMN with regard to basic housekeeping functions of SMN impaired in this neurodegenerative disease. Finally, we compare SMA patient mutations with putative and verified phosphorylation sites. Thus, we emphasize the importance of phosphorylation as a cellular modulator in a clinical perspective as a potential additional target for combinatorial SMA treatment strategies.
Collapse
Affiliation(s)
- Nora Tula Detering
- SMATHERIA gGmbH - Non-Profit Biomedical Research Institute, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Tobias Schüning
- SMATHERIA gGmbH - Non-Profit Biomedical Research Institute, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Niko Hensel
- Ottawa Hospital Research Institute (OHRI), Ottawa, Canada
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Peter Claus
- SMATHERIA gGmbH - Non-Profit Biomedical Research Institute, Hannover, Germany.
- Center for Systems Neuroscience (ZSN), Hannover, Germany.
| |
Collapse
|
18
|
Niba ETE, Nishio H, Wijaya YOS, Ar Rochmah M, Takarada T, Takeuchi A, Kimizu T, Okamoto K, Saito T, Awano H, Takeshima Y, Shinohara M. Stability and Oligomerization of Mutated SMN Protein Determine Clinical Severity of Spinal Muscular Atrophy. Genes (Basel) 2022; 13:genes13020205. [PMID: 35205250 PMCID: PMC8872419 DOI: 10.3390/genes13020205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/10/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a common autosomal recessive neuromuscular disease characterized by defects of lower motor neurons. Approximately 95% of SMA patients are homozygous for survival motor neuron 1 (SMN1) gene deletion, while ~5% carry an intragenic SMN1 mutation. Here, we investigated the stability and oligomerization ability of mutated SMN1 proteins. Plasmids containing wild- and mutant-type SMN1 cDNA were constructed and transfected into HeLa cells. Reverse transcription-polymerase chain reaction (RT-PCR) demonstrated similar abundances of transcripts from the plasmids containing SMN cDNA, but Western blotting showed different expression levels of mutated SMN1 proteins, reflecting the degree of their instability. A mutated SMN1 protein with T274YfsX32 exhibited a much lower expression level than other mutated SMN1 proteins with E134K, Y276H, or Y277C. In immunoprecipitation analysis, the mutated SMN1 protein with T274YfsX32 did not bind to endogenous SMN1 protein in HeLa cells, suggesting that this mutation completely blocks the oligomerization with full-length SMN2 protein in the patient. The patient with T274YfsX32 showed a much more severe phenotype than the other patients with different mutations. In conclusion, the stability and oligomerization ability of mutated SMN1 protein may determine the protein stability and may be associated with the clinical severity of SMA caused by intragenic SMN1 mutation.
Collapse
Affiliation(s)
- Emma Tabe Eko Niba
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Hyogo, Japan; (E.T.E.N.); (Y.O.S.W.); (M.S.)
| | - Hisahide Nishio
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Hyogo, Japan; (E.T.E.N.); (Y.O.S.W.); (M.S.)
- Department of Occupational Therapy, Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Hyogo, Japan
- Correspondence: ; Tel.: +81-789-745-073
| | - Yogik Onky Silvana Wijaya
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Hyogo, Japan; (E.T.E.N.); (Y.O.S.W.); (M.S.)
| | - Mawaddah Ar Rochmah
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jalan Farmako, Sekip Utara, Yogyakarta 55281, Indonesia;
| | - Toru Takarada
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada-ku, Kobe 658-8558, Hyogo, Japan;
| | - Atsuko Takeuchi
- Instrumental Analysis Center, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada-ku, Kobe 658-8558, Hyogo, Japan;
| | - Tomokazu Kimizu
- Department of Pediatric Neurology, Osaka Women’s and Children’s Hospital, 840 Murodo-cho, Izumi 594-1101, Osaka, Japan;
| | - Kentaro Okamoto
- Department of Pediatrics, Ehime Prefectural Imabari Hospital, 4-5-5 Ishii-cho, Imabari 794-0006, Ehime, Japan;
| | - Toshio Saito
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka 560-8552, Osaka, Japan;
| | - Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Hyogo, Japan;
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Hyogo, Japan;
| | - Masakazu Shinohara
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Hyogo, Japan; (E.T.E.N.); (Y.O.S.W.); (M.S.)
| |
Collapse
|
19
|
Chong LC, Gandhi G, Lee JM, Yeo WWY, Choi SB. Drug Discovery of Spinal Muscular Atrophy (SMA) from the Computational Perspective: A Comprehensive Review. Int J Mol Sci 2021; 22:8962. [PMID: 34445667 PMCID: PMC8396480 DOI: 10.3390/ijms22168962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 01/02/2023] Open
Abstract
Spinal muscular atrophy (SMA), one of the leading inherited causes of child mortality, is a rare neuromuscular disease arising from loss-of-function mutations of the survival motor neuron 1 (SMN1) gene, which encodes the SMN protein. When lacking the SMN protein in neurons, patients suffer from muscle weakness and atrophy, and in the severe cases, respiratory failure and death. Several therapeutic approaches show promise with human testing and three medications have been approved by the U.S. Food and Drug Administration (FDA) to date. Despite the shown promise of these approved therapies, there are some crucial limitations, one of the most important being the cost. The FDA-approved drugs are high-priced and are shortlisted among the most expensive treatments in the world. The price is still far beyond affordable and may serve as a burden for patients. The blooming of the biomedical data and advancement of computational approaches have opened new possibilities for SMA therapeutic development. This article highlights the present status of computationally aided approaches, including in silico drug repurposing, network driven drug discovery as well as artificial intelligence (AI)-assisted drug discovery, and discusses the future prospects.
Collapse
Affiliation(s)
- Li Chuin Chong
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Kuala Lumpur 50490, Malaysia; (L.C.C.); (J.M.L.)
| | - Gayatri Gandhi
- Perdana University Graduate School of Medicine, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Kuala Lumpur 50490, Malaysia; (G.G.); (W.W.Y.Y.)
| | - Jian Ming Lee
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Kuala Lumpur 50490, Malaysia; (L.C.C.); (J.M.L.)
| | - Wendy Wai Yeng Yeo
- Perdana University Graduate School of Medicine, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Kuala Lumpur 50490, Malaysia; (G.G.); (W.W.Y.Y.)
| | - Sy-Bing Choi
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Kuala Lumpur 50490, Malaysia; (L.C.C.); (J.M.L.)
| |
Collapse
|
20
|
Veepaschit J, Viswanathan A, Bordonné R, Grimm C, Fischer U. Identification and structural analysis of the Schizosaccharomyces pombe SMN complex. Nucleic Acids Res 2021; 49:7207-7223. [PMID: 33754639 PMCID: PMC8287938 DOI: 10.1093/nar/gkab158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 01/20/2023] Open
Abstract
The macromolecular SMN complex facilitates the formation of Sm-class ribonucleoproteins involved in mRNA processing (UsnRNPs). While biochemical studies have revealed key activities of the SMN complex, its structural investigation is lagging behind. Here we report on the identification and structural determination of the SMN complex from the lower eukaryote Schizosaccharomyces pombe, consisting of SMN, Gemin2, 6, 7, 8 and Sm proteins. The core of the SMN complex is formed by several copies of SMN tethered through its C-terminal alpha-helices arranged with alternating polarity. This creates a central platform onto which Gemin8 binds and recruits Gemins 6 and 7. The N-terminal parts of the SMN molecules extrude via flexible linkers from the core and enable binding of Gemin2 and Sm proteins. Our data identify the SMN complex as a multivalent hub where Sm proteins are collected in its periphery to allow their joining with UsnRNA.
