1
|
Long L, Li M, Wang M, Liang B, Huang M, Yuan X, Wu X, Guo X, Li S, Liu Z, Liu W, Chen W, Wang W, Lyu Q, Li C. Activation of mannose receptor C type 1 in macrophages improves renal fibrosis through mediating fibronectin endocytosis. Life Sci 2025; 371:123593. [PMID: 40164332 DOI: 10.1016/j.lfs.2025.123593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
AIMS Excess extracellular matrix (ECM) deposition is the characteristic of renal fibrosis, owing to the imbalance between synthesis and degradation. Fibronectin could regulate the deposition of other ECM, thus plays a crucial role in the progression of renal fibrosis. Mannose receptor C type 1 (MRC1), largely expressed on macrophages, owns an extracellular fibronectin type II domain that binds to and internalizes collagen and thus involves in fibrosis modulation. The purpose of the present study was to investigate whether MRC1 participates in the internalization of fibronectin and whether alginate oligosaccharides (AOSC), a degradation product of alginate, has beneficial effects in the resolution of renal fibrosis via MRC1. MATERIALS AND METHODS Renal fibrosis models were constructed by unilateral ureteral obstruction (UUO) and unilateral ischemia-reperfusion injury (UIRI) in MRC1-WT and MRC1-KO mice. RAW264.7 cells were treated with TGF-β1 to induce pro-fibrotic responses. Expression of fibrotic markers and fibronectin endocytosis were examined. KEY FINDINGS MRC1 gene knockout aggravated renal fibrosis in UUO and UIRI models. Inhibition of MRC1 exacerbated TGF-β1-induced pro-fibrotic responses in RAW264.7 cells. MRC1 regulated integrin β1-mediated fibronectin endocytosis through Arp2/3-Kindlin-2 signaling pathway. AOSC improved renal fibrosis by increasing MRC1 expression and endocytosis of fibronectin. SIGNIFICANCE Our findings highlight the importance of MRC1 and fibronectin endocytosis in the development of renal fibrosis, suggesting that activation of MRC1 by AOSC is probably a therapeutic option to delay the progress of kidney fibrosis.
Collapse
Affiliation(s)
- Luosha Long
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Pathology and Pathophysiology, Pu Ai Medical School, Shaoyang University, Shaoyang, China
| | - Meng Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Minghui Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Baien Liang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Meiying Huang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xi Yuan
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xinyan Wu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guo
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Suchun Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Zhende Liu
- Haitang (Jiangsu) Biotechnology Co, Ltd., Nantong, Jiangsu, China
| | - Weizhi Liu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qianqian Lyu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Sung Y, Choi Y, Kim ES, Ryu JH, Kwon IC. Receptor-ligand interactions for optimized endocytosis in targeted therapies. J Control Release 2025; 380:524-538. [PMID: 39875075 DOI: 10.1016/j.jconrel.2025.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
Receptor-mediated endocytosis plays a crucial role in the success of numerous therapies and remains central to advancing drug development. This process begins with ligand binding to specific receptors, triggering the internalization and intracellular trafficking of receptor-ligand complexes. These complexes are subsequently directed into distinct routes, either toward lysosomal degradation or recycling to the cell surface, with implications for therapeutic outcomes. This review examines receptor-ligand interactions as key modulators of endocytosis, emphasizing their role in shaping therapeutic design and efficacy. Advances in selecting receptor-ligand pairs and engineering ligands with optimized properties have enabled precise control over internalization, endosomal sorting, and trafficking, providing tailored solutions for diverse therapeutic applications. Leveraging these insights, strategies such as RNA-based therapies, antibody-drug conjugates (ADCs), and targeted protein degradation (TPD) platforms have been refined to selectively avoid or promote lysosomal degradation, thereby enhancing therapeutic efficacy. By bridging fundamental mechanisms of receptor-mediated endocytosis with innovative therapeutic approaches, this review offers a framework for advancing precision medicine.
Collapse
Affiliation(s)
- Yejin Sung
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Youngjin Choi
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Eun Sun Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul 20841, Republic of Korea
| | - Ju Hee Ryu
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| | - Ick Chan Kwon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
3
|
Karapanagioti F, Cissé N, Atamas A, Stetsenko A, Punter CM, Zuidersma E, Stuart MCA. Alternatives for Uranyl Acetate Negative Staining With Respect to the Resolution Obtained After Single Particle Analysis of Erythrocruorin. Microsc Res Tech 2025. [PMID: 40165377 DOI: 10.1002/jemt.24865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/03/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
Although cryo-electron microscopy is widely used for determining high-resolution structures, negative staining of proteins and supramolecular aggregates remain a valuable screening method, especially for low-abundant proteins. The most commonly used contrasting agent is uranyl acetate (UAc). However, due to its toxicity and the strong regulations connected to the use of uranium compounds, there is an ongoing search for alternative stains, with the focus being shifted to lanthanide and tungsten compounds. In this study, the performance of neodymium acetate (NdAc), europium acetate (EuAc), ytterbium acetate (YbAc), phosphotungstic acid, and the commercially available UA-Zero as negative staining agents for single molecule electron microscopy is evaluated. We focus not only on the observed contrast but also on the resolution that can be obtained after negative staining and single-particle analysis. The findings demonstrate that NdAc, EuAc, and UA-Zero can be good alternatives for the overall superior UAc. Additionally, we explore the working pH range of the stains and discuss the usability of the compounds in terms of availability and regulations.
Collapse
Affiliation(s)
- Foteini Karapanagioti
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| | - Nicolas Cissé
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
| | - Anastasiia Atamas
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| | - Artem Stetsenko
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| | - Christiaan Michiel Punter
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| | - Erica Zuidersma
- Isotopes Lab, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| | - Marc C A Stuart
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| |
Collapse
|
4
|
Wollman J, Wanniarachchi K, Pradhan B, Huang L, Kerkvliet JG, Hoppe AD, Thiex NW. Mannose receptor (MRC1) mediates uptake of dextran by bone marrow-derived macrophages. Mol Biol Cell 2024; 35:ar153. [PMID: 39504444 PMCID: PMC11656472 DOI: 10.1091/mbc.e24-08-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024] Open
Abstract
Macrophages survey their environment using receptor-mediated endocytosis and pinocytosis. Receptor-mediated endocytosis allows internalization of specific ligands, whereas pinocytosis nonselectively internalizes extracellular fluids and solutes. CRISPR/Cas9 whole-genome screens were used to identify genes regulating constitutive and growth factor-stimulated dextran uptake in murine bone marrow-derived macrophages (BMDM). The mannose receptor c-type 1 (MRC1/CD206) was a top hit in the screen. Targeted gene disruptions of Mrc1 reduced dextran uptake but had little effect on fluid-phase uptake of Lucifer yellow. Other screen hits also differentially affected the uptake of dextran and Lucifer yellow, indicating internalization by separate mechanisms. Visualization of dextran and Lucifer yellow uptake by microscopy showed enrichment of dextran in small puncta, which was inhibitable by mannan, a ligand of MRC1. In contrast, Lucifer yellow predominantly was internalized in larger macropinosomes. In addition, IL4-treated BMDMs internalized more dextran than untreated BMDM correlating with increased MRC1 expression. Therefore, dextran is not an effective marker for pinocytosis in BMDMs since it is internalized by receptor-mediated process. Numerous genes that regulate dextran internalization in primary murine macrophages were identified in the whole-genome screens, which can inform understanding of the regulation of MRC1 expression and MRC1-mediated uptake in macrophages.
