1
|
Singh N, Chattopadhyay G, Sundaramoorthy NS, Varadarajan R, Singh R. Understanding the physiological role and cross-interaction network of VapBC35 toxin-antitoxin system from Mycobacterium tuberculosis. Commun Biol 2025; 8:327. [PMID: 40016306 PMCID: PMC11868609 DOI: 10.1038/s42003-025-07663-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 02/04/2025] [Indexed: 03/01/2025] Open
Abstract
The VapBC toxin-antitoxin (TA) system, composed of VapC toxin and VapB antitoxin, has gained attention due to its relative abundance in members of the M. tuberculosis complex. Here, we have functionally characterised VapBC35 TA system from M. tuberculosis. We show that ectopic expression of VapC35 inhibits M. smegmatis growth in a bacteriostatic manner. Also, an increase in the VapB35 antitoxin to VapC35 toxin ratio results in a stronger binding affinity of the complex with the promoter-operator DNA. We show that VapBC35 is necessary for M. tuberculosis adaptation in oxidative stress conditions but is dispensable for M. tuberculosis growth in guinea pigs. Further, using a combination of co-expression studies and biophysical methods, we report that VapC35 also interacts with non-cognate antitoxin VapB3. Taken together, the present study advances our understanding of cross-interaction networks among VapBC TA systems from M. tuberculosis.
Collapse
Affiliation(s)
- Neelam Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | | | - Niranjana Sri Sundaramoorthy
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India.
| |
Collapse
|
2
|
Ostyn E, Augagneur Y, Pinel-Marie ML. Insight into the environmental cues modulating the expression of bacterial toxin-antitoxin systems. FEMS Microbiol Rev 2025; 49:fuaf007. [PMID: 40052347 PMCID: PMC11951105 DOI: 10.1093/femsre/fuaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Bacteria require sophisticated sensing mechanisms to adjust their metabolism in response to stressful conditions and survive in hostile environments. Among them, toxin-antitoxin (TA) systems play a crucial role in bacterial adaptation to environmental challenges. TA systems are considered as stress-responsive elements, consisting of both toxin and antitoxin genes, typically organized in operons or encoded on complementary DNA strands. A decrease in the antitoxin-toxin ratio, often triggered by specific stress conditions, leads to toxin excess, disrupting essential cellular processes and inhibiting bacterial growth. These systems are categorized into eight types based on the nature of the antitoxin (RNA or protein) and the mode of action of toxin inhibition. While the well-established biological roles of TA systems include phage inhibition and the maintenance of genetic elements, the environmental cues regulating their expression remain insufficiently documented. In this review, we highlight the diversity and complexity of the environmental cues influencing TA systems expression. A comprehensive understanding of how these genetic modules are regulated could provide deeper insights into their functions and support the development of innovative antimicrobial strategies.
Collapse
Affiliation(s)
- Emeline Ostyn
- Univ Rennes, INSERM, BRM– UMR_S 1230, F-35000 Rennes, France
| | - Yoann Augagneur
- Univ Rennes, INSERM, BRM– UMR_S 1230, F-35000 Rennes, France
| | | |
Collapse
|
3
|
Kim DH, Lee YC, Jin C, Kang SM, Kang SJ, Kang HS, Lee BJ. Structural and Functional Insight Into YefM-YoeB Complex of Toxin-Antitoxin System From Streptococcus pneumoniae. J Cell Biochem 2025; 126:e30672. [PMID: 39530329 DOI: 10.1002/jcb.30672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Streptococcus pneumonia is a Gram-positive and facultative anaerobic bacterium that causes a number of diseases, including otitis media, community-acquired pneumonia, sepsis, and meningitis. With the emergence of antibiotic-resistant strains, there is an urgent need to develop antibiotics with a novel mechanism. The toxin-antitoxin (TA) system, which is primarily found in prokaryotes, consists of a toxin and its equivalent antitoxin genes. The YefM-YoeB module is a Type II TA system, where the YoeB toxin functions as a putative mRNA interferase upon activation, while the YefM antitoxin acts as a transcription repressor by binding to its promoter region along with YoeB. In this study, we determined the crystal structure of the YefM-YoeB complex from S. pneumoniae TIGR4 to comprehend the binding mechanism of the TA system. Furthermore, an in vitro ribonuclease activity assay was conducted to identify the ribonuclease activity of the YoeB toxin. Additionally, furthermore, the oligomeric state of the YefM-YoeB complex in solution was investigated, and a DNA-binding mode was proposed. These structural and functional insights into the YefM-YoeB complex could provide valuable information for the development of novel antibiotics targeting S. pneumonia-associated diseases.