Collapse
Affiliation(s)
- Jyotishman Veepaschit
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Aravindan Viswanathan
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Rémy Bordonné
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier 34293, France
| | - Clemens Grimm
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Utz Fischer
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg 97074, Germany
| |
Collapse
|
21
|
Blatnik AJ, McGovern VL, Burghes AHM. What Genetics Has Told Us and How It Can Inform Future Experiments for Spinal Muscular Atrophy, a Perspective. Int J Mol Sci 2021; 22:8494. [PMID: 34445199 PMCID: PMC8395208 DOI: 10.3390/ijms22168494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Proximal spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder characterized by motor neuron loss and subsequent atrophy of skeletal muscle. SMA is caused by deficiency of the essential survival motor neuron (SMN) protein, canonically responsible for the assembly of the spliceosomal small nuclear ribonucleoproteins (snRNPs). Therapeutics aimed at increasing SMN protein levels are efficacious in treating SMA. However, it remains unknown how deficiency of SMN results in motor neuron loss, resulting in many reported cellular functions of SMN and pathways affected in SMA. Herein is a perspective detailing what genetics and biochemistry have told us about SMA and SMN, from identifying the SMA determinant region of the genome, to the development of therapeutics. Furthermore, we will discuss how genetics and biochemistry have been used to understand SMN function and how we can determine which of these are critical to SMA moving forward.
Collapse
Affiliation(s)
| | | | - Arthur H. M. Burghes
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Rightmire Hall, Room 168, 1060 Carmack Road, Columbus, OH 43210, USA; (A.J.B.III); (V.L.M.)
| |
Collapse
|
22
|
Gupta K, Wen Y, Ninan NS, Raimer AC, Sharp R, Spring A, Sarachan KL, Johnson MC, Van Duyne GD, Matera AG. Assembly of higher-order SMN oligomers is essential for metazoan viability and requires an exposed structural motif present in the YG zipper dimer. Nucleic Acids Res 2021; 49:7644-7664. [PMID: 34181727 PMCID: PMC8287954 DOI: 10.1093/nar/gkab508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Protein oligomerization is one mechanism by which homogenous solutions can separate into distinct liquid phases, enabling assembly of membraneless organelles. Survival Motor Neuron (SMN) is the eponymous component of a large macromolecular complex that chaperones biogenesis of eukaryotic ribonucleoproteins and localizes to distinct membraneless organelles in both the nucleus and cytoplasm. SMN forms the oligomeric core of this complex, and missense mutations within its YG box domain are known to cause Spinal Muscular Atrophy (SMA). The SMN YG box utilizes a unique variant of the glycine zipper motif to form dimers, but the mechanism of higher-order oligomerization remains unknown. Here, we use a combination of molecular genetic, phylogenetic, biophysical, biochemical and computational approaches to show that formation of higher-order SMN oligomers depends on a set of YG box residues that are not involved in dimerization. Mutation of key residues within this new structural motif restricts assembly of SMN to dimers and causes locomotor dysfunction and viability defects in animal models.
Collapse
Affiliation(s)
- Kushol Gupta
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19105-6059, USA
| | - Ying Wen
- Integrative Program for Biological & Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nisha S Ninan
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19105-6059, USA
| | - Amanda C Raimer
- Integrative Program for Biological & Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert Sharp
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19105-6059, USA
| | - Ashlyn M Spring
- Integrative Program for Biological & Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kathryn L Sarachan
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19105-6059, USA
| | - Meghan C Johnson
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Gregory D Van Duyne
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19105-6059, USA
| | - A Gregory Matera
- Integrative Program for Biological & Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
23
|
El Marabti E, Abdel-Wahab O. Therapeutic Modulation of RNA Splicing in Malignant and Non-Malignant Disease. Trends Mol Med 2021; 27:643-659. [PMID: 33994320 DOI: 10.1016/j.molmed.2021.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 01/24/2023]
Abstract
RNA splicing is the enzymatic process by which non-protein coding sequences are removed from RNA to produce mature protein-coding mRNA. Splicing is thereby a major mediator of proteome diversity as well as a dynamic regulator of gene expression. Genetic alterations disrupting splicing of individual genes or altering the function of splicing factors contribute to a wide range of human genetic diseases as well as cancer. These observations have resulted in the development of therapies based on oligonucleotides that bind to RNA sequences and modulate splicing for therapeutic benefit. In parallel, small molecules that bind to splicing factors to alter their function or modify RNA processing of individual transcripts are being pursued for monogenic disorders as well as for cancer.
Collapse
Affiliation(s)
- Ettaib El Marabti
- Clinical Transplant Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
24
|
Rademacher S, Detering NT, Schüning T, Lindner R, Santonicola P, Wefel IM, Dehus J, Walter LM, Brinkmann H, Niewienda A, Janek K, Varela MA, Bowerman M, Di Schiavi E, Claus P. A Single Amino Acid Residue Regulates PTEN-Binding and Stability of the Spinal Muscular Atrophy Protein SMN. Cells 2020; 9:cells9112405. [PMID: 33153033 PMCID: PMC7692393 DOI: 10.3390/cells9112405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is a neuromuscular disease caused by decreased levels of the survival of motoneuron (SMN) protein. Post-translational mechanisms for regulation of its stability are still elusive. Thus, we aimed to identify regulatory phosphorylation sites that modulate function and stability. Our results show that SMN residues S290 and S292 are phosphorylated, of which SMN pS290 has a detrimental effect on protein stability and nuclear localization. Furthermore, we propose that phosphatase and tensin homolog (PTEN), a novel phosphatase for SMN, counteracts this effect. In light of recent advancements in SMA therapies, a significant need for additional approaches has become apparent. Our study demonstrates S290 as a novel molecular target site to increase the stability of SMN. Characterization of relevant kinases and phosphatases provides not only a new understanding of SMN function, but also constitutes a novel strategy for combinatorial therapeutic approaches to increase the level of SMN in SMA.
Collapse
Affiliation(s)
- Sebastian Rademacher
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Nora T. Detering
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Tobias Schüning
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Robert Lindner
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Pamela Santonicola
- Institute of Biosciences and Bioresources, National Research Council of Italy, 80131 Naples, Italy; (P.S.); (E.D.S.)
| | - Inga-Maria Wefel
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Janina Dehus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Lisa M. Walter
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Hella Brinkmann
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Agathe Niewienda
- Shared Facility for Mass Spectrometry, Institute of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (A.N.); (K.J.)
| | - Katharina Janek
- Shared Facility for Mass Spectrometry, Institute of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (A.N.); (K.J.)
| | - Miguel A. Varela
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; (M.A.V.); (M.B.)
- Department of Paediatrics, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; (M.A.V.); (M.B.)
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Elia Di Schiavi
- Institute of Biosciences and Bioresources, National Research Council of Italy, 80131 Naples, Italy; (P.S.); (E.D.S.)