Collapse
Affiliation(s)
- Jared Wollman
- Biology and Microbiology Department, South Dakota State University, Brookings, SD 57007
| | - Kevin Wanniarachchi
- Biology and Microbiology Department, South Dakota State University, Brookings, SD 57007
| | - Bijaya Pradhan
- Biology and Microbiology Department, South Dakota State University, Brookings, SD 57007
| | - Lu Huang
- Biology and Microbiology Department, South Dakota State University, Brookings, SD 57007
| | - Jason G Kerkvliet
- Biology and Microbiology Department, South Dakota State University, Brookings, SD 57007
- Chemistry, Biochemistry and Physics Department, South Dakota State University, Brookings, SD 57007
| | - Adam D Hoppe
- Chemistry, Biochemistry and Physics Department, South Dakota State University, Brookings, SD 57007
| | - Natalie W Thiex
- Biology and Microbiology Department, South Dakota State University, Brookings, SD 57007
| |
Collapse
|
5
|
Colaço M, Cruz MT, de Almeida LP, Borges O. Mannose and Lactobionic Acid in Nasal Vaccination: Enhancing Antigen Delivery via C-Type Lectin Receptors. Pharmaceutics 2024; 16:1308. [PMID: 39458637 PMCID: PMC11510408 DOI: 10.3390/pharmaceutics16101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Nasal vaccines are a promising strategy for enhancing mucosal immune responses and preventing diseases at mucosal sites by stimulating the secretion of secretory IgA, which is crucial for early pathogen neutralization. However, designing effective nasal vaccines is challenging due to the complex immunological mechanisms in the nasal mucosa, which must balance protection and tolerance against constant exposure to inhaled pathogens. The nasal route also presents unique formulation and delivery hurdles, such as the mucous layer hindering antigen penetration and immune cell access. METHODS This review focuses on cutting-edge approaches to enhance nasal vaccine delivery, particularly those targeting C-type lectin receptors (CLRs) like the mannose receptor and macrophage galactose-type lectin (MGL) receptor. It elucidates the roles of these receptors in antigen recognition and uptake by antigen-presenting cells (APCs), providing insights into optimizing vaccine delivery. RESULTS While a comprehensive examination of targeted glycoconjugate vaccine development is outside the scope of this study, we provide key examples of glycan-based ligands, such as lactobionic acid and mannose, which can selectively target CLRs in the nasal mucosa. CONCLUSIONS With the rise of new viral infections, this review aims to facilitate the design of innovative vaccines and equip researchers, clinicians, and vaccine developers with the knowledge to enhance immune defenses against respiratory pathogens, ultimately protecting public health.
Collapse
Affiliation(s)
- Mariana Colaço
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria T. Cruz
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Olga Borges
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
6
|
Shi M, Guo K, Liu Y, Cao F, Fan T, Deng Z, Meng Y, Bu M, Ma Z. Role of macrophage polarization in periodontitis promoting atherosclerosis. Odontology 2024; 112:1209-1220. [PMID: 38573421 DOI: 10.1007/s10266-024-00935-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Periodontitis is a chronic inflammatory destructive disease occurring in periodontal supporting tissues. Atherosclerosis(AS) is one of the most common cardiovascular diseases. Periodontitis can promote the development and progression of AS. Macrophage polarization is closely related to the development and progression of the above two diseases, respectively. The purpose of this animal study was to evaluate the effect of periodontitis on aortic lesions in atherosclerotic mice and the role of macrophage polarization in this process. 45 ApoE-/-male mice were randomly divided into three groups: control (NC), atherosclerosis (AS), and atherosclerosis with periodontitis (AS + PD). Micro CT, serological testing and pathological testing(hematoxylin-eosin staining, oil red O staining and Masson staining) were used for Evaluate the modeling situation. Immunohistochemistry(IHC) and immunofluorescence(IF) were performed to evaluate macrophage content and macrophage polarization in plaques. Cytokines associated with macrophage polarization were analyzed using quantitative real-time polymerase chain reaction(qRT-PCR) and enzyme-linked immunosorbent assay(Elisa). The expression of macrophages in plaques was sequentially elevated in the NC, AS, and AS + PD groups(P < 0.001). The expression of M1 and M1-related cytokines showed the same trend(P < 0.05). The expression of M2 and M2-related cytokines showed the opposite trend(P < 0.05). The rate of M1/M2 showed that AS + PD > AS > NC. Our preliminary data support that experimental periodontitis can increase the content of macrophage in aortic plaques to exacerbate AS. Meanwhile, experimental periodontitis can increase M1 macrophages, and decrease M2 macrophages, increasing M1/M2 in the plaque.
Collapse
Affiliation(s)
- Mingyue Shi
- Department of Preventive Dentistry, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, No.383, Zhongshan East Road, Changan District, Shijiazhuang, Hebei, China
| | - Kaili Guo
- Department of Preventive Dentistry, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, No.383, Zhongshan East Road, Changan District, Shijiazhuang, Hebei, China
| | - Yue Liu
- Department of Preventive Dentistry, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, No.383, Zhongshan East Road, Changan District, Shijiazhuang, Hebei, China
| | - Fengdi Cao
- Department of Preventive Dentistry, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, No.383, Zhongshan East Road, Changan District, Shijiazhuang, Hebei, China
| | - Tiantian Fan
- Department of Preventive Dentistry, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, No.383, Zhongshan East Road, Changan District, Shijiazhuang, Hebei, China
| | - Zhuohang Deng
- Department of Preventive Dentistry, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, No.383, Zhongshan East Road, Changan District, Shijiazhuang, Hebei, China
| | - Yuhan Meng
- Department of Preventive Dentistry, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, No.383, Zhongshan East Road, Changan District, Shijiazhuang, Hebei, China
| | - Mingyang Bu
- Department of Preventive Dentistry, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, No.383, Zhongshan East Road, Changan District, Shijiazhuang, Hebei, China
| | - Zhe Ma
- Department of Preventive Dentistry, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, No.383, Zhongshan East Road, Changan District, Shijiazhuang, Hebei, China.