Collapse
Affiliation(s)
- Do-Hee Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Yong-Chan Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Chenglong Jin
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Mastermeditech Ltd., Seoul, Republic of Korea
| | - Sung-Min Kang
- College of Pharmacy, Duksung Women's University, Seoul, Republic of Korea
| | - Su-Jin Kang
- College of Pharmacy, Dongduk Women's University, Seoul, Republic of Korea
| | - Hoon-Seok Kang
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| | - Bong-Jin Lee
- Mastermeditech Ltd., Seoul, Republic of Korea
- College of Pharmacy, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
4
|
Sharma A, Singh N, Bhasin M, Tiwari P, Chopra P, Varadarajan R, Singh R. Deciphering the role of VapBC13 and VapBC26 toxin antitoxin systems in the pathophysiology of Mycobacterium tuberculosis. Commun Biol 2024; 7:1417. [PMID: 39478197 PMCID: PMC11525840 DOI: 10.1038/s42003-024-06998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
The expansion of VapBC TA systems in M. tuberculosis has been linked with its fitness and survival upon exposure to stress conditions. Here, we have functionally characterized VapBC13 and VapBC26 TA modules of M. tuberculosis. We report that overexpression of VapC13 and VapC26 toxins in M. tuberculosis results in growth inhibition and transcriptional reprogramming. We have also identified various regulatory proteins as hub nodes in the top response network of VapC13 and VapC26 overexpression strains. Further, analysis of RNA protection ratios revealed potential tRNA targets for VapC13 and VapC26. Using in vitro ribonuclease assays, we demonstrate that VapC13 and VapC26 degrade serT and leuW tRNA, respectively. However, no significant changes in rRNA cleavage profiles were observed upon overexpression of VapC13 and VapC26 in M. tuberculosis. In order to delineate the role of these TA systems in M. tuberculosis physiology, various mutant strains were constructed. We show that in comparison to the parental strain, ΔvapBC13 and ΔvapBC26 strains were mildly susceptible to oxidative stress. Surprisingly, the growth patterns of parental and mutant strains were comparable in aerosol-infected guinea pigs. These observations imply that significant functional redundancy exists for some TA systems from M. tuberculosis.
Collapse
Affiliation(s)
- Arun Sharma
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Neelam Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Munmun Bhasin
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Prabhakar Tiwari
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Pankaj Chopra
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India.
| |
Collapse
|
5
|
Ahmed N, Azab M, Enany S, Hanora A. Draft genome sequence of novel Candidatus Ornithobacterium hominis carrying antimicrobial resistance genes in Egypt. BMC Microbiol 2024; 24:47. [PMID: 38302869 PMCID: PMC10835994 DOI: 10.1186/s12866-023-03172-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Candidatus Ornithobacterium hominis (O. hominis), which was identified in nasopharyngeal swabs from Egypt, has been associated with respiratory disorders in humans. O. hominis, a recently identified member of the Flavobacteriaceae family, belongs to the largest family within the Bacteroidetes phylum. This family includes hundreds of species and 90 genera, including major human pathogens such as Capnocytophaga canimorsus and Elizabethkingia meningoseptica. Herein, we presented two draft genome assemblies of O. hominis that were extracted from metagenomic data using the Illumina sequencing method. The alignment of reads against the O. hominis genome was accomplished using BLASTN, and the reads with significant hits were extracted using Seqtk and assembled using SPAdes. The primary goal of this study was to obtain a more profound understanding of the genomic landscape of O. hominis, with an emphasis on identifying the associated virulence, antimicrobial genes, and distinct defense mechanisms to shed light on the potential role of O. hominis in human respiratory infections. RESULTS The genome size was estimated to be 1.84 Mb, including 1,931,660 base pairs (bp), with 1,837 predicted coding regions and a G+C content of 35.62%. Genes encoding gliding motility, antibiotic resistance (20 genes), and the toxA gene were all included in the genome assembly. Gliding motility lipoproteins (GldD, GldJ, GldN, and GldH) and the gliding motility-associated ABC transporter substrate-binding protein, which acts as a crucial virulence mechanism in Flavobacterium species, were identified. The genome contained unique genes encoding proteins, such as the ParE1 toxin that defend against the actions of quinolone and other antibiotics. The cobalt-zinc-cadmium resistance gene encoding the protein CzcB, which is necessary for metal resistance, urease regulation, and colonization, was also detected. Several multidrug resistance genes encoding proteins were identified, such as MexB, MdtK, YheI, and VanC. CONCLUSION Our study focused on identifying virulence factors, and antimicrobial resistance genes present in the core genome of O. hominis. These findings provide valuable insights into the potential pathogenicity and antibiotic susceptibility of O. hominis.
Collapse
Affiliation(s)
- Nada Ahmed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Marwa Azab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Shymaa Enany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
- Biomedical Research Department, Armed Force College of Medicine, Cairo, Egypt.
| | - Amro Hanora
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
- Department of Microbiology & Immunology, Faculty of Pharmacy, King Salman International University, Ras Sudr, Egypt.
| |
Collapse
|
6
|
Ruan S, Tu CH, Bourne CR. Friend or Foe: Protein Inhibitors of DNA Gyrase. BIOLOGY 2024; 13:84. [PMID: 38392303 PMCID: PMC10886550 DOI: 10.3390/biology13020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
DNA gyrase is essential for the successful replication of circular chromosomes, such as those found in most bacterial species, by relieving topological stressors associated with unwinding the double-stranded genetic material. This critical central role makes gyrase a valued target for antibacterial approaches, as exemplified by the highly successful fluoroquinolone class of antibiotics. It is reasonable that the activity of gyrase could be intrinsically regulated within cells, thereby helping to coordinate DNA replication with doubling times. Numerous proteins have been identified to exert inhibitory effects on DNA gyrase, although at lower doses, it can appear readily reversible and therefore may have regulatory value. Some of these, such as the small protein toxins found in plasmid-borne addiction modules, can promote cell death by inducing damage to DNA, resulting in an analogous outcome as quinolone antibiotics. Others, however, appear to transiently impact gyrase in a readily reversible and non-damaging mechanism, such as the plasmid-derived Qnr family of DNA-mimetic proteins. The current review examines the origins and known activities of protein inhibitors of gyrase and highlights opportunities to further exert control over bacterial growth by targeting this validated antibacterial target with novel molecular mechanisms. Furthermore, we are gaining new insights into fundamental regulatory strategies of gyrase that may prove important for understanding diverse growth strategies among different bacteria.
