1
|
Anderson M, Lopez J, Wyr M, Ramirez PW. Defining diverse spike-receptor interactions involved in SARS-CoV-2 entry: Mechanisms and therapeutic opportunities. Virology 2025; 607:110507. [PMID: 40157321 DOI: 10.1016/j.virol.2025.110507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is an enveloped RNA virus that caused the Coronavirus Disease 2019 (COVID-19) pandemic. The SARS-CoV-2 Spike glycoprotein binds to angiotensin converting enzyme 2 (ACE2) on host cells to facilitate viral entry. However, the presence of SARS-CoV-2 in nearly all human organs - including those with little or no ACE2 expression - suggests the involvement of alternative receptors. Recent studies have identified several cellular proteins and molecules that influence SARS-CoV-2 entry through ACE2-dependent, ACE2-independent, or inhibitory mechanisms. In this review, we explore how these alternative receptors were identified, their expression patterns and roles in viral entry, and their impact on SARS-CoV-2 infection. Additionally, we discuss therapeutic strategies aimed at disrupting these virus-receptor interactions to mitigate COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Michael Anderson
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Julian Lopez
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Maya Wyr
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Peter W Ramirez
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA.
| |
Collapse
|
2
|
Vollmar M, Tirunagari S, Harrus D, Armstrong D, Gáborová R, Gupta D, Afonso MQL, Evans G, Velankar S. Dataset from a human-in-the-loop approach to identify functionally important protein residues from literature. Sci Data 2024; 11:1032. [PMID: 39333508 PMCID: PMC11436914 DOI: 10.1038/s41597-024-03841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
We present a novel system that leverages curators in the loop to develop a dataset and model for detecting structure features and functional annotations at residue-level from standard publication text. Our approach involves the integration of data from multiple resources, including PDBe, EuropePMC, PubMedCentral, and PubMed, combined with annotation guidelines from UniProt, and LitSuggest and HuggingFace models as tools in the annotation process. A team of seven annotators manually curated ten articles for named entities, which we utilized to train a starting PubmedBert model from HuggingFace. Using a human-in-the-loop annotation system, we iteratively developed the best model with commendable performance metrics of 0.90 for precision, 0.92 for recall, and 0.91 for F1-measure. Our proposed system showcases a successful synergy of machine learning techniques and human expertise in curating a dataset for residue-level functional annotations and protein structure features. The results demonstrate the potential for broader applications in protein research, bridging the gap between advanced machine learning models and the indispensable insights of domain experts.
Collapse
Affiliation(s)
- Melanie Vollmar
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| | - Santosh Tirunagari
- Literature Services, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Deborah Harrus
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - David Armstrong
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Romana Gáborová
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Deepti Gupta
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Marcelo Querino Lima Afonso
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Genevieve Evans
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Sameer Velankar
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| |
Collapse
|
3
|
Heinen N, Klöhn M, Westhoven S, Brown RJ, Pfaender S. Host determinants and responses underlying SARS-CoV-2 liver tropism. Curr Opin Microbiol 2024; 79:102455. [PMID: 38522265 DOI: 10.1016/j.mib.2024.102455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
Hepatic sequelae are frequently reported in coronavirus disease 2019 cases and are correlated with increased disease severity. Therefore, a detailed exploration of host factors contributing to hepatic impairment and ultimately infection outcomes in patients is essential for improved clinical management. The causes of hepatic injury are not limited to drug-mediated toxicity or aberrant host inflammatory responses. Indeed, multiple studies report the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in liver autopsies and the susceptibility of explanted human hepatocytes to infection. In this review, we confirm that hepatic cells express an extensive range of factors implicated in SARS-CoV-2 entry. We also provide an overview of studies reporting evidence for direct infection of liver cell types and the infection-induced cell-intrinsic processes that likely contribute to hepatic impairment.
Collapse
Affiliation(s)
- Natalie Heinen
- Department of Molecular and Medical Virology, Ruhr University Bochum, Germany
| | - Mara Klöhn
- Department of Molecular and Medical Virology, Ruhr University Bochum, Germany
| | - Saskia Westhoven
- Department of Molecular and Medical Virology, Ruhr University Bochum, Germany; Research Unit Emerging Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Richard Jp Brown
- Department of Molecular and Medical Virology, Ruhr University Bochum, Germany.
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr University Bochum, Germany; Research Unit Emerging Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany; University of Lübeck, Lübeck, Germany.
| |
Collapse
|
4
|
Griffiths SC, Tan J, Wagner A, Blazer LL, Adams JJ, Srinivasan S, Moghisaei S, Sidhu SS, Siebold C, Ho HYH. Structure and function of the ROR2 cysteine-rich domain in vertebrate noncanonical WNT5A signaling. eLife 2024; 13:e71980. [PMID: 38780011 PMCID: PMC11219042 DOI: 10.7554/elife.71980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.
Collapse
Affiliation(s)
- Samuel C Griffiths
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Jia Tan
- Department of Cell Biology and Human Anatomy, University of California, Davis School of MedicineDavisUnited States
| | - Armin Wagner
- Science Division, Diamond Light Source, Harwell Science and Innovation CampusDidcotUnited Kingdom
| | - Levi L Blazer
- School of Pharmacy, University of WaterlooWaterlooCanada
| | | | - Srisathya Srinivasan
- Department of Cell Biology and Human Anatomy, University of California, Davis School of MedicineDavisUnited States
| | - Shayan Moghisaei
- Department of Cell Biology and Human Anatomy, University of California, Davis School of MedicineDavisUnited States
| | | | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Hsin-Yi Henry Ho
- Department of Cell Biology and Human Anatomy, University of California, Davis School of MedicineDavisUnited States
| |
Collapse
|
5
|
Powell GT, Faro A, Zhao Y, Stickney H, Novellasdemunt L, Henriques P, Gestri G, White ER, Ren J, Lu W, Young RM, Hawkins TA, Cavodeassi F, Schwarz Q, Dreosti E, Raible DW, Li VSW, Wright GJ, Jones EY, Wilson SW. Cachd1 interacts with Wnt receptors and regulates neuronal asymmetry in the zebrafish brain. Science 2024; 384:573-579. [PMID: 38696577 PMCID: PMC7615972 DOI: 10.1126/science.ade6970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/27/2024] [Indexed: 05/04/2024]
Abstract
Neurons on the left and right sides of the nervous system often show asymmetric properties, but how such differences arise is poorly understood. Genetic screening in zebrafish revealed that loss of function of the transmembrane protein Cachd1 resulted in right-sided habenula neurons adopting left-sided identity. Cachd1 is expressed in neuronal progenitors, functions downstream of asymmetric environmental signals, and influences timing of the normally asymmetric patterns of neurogenesis. Biochemical and structural analyses demonstrated that Cachd1 can bind simultaneously to Lrp6 and Frizzled family Wnt co-receptors. Consistent with this, lrp6 mutant zebrafish lose asymmetry in the habenulae, and epistasis experiments support a role for Cachd1 in modulating Wnt pathway activity in the brain. These studies identify Cachd1 as a conserved Wnt receptor-interacting protein that regulates lateralized neuronal identity in the zebrafish brain.