| |
Collapse
|
7
|
Liu J, Cui Y, Cabral H, Tong A, Yue Q, Zhao L, Sun X, Mi P. Glucosylated Nanovaccines for Dendritic Cell-Targeted Antigen Delivery and Amplified Cancer Immunotherapy. ACS NANO 2024; 18:25826-25840. [PMID: 39196858 DOI: 10.1021/acsnano.4c09053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Engineering nanovaccines capable of targeting dendritic cells (DCs) is desperately required to maximize antigen cross-presentation to effector immune cells, elicit strong immune responses, and avoid adverse reactions. Here, we showed that glucose transporter 1 (Glut-1) on DCs is a reliable target for delivering antigens to DCs, and thus, a versatile antigen delivery strategy using glucosylated nanovaccines was developed for DC-targeted antigen delivery and tumor immunotherapy. The developed glucosylated ovalbumin-loaded nanovaccines highly accumulated in lymph nodes and efficiently engaged with Glut-1 on DCs to accelerate intracellular antigen delivery and promote DC maturation and antigen presentation, which elicited potent antitumor immunity to prevent and inhibit ovalbumin-expressing melanoma. Moreover, immunotherapeutic experiments in DC- and macrophage-depleted animal models confirmed that the glucosylated nanovaccines functioned mainly through DCs. In addition, the neoantigen-delivering glucosylated nanovaccines were further engineered to elicit tumor-specific immune responses against MC38 tumors. This study offers a DC-targeted antigen delivery strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology, State Key Laboratory of Biotherapy and Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongsheng Cui
- Department of Radiology, State Key Laboratory of Biotherapy and Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Aiping Tong
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Yue
- Department of Radiology, State Key Laboratory of Biotherapy and Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lihong Zhao
- Department of Radiology, State Key Laboratory of Biotherapy and Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xun Sun
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Peng Mi
- Department of Radiology, State Key Laboratory of Biotherapy and Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
8
|
Wollman J, Wanniarachchi K, Pradhan B, Huang L, Kerkvliet JG, Hoppe AD, Thiex NW. Mannose receptor (MRC1) mediates uptake of dextran in macrophages via receptor-mediated endocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607841. [PMID: 39211167 PMCID: PMC11360935 DOI: 10.1101/2024.08.13.607841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Macrophages maintain surveillance of their environment using receptor-mediated endocytosis and pinocytosis. Receptor-mediated endocytosis allows macrophages to recognize and internalize specific ligands whereas macropinocytosis non-selectively internalizes extracellular fluids and solutes. Here, CRISPR/Cas9 whole-genome screens were used to identify genes regulating constitutive and growth factor-stimulated dextran uptake in murine bone-marrow derived macrophages (BMDM). The endocytic mannose receptor c-type 1 ( Mrc1 , also known as CD206) was a top hit in the screen. Targeted gene disruptions of Mrc1 reduced dextran uptake but had little effect on uptake of Lucifer yellow, a fluid-phase marker. Other screen hits also differentially affected the uptake of dextran and Lucifer yellow, indicating the solutes are internalized by different mechanisms. We further deduced that BMDMs take up dextran via MRC1-mediated endocytosis by showing that competition with mannan, a ligand of MRC1, as well as treatment with Dyngo-4a, a dynamin inhibitor, reduced dextran uptake. Finally, we observed that IL4-treated BMDM internalize more dextran than untreated BMDM by upregulating MRC1 expression. These results demonstrate that dextran is not an effective marker for the bulk uptake of fluids and solutes by macropinocytosis since it is internalized by both macropinocytosis and receptor-mediated endocytosis in cells expressing MRC1. This report identifies numerous genes that regulate dextran internalization in primary murine macrophages and predicts cellular pathways and processes regulating MRC1. This work lays the groundwork for identifying specific genes and regulatory networks that regulate MRC1 expression and MRC1-mediated endocytosis in macrophages. Significance Statement Macrophages constantly survey and clear tissues by specifically and non-specifically internalizing debris and solutes. However, the molecular mechanisms and modes of regulation of these endocytic and macropinocytic processes are not well understood. Here, CRISPR/Cas9 whole genome screens were used to identify genes regulating uptake of dextran, a sugar polymer that is frequently used as a marker macropinocytosis, and compared with Lucifer yellow, a fluorescent dye with no known receptors. The authors identified the mannose receptor as well as other proteins regulating expression of the mannose receptor as top hits in the screen. Targeted disruption of Mrc1 , the gene that encodes mannose receptor, greatly diminished dextran uptake but had no effect on cellular uptake of Lucifer yellow. Furthermore, exposure to the cytokine IL4 upregulated mannose receptor expression on the cell surface and increased uptake of dextran with little effect on Lucifer yellow uptake. Studies seeking to understand regulation of macropinocytosis in macrophages will be confounded by the use of dextran as a fluid-phase marker. MRC1 is a marker of alternatively activated/anti-inflammatory macrophages and is a potential target for delivery of therapeutics to macrophages. This work provides the basis for mechanistic underpinning of how MRC1 contributes to the receptor-mediated uptake of carbohydrates and glycoproteins from the tissue milieu and distinguishes genes regulating receptor-mediated endocytosis from those regulating the bona fide fluid-phase uptake of fluids and solutes by macropinocytosis.
Collapse
|
9
|
Kong D, Qian Y, Yu B, Hu Z, Cheng C, Wang Y, Fang Z, Yu J, Xiang S, Cao L, He Y. Interaction of human dendritic cell receptor DEC205/CD205 with keratins. J Biol Chem 2024; 300:105699. [PMID: 38301891 PMCID: PMC10914487 DOI: 10.1016/j.jbc.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024] Open
Abstract
DEC205 (CD205) is one of the major endocytic receptors on dendritic cells and has been widely used as a receptor target in immune therapies. It has been shown that DEC205 can recognize dead cells through keratins in a pH-dependent manner. However, the mechanism underlying the interaction between DEC205 and keratins remains unclear. Here we determine the crystal structures of an N-terminal fragment of human DEC205 (CysR∼CTLD3). The structural data show that DEC205 shares similar overall features with the other mannose receptor family members such as the mannose receptor and Endo180, but the individual domains of DEC205 in the crystal structure exhibit distinct structural features that may lead to specific ligand binding properties of the molecule. Among them, CTLD3 of DEC205 adopts a unique fold of CTLD, which may correlate with the binding of keratins. Furthermore, we examine the interaction of DEC205 with keratins by mutagenesis and biochemical assays based on the structural information and identify an XGGGX motif on keratins that can be recognized by DEC205, thereby providing insights into the interaction between DEC205 and keratins. Overall, these findings not only improve the understanding of the diverse ligand specificities of the mannose receptor family members at the molecular level but may also give clues for the interactions of keratins with their binding partners in the corresponding pathways.
Collapse
Affiliation(s)
- Dandan Kong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanying Qian
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bowen Yu
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Zhenzheng Hu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Cheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Fang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Yu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease, Tianjin Medical University, Tianjin, China
| | - Song Xiang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease, Tianjin Medical University, Tianjin, China
| | - Longxing Cao
- School of Life Science, Westlake University, Hangzhou, Zhejiang, China
| | - Yongning He
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Paurević M, Šrajer Gajdošik M, Ribić R. Mannose Ligands for Mannose Receptor Targeting. Int J Mol Sci 2024; 25:1370. [PMID: 38338648 PMCID: PMC10855088 DOI: 10.3390/ijms25031370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The mannose receptor (MR, CD 206) is an endocytic receptor primarily expressed by macrophages and dendritic cells, which plays a critical role in both endocytosis and antigen processing and presentation. MR carbohydrate recognition domains (CRDs) exhibit a high binding affinity for branched and linear oligosaccharides. Furthermore, multivalent mannose presentation on the various templates like peptides, proteins, polymers, micelles, and dendrimers was proven to be a valuable approach for the selective and efficient delivery of various therapeutically active agents to MR. This review provides a detailed account of the most relevant and recent aspects of the synthesis and application of mannosylated bioactive formulations for MR-mediated delivery in treatments of cancer and other infectious diseases. It further highlights recent findings related to the necessary structural features of the mannose-containing ligands for successful binding to the MR.
Collapse
Affiliation(s)
- Marija Paurević
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia; (M.P.); (M.Š.G.)
| | - Martina Šrajer Gajdošik
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia; (M.P.); (M.Š.G.)
| | - Rosana Ribić
- Department of Nursing, University Center Varaždin, University North, Jurja Križanića 31b, HR-42000 Varaždin, Croatia
| |
Collapse
|
11
|
Baumeister J, Meudt M, Ebert S, Rosenau F, Mizaikoff B, Blech M, Aertker KMJ, Higel F. Decoding the mannose receptor-mAb interaction: the importance of high-mannose N-glycans and glycan-pairing. MAbs 2024; 16:2400414. [PMID: 39245969 PMCID: PMC11385167 DOI: 10.1080/19420862.2024.2400414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024] Open
Abstract
During the development process of therapeutic monoclonal antibodies (mAbs), it is crucial to control (critical) quality attributes such as N-glycosylation influencing pharmacokinetics (PK) and Fc effector functions. Previous reports have shown that mAbs containing high-mannose N-glycans are cleared faster from blood circulation, leading to reduced half-lives. The high-mannose N-glycan content of mAbs can be influenced during the cell culture process by factors such as cell lines, process conditions, and media. Furthermore, mAbs have either one high mannose N-glycan (asymmetrical high-mannose glyco-pair) or two high mannose N-glycans (symmetrical high-mannose glyco-pair). The hypothesis that the mannose receptor (MR, CD206) accelerates clearance by facilitating their internalization and subsequent lysosomal degradation is widespread. However, the interaction between MR and mAbs has not been explicitly demonstrated. This study aimed to investigate this interaction, providing the first systematic demonstration of MR binding to the Fc region of mAbs with high-mannose N-glycans. Two novel analytical methods, MR surface plasmon resonance and MR affinity chromatography, were developed and applied to investigate the MR-mAb interaction. The interaction is found to be dependent on high-mannose content, but is independent of the mAb format or sequence. However, different glyco-pairs exhibited varying binding affinities to the MR, with the symmetrical high-mannose glyco-pair showing the strongest binding properties. These findings strengthen the hypothesis for the MR-mediated mAb interaction and contribute to a deeper understanding of the MR-mAb interaction, which could affect the criticality of high-mannose containing mAbs development strategies of IgG-based molecules and improve their PK profiles.