Collapse
Affiliation(s)
- Shengfeng Ruan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Chih-Han Tu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Christina R Bourne
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
7
|
Kinkar OU, Kumar A, Prashar A, Yadav B, Hadapad AB, Hire RS, Makde RD. The crystal structure of insecticidal protein Txp40 from Xenorhabdus nematophila reveals a two-domain unique binary toxin with homology to the toxin-antitoxin (TA) system. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 164:104045. [PMID: 38040266 DOI: 10.1016/j.ibmb.2023.104045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
Txp40 is a ubiquitous, conserved, and novel toxin from Xenorhabdus and Photorhabdus bacteria, toxic to a wide range of insect pests. However, the three-dimensional structure and toxicity mechanism for Txp40 or any of its sequence homologs are not yet known. Here, we are reporting the crystal structure of the insecticidal protein Txp40 from Xenorhabdus nematophila at 2.08 Å resolution. The Txp40 was structurally distinct from currently known insecticidal proteins. Txp40 consists of two structurally different domains, an N-terminal domain (NTD) and a C-terminal domain (CTD), primarily joined by a 33-residue long linker peptide. Txp40 displayed proteolytic propensity. Txp40 gets proteolyzed, removing the linker peptide, which is essential for proper crystal packing. NTD adopts a novel fold composed of nine amphipathic helices and has no shared sequence or structural homology to any known proteins. CTD has structural homology with RNases of type II toxin-antitoxin (TA) complex belonging to the RelE/ParE toxin domain superfamily. NTD and CTD were individually toxic to Galleria mellonella larvae. However, maximal toxicity was observed when both domains were present. Our results suggested that the Txp40 acts as a two-domain binary toxin, which is unique and different from any known binary toxins and insecticidal proteins. Txp40 is also unique because it belongs to the prokaryotic RelE/ParE toxin family with a toxic effect on eukaryotic organisms, in contrast to other members of the same family. Broad insect specificity and unique binary toxin complex formation make Txp40 a viable candidate to overcome the development of resistance in insect pests.
Collapse
Affiliation(s)
- Omkar U Kinkar
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, Maharashtra, India; Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
| | - Ashwani Kumar
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
| | - Arpit Prashar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
| | - Beena Yadav
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
| | - Ashok B Hadapad
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
| | - Ramesh S Hire
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, Maharashtra, India; Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
| | - Ravindra D Makde
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, Maharashtra, India; Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
| |
Collapse
|
8
|
Khan S, Ahmad F, Ansari MI, Ashfaque M, Islam MH, Khubaib M. Toxin-Antitoxin system of Mycobacterium tuberculosis: Roles beyond stress sensor and growth regulator. Tuberculosis (Edinb) 2023; 143:102395. [PMID: 37722233 DOI: 10.1016/j.tube.2023.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 08/10/2023] [Indexed: 09/20/2023]
Abstract
The advent of effective drug regimen and BCG vaccine has significantly decreased the rate of morbidity and mortality of TB. However, lengthy treatment and slower recovery rate, as well as reactivation of the disease with the emergence of multi-drug, extensively-drug, and totally-drug resistance strains, pose a serious concern. The complexities associated are due to the highly evolved and complex nature of the bacterium itself. One of the unique features of Mycobacterium tuberculosis [M.tb] is that it has undergone reductive evolution while maintaining and amplified a few gene families. One of the critical gene family involved in the virulence and pathogenesis is the Toxin-Antitoxin system. These families are believed to harbor virulence signature and are strongly associated with various stress adaptations and pathogenesis. The M.tb TA systems are linked with growth regulation machinery during various environmental stresses. The genes of TA systems are differentially expressed in the host during an active infection, oxidative stress, low pH stress, and starvation, which essentially indicate their role beyond growth regulators. Here in this review, we have discussed different roles of TA gene families in various stresses and their prospective role at the host-pathogen interface, which could be exploited to understand the M.tb associated pathomechanisms better and further designing the new strategies against the pathogen.
Collapse
Affiliation(s)
- Saima Khan
- Department of Biosciences, Integral University, Lucknow, India
| | - Firoz Ahmad
- Department of Biosciences, Integral University, Lucknow, India
| | | | | | | | - Mohd Khubaib
- Department of Biosciences, Integral University, Lucknow, India.