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
- Correspondence:
| |
Collapse
|
25
|
McGovern VL, Kray KM, Arnold WD, Duque SI, Iyer CC, Massoni-Laporte A, Workman E, Patel A, Battle DJ, Burghes AHM. Intragenic complementation of amino and carboxy terminal SMN missense mutations can rescue Smn null mice. Hum Mol Genet 2020; 29:3493-3503. [PMID: 33084884 PMCID: PMC7788290 DOI: 10.1093/hmg/ddaa235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/18/2020] [Accepted: 10/15/2020] [Indexed: 01/15/2023] Open
Abstract
Spinal muscular atrophy is caused by reduced levels of SMN resulting from the loss of SMN1 and reliance on SMN2 for the production of SMN. Loss of SMN entirely is embryonic lethal in mammals. There are several SMN missense mutations found in humans. These alleles do not show partial function in the absence of wild-type SMN and cannot rescue a null Smn allele in mice. However, these human SMN missense allele transgenes can rescue a null Smn allele when SMN2 is present. We find that the N- and C-terminal regions constitute two independent domains of SMN that can be separated genetically and undergo intragenic complementation. These SMN protein heteromers restore snRNP assembly of Sm proteins onto snRNA and completely rescue both survival of Smn null mice and motor neuron electrophysiology demonstrating that the essential functional unit of SMN is the oligomer.
Collapse
Affiliation(s)
- Vicki L McGovern
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Kaitlyn M Kray
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - W David Arnold
- Department of Neurology, The Ohio State University, Columbus, OH 43210, USA
| | - Sandra I Duque
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Chitra C Iyer
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Aurélie Massoni-Laporte
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Eileen Workman
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Aalapi Patel
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel J Battle
- Department of Biological Chemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Arthur H M Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
- Department of Neurology, The Ohio State University, Columbus, OH 43210, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
26
|
Blatnik AJ, McGovern VL, Le TT, Iyer CC, Kaspar BK, Burghes AHM. Conditional deletion of SMN in cell culture identifies functional SMN alleles. Hum Mol Genet 2020; 29:3477-3492. [PMID: 33075805 DOI: 10.1093/hmg/ddaa229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/01/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by mutation or deletion of survival motor neuron 1 (SMN1) and retention of SMN2 leading to SMN protein deficiency. We developed an immortalized mouse embryonic fibroblast (iMEF) line in which full-length wild-type Smn (flwt-Smn) can be conditionally deleted using Cre recombinase. iMEFs lacking flwt-Smn are not viable. We tested the SMA patient SMN1 missense mutation alleles A2G, D44V, A111G, E134K and T274I in these cells to determine which human SMN (huSMN) mutant alleles can function in the absence of flwt-Smn. All missense mutant alleles failed to rescue survival in the conditionally deleted iMEFs. Thus, the function lost by these mutations is essential to cell survival. However, co-expression of two different huSMN missense mutants can rescue iMEF survival and small nuclear ribonucleoprotein (snRNP) assembly, demonstrating intragenic complementation of SMN alleles. In addition, we show that a Smn protein lacking exon 2B can rescue iMEF survival and snRNP assembly in the absence of flwt-Smn, indicating exon 2B is not required for the essential function of Smn. For the first time, using this novel cell line, we can assay the function of SMN alleles in the complete absence of flwt-Smn.
Collapse
Affiliation(s)
- Anton J Blatnik
- Ohio State Biochemistry Program.,Biological Chemistry & Pharmacology
| | | | | | | | - Brian K Kaspar
- Center for Gene Therapy, Nationwide Children's Hospital; Department of Pediatrics, College of Medicine and Public Health, The Ohio State University; and Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Arthur H M Burghes
- Ohio State Biochemistry Program.,Biological Chemistry & Pharmacology.,Molecular Genetics.,Department of Neurology, The Ohio State University Wexner Medical Center, Columbus OH 43210 USA
| |
Collapse
|
27
|
Ottesen EW, Singh RN. Characteristics of circular RNAs generated by human Survival Motor Neuron genes. Cell Signal 2020; 73:109696. [PMID: 32553550 PMCID: PMC7387165 DOI: 10.1016/j.cellsig.2020.109696] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) belong to a diverse class of stable RNAs expressed in all cell types. Their proposed functions include sponging of microRNAs (miRNAs), sequestration and trafficking of proteins, assembly of multimeric complexes, production of peptides, and regulation of transcription. Backsplicing due to RNA structures formed by an exceptionally high number of Alu repeats lead to the production of a vast repertoire of circRNAs by human Survival Motor Neuron genes, SMN1 and SMN2, that code for SMN, an essential multifunctional protein. Low levels of SMN due to deletion or mutation of SMN1 result in spinal muscular atrophy (SMA), a major genetic disease of infants and children. Mild SMA is also recorded in adult population, expanding the spectrum of the disease. Here we review SMN circRNAs with respect to their biogenesis, sequence features, and potential functions. We also discuss how SMN circRNAs could be exploited for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America.
| |
Collapse
|
28
|
Dual Mechanism of a New SMN1 Variant (c.835G>C, p.Gly279Arg) by Interrupting Exon 7 Skipping and YG Oligomerization in Causation of Spinal Muscular Atrophy. J Mol Neurosci 2020; 71:112-121. [PMID: 32812185 DOI: 10.1007/s12031-020-01631-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/08/2020] [Indexed: 10/23/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by deletion or subtle variant of survival motor neuron 1 (SMN1) gene. By multiplex ligation-dependent probe amplification, genomic sequencing, and T-A cloning on cDNA level, we identified one novel SMN1 subtle variant c.835G>C (p.Gly279Arg) in a non-homozygous patient with type 1 SMA. Full-length SMN1 (fl-SMN1) transcripts in the peripheral bloods of the patient were significantly decreased compared with those in healthy individuals and the carries (p < 0.05). And two fragments of SMN1 transcripts including fl-SMN1 and △7-SMN1 were observed by RT-PCR, which indicated Exon 7 skipping of SMN1 gene. To further evaluate its splicing effects on Exon 7, we performed ex vivo splicing analysis, which showed that the mutant mini gene with c.835G>C reduced Exon 7 inclusion to 54%. In addition, self-oligomerization between mutant SMN protein with the c.835G>C (p.Gly279Arg) and wild SMN was decreased in self-interaction assays. Our study clearly demonstrates that the c.835G>C (p.Gly279Arg) variant can lead to a decrease in fl-SMN1 transcripts by interrupting correct splicing of SMN1. What is more, the variant also affects SMN self-oligomerization via amino acid substitution from Gly to Arg at amino acid position of 279. This work presents the first evidence that it does exit double-hit events for the novel variant, which is crucial to understanding a severe SMA phenotype (type 1).