Collapse
Affiliation(s)
- Julia Baumeister
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Maximilian Meudt
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Sybille Ebert
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Biberach an der Riss, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Michaela Blech
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Kristina M J Aertker
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Fabian Higel
- Global CMC Experts NBE, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
12
|
Mastrotto F, Pirazzini M, Negro S, Salama A, Martinez-Pomares L, Mantovani G. Sulfation at Glycopolymer Side Chains Switches Activity at the Macrophage Mannose Receptor (CD206) In Vitro and In Vivo. J Am Chem Soc 2022; 144:23134-23147. [PMID: 36472883 PMCID: PMC9782796 DOI: 10.1021/jacs.2c10757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Indexed: 12/12/2022]
Abstract
The mannose receptor (CD206) is an endocytic receptor expressed by selected innate immune cells and nonvascular endothelium, which plays a critical role in both homeostasis and pathogen recognition. Although its involvement in the development of several diseases and viral infections is well established, molecular tools able to both provide insight on the chemistry of CD206-ligand interactions and, importantly, effectively modulate its activity are currently lacking. Using novel SO4-3-Gal-glycopolymers targeting its cysteine-rich lectin ectodomain, this study uncovers and elucidates a previously unknown mechanism of CD206 blockade involving the formation of stable intracellular SO4-3-Gal-glycopolymer-CD206 complexes that prevents receptor recycling to the cell membrane. Further, we show that SO4-3-Gal glycopolymers inhibit CD206 both in vitro and in vivo, revealing hitherto unknown receptor function and demonstrating their potential as CD206 modulators within future immunotherapies.
Collapse
Affiliation(s)
- Francesca Mastrotto
- School
of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
- School
of Life Sciences, University of Nottingham, Nottingham NG7 2RD, U.K.
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, Padova 35131, Italy
| | - Marco Pirazzini
- Department
of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, Padova 35131, Italy
| | - Samuele Negro
- Department
of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, Padova 35131, Italy
| | - Alan Salama
- Department
of Renal Medicine, University College London, London NW3 2PF, U.K.
| | | | | |
Collapse
|
13
|
Applegate CC, Deng H, Kleszynski BL, Cross TWL, Konopka CJ, Dobrucki LW, Nelson ER, Wallig MA, Smith AM, Swanson KS. Impact of administration route on nanocarrier biodistribution in a murine colitis model. JOURNAL OF EXPERIMENTAL NANOSCIENCE 2022; 17:599-616. [PMID: 36968097 PMCID: PMC10038121 DOI: 10.1080/17458080.2022.2134563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 06/18/2023]
Abstract
The incidence of inflammatory bowel disease (IBD) is increasing worldwide. Although current diagnostic and disease monitoring tests for IBD sensitively detect gut inflammation, they lack the molecular and cellular specificity of positron emission tomography (PET). In this proof-of-concept study, we use a radiolabeled macrophage-targeted nanocarrier probe (64Cu-NOTA-D500) administered by oral, enema, and intraperitoneal routes to evaluate the delivery route dependence of biodistribution across healthy and diseased tissues in a murine model of dextran sodium sulfate (DSS)-induced colitis. High inter-subject variability of probe uptake in intestinal tissue was reduced by normalization to uptake in liver or total intestines. Differences in normalized uptake between healthy and DSS colitis animal intestines were highest for oral and IP routes. Differences in absolute liver uptake reflected a possible secondary diagnostic metric of IBD pathology. These results should inform the preclinical development of inflammation-targeted contrast agents for IBD and related gut disorders to improve diagnostic accuracy.
Collapse
Affiliation(s)
- Catherine C. Applegate
- Division of Nutritional Sciences, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
- Department of Animal Sciences, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
| | - Hongping Deng
- Department of Bioengineering, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
| | - Brittany L. Kleszynski
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
| | - Tzu-Wen L. Cross
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
| | | | - L. Wawrzyniec Dobrucki
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
| | - Erik R. Nelson
- Division of Nutritional Sciences, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
| | - Matthew A. Wallig
- Division of Nutritional Sciences, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
| | - Andrew M. Smith
- Department of Bioengineering, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
- Carle Illinois College of Medicine, Urbana, Illinois, USA
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
| | - Kelly S. Swanson
- Division of Nutritional Sciences, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
- Department of Animal Sciences, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
| |
Collapse
|
14
|
Single-molecule imaging of glycan-lectin interactions on cells with Glyco-PAINT. Nat Chem Biol 2021; 17:1281-1288. [PMID: 34764473 DOI: 10.1038/s41589-021-00896-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 09/10/2021] [Indexed: 11/08/2022]
Abstract
Most lectins bind carbohydrate ligands with relatively low affinity, making the identification of optimal ligands challenging. Here we introduce a point accumulation in nanoscale topography (PAINT) super-resolution microscopy method to capture weak glycan-lectin interactions at the single-molecule level in living cells (Glyco-PAINT). Glyco-PAINT exploits weak and reversible sugar binding to directly achieve single-molecule detection and quantification in cells and is used to establish the relative kon and koff rates of a synthesized library of carbohydrate-based probes, as well as the diffusion coefficient of the receptor-sugar complex. Uptake of ligands correlates with their binding affinity and residence time to establish structure-function relations for various synthetic glycans. We reveal how sugar multivalency and presentation geometry can be optimized for binding and internalization. Overall, Glyco-PAINT represents a powerful approach to study weak glycan-lectin interactions on the surface of living cells, one that can be potentially extended to a variety of lectin-sugar interactions.
Collapse
|
15
|
Lu Y, Shi Y, You J. Strategy and clinical application of up-regulating cross presentation by DCs in anti-tumor therapy. J Control Release 2021; 341:184-205. [PMID: 34774890 DOI: 10.1016/j.jconrel.2021.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/20/2022]
Abstract
The cross presentation of exogenous antigen (Ag) by dendritic cells (DCs) facilitates a diversified mode of T-cell activation, orchestrates specific humoral and cellular immunity, and contributes to an efficient anti-tumor immune response. DCs-mediated cross presentation is subject to both intrinsic and extrinsic factors, including the homing and phenotype of DCs, the spatiotemporal trafficking and degradation kinetics of Ag, and multiple microenvironmental clues, with many details largely unexplored. Here, we systemically review the current mechanistic understanding and regulation strategies of cross presentation by heterogeneous DC populations. We also provide insights into the future exploitation of DCs cross presentation for a better clinical efficacy in anti-tumor therapy.