| |
Collapse
|
9
|
Gosain TP, Singh M, Singh C, Thakur KG, Singh R. Disruption of MenT2 toxin impairs the growth of Mycobacterium tuberculosis in guinea pigs. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36342835 DOI: 10.1099/mic.0.001246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Toxin-antitoxin (TA) systems are abundantly present in the genomes of various bacterial pathogens. TA systems have been implicated in either plasmid maintenance or protection against phage infection, stress adaptation or disease pathogenesis. The genome of Mycobacterium tuberculosis encodes for more than 90 TA systems and 4 of these belong to the type IV subfamily (MenAT family). The toxins and antitoxins belonging to type IV TA systems share sequence homology with the AbiEii family of nucleotidyl transferases and the AbiEi family of putative transcriptional regulators, respectively. Here, we have performed experiments to understand the role of MenT2, a toxin from the type IV TA system, in mycobacterial physiology and disease pathogenesis. The ectopic expression of MenT2 using inducible vectors does not inhibit bacterial growth in liquid cultures. Bioinformatic and molecular modelling analysis suggested that the M. tuberculosis genome has an alternative start site upstream of the annotated menT2 gene. The overexpression of the reannotated MenT2 resulted in moderate growth inhibition of Mycobacterium smegmatis. We show that both menT2 and menA2 transcript levels are increased when M. tuberculosis is exposed to nitrosative stress, in vitro. When compared to the survival of the wild-type and the complemented strain, the ΔmenT2 mutant strain of M. tuberculosis was more resistant to being killed by nitrosative stress. However, the survival of both the ΔmenT2 mutant and the wild-type strain was similar in macrophages and when exposed to other stress conditions. Here, we show that MenT2 is required for the establishment of disease in guinea pigs. Gross pathology and histopathology analysis of lung tissues from guinea pigs infected with the ∆menT2 strain revealed significantly reduced tissue damage and inflammation. In summary, these results provide new insights into the role of MenT2 in mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Tannu Priya Gosain
- Infection and Immunology Group, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad Gurugram Expressway, Faridabad-121001, India
| | - Manisha Singh
- Infection and Immunology Group, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad Gurugram Expressway, Faridabad-121001, India
| | - Charandeep Singh
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh-160036, India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh-160036, India
| | - Ramandeep Singh
- Infection and Immunology Group, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad Gurugram Expressway, Faridabad-121001, India
| |
Collapse
|
10
|
Dawson CC, Cummings JE, Starkey JM, Slayden RA. Discovery of a novel type IIb RelBE toxin-antitoxin system in Mycobacterium tuberculosis defined by co-regulation with an antisense RNA. Mol Microbiol 2022; 117:1419-1433. [PMID: 35526138 PMCID: PMC9325379 DOI: 10.1111/mmi.14917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Toxin‐antitoxin loci regulate adaptive responses to stresses associated with the host environment and drug exposure. Phylogenomic studies have shown that Mycobacterium tuberculosis encodes a naturally expanded type II toxin‐antitoxin system, including ParDE/RelBE superfamily members. Type II toxins are presumably regulated exclusively through protein–protein interactions with type II antitoxins. However, experimental observations in M. tuberculosis indicated that additional control mechanisms regulate RelBE2 type II loci under host‐associated stress conditions. Herein, we describe for the first time a novel antisense RNA, termed asRelE2, that co‐regulates RelE2 production via targeted processing by the Mtb RNase III, Rnc. We find that convergent expression of this coding‐antisense hybrid TA locus, relBE2‐asrelE2, is controlled in a cAMP‐dependent manner by the essential cAMP receptor protein transcription factor, Crp, in response to the host‐associated stresses of low pH and nutrient limitation. Ex vivo survival studies with relE2 and asrelE2 knockout strains showed that RelE2 contributes to Mtb survival in activated macrophages and low pH to nutrient limitation. To our knowledge, this is the first report of a novel tripartite type IIb TA loci and antisense post‐transcriptional regulation of a type II TA loci.
Collapse
Affiliation(s)
- Clinton C Dawson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins.,Endolytix Technology, Inc. Beverly, 01915
| | - Jason E Cummings
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins
| | - Julie M Starkey
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins
| | - Richard A Slayden
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins
| |
Collapse
|
11
|
Interactions of the Streptococcus pneumoniae Toxin-Antitoxin RelBE Proteins with Their Target DNA. Microorganisms 2021; 9:microorganisms9040851. [PMID: 33921033 PMCID: PMC8071376 DOI: 10.3390/microorganisms9040851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
Type II bacterial toxin-antitoxin (TA) systems are found in most bacteria, archaea, and mobile genetic elements. TAs are usually found as a bi-cistronic operon composed of an unstable antitoxin and a stable toxin that targets crucial cellular functions like DNA supercoiling, cell-wall synthesis or mRNA translation. The type II RelBE system encoded by the pathogen Streptococcus pneumoniae is highly conserved among different strains and participates in biofilm formation and response to oxidative stress. Here, we have analyzed the participation of the RelB antitoxin and the RelB:RelE protein complex in the self-regulation of the pneumococcal relBE operon. RelB acted as a weak repressor, whereas RelE performed the role of a co-repressor. By DNA footprinting experiments, we show that the proteins bind to a region that encompasses two palindromic sequences that are located around the -10 sequences of the single promoter that directs the synthesis of the relBE mRNA. High-resolution footprinting assays showed the distribution of bases whose deoxyriboses are protected by the bound proteins, demonstrating that RelB and RelB:RelE contacted the DNA backbone on one face of the DNA helix and that these interactions extended beyond the palindromic sequences. Our findings suggest that the binding of the RelBE proteins to its DNA target would lead to direct inhibition of the binding of the host RNA polymerase to the relBE promoter.