Collapse
Affiliation(s)
- Gareth T. Powell
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
- Wellcome Trust Sanger Institute; Cambridge CB10 1SA, UK
| | - Ana Faro
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | - Yuguang Zhao
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford; Oxford, OX3 7BN, UK
| | - Heather Stickney
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
- Departments of Otolaryngology-HNS and Biological Structure, University of Washington; Seattle, WA 98195-7420, USA
- Ambry Genetics; Aliso Viejo, CA 92656, USA
| | - Laura Novellasdemunt
- The Francis Crick Institute; London, NW1 1AT, UK
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology; 08028, Barcelona, Spain
| | - Pedro Henriques
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | - Gaia Gestri
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | | | - Jingshan Ren
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford; Oxford, OX3 7BN, UK
| | - Weixian Lu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford; Oxford, OX3 7BN, UK
| | - Rodrigo M. Young
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
- Institute of Ophthalmology, University College London; London, EC1V 9EL, UK
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor; Camino La Piramide 5750, 8580745, Santiago, Chile
| | - Thomas A. Hawkins
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | - Florencia Cavodeassi
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
- St. George’s, University of London; London, SW17 0RE, UK
| | - Quenten Schwarz
- Institute of Ophthalmology, University College London; London, EC1V 9EL, UK
| | - Elena Dreosti
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | - David W. Raible
- Departments of Otolaryngology-HNS and Biological Structure, University of Washington; Seattle, WA 98195-7420, USA
| | | | - Gavin J. Wright
- Wellcome Trust Sanger Institute; Cambridge CB10 1SA, UK
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York; York, YO10 5DD, UK
| | - E. Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford; Oxford, OX3 7BN, UK
| | - Stephen W. Wilson
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| |
Collapse
|
6
|
Pokharel SM, Mohanty I, Mariasoosai C, Miura TA, Maddison LA, Natesan S, Bose S. Human beta defensin-3 mediated activation of β-catenin during human respiratory syncytial virus infection: interaction of HBD3 with LDL receptor-related protein 5. Front Microbiol 2023; 14:1186510. [PMID: 37426017 PMCID: PMC10324619 DOI: 10.3389/fmicb.2023.1186510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Respiratory Syncytial Virus (RSV) is a non-segmented negative-sense RNA virus belonging to the paramyxovirus family. RSV infects the respiratory tract to cause pneumonia and bronchiolitis in infants, elderly, and immunocompromised patients. Effective clinical therapeutic options and vaccines to combat RSV infection are still lacking. Therefore, to develop effective therapeutic interventions, it is imperative to understand virus-host interactions during RSV infection. Cytoplasmic stabilization of β-catenin protein results in activation of canonical Wingless (Wnt)/β-catenin signaling pathway that culminates in transcriptional activation of various genes regulated by T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors. This pathway is involved in various biological and physiological functions. Our study shows RSV infection of human lung epithelial A549 cells triggering β-catenin protein stabilization and induction of β-catenin mediated transcriptional activity. Functionally, the activated β-catenin pathway promoted a pro-inflammatory response during RSV infection of lung epithelial cells. Studies with β-catenin inhibitors and A549 cells lacking optimal β-catenin activity demonstrated a significant loss of pro-inflammatory chemokine interleukin-8 (IL-8) release from RSV-infected cells. Mechanistically, our studies revealed a role of extracellular human beta defensin-3 (HBD3) in interacting with cell surface Wnt receptor LDL receptor-related protein-5 (LRP5) to activate the non-canonical Wnt independent β-catenin pathway during RSV infection. We showed gene expression and release of HBD3 from RSV-infected cells and silencing of HBD3 expression resulted in reduced stabilization of β-catenin protein during RSV infection. Furthermore, we observed the binding of extracellular HBD3 with cell surface localized LRP5 protein, and our in silico and protein-protein interaction studies have highlighted a direct interaction of HBD3 with LRP5. Thus, our studies have identified the β-catenin pathway as a key regulator of pro-inflammatory response during RSV infection of human lung epithelial cells. This pathway was induced during RSV infection via a non-canonical Wnt-independent mechanism involving paracrine/autocrine action of extracellular HBD3 activating cell surface Wnt receptor complex by directly interacting with the LRP5 receptor.
Collapse
Affiliation(s)
- Swechha M. Pokharel
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Indira Mohanty
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Charles Mariasoosai
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| | - Tanya A. Miura
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Lisette A. Maddison
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Senthil Natesan
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| | - Santanu Bose
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
7
|
Barthe M, Hertereau L, Lamghari N, Osman-Ponchet H, Braud VM. Receptors and Cofactors That Contribute to SARS-CoV-2 Entry: Can Skin Be an Alternative Route of Entry? Int J Mol Sci 2023; 24:ijms24076253. [PMID: 37047226 PMCID: PMC10094153 DOI: 10.3390/ijms24076253] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
To prevent the spread of SARS-CoV-2, all routes of entry of the virus into the host must be mapped. The skin is in contact with the external environment and thus may be an alternative route of entry to transmission via the upper respiratory tract. SARS-CoV-2 cell entry is primarily dependent on ACE2 and the proteases TMPRSS2 or cathepsin L but other cofactors and attachment receptors have been identified that may play a more important role in specific tissues such as the skin. The continued emergence of new variants may also alter the tropism of the virus. In this review, we summarize current knowledge on these receptors and cofactors, their expression profile, factors modulating their expression and their role in facilitating SARS-CoV-2 infection. We discuss their expression in the skin and their possible involvement in percutaneous infection since the presence of the virus has been detected in the skin.