Collapse
Affiliation(s)
- Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
16
|
Virus-Induced CD8 + T-Cell Immunity and Its Exploitation to Contain the SARS-CoV-2 Pandemic. Vaccines (Basel) 2021; 9:vaccines9080922. [PMID: 34452047 PMCID: PMC8402519 DOI: 10.3390/vaccines9080922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/17/2021] [Indexed: 01/08/2023] Open
Abstract
The current battle against Severe Acute Respiratory Syndrome (SARS)-Coronavirus-2 benefits from the worldwide distribution of different vaccine formulations. All anti-SARS-CoV-2 vaccines in use are conceived to induce anti-Spike neutralizing antibodies. However, this strategy still has unresolved issues, the most relevant of which are: (i) the resistance to neutralizing antibodies of emerging SARS-CoV-2 variants and (ii) the waning of neutralizing antibodies. On the other hand, both pre-clinical evidence and clinical evidence support the idea that the immunity sustained by antigen-specific CD8+ T lymphocytes can complement and also surrogate the antiviral humoral immunity. As a distinctive feature, anti-SARS-CoV-2 CD8+ T-driven immunity maintains its efficacy even in the presence of viral protein mutations. In addition, on the basis of data obtained in survivors of the SARS-CoV epidemic, this immunity is expected to last for several years. In this review, both the mechanisms and role of CD8+ T-cell immunity in viral infections, particularly those induced by SARS-CoV and SARS-CoV-2, are analyzed. Moreover, a CD8+ T-cell-based vaccine platform relying on in vivo engineered extracellular vesicles is described. When applied to SARS-CoV-2, this strategy was proven to induce a strong immunogenicity, holding great promise for its translation into the clinic.
Collapse
|
17
|
A fresh trim provides a new look at the human mannose receptor. J Biol Chem 2021; 297:100922. [PMID: 34181947 PMCID: PMC8294574 DOI: 10.1016/j.jbc.2021.100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The human mannose receptor plays an important role in scavenging a variety of glycans and glycoconjugates, which contributes to both innate and adaptive immunity. However, the fine details of its ligand specificity, and specifically that of carbohydrate-recognition domain 4, the most functionally relevant C-type lectin domain within the receptor, are not completely understood. Feinberg et al. use glycan arrays, crystallography, and a newly trimmed version of carbohydrate-recognition domain 4 to elucidate the molecular mechanisms driving binding specificity. These data contribute to our molecular understanding of Ca2+-mediated binding promiscuity in the human mannose receptor and the scavenging role of the receptor itself and highlight unexpected interactions that should inspire further study.
Collapse
|
18
|
Jaynes JM, Sable R, Ronzetti M, Bautista W, Knotts Z, Abisoye-Ogunniyan A, Li D, Calvo R, Dashnyam M, Singh A, Guerin T, White J, Ravichandran S, Kumar P, Talsania K, Chen V, Ghebremedhin A, Karanam B, Bin Salam A, Amin R, Odzorig T, Aiken T, Nguyen V, Bian Y, Zarif JC, de Groot AE, Mehta M, Fan L, Hu X, Simeonov A, Pate N, Abu-Asab M, Ferrer M, Southall N, Ock CY, Zhao Y, Lopez H, Kozlov S, de Val N, Yates CC, Baljinnyam B, Marugan J, Rudloff U. Mannose receptor (CD206) activation in tumor-associated macrophages enhances adaptive and innate antitumor immune responses. Sci Transl Med 2021; 12:12/530/eaax6337. [PMID: 32051227 DOI: 10.1126/scitranslmed.aax6337] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023]
Abstract
Solid tumors elicit a detectable immune response including the infiltration of tumor-associated macrophages (TAMs). Unfortunately, this immune response is co-opted into contributing toward tumor growth instead of preventing its progression. We seek to reestablish an antitumor immune response by selectively targeting surface receptors and endogenous signaling processes of the macrophage subtypes driving cancer progression. RP-182 is a synthetic 10-mer amphipathic analog of host defense peptides that selectively induces a conformational switch of the mannose receptor CD206 expressed on TAMs displaying an M2-like phenotype. RP-182-mediated activation of this receptor in human and murine M2-like macrophages elicits a program of endocytosis, phagosome-lysosome formation, and autophagy and reprograms M2-like TAMs to an antitumor M1-like phenotype. In syngeneic and autochthonous murine cancer models, RP-182 suppressed tumor growth, extended survival, and was an effective combination partner with chemo- or immune checkpoint therapy. Antitumor activity of RP-182 was also observed in CD206high patient-derived xenotransplantation models. Mechanistically, via selective reduction of immunosuppressive M2-like TAMs, RP-182 improved adaptive and innate antitumor immune responses, including increased cancer cell phagocytosis by reprogrammed TAMs.
Collapse
Affiliation(s)
- Jesse M Jaynes
- College of Agriculture, Environment and Nutrition Sciences, Integrative Biosciences Program, Tuskegee University, Tuskegee, AL 36088, USA.,Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Rushikesh Sable
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael Ronzetti
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Wendy Bautista
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Zachary Knotts
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Abisola Abisoye-Ogunniyan
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA.,Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Dandan Li
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Raul Calvo
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Myagmarjav Dashnyam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Anju Singh
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Theresa Guerin
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Jason White
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Sarangan Ravichandran
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21701, USA
| | - Parimal Kumar
- Sequencing Facility and Single Cell Analysis Facility, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Keyur Talsania
- CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Biomedical Informatics and Data Science, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Vicky Chen
- CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Biomedical Informatics and Data Science, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Anghesom Ghebremedhin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Balasubramanyam Karanam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Ahmad Bin Salam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Ruksana Amin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Taivan Odzorig
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Taylor Aiken
- Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.,Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Victoria Nguyen
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yansong Bian
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jelani C Zarif
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Amber E de Groot
- James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Monika Mehta
- Sequencing Facility and Single Cell Analysis Facility, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, SAXS Core Facility, Center for Cancer Research of the National Cancer Institute, Frederick, MD 21701, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Nathan Pate
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Mones Abu-Asab
- Section of Histopathology, National Eye Institute, Bethesda, MD 20892, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Noel Southall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Chan-Young Ock
- Department of Hemato Oncology, Seoul National University Hospital, Seoul 03080, Korea
| | - Yongmei Zhao
- CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Biomedical Informatics and Data Science, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | | | - Serguei Kozlov
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Natalia de Val
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21701, USA.,Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 21701, USA
| | - Clayton C Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA.
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA.
| | - Juan Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA.
| | - Udo Rudloff
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Serra AS, Eusébio D, Neves AR, Albuquerque T, Bhatt H, Biswas S, Costa D, Sousa Â. Synthesis and Characterization of Mannosylated Formulations to Deliver a Minicircle DNA Vaccine. Pharmaceutics 2021; 13:673. [PMID: 34067176 PMCID: PMC8150592 DOI: 10.3390/pharmaceutics13050673] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/24/2022] Open
Abstract
DNA vaccines still represent an emergent area of research, giving rise to continuous progress towards several biomedicine demands. The formulation of delivery systems to specifically target mannose receptors, which are overexpressed on antigen presenting cells (APCs), is considered a suitable strategy to improve the DNA vaccine immunogenicity. The present study developed binary and ternary carriers, based on polyethylenimine (PEI), octa-arginine peptide (R8), and mannose ligands, to specifically deliver a minicircle DNA (mcDNA) vaccine to APCs. Systems were prepared at various nitrogen to phosphate group (N/P) ratios and characterized in terms of their morphology, size, surface charge, and complexation capacity. In vitro studies were conducted to assess the biocompatibility, cell internalization ability, and gene expression of formulated carriers. The high charge density and condensing capacity of both PEI and R8 enhance the interaction with the mcDNA, leading to the formation of smaller particles. The addition of PEI polymer to the R8-mannose/mcDNA binary system reduces the size and increases the zeta potential and system stability. Confocal microscopy studies confirmed intracellular localization of targeting systems, resulting in sustained mcDNA uptake. Furthermore, the efficiency of in vitro transfection can be influenced by the presence of R8-mannose, with great implications for gene expression. R8-mannose/PEI/mcDNA ternary systems can be considered valuable tools to instigate further research, aiming for advances in the DNA vaccine field.