Collapse
|
12
|
Veschetti L, Sandri A, Patuzzo C, Melotti P, Malerba G, Lleò MM. Mobilome Analysis of Achromobacter spp. Isolates from Chronic and Occasional Lung Infection in Cystic Fibrosis Patients. Microorganisms 2021; 9:microorganisms9010130. [PMID: 33430044 PMCID: PMC7826576 DOI: 10.3390/microorganisms9010130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022] Open
Abstract
Achromobacter spp. is an opportunistic pathogen that can cause lung infections in patients with cystic fibrosis (CF). Although a variety of mobile genetic elements (MGEs) carrying antimicrobial resistance genes have been identified in clinical isolates, little is known about the contribution of Achromobacter spp. mobilome to its pathogenicity. To provide new insights, we performed bioinformatic analyses of 54 whole genome sequences and investigated the presence of phages, insertion sequences (ISs), and integrative and conjugative elements (ICEs). Most of the detected phages were previously described in other pathogens and carried type II toxin-antitoxin systems as well as other pathogenic genes. Interestingly, the partial sequence of phage Bcep176 was found in all the analyzed Achromobacter xylosoxidans genome sequences, suggesting the integration of this phage in an ancestor strain. A wide variety of IS was also identified either inside of or in proximity to pathogenicity islands. Finally, ICEs carrying pathogenic genes were found to be widespread among our isolates and seemed to be involved in transfer events within the CF lung. These results highlight the contribution of MGEs to the pathogenicity of Achromobacter species, their potential to become antimicrobial targets, and the need for further studies to better elucidate their clinical impact.
Collapse
Affiliation(s)
- Laura Veschetti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (L.V.); (C.P.); (G.M.)
| | - Angela Sandri
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy;
| | - Cristina Patuzzo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (L.V.); (C.P.); (G.M.)
| | - Paola Melotti
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata Verona, 37126 Verona, Italy;
| | - Giovanni Malerba
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (L.V.); (C.P.); (G.M.)
| | - Maria M. Lleò
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy;
- Correspondence:
| |
Collapse
|
13
|
Evaluating the Potential for Cross-Interactions of Antitoxins in Type II TA Systems. Toxins (Basel) 2020; 12:toxins12060422. [PMID: 32604745 PMCID: PMC7354431 DOI: 10.3390/toxins12060422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/21/2023] Open
Abstract
The diversity of Type-II toxin–antitoxin (TA) systems in bacterial genomes requires tightly controlled interaction specificity to ensure protection of the cell, and potentially to limit cross-talk between toxin–antitoxin pairs of the same family of TA systems. Further, there is a redundant use of toxin folds for different cellular targets and complexation with different classes of antitoxins, increasing the apparent requirement for the insulation of interactions. The presence of Type II TA systems has remained enigmatic with respect to potential benefits imparted to the host cells. In some cases, they play clear roles in survival associated with unfavorable growth conditions. More generally, they can also serve as a “cure” against acquisition of highly similar TA systems such as those found on plasmids or invading genetic elements that frequently carry virulence and resistance genes. The latter model is predicated on the ability of these highly specific cognate antitoxin–toxin interactions to form cross-reactions between chromosomal antitoxins and invading toxins. This review summarizes advances in the Type II TA system models with an emphasis on antitoxin cross-reactivity, including with invading genetic elements and cases where toxin proteins share a common fold yet interact with different families of antitoxins.
Collapse
|
14
|
A Systematic Overview of Type II and III Toxin-Antitoxin Systems with a Focus on Druggability. Toxins (Basel) 2018; 10:toxins10120515. [PMID: 30518070 PMCID: PMC6315513 DOI: 10.3390/toxins10120515] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023] Open
Abstract
Toxin-antitoxin (TA) systems are known to play various roles in physiological processes, such as gene regulation, growth arrest and survival, in bacteria exposed to environmental stress. Type II TA systems comprise natural complexes consisting of protein toxins and antitoxins. Each toxin and antitoxin participates in distinct regulatory mechanisms depending on the type of TA system. Recently, peptides designed by mimicking the interfaces between TA complexes showed its potential to activate the activity of toxin by competing its binding counterparts. Type II TA systems occur more often in pathogenic bacteria than in their nonpathogenic kin. Therefore, they can be possible drug targets, because of their high abundance in some pathogenic bacteria, such as Mycobacterium tuberculosis. In addition, recent bioinformatic analyses have shown that type III TA systems are highly abundant in the intestinal microbiota, and recent clinical studies have shown that the intestinal microbiota is linked to inflammatory diseases, obesity and even several types of cancer. We therefore focused on exploring the putative relationship between intestinal microbiota-related human diseases and type III TA systems. In this paper, we review and discuss the development of possible druggable materials based on the mechanism of type II and type III TA system.
Collapse
|
15
|
Slayden RA, Dawson CC, Cummings JE. Toxin-antitoxin systems and regulatory mechanisms in Mycobacterium tuberculosis. Pathog Dis 2018; 76:4969681. [PMID: 29788125 DOI: 10.1093/femspd/fty039] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/01/2018] [Indexed: 11/14/2022] Open
Abstract
There has been a significant reduction in annual tuberculosis incidence since the World Health Organization declared tuberculosis a global health threat. However, treatment of M. tuberculosis infections requires lengthy multidrug therapeutic regimens to achieve a durable cure. The development of new drugs that are active against resistant strains and phenotypically diverse organisms continues to present the greatest challenge in the future. Numerous phylogenomic analyses have revealed that the Mtb genome encodes a significantly expanded repertoire of toxin-antitoxin (TA) loci that makes up the Mtb TA system. A TA loci is a two-gene operon encoding a 'toxin' protein that inhibits bacterial growth and an interacting 'antitoxin' partner that neutralizes the inhibitory activity of the toxin. The presence of multiple chromosomally encoded TA loci in Mtb raises important questions in regard to expansion, regulation and function. Thus, the functional roles of TA loci in Mtb pathogenesis have received considerable attention over the last decade. The cumulative results indicate that they are involved in regulating adaptive responses to stresses associated with the host environment and drug treatment. Here we review the TA families encoded in Mtb, discuss the duplication of TA loci in Mtb, regulatory mechanism of TA loci, and phenotypic heterogeneity and pathogenesis.