Collapse
Affiliation(s)
- Manon Barthe
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
- PKDERM Laboratories, 45 Boulevard Marcel Pagnol, 06130 Grasse, France
| | - Leslie Hertereau
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
| | - Noura Lamghari
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
- PKDERM Laboratories, 45 Boulevard Marcel Pagnol, 06130 Grasse, France
| | - Hanan Osman-Ponchet
- PKDERM Laboratories, 45 Boulevard Marcel Pagnol, 06130 Grasse, France
- Correspondence: (H.O.-P.); (V.M.B.)
| | - Véronique M. Braud
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
- Correspondence: (H.O.-P.); (V.M.B.)
| |
Collapse
|
8
|
Katase N, Nishimatsu SI, Yamauchi A, Okano S, Fujita S. Establishment of anti-DKK3 peptide for the cancer control in head and neck squamous cell carcinoma (HNSCC). Cancer Cell Int 2022; 22:352. [PMID: 36376957 PMCID: PMC9664703 DOI: 10.1186/s12935-022-02783-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is the most common malignant tumor of the head and neck. We identified cancer-specific genes in HNSCC and focused on DKK3 expression. DKK3 gene codes two isoforms of proteins (secreted and non-secreted) with two distinct cysteine rich domains (CRDs). It is reported that DKK3 functions as a negative regulator of oncogenic Wnt signaling and, is therefore, considered to be a tumor suppressor gene. However, our series of studies have demonstrated that DKK3 expression is specifically high in HNSCC tissues and cells, and that DKK3 might determine the malignant potentials of HNSCC cells via the activation of Akt. Further analyses strongly suggested that both secreted DKK3 and non-secreted DKK3 could activate Akt signaling in discrete ways, and consequently exert tumor promoting effects. We hypothesized that DKK3 might be a specific druggable target, and it is necessary to establish a DKK3 inhibitor that can inhibit both secreted and non-secreted isoforms of DKK3. Methods Using inverse polymerase chain reaction, we generated mutant expression plasmids that express DKK3 without CRD1, CRD2, or both CRD1 and CRD2 (DKK3ΔC1, DKK3ΔC2, and DKK3ΔC1ΔC2, respectively). These plasmids were then transfected into HNSCC-derived cells to determine the domain responsible for DKK3-mediated Akt activation. We designed antisense peptides using the MIMETEC program, targeting DKK3-specific amino acid sequences within CRD1 and CRD2. The structural models for peptides and DKK3 were generated using Raptor X, and then a docking simulation was performed using CluPro2. Afterward, the best set of the peptides was applied into HNSCC-derived cells, and the effects on Akt phosphorylation, cellular proliferation, invasion, and migration were assessed. We also investigated the therapeutic effects of the peptides in the xenograft models. Results Transfection of mutant expression plasmids and subsequent functional analyses revealed that it is necessary to delete both CRD1 and CRD2 to inhibit Akt activation and inhibition of proliferation, migration, and invasion. The inhibitory peptides for CRD1 and CRD2 of DKK3 significantly reduced the phosphorylation of Akt, and consequently suppressed cellular proliferation, migration, invasion and in vivo tumor growth at very low doses. Conclusions This inhibitory peptide represents a promising new therapeutic strategy for HNSCC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02783-9.
Collapse
|
9
|
Israeli M, Finkel Y, Yahalom-Ronen Y, Paran N, Chitlaru T, Israeli O, Cohen-Gihon I, Aftalion M, Falach R, Rotem S, Elia U, Nemet I, Kliker L, Mandelboim M, Beth-Din A, Israely T, Cohen O, Stern-Ginossar N, Bercovich-Kinori A. Genome-wide CRISPR screens identify GATA6 as a proviral host factor for SARS-CoV-2 via modulation of ACE2. Nat Commun 2022; 13:2237. [PMID: 35469023 PMCID: PMC9039069 DOI: 10.1038/s41467-022-29896-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
The global spread of SARS-CoV-2 led to major economic and health challenges worldwide. Revealing host genes essential for infection by multiple variants of SARS-CoV-2 can provide insights into the virus pathogenesis, and facilitate the development of novel therapeutics. Here, employing a genome-scale CRISPR screen, we provide a comprehensive data-set of cellular factors that are exploited by wild type SARS-CoV-2 as well as two additional recently emerged variants of concerns (VOCs), Alpha and Beta. We identified several host factors critical for SARS-CoV-2 infection, including various components belonging to the Clathrin-dependent transport pathway, ubiquitination, Heparan sulfate biogenesis and host phosphatidylglycerol biosynthesis. Comparative analysis of the different VOCs revealed the host factors KREMEN2 and SETDB1 as potential unique candidates required only to the Alpha variant. Furthermore, the analysis identified GATA6, a zinc finger transcription factor, as an essential proviral gene for all variants inspected. We show that GATA6 directly regulates ACE2 transcription and accordingly, is critical for SARS-CoV-2 cell entry. Analysis of clinical samples collected from SARS-CoV-2 infected individuals shows elevated levels of GATA6, suggesting a role in COVID-19 pathogenesis. Finally, pharmacological inhibition of GATA6 resulted in down-modulation of ACE2 and inhibition of viral infectivity. Overall, we show GATA6 may represent a target for the development of anti-SARS-CoV-2 therapeutic strategies and reaffirm the value of the CRISPR loss-of-function screens in providing a list of potential new targets for therapeutic interventions.