Collapse
|
29
|
Singh NN, Ottesen EW, Singh RN. A survey of transcripts generated by spinal muscular atrophy genes. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194562. [PMID: 32387331 PMCID: PMC7302838 DOI: 10.1016/j.bbagrm.2020.194562] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/01/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
Abstract
Human Survival Motor Neuron (SMN) genes code for SMN, an essential multifunctional protein. Complete loss of SMN is embryonic lethal, while low levels of SMN lead to spinal muscular atrophy (SMA), a major genetic disease of children and infants. Reduced levels of SMN are associated with the abnormal development of heart, lung, muscle, gastro-intestinal system and testis. The SMN loci have been shown to generate a vast repertoire of transcripts, including linear, back- and trans-spliced RNAs as well as antisense long noncoding RNAs. However, functions of the majority of these transcripts remain unknown. Here we review the nature of RNAs generated from the SMN loci and discuss their potential functions in cellular metabolism.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Biomedical Science, Iowa State University, Ames, IA, 50011, United States of America
| | - Eric W Ottesen
- Department of Biomedical Science, Iowa State University, Ames, IA, 50011, United States of America
| | - Ravindra N Singh
- Department of Biomedical Science, Iowa State University, Ames, IA, 50011, United States of America.
| |
Collapse
|
30
|
Emerging Roles of Gemin5: From snRNPs Assembly to Translation Control. Int J Mol Sci 2020; 21:ijms21113868. [PMID: 32485878 PMCID: PMC7311978 DOI: 10.3390/ijms21113868] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
RNA-binding proteins (RBPs) play a pivotal role in the lifespan of RNAs. The disfunction of RBPs is frequently the cause of cell disorders which are incompatible with life. Furthermore, the ordered assembly of RBPs and RNAs in ribonucleoprotein (RNP) particles determines the function of biological complexes, as illustrated by the survival of the motor neuron (SMN) complex. Defects in the SMN complex assembly causes spinal muscular atrophy (SMA), an infant invalidating disease. This multi-subunit chaperone controls the assembly of small nuclear ribonucleoproteins (snRNPs), which are the critical components of the splicing machinery. However, the functional and structural characterization of individual members of the SMN complex, such as SMN, Gemin3, and Gemin5, have accumulated evidence for the additional roles of these proteins, unveiling their participation in other RNA-mediated events. In particular, Gemin5 is a multidomain protein that comprises tryptophan-aspartic acid (WD) repeat motifs at the N-terminal region, a dimerization domain at the middle region, and a non-canonical RNA-binding domain at the C-terminal end of the protein. Beyond small nuclear RNA (snRNA) recognition, Gemin5 interacts with a selective group of mRNA targets in the cell environment and plays a key role in reprogramming translation depending on the RNA partner and the cellular conditions. Here, we review recent studies on the SMN complex, with emphasis on the individual components regarding their involvement in cellular processes critical for cell survival.
Collapse
|
31
|
Ottesen EW, Singh NN, Luo D, Singh RN. High-affinity RNA targets of the Survival Motor Neuron protein reveal diverse preferences for sequence and structural motifs. Nucleic Acids Res 2019; 46:10983-11001. [PMID: 30165668 PMCID: PMC6237763 DOI: 10.1093/nar/gky770] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 08/24/2018] [Indexed: 12/23/2022] Open
Abstract
The Survival Motor Neuron (SMN) protein is essential for survival of all animal cells. SMN harbors a nucleic acid-binding domain and plays an important role in RNA metabolism. However, the RNA-binding property of SMN is poorly understood. Here we employ iterative in vitro selection and chemical structure probing to identify sequence and structural motif(s) critical for RNA–SMN interactions. Our results reveal that motifs that drive RNA–SMN interactions are diverse and suggest that tight RNA–SMN interaction requires presence of multiple contact sites on the RNA molecule. We performed UV crosslinking and immunoprecipitation coupled with high-throughput sequencing (HITS-CLIP) to identify cellular RNA targets of SMN in neuronal SH-SY5Y cells. Results of HITS-CLIP identified a wide variety of targets, including mRNAs coding for ribosome biogenesis and cytoskeleton dynamics. We show critical determinants of ANXA2 mRNA for a direct SMN interaction in vitro. Our data confirms the ability of SMN to discriminate among close RNA sequences, and represent the first validation of a direct interaction of SMN with a cellular RNA target. Our findings suggest direct RNA–SMN interaction as a novel mechanism to initiate the cascade of events leading to the execution of SMN-specific functions.
Collapse
Affiliation(s)
- Eric W Ottesen
- Iowa State University, Biomedical Sciences, Ames, IA, USA
| | | | - Diou Luo
- Iowa State University, Biomedical Sciences, Ames, IA, USA
| | | |
Collapse
|
32
|
Osman EY, Bolding MR, Villalón E, Kaifer KA, Lorson ZC, Tisdale S, Hao Y, Conant GC, Pires JC, Pellizzoni L, Lorson CL. Functional characterization of SMN evolution in mouse models of SMA. Sci Rep 2019; 9:9472. [PMID: 31263170 PMCID: PMC6603021 DOI: 10.1038/s41598-019-45822-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is a monogenic neurodegenerative disorder and the leading genetic cause of infantile mortality. While several functions have been ascribed to the SMN (survival motor neuron) protein, their specific contribution to the disease has yet to be fully elucidated. We hypothesized that some, but not all, SMN homologues would rescue the SMA phenotype in mouse models, thereby identifying disease-relevant domains. Using AAV9 to deliver Smn homologs to SMA mice, we identified a conservation threshold that marks the boundary at which homologs can rescue the SMA phenotype. Smn from Danio rerio and Xenopus laevis significantly prevent disease, whereas Smn from Drosophila melanogaster, Caenorhabditis elegans, and Schizosaccharomyces pombe was significantly less efficacious. This phenotypic rescue correlated with correction of RNA processing defects induced by SMN deficiency and neuromuscular junction pathology. Based upon the sequence conservation in the rescuing homologs, a minimal SMN construct was designed consisting of exons 2, 3, and 6, which showed a partial rescue of the SMA phenotype. While a significant extension in survival was observed, the absence of a complete rescue suggests that while the core conserved region is essential, additional sequences contribute to the overall ability of the SMN protein to rescue disease pathology.
Collapse
Affiliation(s)
- Erkan Y Osman
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Madeline R Bolding
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Eric Villalón
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Kevin A Kaifer
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Zachary C Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Sarah Tisdale
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Yue Hao
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | - Gavin C Conant
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA.,Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.,Division of Biological Sciences, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - J Chris Pires
- Department of Biological Sciences, Program in Genetics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA. .,Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
33
|
Anbo H, Sato M, Okoshi A, Fukuchi S. Functional Segments on Intrinsically Disordered Regions in Disease-Related Proteins. Biomolecules 2019; 9:biom9030088. [PMID: 30841624 PMCID: PMC6468909 DOI: 10.3390/biom9030088] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 01/05/2023] Open
Abstract
One of the unique characteristics of intrinsically disordered proteins (IPDs) is the existence of functional segments in intrinsically disordered regions (IDRs). A typical function of these segments is binding to partner molecules, such as proteins and DNAs. These segments play important roles in signaling pathways and transcriptional regulation. We conducted bioinformatics analysis to search these functional segments based on IDR predictions and database annotations. We found more than a thousand potential functional IDR segments in disease-related proteins. Large fractions of proteins related to cancers, congenital disorders, digestive system diseases, and reproductive system diseases have these functional IDRs. Some proteins in nervous system diseases have long functional segments in IDRs. The detailed analysis of some of these regions showed that the functional segments are located on experimentally verified IDRs. The proteins with functional IDR segments generally tend to come and go between the cytoplasm and the nucleus. Proteins involved in multiple diseases tend to have more protein-protein interactors, suggesting that hub proteins in the protein-protein interaction networks can have multiple impacts on human diseases.