Collapse
Affiliation(s)
- Richard A Slayden
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| | - Clinton C Dawson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| | - Jason E Cummings
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| |
Collapse
|
16
|
Singhal K, Mohanty S. Comparative genomics reveals the presence of putative toxin-antitoxin system in Wolbachia genomes. Mol Genet Genomics 2017; 293:525-540. [PMID: 29214346 DOI: 10.1007/s00438-017-1402-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 12/01/2017] [Indexed: 12/19/2022]
Abstract
Multiple toxin-antitoxin (TA) systems are housed in different locations within the bacterial genome and are known to be associated with various cellular processes and stress-related adaptation. In endosymbionts, although, the TA system has scarce occurrence but studies have highlighted its presence in enhancing host-symbiont interactions. Wolbachia, an obligate endosymbiont, has recently been proposed as a biocontrol agent which may be helpful in controlling vector-borne diseases. There are reports suggesting the role of TA system in inducing cytoplasmic incompatibility in case of Wolbachia, however, the underlying mechanism is still not known. The present study, therefore, aims at exploring the diversity of TA system in four novel (sourced from India) and three reference genomes (NCBI) of Wolbachia strains. Interestingly, we found several putative toxins and antitoxins of RelEB family of Type II TA system in these Wolbachia genomes. The results show wMel genome possessed more number of putative TA loci than wRi genome. In addition, searching through the other sequenced Wolbachia genomes in NCBI, a complete absence of TA system was observed in Wolbachia-infected nematodes. The sequence-wide analysis of all the putative RelEB proteins present amongst the Wolbachia endosymbiont and within the free-living bacterial genomes reveal strain-specific similarities and conserved sequences. However, large amount of sequence diversity was observed between Wolbachia and free-living bacteria. Understanding this sequence variation may help shed light on the differences between these two forms of bacteria and could also explain their niche preferences.
Collapse
Affiliation(s)
- Kopal Singhal
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, Uttar Pradesh, 201 309, India
| | - Sujata Mohanty
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, Uttar Pradesh, 201 309, India.
| |
Collapse
|
17
|
Bajaj RA, Arbing MA, Shin A, Cascio D, Miallau L. Crystal structure of the toxin Msmeg_6760, the structural homolog of Mycobacterium tuberculosis Rv2035, a novel type II toxin involved in the hypoxic response. Acta Crystallogr F Struct Biol Commun 2016; 72:863-869. [PMID: 27917833 PMCID: PMC5137462 DOI: 10.1107/s2053230x16017957] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 11/08/2016] [Indexed: 11/10/2022] Open
Abstract
The structure of Msmeg_6760, a protein of unknown function, has been determined. Biochemical and bioinformatics analyses determined that Msmeg_6760 interacts with a protein encoded in the same operon, Msmeg_6762, and predicted that the operon is a toxin-antitoxin (TA) system. Structural comparison of Msmeg_6760 with proteins of known function suggests that Msmeg_6760 binds a hydrophobic ligand in a buried cavity lined by large hydrophobic residues. Access to this cavity could be controlled by a gate-latch mechanism. The function of the Msmeg_6760 toxin is unknown, but structure-based predictions revealed that Msmeg_6760 and Msmeg_6762 are homologous to Rv2034 and Rv2035, a predicted novel TA system involved in Mycobacterium tuberculosis latency during macrophage infection. The Msmeg_6760 toxin fold has not been previously described for bacterial toxins and its unique structural features suggest that toxin activation is likely to be mediated by a novel mechanism.
Collapse
Affiliation(s)
- R. Alexandra Bajaj
- UCLA–DOE Institute and Departments of Biological Chemistry and Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1570, USA
| | - Mark A. Arbing
- UCLA–DOE Institute and Departments of Biological Chemistry and Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1570, USA
| | - Annie Shin
- UCLA–DOE Institute and Departments of Biological Chemistry and Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1570, USA
| | - Duilio Cascio
- UCLA–DOE Institute and Departments of Biological Chemistry and Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1570, USA
| | - Linda Miallau
- UCLA–DOE Institute and Departments of Biological Chemistry and Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1570, USA
| |
Collapse
|
18
|
Emerging Roles of Toxin-Antitoxin Modules in Bacterial Pathogenesis. Molecules 2016; 21:molecules21060790. [PMID: 27322231 PMCID: PMC6273597 DOI: 10.3390/molecules21060790] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/06/2016] [Accepted: 06/13/2016] [Indexed: 11/17/2022] Open
Abstract
Toxin-antitoxin (TA) cassettes are encoded widely by bacteria. The modules typically comprise a protein toxin and protein or RNA antitoxin that sequesters the toxin factor. Toxin activation in response to environmental cues or other stresses promotes a dampening of metabolism, most notably protein translation, which permits survival until conditions improve. Emerging evidence also implicates TAs in bacterial pathogenicity. Bacterial persistence involves entry into a transient semi-dormant state in which cells survive unfavorable conditions including killing by antibiotics, which is a significant clinical problem. TA complexes play a fundamental role in inducing persistence by downregulating cellular metabolism. Bacterial biofilms are important in numerous chronic inflammatory and infectious diseases and cause serious therapeutic problems due to their multidrug tolerance and resistance to host immune system actions. Multiple TAs influence biofilm formation through a network of interactions with other factors that mediate biofilm production and maintenance. Moreover, in view of their emerging contributions to bacterial virulence, TAs are potential targets for novel prophylactic and therapeutic approaches that are required urgently in an era of expanding antibiotic resistance. This review summarizes the emerging evidence that implicates TAs in the virulence profiles of a diverse range of key bacterial pathogens that trigger serious human disease.