Collapse
Affiliation(s)
- Ma'ayan Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Yaara Finkel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yfat Yahalom-Ronen
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ofir Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Inbar Cohen-Gihon
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Reut Falach
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shahar Rotem
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Uri Elia
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ital Nemet
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Limor Kliker
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Adi Beth-Din
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ofer Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Bercovich-Kinori
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel.
| |
Collapse
|
10
|
Structure of the Yeast Cell Wall Integrity Sensor Wsc1 Reveals an Essential Role of Surface-Exposed Aromatic Clusters. J Fungi (Basel) 2022; 8:jof8040379. [PMID: 35448610 PMCID: PMC9024836 DOI: 10.3390/jof8040379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/28/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae and other ascomycetes, the maintenance of cell wall integrity is governed by a family of plasma-membrane spanning sensors that include the Wsc-type proteins. These cell wall proteins apparently sense stress-induced mechanical forces at the cell surface and target the cell wall integrity (CWI) signaling pathway, but the structural base for their sensor function is yet unknown. Here, we solved a high-resolution crystal structure of the extracellular cysteine-rich domain (CRD) of yeast Wsc1, which shows the characteristic PAN/Apple domain fold with two of the four Wsc1 disulfide bridges being conserved in other PAN domain cores. Given the general function of PAN domains in mediating protein–protein and protein–carbohydrate interactions, this finding underpins the importance of Wsc domains in conferring sensing and localization functions. Our Wsc1 CRD structure reveals an unusually high number of surface-exposed aromatic residues that are conserved in other fungal CRDs, and can be arranged into three solvent-exposed clusters. Mutational analysis demonstrates that two of the aromatic clusters are required for conferring S. cerevisiae Wsc1-dependent resistance to the glucan synthase inhibitor caspofungin, and the chitin-binding agents Congo red and Calcofluor white. These findings suggest an essential role of surface-exposed aromatic clusters in fungal Wsc-type sensors that might include an involvement in stress-induced sensor-clustering required to elicit appropriate cellular responses via the downstream CWI pathway.
Collapse
|
11
|
Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) 2022; 13:genes13010138. [PMID: 35052478 PMCID: PMC8775112 DOI: 10.3390/genes13010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is involved in several processes essential for bone development and homeostasis. For proper functioning, the Wnt pathway is tightly regulated by numerous extracellular elements that act by both activating and inhibiting the pathway at different moments. This review aims to describe, summarize and update the findings regarding the extracellular modulators of the Wnt pathway, including co-receptors, ligands and inhibitors, in relation to bone homeostasis, with an emphasis on the animal models generated, the diseases associated with each gene and the bone processes in which each member is involved. The precise knowledge of all these elements will help us to identify possible targets that can be used as a therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
|
12
|
Kikuchi A, Matsumoto S, Sada R. Dickkopf signaling, beyond Wnt-mediated biology. Semin Cell Dev Biol 2021; 125:55-65. [PMID: 34801396 DOI: 10.1016/j.semcdb.2021.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023]
Abstract
Dickkopf1 (DKK1) was originally identified as a secreted protein that antagonizes Wnt signaling. Although DKK1 is essential for the developmental process, its functions in postnatal and adult life are unclear. However, evidence is accumulating that DKK1 is involved in tumorigenesis in a manner unrelated to Wnt signaling. In addition, recent studies have revealed that DKK1 may control immune reactions, although the relationship of this to Wnt signaling is unknown. Other DKK family members, DKK2-4, are likely to have their own functions. Here, we review the possible novel functions of DKKs. We summarize the characteristics of receptors of DKKs and the signaling mechanisms through DKKs and their receptors, provide evidence showing that DKKs are involved in tumor aggressiveness independently of Wnt signaling, and emphasize promising cancer therapies targeting DKKs and receptors. Lastly, we discuss various physiological and pathological processes controlled by DKKs.
Collapse
Affiliation(s)
- Akira Kikuchi
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita 565-0871, Osaka, Japan.
| | - Shinji Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita 565-0871, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-2 Yamada-oka, Suita 565-0871, Osaka, Japan
| | - Ryota Sada
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita 565-0871, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-2 Yamada-oka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
13
|
The structural biology of canonical Wnt signalling. Biochem Soc Trans 2021; 48:1765-1780. [PMID: 32725184 PMCID: PMC7458405 DOI: 10.1042/bst20200243] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022]
Abstract
The Wnt signalling pathways are of great importance in embryonic development and oncogenesis. Canonical and non-canonical Wnt signalling pathways are known, with the canonical (or β-catenin dependent) pathway being perhaps the best studied of these. While structural knowledge of proteins and interactions involved in canonical Wnt signalling has accumulated over the past 20 years, the pace of discovery has increased in recent years, with the structures of several key proteins and assemblies in the pathway being released. In this review, we provide a brief overview of canonical Wnt signalling, followed by a comprehensive overview of currently available X-ray, NMR and cryoEM data elaborating the structures of proteins and interactions involved in canonical Wnt signalling. While the volume of structures available is considerable, numerous gaps in knowledge remain, particularly a comprehensive understanding of the assembly of large multiprotein complexes mediating key aspects of pathway, as well as understanding the structure and activation of membrane receptors in the pathway. Nonetheless, the presently available data affords considerable opportunities for structure-based drug design efforts targeting canonical Wnt signalling.
Collapse
|
14
|
A Three-Dimensional Model of the Yeast Transmembrane Sensor Wsc1 Obtained by SMA-Based Detergent-Free Purification and Transmission Electron Microscopy. J Fungi (Basel) 2021; 7:jof7020118. [PMID: 33562593 PMCID: PMC7915640 DOI: 10.3390/jof7020118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/31/2022] Open
Abstract
The cell wall sensor Wsc1 belongs to a small family of transmembrane proteins, which are crucial to sustain cell integrity in yeast and other fungi. Wsc1 acts as a mechanosensor of the cell wall integrity (CWI) signal transduction pathway which responds to external stresses. Here we report on the purification of Wsc1 by its trapping in water-soluble polymer-stabilized lipid nanoparticles, obtained with an amphipathic styrene-maleic acid (SMA) copolymer. The latter was employed to transfer tagged sensors from their native yeast membranes into SMA/lipid particles (SMALPs), which allows their purification in a functional state, i.e., avoiding denaturation. The SMALPs composition was characterized by fluorescence correlation spectroscopy, followed by two-dimensional image acquisition from single particle transmission electron microscopy to build a three-dimensional model of the sensor. The latter confirms that Wsc1 consists of a large extracellular domain connected to a smaller intracellular part by a single transmembrane domain, which is embedded within the hydrophobic moiety of the lipid bilayer. The successful extraction of a sensor from the yeast plasma membrane by a detergent-free procedure into a native-like membrane environment provides new prospects for in vitro structural and functional studies of yeast plasma proteins which are likely to be applicable to other fungi, including plant and human pathogens.