Collapse
Affiliation(s)
- Hiroto Anbo
- Department of Life Science and Informatics, Faculty of Engineering, Maebashi Institute of Technology, 460-1, Kamisadori, Maebashi, Gunma 371-0816, Japan.
| | - Masaya Sato
- Department of Life Science and Informatics, Faculty of Engineering, Maebashi Institute of Technology, 460-1, Kamisadori, Maebashi, Gunma 371-0816, Japan.
| | - Atsushi Okoshi
- Department of Life Science and Informatics, Faculty of Engineering, Maebashi Institute of Technology, 460-1, Kamisadori, Maebashi, Gunma 371-0816, Japan.
| | - Satoshi Fukuchi
- Department of Life Science and Informatics, Faculty of Engineering, Maebashi Institute of Technology, 460-1, Kamisadori, Maebashi, Gunma 371-0816, Japan.
| |
Collapse
|
34
|
Composition of the Survival Motor Neuron (SMN) Complex in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2019; 9:491-503. [PMID: 30563832 PMCID: PMC6385987 DOI: 10.1534/g3.118.200874] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Spinal Muscular Atrophy (SMA) is caused by homozygous mutations in the human survival motor neuron 1 (SMN1) gene. SMN protein has a well-characterized role in the biogenesis of small nuclear ribonucleoproteins (snRNPs), core components of the spliceosome. SMN is part of an oligomeric complex with core binding partners, collectively called Gemins. Biochemical and cell biological studies demonstrate that certain Gemins are required for proper snRNP assembly and transport. However, the precise functions of most Gemins are unknown. To gain a deeper understanding of the SMN complex in the context of metazoan evolution, we investigated its composition in Drosophila melanogaster Using transgenic flies that exclusively express Flag-tagged SMN from its native promoter, we previously found that Gemin2, Gemin3, Gemin5, and all nine classical Sm proteins, including Lsm10 and Lsm11, co-purify with SMN. Here, we show that CG2941 is also highly enriched in the pulldown. Reciprocal co-immunoprecipitation reveals that epitope-tagged CG2941 interacts with endogenous SMN in Schneider2 cells. Bioinformatic comparisons show that CG2941 shares sequence and structural similarity with metazoan Gemin4. Additional analysis shows that three other genes (CG14164, CG31950 and CG2371) are not orthologous to Gemins 6-7-8, respectively, as previously suggested. In D.melanogaster, CG2941 is located within an evolutionarily recent genomic triplication with two other nearly identical paralogous genes (CG32783 and CG32786). RNAi-mediated knockdown of CG2941 and its two close paralogs reveals that Gemin4 is essential for organismal viability.
Collapse
|
35
|
Chaytow H, Huang YT, Gillingwater TH, Faller KME. The role of survival motor neuron protein (SMN) in protein homeostasis. Cell Mol Life Sci 2018; 75:3877-3894. [PMID: 29872871 PMCID: PMC6182345 DOI: 10.1007/s00018-018-2849-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
Abstract
Ever since loss of survival motor neuron (SMN) protein was identified as the direct cause of the childhood inherited neurodegenerative disorder spinal muscular atrophy, significant efforts have been made to reveal the molecular functions of this ubiquitously expressed protein. Resulting research demonstrated that SMN plays important roles in multiple fundamental cellular homeostatic pathways, including a well-characterised role in the assembly of the spliceosome and biogenesis of ribonucleoproteins. More recent studies have shown that SMN is also involved in other housekeeping processes, including mRNA trafficking and local translation, cytoskeletal dynamics, endocytosis and autophagy. Moreover, SMN has been shown to influence mitochondria and bioenergetic pathways as well as regulate function of the ubiquitin-proteasome system. In this review, we summarise these diverse functions of SMN, confirming its key role in maintenance of the homeostatic environment of the cell.
Collapse
Affiliation(s)
- Helena Chaytow
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Yu-Ting Huang
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
| | - Kiterie M E Faller
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
36
|
Iyer CC, Corlett KM, Massoni-Laporte A, Duque SI, Madabusi N, Tisdale S, McGovern VL, Le TT, Zaworski PG, Arnold WD, Pellizzoni L, Burghes AHM. Mild SMN missense alleles are only functional in the presence of SMN2 in mammals. Hum Mol Genet 2018; 27:3404-3416. [PMID: 29982416 PMCID: PMC6140769 DOI: 10.1093/hmg/ddy251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/19/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by reduced levels of full-length SMN (FL-SMN). In SMA patients with one or two copies of the Survival Motor Neuron 2 (SMN2) gene there are a number of SMN missense mutations that result in milder-than-predicted SMA phenotypes. These mild SMN missense mutation alleles are often assumed to have partial function. However, it is important to consider the contribution of FL-SMN as these missense alleles never occur in the absence of SMN2. We propose that these patients contain a partially functional oligomeric SMN complex consisting of FL-SMN from SMN2 and mutant SMN protein produced from the missense allele. Here we show that mild SMN missense mutations SMND44V, SMNT74I or SMNQ282A alone do not rescue mice lacking wild-type FL-SMN. Thus, missense mutations are not functional in the absence of FL-SMN. In contrast, when the same mild SMN missense mutations are expressed in a mouse containing two SMN2 copies, functional SMN complexes are formed with the small amount of wild-type FL-SMN produced by SMN2 and the SMA phenotype is completely rescued. This contrasts with SMN missense alleles when studied in C. elegans, Drosophila and zebrafish. Here we demonstrate that the heteromeric SMN complex formed with FL-SMN is functional and sufficient to rescue small nuclear ribonucleoprotein assembly, motor neuron function and rescue the SMA mice. We conclude that mild SMN missense alleles are not partially functional but rather they are completely non-functional in the absence of wild-type SMN in mammals.
Collapse
Affiliation(s)
- Chitra C Iyer
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kaitlyn M Corlett
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Aurélie Massoni-Laporte
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sandra I Duque
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Narasimhan Madabusi
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sarah Tisdale
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Vicki L McGovern
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Thanh T Le
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - W David Arnold
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Arthur H M Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
37
|
Woodsmith J, Casado-Medrano V, Benlasfer N, Eccles RL, Hutten S, Heine CL, Thormann V, Abou-Ajram C, Rocks O, Dormann D, Stelzl U. Interaction modulation through arrays of clustered methyl-arginine protein modifications. Life Sci Alliance 2018; 1:e201800178. [PMID: 30456387 PMCID: PMC6238616 DOI: 10.26508/lsa.201800178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022] Open
Abstract
Systematic analysis of human arginine methylation identifies two distinct signaling modes; either isolated modifications akin to canonical post-translational modification regulation, or clustered arrays within disordered protein sequence. Hundreds of proteins contain these methyl-arginine arrays and are more prone to accumulate mutations and more tightly expression-regulated than dispersed methylation targets. Arginines within an array in the highly methylated RNA-binding protein synaptotagmin binding cytoplasmic RNA interacting protein (SYNCRIP) were experimentally shown to function in concert, providing a tunable protein interaction interface. Quantitative immunoprecipitation assays defined two distinct cumulative binding mechanisms operating across 18 proximal arginine-glycine (RG) motifs in SYNCRIP. Functional binding to the methyltransferase PRMT1 was promoted by continual arginine stretches, whereas interaction with the methyl-binding protein SMN1 was arginine content-dependent irrespective of linear position within the unstructured region. This study highlights how highly repetitive modifiable amino acid arrays in low structural complexity regions can provide regulatory platforms, with SYNCRIP as an extreme example how arginine methylation leverages these disordered sequences to mediate cellular interactions.