Collapse
Affiliation(s)
- Ana Sofia Serra
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.S.S.); (D.E.); (A.R.N.); (T.A.)
| | - Dalinda Eusébio
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.S.S.); (D.E.); (A.R.N.); (T.A.)
| | - Ana Raquel Neves
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.S.S.); (D.E.); (A.R.N.); (T.A.)
| | - Tânia Albuquerque
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.S.S.); (D.E.); (A.R.N.); (T.A.)
| | - Himanshu Bhatt
- Department of Pharmacy, Nanomedicine Research Laboratory, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, Telangana 500078, India; (H.B.); (S.B.)
| | - Swati Biswas
- Department of Pharmacy, Nanomedicine Research Laboratory, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, Telangana 500078, India; (H.B.); (S.B.)
| | - Diana Costa
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.S.S.); (D.E.); (A.R.N.); (T.A.)
| | - Ângela Sousa
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.S.S.); (D.E.); (A.R.N.); (T.A.)
| |
Collapse
|
20
|
Arega AM, Pattanaik KP, Nayak S, Mahapatra RK. Computational discovery and ex-vivo validation study of novel antigenic vaccine candidates against tuberculosis. Acta Trop 2021; 217:105870. [PMID: 33636152 DOI: 10.1016/j.actatropica.2021.105870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/27/2021] [Accepted: 02/19/2021] [Indexed: 12/26/2022]
Abstract
Tuberculosis (TB) is a complex infectious bacterial disease, which has evolved with highly successful mechanisms to interfere with host defenses and existing classes of antibiotics to resist eradication. The single obtainable TB vaccine, Bacille Calmette-Guerin (BCG) has failed to provide regular defense for respiratory TB in adults. In this study, a bioinformatics and immunoinformatics approach was applied on Mycobacterium tuberculosis (Mtb) H37Rv proteomes to discover the potential subunit vaccine candidates that elicit both tuberculosis-specific T-cells and B-cell immune response. A total of 4049 proteins of MtbH37RvMtbH37Rv were retrieved and subjected to in silico sequence-based analysis. Finally, five (P9WL69 (Rv2599), P9WIG1 (Rv0747), P9WLQ1 (Rv1987), O53608 (Rv0063), O06624 (Rv1566c)) novel putative proteins were selected. Among the five putative antigenic vaccine candidates, P9WL69 protein was selected for the ex-vivo validation study. The P9WL69 protein encoding gene was amplified and cloned on pET21b vector. The success of the recombinant clone (pET21b-RV2599) was confirmed by colony PCR, insert release test and sequencing. Furthermore, the identified epitopes of the P9WL69 protein were considered for in silico docking and molecular dynamics simulation study using Toll-like Receptors (TLRs) (TLR-2, TLR-4, TLR-9), Mannose receptor, and Myeloid differentiation 88 (MYD88) to understand their binding affinity towards the development of immunogenic vaccines against tuberculosis.
Collapse
Affiliation(s)
- Aregitu Mekuriaw Arega
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India; National Veterinary Institute, Debre Zeit, Ethiopia
| | | | - Sasmita Nayak
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | | |
Collapse
|
21
|
Feinberg H, Jégouzo SAF, Lasanajak Y, Smith DF, Drickamer K, Weis WI, Taylor ME. Structural analysis of carbohydrate binding by the macrophage mannose receptor CD206. J Biol Chem 2021; 296:100368. [PMID: 33545173 PMCID: PMC7949135 DOI: 10.1016/j.jbc.2021.100368] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
The human mannose receptor expressed on macrophages and hepatic endothelial cells scavenges released lysosomal enzymes, glycopeptide fragments of collagen, and pathogenic microorganisms and thus reduces damage following tissue injury. The receptor binds mannose, fucose, or N-acetylglucosamine (GlcNAc) residues on these targets. C-type carbohydrate-recognition domain 4 (CRD4) of the receptor contains the site for Ca2+-dependent interaction with sugars. To investigate the details of CRD4 binding, glycan array screening was used to identify oligosaccharide ligands. The strongest signals were for glycans that contain either Manα1-2Man constituents or fucose in various linkages. The mechanisms of binding to monosaccharides and oligosaccharide substructures present in many of these ligands were examined in multiple crystal structures of CRD4. Binding of mannose residues to CRD4 results primarily from interaction of the equatorial 3- and 4-OH groups with a conserved principal Ca2+ common to almost all sugar-binding C-type CRDs. In the Manα1-2Man complex, supplementary interactions with the reducing mannose residue explain the enhanced affinity for this disaccharide. Bound GlcNAc also interacts with the principal Ca2+ through equatorial 3- and 4-OH groups, whereas fucose residues can bind in several orientations, through either the 2- and 3-OH groups or the 3- and 4-OH groups. Secondary contacts with additional sugars in fucose-containing oligosaccharides, such as the Lewis-a trisaccharide, provide enhanced affinity for these glycans. These results explain many of the biologically important interactions of the mannose receptor with both mammalian glycoproteins and microbes such as yeast and suggest additional classes of ligands that have not been previously identified.
Collapse
Affiliation(s)
- Hadar Feinberg
- Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA
| | - Sabine A F Jégouzo
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Yi Lasanajak
- Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David F Smith
- Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kurt Drickamer
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - William I Weis
- Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA.
| | - Maureen E Taylor
- Department of Life Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
22
|
Gully BS, Venugopal H, Fulcher AJ, Fu Z, Li J, Deuss FA, Llerena C, Heath WR, Lahoud MH, Caminschi I, Rossjohn J, Berry R. The cryo-EM structure of the endocytic receptor DEC-205. J Biol Chem 2020; 296:100127. [PMID: 33257321 PMCID: PMC7948739 DOI: 10.1074/jbc.ra120.016451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 11/06/2022] Open
Abstract
DEC-205 (CD205), a member of the macrophage mannose receptor protein family, is the prototypic endocytic receptor of dendritic cells, whose ligands include phosphorothioated cytosine-guanosine oligonucleotides, a motif often seen in bacterial or viral DNA. However, despite growing biological and clinical significance, little is known about the structural arrangement of this receptor or any of its family members. Here, we describe the 3.2 Å cryo-EM structure of human DEC-205, thereby illuminating the structure of the mannose receptor protein family. The DEC-205 monomer forms a compact structure comprising two intercalated rings of C-type lectin-like domains, where the N-terminal cysteine-rich and fibronectin domains reside at the central intersection. We establish a pH-dependent oligomerization pathway forming tetrameric DEC-205 using solution-based techniques and ultimately solved the 4.9 Å cryo-EM structure of the DEC-205 tetramer to identify the unfurling of the second lectin ring which enables tetramer formation. Furthermore, we suggest the relevance of this oligomerization pathway within a cellular setting, whereby cytosine-guanosine binding appeared to disrupt this cell-surface oligomer. Accordingly, we provide insight into the structure and oligomeric assembly of the DEC-205 receptor.