Collapse
|
15
|
Abstract
The WNT/β-catenin signalling pathway is a rich and complex network of cellular proteins that orchestrates diverse short-range cell-to-cell communication in metazoans and is essential for both embryonic development and adult homeostasis. Due to its fundamental importance in controlling cell behaviour at multiple levels, its deregulation is associated with a wide range of diseases in humans and identification of drugs targeting the pathway has attracted strong interest in the pharmaceutical sector. Transduction of WNT signals across the plasma membrane of cells involves a staggering degree of complexity and variety with respect to ligand-receptor, receptor-receptor and receptor-co-receptor interactions (Niehrs, Nat Rev Mol Cell Biol 13:767-779, 2012). Although the low-density-lipoprotein-receptor-related-protein (LRP) family is best known for its role in binding and endocytosis of lipoproteins, specific members appear to have additional roles in cellular communication. Indeed, for WNT/β-catenin signalling one apparently universal requirement is the presence of either LRP5 or LRP6 in combination with one of the ten Frizzled (FZD) WNT receptors (FZD1-10). In the 20 years since their discovery as WNT/FZD co-receptors, research on the LRP family has contributed greatly to our understanding of WNT signalling and LRPs have emerged as central players in WNT/β-catenin signalling. LRP5/6 are highly similar and represent the least redundant class of WNT receptor that transduce WNT/β-catenin signalling from a wide range of different WNT and FZD subtypes. This apparent simplicity however belies the complex arrangement of binding sites in the extracellular domain (ECD) of LRP5/6, which regulate interaction not only with WNTs but also with several inhibitors of WNT signalling. This chapter provides a historical overview, chronologically charting this remarkable progress in the field during the last 20 years of research on LRPs and their role in WNT/-catenin signalling. A more focused overview of the structural, functional and mechanistic aspects of LRP biology is also provided, together with the implications this has for pharmacological targeting of this notoriously intractable pathway.
Collapse
Affiliation(s)
- Gary Davidson
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBSC-FMS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
16
|
Molecular basis of Coxsackievirus A10 entry using the two-in-one attachment and uncoating receptor KRM1. Proc Natl Acad Sci U S A 2020; 117:18711-18718. [PMID: 32690697 DOI: 10.1073/pnas.2005341117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
KREMEN1 (KRM1) has been identified as a functional receptor for Coxsackievirus A10 (CV-A10), a causative agent of hand-foot-and-mouth disease (HFMD), which poses a great threat to infants globally. However, the underlying mechanisms for the viral entry process are not well understood. Here we determined the atomic structures of different forms of CV-A10 viral particles and its complex with KRM1 in both neutral and acidic conditions. These structures reveal that KRM1 selectively binds to the mature viral particle above the canyon of the viral protein 1 (VP1) subunit and contacts across two adjacent asymmetry units. The key residues for receptor binding are conserved among most KRM1-dependent enteroviruses, suggesting a uniform mechanism for receptor binding. Moreover, the binding of KRM1 induces the release of pocket factor, a process accelerated under acidic conditions. Further biochemical studies confirmed that receptor binding at acidic pH enabled CV-A10 virion uncoating in vitro. Taken together, these findings provide high-resolution snapshots of CV-A10 entry and identify KRM1 as a two-in-one receptor for enterovirus infection.
Collapse
|
17
|
Kon T, Omori Y, Fukuta K, Wada H, Watanabe M, Chen Z, Iwasaki M, Mishina T, Matsuzaki SIS, Yoshihara D, Arakawa J, Kawakami K, Toyoda A, Burgess SM, Noguchi H, Furukawa T. The Genetic Basis of Morphological Diversity in Domesticated Goldfish. Curr Biol 2020; 30:2260-2274.e6. [PMID: 32392470 DOI: 10.1016/j.cub.2020.04.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/13/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
Although domesticated goldfish strains exhibit highly diversified phenotypes in morphology, the genetic basis underlying these phenotypes is poorly understood. Here, based on analysis of transposable elements in the allotetraploid goldfish genome, we found that its two subgenomes have evolved asymmetrically since a whole-genome duplication event in the ancestor of goldfish and common carp. We conducted whole-genome sequencing of 27 domesticated goldfish strains and wild goldfish. We identified more than 60 million genetic variations and established a population genetic structure of major goldfish strains. Genome-wide association studies and analysis of strain-specific variants revealed genetic loci associated with several goldfish phenotypes, including dorsal fin loss, long-tail, telescope-eye, albinism, and heart-shaped tail. Our results suggest that accumulated mutations in the asymmetrically evolved subgenomes led to generation of diverse phenotypes in the goldfish domestication history. This study is a key resource for understanding the genetic basis of phenotypic diversity among goldfish strains.
Collapse
Affiliation(s)
- Tetsuo Kon
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Yoshihiro Omori
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| | - Kentaro Fukuta
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Hironori Wada
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Masakatsu Watanabe
- Laboratory of Pattern Formation, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka
| | - Zelin Chen
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Miki Iwasaki
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Tappei Mishina
- Laboratory of Animal Ecology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | - Daiki Yoshihara
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Jumpei Arakawa
- Yatomi Station, Aichi Fisheries Research Institute, Yatomi, Aichi, Japan
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Yata 1111, Mishima, Shizuoka 411-8540, Japan; Advanced Genomics Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Zhao Y, Zhou D, Ni T, Karia D, Kotecha A, Wang X, Rao Z, Jones EY, Fry EE, Ren J, Stuart DI. Hand-foot-and-mouth disease virus receptor KREMEN1 binds the canyon of Coxsackie Virus A10. Nat Commun 2020; 11:38. [PMID: 31911601 PMCID: PMC6946704 DOI: 10.1038/s41467-019-13936-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/07/2019] [Indexed: 01/12/2023] Open
Abstract
Coxsackievirus A10 (CV-A10) is responsible for an escalating number of severe infections in children, but no prophylactics or therapeutics are currently available. KREMEN1 (KRM1) is the entry receptor for the largest receptor-group of hand-foot-and-mouth disease causing viruses, which includes CV-A10. We report here structures of CV-A10 mature virus alone and in complex with KRM1 as well as of the CV-A10 A-particle. The receptor spans the viral canyon with a large footprint on the virus surface. The footprint has some overlap with that seen for the neonatal Fc receptor complexed with enterovirus E6 but is larger and distinct from that of another enterovirus receptor SCARB2. Reduced occupancy of a particle-stabilising pocket factor in the complexed virus and the presence of both unbound and expanded virus particles suggests receptor binding initiates a cascade of conformational changes that produces expanded particles primed for viral uncoating.