Collapse
Affiliation(s)
- Jonathan Woodsmith
- Institute of Pharmaceutical Sciences and BioTechMed-Graz, University of Graz, Graz, Austria.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Victoria Casado-Medrano
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | - Rebecca L Eccles
- Department of Experimental Medicine I, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Saskia Hutten
- BioMedical Center, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Christian L Heine
- Institute of Pharmaceutical Sciences and BioTechMed-Graz, University of Graz, Graz, Austria
| | - Verena Thormann
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Claudia Abou-Ajram
- BioMedical Center, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Oliver Rocks
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Dorothee Dormann
- BioMedical Center, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences and BioTechMed-Graz, University of Graz, Graz, Austria.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
38
|
Beattie CE, Kolb SJ. Spinal muscular atrophy: Selective motor neuron loss and global defect in the assembly of ribonucleoproteins. Brain Res 2018; 1693:92-97. [DOI: 10.1016/j.brainres.2018.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/10/2018] [Accepted: 02/15/2018] [Indexed: 12/13/2022]
|
39
|
Gray KM, Kaifer KA, Baillat D, Wen Y, Bonacci TR, Ebert AD, Raimer AC, Spring AM, Have ST, Glascock JJ, Gupta K, Van Duyne GD, Emanuele MJ, Lamond AI, Wagner EJ, Lorson CL, Matera AG. Self-oligomerization regulates stability of survival motor neuron protein isoforms by sequestering an SCF Slmb degron. Mol Biol Cell 2018; 29:96-110. [PMID: 29167380 PMCID: PMC5909936 DOI: 10.1091/mbc.e17-11-0627] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 12/16/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by homozygous mutations in human SMN1 Expression of a duplicate gene (SMN2) primarily results in skipping of exon 7 and production of an unstable protein isoform, SMNΔ7. Although SMN2 exon skipping is the principal contributor to SMA severity, mechanisms governing stability of survival motor neuron (SMN) isoforms are poorly understood. We used a Drosophila model system and label-free proteomics to identify the SCFSlmb ubiquitin E3 ligase complex as a novel SMN binding partner. SCFSlmb interacts with a phosphor degron embedded within the human and fruitfly SMN YG-box oligomerization domains. Substitution of a conserved serine (S270A) interferes with SCFSlmb binding and stabilizes SMNΔ7. SMA-causing missense mutations that block multimerization of full-length SMN are also stabilized in the degron mutant background. Overexpression of SMNΔ7S270A, but not wild-type (WT) SMNΔ7, provides a protective effect in SMA model mice and human motor neuron cell culture systems. Our findings support a model wherein the degron is exposed when SMN is monomeric and sequestered when SMN forms higher-order multimers.
Collapse
Affiliation(s)
- Kelsey M Gray
- Curriculum in Genetics and Molecular Biology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Integrative Program in Biological and Genome Sciences, Department of Biology and Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| | - Kevin A Kaifer
- Molecular Pathogenesis and Therapeutics Program, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211
| | - David Baillat
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550
| | - Ying Wen
- Integrative Program in Biological and Genome Sciences, Department of Biology and Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| | - Thomas R Bonacci
- Curriculum in Genetics and Molecular Biology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Amanda C Raimer
- Curriculum in Genetics and Molecular Biology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Integrative Program in Biological and Genome Sciences, Department of Biology and Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| | - Ashlyn M Spring
- Integrative Program in Biological and Genome Sciences, Department of Biology and Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| | - Sara Ten Have
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD15EH, UK
| | - Jacqueline J Glascock
- Molecular Pathogenesis and Therapeutics Program, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Gregory D Van Duyne
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Michael J Emanuele
- Curriculum in Genetics and Molecular Biology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD15EH, UK
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550
| | - Christian L Lorson
- Molecular Pathogenesis and Therapeutics Program, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211
| | - A Gregory Matera
- Curriculum in Genetics and Molecular Biology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Integrative Program in Biological and Genome Sciences, Department of Biology and Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
40
|
Pilot study of population-based newborn screening for spinal muscular atrophy in New York state. Genet Med 2017; 20:608-613. [PMID: 29758563 DOI: 10.1038/gim.2017.152] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/26/2017] [Indexed: 12/28/2022] Open
Abstract
PurposeTo determine feasibility and utility of newborn screening for spinal muscular atrophy (SMA) in New York State.MethodsWe validated a multiplex TaqMan real-time quantitative polymerase chain reaction assay using dried blood spots for SMA. From January 2016 to January 2017, we offered, consented, and screened 3,826 newborns at three hospitals in New York City and tested newborns for the deletion in exon 7 of SMN1.ResultsNinety-three percent of parents opted in for SMA screening. Overall the SMA carrier frequency was 1.5%. We identified one newborn with a homozygous SMN1 deletion and two copies of SMN2, which strongly suggests the severe type 1 SMA phenotype. The infant was enrolled in the NURTURE clinical trial and was first treated with Spinraza at age 15 days. She is now age 12 months, meeting all developmental milestones, and free of any respiratory issues.ConclusionOur pilot study demonstrates the feasibility of population-based screening, the acceptance by families, and the benefit of newborn screening for SMA. We suggest that SMA be considered for addition to the national recommended uniform screening panel.
Collapse
|
41
|
Gruss OJ, Meduri R, Schilling M, Fischer U. UsnRNP biogenesis: mechanisms and regulation. Chromosoma 2017; 126:577-593. [PMID: 28766049 DOI: 10.1007/s00412-017-0637-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 12/24/2022]
Abstract
Macromolecular complexes composed of proteins or proteins and nucleic acids rather than individual macromolecules mediate many cellular activities. Maintenance of these activities is essential for cell viability and requires the coordinated production of the individual complex components as well as their faithful incorporation into functional entities. Failure of complex assembly may have fatal consequences and can cause severe diseases. While many macromolecular complexes can form spontaneously in vitro, they often require aid from assembly factors including assembly chaperones in the crowded cellular environment. The assembly of RNA protein complexes implicated in the maturation of pre-mRNAs (termed UsnRNPs) has proven to be a paradigm to understand the action of assembly factors and chaperones. UsnRNPs are assembled by factors united in protein arginine methyltransferase 5 (PRMT5)- and survival motor neuron (SMN)-complexes, which act sequentially in the UsnRNP production line. While the PRMT5-complex pre-arranges specific sets of proteins into stable intermediates, the SMN complex displaces assembly factors from these intermediates and unites them with UsnRNA to form the assembled RNP. Despite advanced mechanistic understanding of UsnRNP assembly, our knowledge of regulatory features of this essential and ubiquitous cellular function remains remarkably incomplete. One may argue that the process operates as a default biosynthesis pathway and does not require sophisticated regulatory cues. Simple theoretical considerations and a number of experimental data, however, indicate that regulation of UsnRNP assembly most likely happens at multiple levels. This review will not only summarize how individual components of this assembly line act mechanistically but also why, how, and when the UsnRNP workflow might be regulated by means of posttranslational modification in response to cellular signaling cues.