Collapse
Affiliation(s)
- Benjamin S Gully
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia.
| | - Hariprasad Venugopal
- Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Melbourne, Victoria, Australia
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University, Clayton, Victoria, Australia
| | - Zhihui Fu
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jessica Li
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Felix A Deuss
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Carmen Llerena
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - William R Heath
- Department of Microbiology and Immunology, The Peter Doherty Institute, University of Melbourne, Parkville, Victoria, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Mireille H Lahoud
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Irina Caminschi
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom.
| | - Richard Berry
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
23
|
Fiani ML, Barreca V, Sargiacomo M, Ferrantelli F, Manfredi F, Federico M. Exploiting Manipulated Small Extracellular Vesicles to Subvert Immunosuppression at the Tumor Microenvironment through Mannose Receptor/CD206 Targeting. Int J Mol Sci 2020; 21:ijms21176318. [PMID: 32878276 PMCID: PMC7503580 DOI: 10.3390/ijms21176318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Immunosuppression at tumor microenvironment (TME) is one of the major obstacles to be overcome for an effective therapeutic intervention against solid tumors. Tumor-associated macrophages (TAMs) comprise a sub-population that plays multiple pro-tumoral roles in tumor development including general immunosuppression, which can be identified in terms of high expression of mannose receptor (MR or CD206). Immunosuppressive TAMs, like other macrophage sub-populations, display functional plasticity that allows them to be re-programmed to inflammatory macrophages. In order to mitigate immunosuppression at the TME, several efforts are ongoing to effectively re-educate pro-tumoral TAMs. Extracellular vesicles (EVs), released by both normal and tumor cells types, are emerging as key mediators of the cell to cell communication and have been shown to have a role in the modulation of immune responses in the TME. Recent studies demonstrated the enrichment of high mannose glycans on the surface of small EVs (sEVs), a subtype of EVs of endosomal origin of 30–150 nm in diameter. This characteristic renders sEVs an ideal tool for the delivery of therapeutic molecules into MR/CD206-expressing TAMs. In this review, we report the most recent literature data highlighting the critical role of TAMs in tumor development, as well as the experimental evidences that has emerged from the biochemical characterization of sEV membranes. In addition, we propose an original way to target immunosuppressive TAMs at the TME by endogenously engineered sEVs for a new therapeutic approach against solid tumors.
Collapse
Affiliation(s)
- Maria Luisa Fiani
- Correspondence: (M.L.F.); (M.F.); Tel.: +39-06-4990-2518 (M.L.F.); +39-06-4990-6016 (M.F.)
| | | | | | | | | | - Maurizio Federico
- Correspondence: (M.L.F.); (M.F.); Tel.: +39-06-4990-2518 (M.L.F.); +39-06-4990-6016 (M.F.)
| |
Collapse
|
24
|
Cancer Acidity and Hypertonicity Contribute to Dysfunction of Tumor-Associated Dendritic Cells: Potential Impact on Antigen Cross-Presentation Machinery. Cancers (Basel) 2020; 12:cancers12092403. [PMID: 32847079 PMCID: PMC7565485 DOI: 10.3390/cancers12092403] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 01/21/2023] Open
Abstract
Macrophages (MΦ) and dendritic cells (DC), major players of the mononuclear phagocyte system (MoPh), are potent antigen presenting cells that steadily sense and respond to signals from the surrounding microenvironment, leading to either immunogenic or tolerogenic outcomes. Next to classical MHC-I/MHC-II antigen-presentation pathways described in the vast majority of cell types, a subset of MoPh (CD8+, XCR1+, CLEC9A+, BDCA3+ conventional DCs in human) is endowed with a high competence to cross-present external (engulfed) antigens on MHC-I molecules to CD8+ T-cells. This exceptional DC function is thought to be a crucial crossroad in cytotoxic antitumor immunity and has been extensively studied in the past decades. Biophysical and biochemical fingerprints of tumor micromilieus show significant spatiotemporal differences in comparison to non-neoplastic tissue. In tumors, low pH (mainly due to extracellular lactate accumulation via the Warburg effect and via glutaminolysis) and high oncotic and osmotic pressure (resulting from tumor debris, increased extracellular matrix components but in part also triggered by nutritive aspects) are—despite fluctuations and difficulties in measurement—likely the most constant general hallmarks of tumor microenvironment. Here, we focus on the influence of acidic and hypertonic micromilieu on the capacity of DCs to cross-present tumor-specific antigens. We discuss complex and in part controversial scientific data on the interference of these factors with to date reported mechanisms of antigen uptake, processing and cross-presentation, and we highlight their potential role in cancer immune escape and poor clinical response to DC vaccines.
Collapse
|
25
|
Lepland A, Asciutto EK, Malfanti A, Simón-Gracia L, Sidorenko V, Vicent MJ, Teesalu T, Scodeller P. Targeting Pro-Tumoral Macrophages in Early Primary and Metastatic Breast Tumors with the CD206-Binding mUNO Peptide. Mol Pharm 2020; 17:2518-2531. [PMID: 32421341 DOI: 10.1021/acs.molpharmaceut.0c00226] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
M2-like tumor-associated macrophages (M2 TAMs) play important roles in the resistance of tumors to immunotherapies. Selective depletion or reprogramming of M2 TAMs may sensitize the nonresponsive tumors for immune-mediated eradication. However, precision delivery of payloads to M2 TAMs, while sparing healthy tissues, has remained an unresolved challenge. Here, we studied the application of a short linear peptide (CSPGAK, "mUNO") for the delivery of molecular and nanoscale cargoes in M2 TAMs in vitro and the relevance of the peptide for in vivo targeting of early-stage primary breast tumors and metastatic lung foci. First, we performed in silico modeling and found that mUNO interacts with mouse CD206 via a binding site between lectin domains CTLD1 and CTLD2, the same site previously demonstrated to be involved in mUNO binding to human CD206. Second, we showed that cultured M2 macrophages take up fluorescein-labeled (FAM) polymersomes conjugated with mUNO using the sulfhydryl group of its N-terminal cysteine. Pulse/chase studies of FAM-mUNO in M2 macrophages suggested that the peptide avoided lysosomal entrapment and escaped from early endosomes. Third, our in vivo studies with FAM-mUNO demonstrated that intraperitoneal administration results in better pharmacokinetics and higher blood bioavailability than can be achieved with intravenous administration. Intraperitoneal FAM-mUNO, but not FAM-control, showed a robust accumulation in M2-skewed macrophages in mouse models of early primary breast tumor and lung metastasis. This targeting was specific, as no uptake was observed in nonmalignant control organs, including the liver, or other cell types in the tumor, including M1 macrophages. Collectively, our studies support the application of the CD206-binding mUNO peptide for delivery of molecular and nanoscale cargoes to M2 macrophages and manifest the relevance of this mode of targeting primary and metastatic breast tumors.
Collapse
Affiliation(s)
- Anni Lepland
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, Tartu 50411, Estonia
| | - Eliana K Asciutto
- School of Science and Technology, National University of San Martin (UNSAM) and CONICET, Campus Migueletes, 25 de Mayo y Francia, San Martı́n Buenos AiresCP 1650, Argentina
| | - Alessio Malfanti
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, Valencia 46012, Spain
| | - Lorena Simón-Gracia
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, Tartu 50411, Estonia
| | - Valeria Sidorenko
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, Tartu 50411, Estonia
| | - Maria J Vicent
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, Valencia 46012, Spain
| | - Tambet Teesalu
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, Tartu 50411, Estonia.,Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, California 93106, United States.,Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Pablo Scodeller
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, Tartu 50411, Estonia
| |
Collapse
|
26
|
Nielsen MC, Hvidbjerg Gantzel R, Clària J, Trebicka J, Møller HJ, Grønbæk H. Macrophage Activation Markers, CD163 and CD206, in Acute-on-Chronic Liver Failure. Cells 2020; 9:cells9051175. [PMID: 32397365 PMCID: PMC7290463 DOI: 10.3390/cells9051175] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages facilitate essential homeostatic functions e.g., endocytosis, phagocytosis, and signaling during inflammation, and express a variety of scavenger receptors including CD163 and CD206, which are upregulated in response to inflammation. In healthy individuals, soluble forms of CD163 and CD206 are constitutively shed from macrophages, however, during inflammation pathogen- and damage-associated stimuli induce this shedding. Activation of resident liver macrophages viz. Kupffer cells is part of the inflammatory cascade occurring in acute and chronic liver diseases. We here review the existing literature on sCD163 and sCD206 function and shedding, and potential as biomarkers in acute and chronic liver diseases with a particular focus on Acute-on-Chronic Liver Failure (ACLF). In multiple studies sCD163 and sCD206 are elevated in relation to liver disease severity and established as reliable predictors of morbidity and mortality. However, differences in expression- and shedding-stimuli for CD163 and CD206 may explain dissimilarities in prognostic utility in patients with acute decompensation of cirrhosis and ACLF.