Collapse
|
19
|
Abstract
Most bacterial toxins derived from chromosomally encoded toxin-antitoxin (TA) systems that have been studied to date appear to protect cells from relatively short pulses of stress by triggering a reversible state of growth arrest. In contrast to many bacterial toxins that are produced as defense mechanisms and secreted from their hosts, TA toxins exert their protective effect from within the cell that produces them. TA toxin-mediated growth arrest is most frequently achieved through their ability to selectively cleave RNA species that participate in protein synthesis. Until very recently, it was thought that the primary conduit for toxin-mediated translation inhibition was cleavage of a single class of RNA, mRNA, thus depleting transcripts and precluding production of essential proteins. This minireview focuses on how the development and implementation of a specialized RNA-seq method to study Mycobacterium tuberculosis TA systems enabled the identification of unexpected RNA targets for toxins, i.e. a handful of tRNAs that are cleaved into tRNA halves. Our result brings to light a new perspective on how these toxins may act in this pathogen and uncovers a striking parallel to signature features of the eukaryotic stress response.
Collapse
Affiliation(s)
- Jonathan W Cruz
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Nancy A Woychik
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
20
|
The Mycobacterium tuberculosis relBE toxin:antitoxin genes are stress-responsive modules that regulate growth through translation inhibition. J Microbiol 2015; 53:783-95. [PMID: 26502963 DOI: 10.1007/s12275-015-5333-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 12/11/2022]
Abstract
Toxin-antitoxin (TA) genes are ubiquitous among bacteria and are associated with persistence and dormancy. Following exposure to unfavorable environmental stimuli, several species (Escherichia coli, Staphylococcus aureus, Myxococcus xanthus) employ toxin proteins such as RelE and MazF to downregulate growth or initiate cell death. Mycobacterium tuberculosis possesses three Rel TA modules (Rel Mtb ): RelBE Mtb , RelFG Mtb and RelJK Mtb (Rv1246c-Rv1247c, Rv2865-Rv2866, and Rv3357-Rv3358, respectively), which inhibit mycobacterial growth when the toxin gene (relE, relG, relK) is expressed independently of the antitoxin gene (relB, relF, relJ). In the present study, we examined the in vivo mechanism of the RelE Mtb toxin protein, the impact of RelE Mtb on M. tuberculosis physiology and the environmental conditions that regulate all three rel Mtb modules. RelE Mtb negatively impacts growth and the structural integrity of the mycobacterial envelope, generating cells with aberrant forms that are prone to extensive aggregation. At a time coincident with growth defects, RelE Mtb mediates mRNA degradation in vivo resulting in significant changes to the proteome. We establish that rel Mtb modules are stress responsive, as all three operons are transcriptionally activated following mycobacterial exposure to oxidative stress or nitrogen-limiting growth environments. Here we present evidence that the rel Mtb toxin:antitoxin family is stress-responsive and, through the degradation of mRNA, the RelE Mtb toxin influences the growth, proteome and morphology of mycobacterial cells.
Collapse
|
21
|
MazF ribonucleases promote Mycobacterium tuberculosis drug tolerance and virulence in guinea pigs. Nat Commun 2015; 6:6059. [PMID: 25608501 DOI: 10.1038/ncomms7059] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 12/05/2014] [Indexed: 11/08/2022] Open
Abstract
Toxin-antitoxin (TA) systems are highly conserved in members of the Mycobacterium tuberculosis (Mtb) complex and have been proposed to play an important role in physiology and virulence. Nine of these TA systems belong to the mazEF family, encoding the intracellular MazF toxin and its antitoxin, MazE. By overexpressing each of the nine putative MazF homologues in Mycobacterium bovis BCG, here we show that Rv1102c (MazF3), Rv1991c (MazF6) and Rv2801c (MazF9) induce bacteriostasis. The construction of various single-, double- and triple-mutant Mtb strains reveals that these MazF ribonucleases contribute synergistically to the ability of Mtb to adapt to conditions such as oxidative stress, nutrient depletion and drug exposure. Moreover, guinea pigs infected with the triple-mutant strain exhibits significantly reduced bacterial loads and pathological damage in infected tissues in comparison with parental strain-infected guinea pigs. The present study highlights the importance of MazF ribonucleases in Mtb stress adaptation, drug tolerance and virulence.
Collapse
|
22
|
Ruangprasert A, Maehigashi T, Miles SJ, Giridharan N, Liu JX, Dunham CM. Mechanisms of toxin inhibition and transcriptional repression by Escherichia coli DinJ-YafQ. J Biol Chem 2014; 289:20559-69. [PMID: 24898247 PMCID: PMC4110269 DOI: 10.1074/jbc.m114.573006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/29/2014] [Indexed: 01/26/2023] Open
Abstract
Bacteria encounter environmental stresses that regulate a gene expression program required for adaptation and survival. Here, we report the 1.8-Å crystal structure of the Escherichia coli toxin-antitoxin complex YafQ-(DinJ)2-YafQ, a key component of the stress response. The antitoxin DinJ dimer adopts a ribbon-helix-helix motif required for transcriptional autorepression, and toxin YafQ contains a microbial RNase fold whose proposed active site is concealed by DinJ binding. Contrary to previous reports, our studies indicate that equivalent levels of transcriptional repression occur by direct interaction of either YafQ-(DinJ)2-YafQ or a DinJ dimer at a single inverted repeat of its recognition sequence that overlaps with the -10 promoter region. Surprisingly, multiple YafQ-(DinJ)2-YafQ complexes binding to the operator region do not appear to amplify the extent of repression. Our results suggest an alternative model for transcriptional autorepression that may be novel to DinJ-YafQ.