Collapse
Affiliation(s)
- Oliver J Gruss
- Department of Genetics, Rheinische Friedrich-Wilhelms-Universität Bonn, Karlrobert-Kreiten-Str. 13, 53115, Bonn, Germany.
| | - Rajyalakshmi Meduri
- Department of Biochemistry, University of Würzburg, Biozentrum, Am Hubland, D-97074, Würzburg, Germany
| | - Maximilian Schilling
- Department of Genetics, Rheinische Friedrich-Wilhelms-Universität Bonn, Karlrobert-Kreiten-Str. 13, 53115, Bonn, Germany
| | - Utz Fischer
- Department of Biochemistry, University of Würzburg, Biozentrum, Am Hubland, D-97074, Würzburg, Germany.
| |
Collapse
|
42
|
Takarada T, Ar Rochmah M, Harahap NIF, Shinohara M, Saito T, Saito K, Lai PS, Bouike Y, Takeshima Y, Awano H, Morioka I, Iijima K, Nishio H, Takeuchi A. SMA mutations in SMN Tudor and C-terminal domains destabilize the protein. Brain Dev 2017; 39:606-612. [PMID: 28366534 DOI: 10.1016/j.braindev.2017.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/27/2017] [Accepted: 03/03/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND PURPOSE Most spinal muscular atrophy (SMA) patients are homozygous for survival of motor neuron 1 gene (SMN1) deletion. However, some SMA patients carry an intragenic SMN1 mutation. Such patients provide a clue to understanding the function of the SMN protein and the role of each domain of the protein. We previously identified mutations in the Tudor domain and C-terminal region of the SMN protein in three Japanese SMA patients. To clarify the effect of these mutations on protein stability, we conducted expression assays of SMN with mutated domains. PATIENTS AND METHODS Patients A and B carried a mutation in SMN1 exon 3, which encodes a Tudor domain, c.275G>C (p.Trp92Ser). Patient C carried a mutation in SMN1 exon 6, which encodes a YG-box; c.819_820insT (p.Thr274Tyrfs). We constructed plasmid expression vectors containing wild-type and mutant SMN1 cDNAs. After transfection of HeLa cells with the expression plasmids, RNA and protein were isolated and analyzed by reverse-transcription PCR and western blot analysis. RESULTS The abundance of wild-type and mutant SMN1 transcripts in HeLa cells was almost the same. However, western blot analysis showed lower levels of mutant SMN proteins compared with wild-type SMN. In mutant SMN proteins, it is noteworthy that the level of the p.Thr274Tyrfs mutant was much reduced compared with that of the p.Trp92Ser mutant. CONCLUSIONS SMN mutations may affect the stability and levels of the protein.
Collapse
Affiliation(s)
- Toru Takarada
- Analytical Laboratory, Kobe Pharmaceutical University, Kobe, Japan
| | - Mawaddah Ar Rochmah
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nur Imma Fatimah Harahap
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masakazu Shinohara
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshio Saito
- Department of Neurology, Toneyama National Hospital, Osaka, Japan
| | - Kayoko Saito
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | - Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ichiro Morioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hisahide Nishio
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Atsuko Takeuchi
- Analytical Laboratory, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
43
|
Raimer AC, Gray KM, Matera AG. SMN - A chaperone for nuclear RNP social occasions? RNA Biol 2017; 14:701-711. [PMID: 27648855 PMCID: PMC5519234 DOI: 10.1080/15476286.2016.1236168] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 12/24/2022] Open
Abstract
Survival Motor Neuron (SMN) protein localizes to both the nucleus and the cytoplasm. Cytoplasmic SMN is diffusely localized in large oligomeric complexes with core member proteins, called Gemins. Biochemical and cell biological studies have demonstrated that the SMN complex is required for the cytoplasmic assembly and nuclear transport of Sm-class ribonucleoproteins (RNPs). Nuclear SMN accumulates with spliceosomal small nuclear (sn)RNPs in Cajal bodies, sub-domains involved in multiple facets of snRNP maturation. Thus, the SMN complex forms stable associations with both nuclear and cytoplasmic snRNPs, and plays a critical role in their biogenesis. In this review, we focus on potential functions of the nuclear SMN complex, with particular emphasis on its role within the Cajal body.
Collapse
Affiliation(s)
- Amanda C. Raimer
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kelsey M. Gray
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - A. Gregory Matera
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
44
|
Sawyer IA, Hager GL, Dundr M. Specific genomic cues regulate Cajal body assembly. RNA Biol 2017; 14:791-803. [PMID: 27715441 PMCID: PMC5519236 DOI: 10.1080/15476286.2016.1243648] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/06/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023] Open
Abstract
The assembly of specialized sub-nuclear microenvironments known as nuclear bodies (NBs) is important for promoting efficient nuclear function. In particular, the Cajal body (CB), a prominent NB that facilitates spliceosomal snRNP biogenesis, assembles in response to genomic cues. Here, we detail the factors that regulate CB assembly and structural maintenance. These include the importance of transcription at nucleating gene loci, the grouping of these genes on human chromosomes 1, 6 and 17, as well as cell cycle and biochemical regulation of CB protein function. We also speculate on the correlation between CB formation and RNA splicing levels in neurons and cancer. The timing and location of these specific molecular events is critical to CB assembly and its contribution to genome function. However, further work is required to explore the emerging biophysical characteristics of CB assembly and the impact upon subsequent genome reorganization.
Collapse
Affiliation(s)
- Iain A. Sawyer
- Department of Cell Biology, Rosalind Franklin University of Medicine & Science, Chicago Medical School, North Chicago, IL, USA
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Miroslav Dundr
- Department of Cell Biology, Rosalind Franklin University of Medicine & Science, Chicago Medical School, North Chicago, IL, USA
| |
Collapse
|
45
|
Li W. How do SMA-linked mutations of SMN1 lead to structural/functional deficiency of the SMA protein? PLoS One 2017; 12:e0178519. [PMID: 28570645 PMCID: PMC5453535 DOI: 10.1371/journal.pone.0178519] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/15/2017] [Indexed: 11/19/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease with dysfunctional α-motor neurons in the anterior horn of the spinal cord. SMA is caused by loss (∼95% of SMA cases) or mutation (∼5% of SMA cases) of the survival motor neuron 1 gene SMN1. As the product of SMN1, SMN is a component of the SMN complex, and is also involved in the biosynthesis of the small nuclear ribonucleoproteins (snRNPs), which play critical roles in pre-mRNA splicing in the pathogenesis of SMA. To investigate how SMA-linked mutations of SMN1 lead to structural/functional deficiency of SMN, a set of computational analysis of SMN-related structures were conducted and are described in this article. Of extraordinary interest, the structural analysis highlights three SMN residues (Asp44, Glu134 and Gln136) with SMA-linked missense mutations, which cause disruptions of electrostatic interactions for Asp44, Glu134 and Gln136, and result in three functionally deficient SMA-linked SMN mutants, Asp44Val, Glu134Lys and Gln136Glu. From the computational analysis, it is also possible that SMN’s Lys45 and Asp36 act as two electrostatic clips at the SMN-Gemin2 complex structure interface.