Collapse
MESH Headings
- Enterovirus A, Human/chemistry
- Enterovirus A, Human/genetics
- Enterovirus A, Human/physiology
- Enterovirus A, Human/ultrastructure
- Enterovirus Infections/genetics
- Enterovirus Infections/metabolism
- Enterovirus Infections/virology
- Foot-and-Mouth Disease Virus/genetics
- Foot-and-Mouth Disease Virus/physiology
- Hand, Foot and Mouth Disease/genetics
- Hand, Foot and Mouth Disease/metabolism
- Hand, Foot and Mouth Disease/virology
- Humans
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Virus Uncoating
Collapse
Affiliation(s)
- Yuguang Zhao
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - Daming Zhou
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - Tao Ni
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - Dimple Karia
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - Abhay Kotecha
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
- Materials and Structural Analysis, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Xiangxi Wang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, 100101, Beijing, China
| | - Zihe Rao
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, 100101, Beijing, China
| | - E Yvonne Jones
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - Elizabeth E Fry
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - Jingshan Ren
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK.
| | - David I Stuart
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK.
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, OX11 0DE, UK.
| |
Collapse
|
19
|
Feder K, Edmaier-Schröger K, Rawat VPS, Kirsten N, Metzeler K, Kraus JM, Döhner K, Döhner H, Kestler HA, Feuring-Buske M, Buske C. Differences in expression and function of LEF1 isoforms in normal versus leukemic hematopoiesis. Leukemia 2019; 34:1027-1037. [DOI: 10.1038/s41375-019-0635-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022]
|
20
|
Lim ZQ, Ng QY, Ng JWQ, Mahendran V, Alonso S. Recent progress and challenges in drug development to fight hand, foot and mouth disease. Expert Opin Drug Discov 2019; 15:359-371. [DOI: 10.1080/17460441.2019.1659241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ze Qin Lim
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Qing Yong Ng
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Justin Wei Qing Ng
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Vikneswari Mahendran
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sylvie Alonso
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
21
|
Li Y, Meng R. MicroRNA-154 Targets the Wnt/β-Catenin Signaling Pathway Following Injury to Human Vascular Endothelial Cells by Hydrogen Peroxide. Med Sci Monit 2019; 25:5648-5656. [PMID: 31359876 PMCID: PMC6685327 DOI: 10.12659/msm.915263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Endothelial cells are involved in vascular homeostasis, and endothelial cell dysfunction is involved in the pathogenesis of cardiovascular disease. This study aimed to investigate the effects of microRNA-154 in human umbilical vein endothelial cells (HUVECs) following injury induced by hydrogen peroxide (H2O2). Material/Methods Cell viability and apoptosis of HUVECs treated with H2O2 were measured. The expression of microRNA-154 was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell survival, caspase-3 activity, and the apoptosis rate were evaluated in H2O2-treated HUVECs cells after the upregulation and down-regulation of microRNA-154 expression. The interaction between microRNA-154 and Dickkopf WNT signaling pathway inhibitor 2 (DKK2) was predicted by bioinformatics analysis and was verified by luciferase reporter gene assay and Western blot. The effects of DKK2 short-interfering RNA (siRNA) on antioxidant injury in HUVECs cells were determined. Results The survival rate of HUVECs exposed to H2O2 was significantly reduced and the apoptosis rate was significantly increased, and H2O2 significantly inhibited the expression of microRNA-154 in a dose-dependent manner. Overexpression of microRNA-154 increased cell survival, reduced the activity of caspase-3, and reduced cell apoptosis. Inhibition of microRNA-154 expression decreased cell survival, increased the activity of caspase-3, and promoted cell apoptosis. Luciferase reporter gene assay and Western blot showed that microRNA-154 interacted with the Wnt pathway molecule DKK2 in HUVECS. Also, DDK2 siRNA resulted in a similar protective effect on H2O2-treated HUVECs as overexpression of microRNA-154. Conclusions Oxidative injury in HUVECs was regulated by microRNA-154 targeting the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yan Li
- Department of Cardiology, The First Peoples' Hospital of Jining, Jining, Shandong, China (mainland)
| | - Ranran Meng
- Department of Vascular Surgery, The First Peoples' Hospital of Jining, Jining, Shandong, China (mainland)
| |
Collapse
|
22
|
Chae WJ, Bothwell ALM. Dickkopf1: An immunomodulatory ligand and Wnt antagonist in pathological inflammation. Differentiation 2019; 108:33-39. [PMID: 31221431 DOI: 10.1016/j.diff.2019.05.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022]
Abstract
The Wnt signaling pathway plays essential roles in tissue or organ homeostasis by regulating cell proliferation and differentiation. Upon tissue or organ injury, inflammation is coupled with tissue repair and regeneration process. The canonical Wnt signaling transduction pathway is crucial for cell proliferation, cell differentiation, and tissue regeneration. Dickkopf1 (DKK1) is a quintessential Wnt antagonist that inhibits the Wnt-mediated tissue repair process. Recent studies reported increased levels of DKK1 in many diseases such as cancer, infection, and musculoskeletal diseases. In many cases, the role of DKK1 has been identified as a pro-inflammatory ligand and the expression levels are associated with poor disease outcomes. A variety of cell types including platelets, endothelial cells, and cancer cells secrete DKK1 upon stimuli. This puts DKK1 in a unique place to view immune responses from multicellular interactions in tissue injury and repair process. In this review, we discuss recent efforts to address the underlying mechanism regarding the pro-inflammatory role of DKK1 in cancer, bone diseases, and other inflammatory diseases.