Collapse
Affiliation(s)
- Ajchareeya Ruangprasert
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Tatsuya Maehigashi
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Stacey J Miles
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Nisha Giridharan
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Julie X Liu
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Christine M Dunham
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
23
|
Zhang D, Iyer LM, Burroughs AM, Aravind L. Resilience of biochemical activity in protein domains in the face of structural divergence. Curr Opin Struct Biol 2014; 26:92-103. [PMID: 24952217 DOI: 10.1016/j.sbi.2014.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/20/2014] [Indexed: 01/07/2023]
Abstract
Recent studies point to the prevalence of the evolutionary phenomenon of drastic structural transformation of protein domains while continuing to preserve their basic biochemical function. These transformations span a wide spectrum, including simple domains incorporated into larger structural scaffolds, changes in the structural core, major active site shifts, topological rewiring and extensive structural transmogrifications. Proteins from biological conflict systems, such as toxin-antitoxin, restriction-modification, CRISPR/Cas, polymorphic toxin and secondary metabolism systems commonly display such transformations. These include endoDNases, metal-independent RNases, deaminases, ADP ribosyltransferases, immunity proteins, kinases and E1-like enzymes. In eukaryotes such transformations are seen in domains involved in chromatin-related peptide recognition and protein/DNA-modification. Intense selective pressures from 'arms-race'-like situations in conflict and macromolecular modification systems could favor drastic structural divergence while preserving function.
Collapse
Affiliation(s)
- Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
24
|
Multiple toxin-antitoxin systems in Mycobacterium tuberculosis. Toxins (Basel) 2014; 6:1002-20. [PMID: 24662523 PMCID: PMC3968373 DOI: 10.3390/toxins6031002] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 12/26/2022] Open
Abstract
The hallmark of Mycobacterium tuberculosis is its ability to persist for a long-term in host granulomas, in a non-replicating and drug-tolerant state, and later awaken to cause disease. To date, the cellular factors and the molecular mechanisms that mediate entry into the persistence phase are poorly understood. Remarkably, M. tuberculosis possesses a very high number of toxin-antitoxin (TA) systems in its chromosome, 79 in total, regrouping both well-known (68) and novel (11) families, with some of them being strongly induced in drug-tolerant persisters. In agreement with the capacity of stress-responsive TA systems to generate persisters in other bacteria, it has been proposed that activation of TA systems in M. tuberculosis could contribute to its pathogenesis. Herein, we review the current knowledge on the multiple TA families present in this bacterium, their mechanism, and their potential role in physiology and virulence.
Collapse
|
25
|
Schureck MA, Maehigashi T, Miles SJ, Marquez J, Cho SE, Erdman R, Dunham CM. Structure of the Proteus vulgaris HigB-(HigA)2-HigB toxin-antitoxin complex. J Biol Chem 2014; 289:1060-70. [PMID: 24257752 PMCID: PMC3887174 DOI: 10.1074/jbc.m113.512095] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/28/2013] [Indexed: 01/08/2023] Open
Abstract
Bacterial toxin-antitoxin (TA) systems regulate key cellular processes to promote cell survival during periods of stress. During steady-state cell growth, antitoxins typically interact with their cognate toxins to inhibit activity presumably by preventing substrate recognition. We solved two x-ray crystal structures of the Proteus vulgaris tetrameric HigB-(HigA)2-HigB TA complex and found that, unlike most other TA systems, the antitoxin HigA makes minimal interactions with toxin HigB. HigB adopts a RelE family tertiary fold containing a highly conserved concave surface where we predict its active site is located. HigA does not cover the solvent-exposed HigB active site, suggesting that, in general, toxin inhibition is not solely mediated by active site hindrance by its antitoxin. Each HigA monomer contains a helix-turn-helix motif that binds to its own DNA operator to repress transcription during normal cellular growth. This is distinct from antitoxins belonging to other superfamilies that typically only form DNA-binding motifs upon dimerization. We further show that disruption of the HigB-(HigA)2-HigB tetramer to a HigBA heterodimer ablates operator binding. Taken together, our biochemical and structural studies elucidate the novel molecular details of the HigBA TA system.
Collapse
MESH Headings
- Amino Acid Sequence
- Antitoxins/chemistry
- Antitoxins/genetics
- Antitoxins/metabolism
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Catalytic Domain
- Crystallography, X-Ray
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Electrophoresis, Polyacrylamide Gel
- Models, Molecular
- Molecular Sequence Data
- Multiprotein Complexes/chemistry
- Multiprotein Complexes/metabolism
- Nucleic Acid Conformation
- Promoter Regions, Genetic/genetics
- Protein Binding
- Protein Multimerization
- Protein Structure, Quaternary
- Protein Structure, Tertiary
- Proteus vulgaris/genetics
- Proteus vulgaris/metabolism
- Repressor Proteins/chemistry
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Marc A. Schureck
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Tatsuya Maehigashi
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Stacey J. Miles
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Jhomar Marquez
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Shein Ei Cho
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Rachel Erdman
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Christine M. Dunham
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|