Collapse
Affiliation(s)
- Wei Li
- Medical College, Shantou University, Shantou City, Guangdong Province, China
- * E-mail:
| |
Collapse
|
46
|
Singh RN, Howell MD, Ottesen EW, Singh NN. Diverse role of survival motor neuron protein. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2017; 1860:299-315. [PMID: 28095296 PMCID: PMC5325804 DOI: 10.1016/j.bbagrm.2016.12.008] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 12/23/2016] [Accepted: 12/30/2016] [Indexed: 02/07/2023]
Abstract
The multifunctional Survival Motor Neuron (SMN) protein is required for the survival of all organisms of the animal kingdom. SMN impacts various aspects of RNA metabolism through the formation and/or interaction with ribonucleoprotein (RNP) complexes. SMN regulates biogenesis of small nuclear RNPs, small nucleolar RNPs, small Cajal body-associated RNPs, signal recognition particles and telomerase. SMN also plays an important role in DNA repair, transcription, pre-mRNA splicing, histone mRNA processing, translation, selenoprotein synthesis, macromolecular trafficking, stress granule formation, cell signaling and cytoskeleton maintenance. The tissue-specific requirement of SMN is dictated by the variety and the abundance of its interacting partners. Reduced expression of SMN causes spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. SMA displays a broad spectrum ranging from embryonic lethality to an adult onset. Aberrant expression and/or localization of SMN has also been associated with male infertility, inclusion body myositis, amyotrophic lateral sclerosis and osteoarthritis. This review provides a summary of various SMN functions with implications to a better understanding of SMA and other pathological conditions.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States.
| | - Matthew D Howell
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| |
Collapse
|
47
|
Seo J, Singh NN, Ottesen EW, Lee BM, Singh RN. A novel human-specific splice isoform alters the critical C-terminus of Survival Motor Neuron protein. Sci Rep 2016; 6:30778. [PMID: 27481219 PMCID: PMC4969610 DOI: 10.1038/srep30778] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/22/2016] [Indexed: 12/30/2022] Open
Abstract
Spinal muscular atrophy (SMA), a leading genetic disease of children and infants, is caused by mutations or deletions of Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, fails to compensate for the loss of SMN1 due to skipping of exon 7. SMN2 predominantly produces SMNΔ7, an unstable protein. Here we report exon 6B, a novel exon, generated by exonization of an intronic Alu-like sequence of SMN. We validate the expression of exon 6B-containing transcripts SMN6B and SMN6BΔ7 in human tissues and cell lines. We confirm generation of SMN6B transcripts from both SMN1 and SMN2. We detect expression of SMN6B protein using antibodies raised against a unique polypeptide encoded by exon 6B. We analyze RNA-Seq data to show that hnRNP C is a potential regulator of SMN6B expression and demonstrate that SMN6B is a substrate of nonsense-mediated decay. We show interaction of SMN6B with Gemin2, a critical SMN-interacting protein. We demonstrate that SMN6B is more stable than SMNΔ7 and localizes to both the nucleus and the cytoplasm. Our finding expands the diversity of transcripts generated from human SMN genes and reveals a novel protein isoform predicted to be stably expressed during conditions of stress.
Collapse
Affiliation(s)
- Joonbae Seo
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Natalia N. Singh
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Eric W. Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Brian M. Lee
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
- Center for Advanced Host Defenses, Immunobiotics & Translational Comparative Medicine (CAHDIT), Iowa State University, Ames, IA 50011, USA
| | - Ravindra N. Singh
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
48
|
Donlin-Asp PG, Bassell GJ, Rossoll W. A role for the survival of motor neuron protein in mRNP assembly and transport. Curr Opin Neurobiol 2016; 39:53-61. [PMID: 27131421 DOI: 10.1016/j.conb.2016.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/27/2016] [Accepted: 04/13/2016] [Indexed: 02/08/2023]
Abstract
Localization and local translation of mRNA plays a key role in neuronal development and function. While studies in various systems have provided insights into molecular mechanisms of mRNA transport and local protein synthesis, the factors that control the assembly of mRNAs and mRNA binding proteins into messenger ribonucleoprotein (mRNP) transport granules remain largely unknown. In this review we will discuss how insights on a motor neuron disease, spinal muscular atrophy (SMA), is advancing our understanding of regulated assembly of transport competent mRNPs and how defects in their assembly and delivery may contribute to the degeneration of motor neurons observed in SMA and other neurological disorders.
Collapse
Affiliation(s)
- Paul G Donlin-Asp
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Wilfried Rossoll
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
49
|
Waugh DS. Crystal structures of MBP fusion proteins. Protein Sci 2016; 25:559-71. [PMID: 26682969 DOI: 10.1002/pro.2863] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/16/2015] [Indexed: 02/06/2023]
Abstract
Although chaperone-assisted protein crystallization remains a comparatively rare undertaking, the number of crystal structures of polypeptides fused to maltose-binding protein (MBP) that have been deposited in the Protein Data Bank (PDB) has grown dramatically during the past decade. Altogether, 102 fusion protein structures were detected by Basic Local Alignment Search Tool (BLAST) analysis. Collectively, these structures comprise a range of sizes, space groups, and resolutions that are typical of the PDB as a whole. While most of these MBP fusion proteins were equipped with short inter-domain linkers to increase their rigidity, fusion proteins with long linkers have also been crystallized. In some cases, surface entropy reduction mutations in MBP appear to have facilitated the formation of crystals. A comparison of the structures of fused and unfused proteins, where both are available, reveals that MBP-mediated structural distortions are very rare.
Collapse
Affiliation(s)
- David S Waugh
- Protein Engineering Section, Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, Maryland, 21702-1201
| |
Collapse
|
50
|
Gupta K, Martin R, Sharp R, Sarachan KL, Ninan NS, Van Duyne GD. Oligomeric Properties of Survival Motor Neuron·Gemin2 Complexes. J Biol Chem 2015; 290:20185-99. [PMID: 26092730 PMCID: PMC4536428 DOI: 10.1074/jbc.m115.667279] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/18/2015] [Indexed: 12/29/2022] Open
Abstract
The survival motor neuron (SMN) protein forms the oligomeric core of a multiprotein complex required for the assembly of spliceosomal small nuclear ribonucleoproteins. Deletions and mutations in the SMN1 gene are associated with spinal muscular atrophy (SMA), a devastating neurodegenerative disease that is the leading heritable cause of infant mortality. Oligomerization of SMN is required for its function, and some SMA patient mutations disrupt the ability of SMN to self-associate. Here, we investigate the oligomeric nature of the SMN·Gemin2 complexes from humans and fission yeast (hSMN·Gemin2 and ySMN·Gemin2). We find that hSMN·Gemin2 forms oligomers spanning the dimer to octamer range. The YG box oligomerization domain of SMN is both necessary and sufficient to form these oligomers. ySMN·Gemin2 exists as a dimer-tetramer equilibrium with Kd = 1.0 ± 0.9 μM. A 1.9 Å crystal structure of the ySMN YG box confirms a high level of structural conservation with the human ortholog in this important region of SMN. Disulfide cross-linking experiments indicate that SMN tetramers are formed by self-association of stable, non-dissociating dimers. Thus, SMN tetramers do not form symmetric helical bundles such as those found in glycine zipper transmembrane oligomers. The dimer-tetramer nature of SMN complexes and the dimer of dimers organization of the SMN tetramer provide an important foundation for ongoing studies to understand the mechanism of SMN-assisted small nuclear ribonucleoprotein assembly and the underlying causes of SMA.
Collapse
Affiliation(s)
- Kushol Gupta
- From the Department of Biochemistry and Biophysics and
| | - Renee Martin
- From the Department of Biochemistry and Biophysics and the Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | - Robert Sharp
- From the Department of Biochemistry and Biophysics and
| | - Kathryn L Sarachan
- From the Department of Biochemistry and Biophysics and the Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | - Nisha S Ninan
- From the Department of Biochemistry and Biophysics and the Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | | |
Collapse
|