Collapse
Affiliation(s)
- Wook-Jin Chae
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06520, USA; Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, 1101 Marshall Street, Richmond, VA, 23298, USA; Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, VA, 23298, USA.
| | - Alfred L M Bothwell
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
23
|
Oide S, Tanaka Y, Watanabe A, Inui M. Carbohydrate-binding property of a cell wall integrity and stress response component (WSC) domain of an alcohol oxidase from the rice blast pathogen Pyricularia oryzae. Enzyme Microb Technol 2019; 125:13-20. [DOI: 10.1016/j.enzmictec.2019.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/23/2019] [Accepted: 02/23/2019] [Indexed: 11/29/2022]
|
24
|
Coxsackievirus A10 atomic structure facilitating the discovery of a broad-spectrum inhibitor against human enteroviruses. Cell Discov 2019; 5:4. [PMID: 30652025 PMCID: PMC6331555 DOI: 10.1038/s41421-018-0073-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 01/21/2023] Open
Abstract
Coxsackievirus A10 (CV-A10) belongs to the Enterovirus species A and is a causative agent of hand, foot, and mouth disease. Here we present cryo-EM structures of CV-A10 mature virion and native empty particle (NEP) at 2.84 and 3.12 Å, respectively. Our CV-A10 mature virion structure reveals a density corresponding to a lipidic pocket factor of 18 carbon atoms in the hydrophobic pocket formed within viral protein 1. By structure-guided high-throughput drug screening and subsequent verification in cell-based infection-inhibition assays, we identified four compounds that inhibited CV-A10 infection in vitro. These compounds represent a new class of anti-enteroviral drug leads. Notably, one of the compounds, ICA135, also exerted broad-spectrum inhibitory effects on a number of representative viruses from all four species (A–D) of human enteroviruses. Our findings should facilitate the development of broadly effective drugs and vaccines for enterovirus infections.
Collapse
|
25
|
Characterization of a New Glyoxal Oxidase from the Thermophilic Fungus Myceliophthora thermophila M77: Hydrogen Peroxide Production Retained in 5-Hydroxymethylfurfural Oxidation. Catalysts 2018. [DOI: 10.3390/catal8100476] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Myceliophthora thermophyla is a thermophilic industrially relevant fungus that secretes an assortment of hydrolytic and oxidative enzymes for lignocellulose degradation. Among them is glyoxal oxidase (MtGLOx), an extracellular oxidoreductase that oxidizes several aldehydes and α-hydroxy carbonyl substrates coupled to the reduction of O2 to H2O2. This copper metalloprotein belongs to a class of enzymes called radical copper oxidases (CRO) and to the “auxiliary activities” subfamily AA5_1 that is based on the Carbohydrate-Active enZYmes (CAZy) database. Only a few members of this family have been characterized to date. Here, we report the recombinant production, characterization, and structure-function analysis of MtGLOx. Electron Paramagnetic Resonance (EPR) spectroscopy confirmed MtGLOx to be a radical-coupled copper complex and small angle X-ray scattering (SAXS) revealed an extended spatial arrangement of the catalytic and four N-terminal WSC domains. Furthermore, we demonstrate that methylglyoxal and 5-hydroxymethylfurfural (HMF), a fermentation inhibitor, are substrates for the enzyme.
Collapse
|
26
|
Patel S, Barkell AM, Gupta D, Strong SL, Bruton S, Muskett FW, Addis PW, Renshaw PS, Slocombe PM, Doyle C, Clargo A, Taylor RJ, Prosser CE, Henry AJ, Robinson MK, Waters LC, Holdsworth G, Carr MD. Structural and functional analysis of Dickkopf 4 (Dkk4): New insights into Dkk evolution and regulation of Wnt signaling by Dkk and Kremen proteins. J Biol Chem 2018; 293:12149-12166. [PMID: 29925589 PMCID: PMC6078440 DOI: 10.1074/jbc.ra118.002918] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/11/2018] [Indexed: 11/06/2022] Open
Abstract
Dickkopf (Dkk) family proteins are important regulators of Wnt signaling pathways, which play key roles in many essential biological processes. Here, we report the first detailed structural and dynamics study of a full-length mature Dkk protein (Dkk4, residues 19–224), including determination of the first atomic-resolution structure for the N-terminal cysteine-rich domain (CRD1) conserved among Dkk proteins. We discovered that CRD1 has significant structural homology to the Dkk C-terminal cysteine-rich domain (CRD2), pointing to multiple gene duplication events during Dkk family evolution. We also show that Dkk4 consists of two independent folded domains (CRD1 and CRD2) joined by a highly flexible, nonstructured linker. Similarly, the N-terminal region preceding CRD1 and containing a highly conserved NXI(R/K) sequence motif was shown to be dynamic and highly flexible. We demonstrate that Dkk4 CRD2 mediates high-affinity binding to both the E1E2 region of low-density lipoprotein receptor–related protein 6 (LRP6 E1E2) and the Kremen1 (Krm1) extracellular domain. In contrast, the N-terminal region alone bound with only moderate affinity to LRP6 E1E2, consistent with binding via the conserved NXI(R/K) motif, but did not interact with Krm proteins. We also confirmed that Dkk and Krm family proteins function synergistically to inhibit Wnt signaling. Insights provided by our integrated structural, dynamics, interaction, and functional studies have allowed us to refine the model of synergistic regulation of Wnt signaling by Dkk proteins. Our results indicate the potential for the formation of a diverse range of ternary complexes comprising Dkk, Krm, and LRP5/6 proteins, allowing fine-tuning of Wnt-dependent signaling.
Collapse
Affiliation(s)
- Saleha Patel
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Alice M Barkell
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Deepti Gupta
- UCB, 208 Bath Road, Slough SL1 3WE, United Kingdom
| | - Sarah L Strong
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Shaun Bruton
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Frederick W Muskett
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Philip W Addis
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Philip S Renshaw
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | | | - Carl Doyle
- UCB, 208 Bath Road, Slough SL1 3WE, United Kingdom
| | | | | | - Christine E Prosser
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; UCB, 208 Bath Road, Slough SL1 3WE, United Kingdom
| | | | | | - Lorna C Waters
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom.
| | | | - Mark D Carr
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom.
| |
Collapse
|
27
|
Intarak N, Theerapanon T, Srijunbarl A, Suphapeetiporn K, Porntaveetus T, Shotelersuk V. Novel compound heterozygous mutations in KREMEN1
confirm it as a disease gene for ectodermal dysplasia. Br J Dermatol 2018. [DOI: 10.1111/bjd.16541] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- N. Intarak
- Craniofacial Genetics and Stem Cells Research Group; Department of Physiology; Chulalongkorn University; Bangkok 10330 Thailand
| | - T. Theerapanon
- Excellence Center in Regenerative Dentistry; Chulalongkorn University; Bangkok 10330 Thailand
| | - A. Srijunbarl
- Dental Material Science Research Center; Faculty of Dentistry; Chulalongkorn University; Bangkok 10330 Thailand
| | - K. Suphapeetiporn
- Center of Excellence for Medical Genetics; Department of Pediatrics; Faculty of Medicine; Chulalongkorn University; Bangkok 10330 Thailand
- Excellence Center for Medical Genetics; King Chulalongkorn Memorial Hospital; the Thai Red Cross Society; Bangkok 10330 Thailand
| | - T. Porntaveetus
- Craniofacial Genetics and Stem Cells Research Group; Department of Physiology; Chulalongkorn University; Bangkok 10330 Thailand
| | - V. Shotelersuk
- Center of Excellence for Medical Genetics; Department of Pediatrics; Faculty of Medicine; Chulalongkorn University; Bangkok 10330 Thailand
- Excellence Center for Medical Genetics; King Chulalongkorn Memorial Hospital; the Thai Red Cross Society; Bangkok 10330 Thailand
| |
Collapse
|
28
|
Potent and selective antitumor activity of a T cell-engaging bispecific antibody targeting a membrane-proximal epitope of ROR1. Proc Natl Acad Sci U S A 2018; 115:E5467-E5476. [PMID: 29844189 DOI: 10.1073/pnas.1719905115] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T cell-engaging bispecific antibodies (biAbs) present a promising strategy for cancer immunotherapy, and numerous bispecific formats have been developed for retargeting cytolytic T cells toward tumor cells. To explore the therapeutic utility of T cell-engaging biAbs targeting the receptor tyrosine kinase ROR1, which is expressed by tumor cells of various hematologic and solid malignancies, we used a bispecific ROR1 × CD3 scFv-Fc format based on a heterodimeric and aglycosylated Fc domain designed for extended circulatory t1/2 and diminished systemic T cell activation. A diverse panel of ROR1-targeting scFv derived from immune and naïve rabbit antibody repertoires was compared in this bispecific format for target-dependent T cell recruitment and activation. An ROR1-targeting scFv with a membrane-proximal epitope, R11, revealed potent and selective antitumor activity in vitro, in vivo, and ex vivo and emerged as a prime candidate for further preclinical and clinical studies. To elucidate the precise location and engagement of this membrane-proximal epitope, which is conserved between human and mouse ROR1, the 3D structure of scFv R11 in complex with the kringle domain of ROR1 was determined by X-ray crystallography at 1.6-Å resolution.
Collapse
|
29
|
Pehlivan M, Çalışkan C, Yüce Z, Sercan HO. Secreted Wnt antagonists in leukemia: A road yet to be paved. Leuk Res 2018; 69:24-30. [PMID: 29625321 DOI: 10.1016/j.leukres.2018.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/21/2018] [Accepted: 03/23/2018] [Indexed: 11/20/2022]
Abstract
Wnt signaling has been a topic of research for many years for its diverse and fundamental functions in physiological (such as embryogenesis, organogenesis, proliferation, tissue repair and cellular differentiation) and pathological (carcinogenesis, congenital/genetic diseases, and tissue degeneration) processes. Wnt signaling pathway aberrations are associated with both solid tumors and hematological malignancies. Unregulated Wnt signaling observed in malignancies may be due to a wide spectrum of abnormalities, from mutations in the genes of key players to epigenetic modifications of Wnt antagonists. Of these, Wnt antagonists are gaining significant attention for their potential of being targets for treatment and inhibition of Wnt signaling. In this review, we discuss and summarize the significance of Wnt signaling antagonists in the pathogenesis and treatment of hematological malignancies.
Collapse
Affiliation(s)
- Melek Pehlivan
- Vocational School of Health Services, Izmir Katip Celebi University, Izmir, Turkey.
| | - Ceyda Çalışkan
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology & Genetics, Izmir, Turkey.
| | - Zeynep Yüce
- Dokuz Eylul University Faculty of Medicine, Department of Medical Biology and Genetics, Izmir, Turkey.
| | - Hakki Ogun Sercan
- Dokuz Eylul University Faculty of Medicine, Department of Medical Biology and Genetics, Izmir, Turkey.
| |
Collapse
|
30
|
Kagey MH, He X. Rationale for targeting the Wnt signalling modulator Dickkopf-1 for oncology. Br J Pharmacol 2017; 174:4637-4650. [PMID: 28574171 PMCID: PMC5727329 DOI: 10.1111/bph.13894] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/12/2017] [Accepted: 05/19/2017] [Indexed: 12/15/2022] Open
Abstract
Wnt signalling is a fundamental pathway involved in embryonic development and adult tissue homeostasis. Mutations in the pathway frequently lead to developmental defects and cancer. As such, therapeutic intervention of this pathway has generated tremendous interest. Dickkopf-1 (DKK1) is a secreted inhibitor of β-catenin-dependent Wnt signalling and was originally characterized as a tumour suppressor based on the prevailing view that Wnt signalling promotes cancer pathogenesis. However, DKK1 appears to increase tumour growth and metastasis in preclinical models and its elevated expression correlates with a poor prognosis in a range of cancers, indicating that DKK1 has more complex cellular and biological functions than originally appreciated. Here, we review current evidence for the cancer-promoting activity of DKK1 and recent insights into the effects of DKK1 on signalling pathways in both cancer and immune cells. We discuss the rationale and promise of targeting DKK1 for oncology. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
| | - Xi He
- The F. M. Kirby Neurobiology Center, Boston Children's Hospital, Department of NeurologyHarvard Medical SchoolBostonMAUSA
| |
Collapse
|