Collapse
Affiliation(s)
- Marlene Christina Nielsen
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.C.N.); (H.J.M.)
| | - Rasmus Hvidbjerg Gantzel
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, 8200 Aarhus N, Denmark;
| | - Joan Clària
- European Foundation for the Study of Chronic Liver Failure (EF-CLIF), 08021 Barcelona, Spain; (J.C.); (J.T.)
- Department of Biochemistry and Molecular Genetics, Hospital Clínic-IDIBAPS, 08036 Barcelona, Spain
| | - Jonel Trebicka
- European Foundation for the Study of Chronic Liver Failure (EF-CLIF), 08021 Barcelona, Spain; (J.C.); (J.T.)
- Translational Hepatology, Department of Internal Medicine I, Goethe University Frankfurt, 60323 Frankfurt, Germany
| | - Holger Jon Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.C.N.); (H.J.M.)
| | - Henning Grønbæk
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, 8200 Aarhus N, Denmark;
- Correspondence: ; Tel.: +45-21-67-92-81
| |
Collapse
|
27
|
Mooney B, Torres‐Velez FJ, Doering J, Ehrbar DJ, Mantis NJ. Sensitivity of Kupffer cells and liver sinusoidal endothelial cells to ricin toxin and ricin toxin-Ab complexes. J Leukoc Biol 2019; 106:1161-1176. [PMID: 31313388 PMCID: PMC7008010 DOI: 10.1002/jlb.4a0419-123r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/03/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
Ricin toxin is a plant-derived, ribosome-inactivating protein that is rapidly cleared from circulation by Kupffer cells (KCs) and liver sinusoidal endothelial cells (LSECs)-with fatal consequences. Rather than being inactivated, ricin evades normal degradative pathways and kills both KCs and LSECs with remarkable efficiency. Uptake of ricin by these 2 specialized cell types in the liver occurs by 2 parallel routes: a "lactose-sensitive" pathway mediated by ricin's galactose/N-acetylgalactosamine-specific lectin subunit (RTB), and a "mannose-sensitive" pathway mediated by the mannose receptor (MR; CD206) or other C-type lectins capable of recognizing the mannose-side chains displayed on ricin's A (RTA) and B subunits. In this report, we investigated the capacity of a collection of ricin-specific mouse MAb and camelid single-domain (VH H) antibodies to protect KCs and LSECs from ricin-induced killing. In the case of KCs, individual MAbs against RTA or RTB afforded near complete protection against ricin in ex vivo and in vivo challenge studies. In contrast, individual MAbs or VH Hs afforded little (<40%) or even no protection to LSECs against ricin-induced death. Complete protection of LSECs was only achieved with MAb or VH H cocktails, with the most effective mixtures targeting RTA and RTB simultaneously. Although the exact mechanisms of protection of LSECs remain unknown, evidence indicates that the Ab cocktails exert their effects on the mannose-sensitive uptake pathway without the need for Fcγ receptor involvement. In addition to advancing our understanding of how toxins and small immune complexes are processed by KCs and LSECs, our study has important implications for the development of Ab-based therapies designed to prevent or treat ricin exposure should the toxin be weaponized.
Collapse
Affiliation(s)
- Bridget Mooney
- Division of Infectious DiseasesWadsworth CenterNew York State Department of HealthAlbanyNew YorkUSA
| | - Fernando J. Torres‐Velez
- Division of Infectious DiseasesWadsworth CenterNew York State Department of HealthAlbanyNew YorkUSA
| | - Jennifer Doering
- Division of Infectious DiseasesWadsworth CenterNew York State Department of HealthAlbanyNew YorkUSA
| | - Dylan J. Ehrbar
- Division of Infectious DiseasesWadsworth CenterNew York State Department of HealthAlbanyNew YorkUSA
| | - Nicholas J. Mantis
- Division of Infectious DiseasesWadsworth CenterNew York State Department of HealthAlbanyNew YorkUSA
| |
Collapse
|
28
|
Hu Z, Wang Y, Cheng C, He Y. Structural basis of the pH-dependent conformational change of the N-terminal region of human mannose receptor/CD206. J Struct Biol 2019; 208:107384. [PMID: 31491467 DOI: 10.1016/j.jsb.2019.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 12/14/2022]
Abstract
Mannose receptor (MR, CD206) is an immune receptor highly expressed on macrophages and plays important roles in glycoprotein clearance, immune response and matrix turnover. Previous studies have shown that MR recognizes multiple ligands and recycles between cell surface and endosomes, and the conformation and ligand binding of MR are regulated by environmental pH. However, due to the lack of high-resolution details, the mechanisms of the pH-dependent properties of MR have not been fully understood. Here we investigate the pH-dependent conformational change of MR by solving a series of crystal structures of MR N-terminal fragments (CysR~CTLD2/3) at pH ranging from 4.0 to 8.5. The results show that the CTLD3 domain plays a critical role in regulating the conformational change of the N-terminal region of MR by forming interactions with the CTLD2 domain specifically at acidic pH. Moreover, the structural data also show the conformational changes of the 4-SO4-GalNAc binding pocket at the CysR domain, which might be relevant to the binding and release of the ligand. Overall, these results provide a model for the pH-dependent conformational change of the N-terminal region of MR that may help to understand its functional mechanism at molecular level.
Collapse
Affiliation(s)
- Zhenzheng Hu
- National Center for Protein Science Shanghai, Shanghai Science Research Center; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Yuanyuan Wang
- National Center for Protein Science Shanghai, Shanghai Science Research Center; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Chen Cheng
- National Center for Protein Science Shanghai, Shanghai Science Research Center; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Yongning He
- National Center for Protein Science Shanghai, Shanghai Science Research Center; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
29
|
Asciutto EK, Kopanchuk S, Lepland A, Simón-Gracia L, Aleman C, Teesalu T, Scodeller P. Phage-Display-Derived Peptide Binds to Human CD206 and Modeling Reveals a New Binding Site on the Receptor. J Phys Chem B 2019; 123:1973-1982. [DOI: 10.1021/acs.jpcb.8b11876] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eliana K. Asciutto
- School of Science and Technology, National University of San Martin (UNSAM) and CONICET, Campus Migueletes, 25 de Mayo y Francia, CP 1650 San Martín, Buenos Aires, Argentina
| | - Sergei Kopanchuk
- Institute of Chemistry, University of Tartu, Ravila 14A, Tartu 50411, Estonia
| | - Anni Lepland
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, Tartu 50411, Estonia
| | - Lorena Simón-Gracia
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, Tartu 50411, Estonia
| | - Carlos Aleman
- Departament d’Enginyeria Química and Barcelona Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Tambet Teesalu
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, Tartu 50411, Estonia
- Cancer Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
- Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara Santa Barbara, California 93106, United States
| | - Pablo Scodeller
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, Tartu 50411, Estonia
| |
Collapse
|
30
|
Mannose Receptor and Targeting Strategies. TARGETED INTRACELLULAR DRUG DELIVERY BY RECEPTOR MEDIATED ENDOCYTOSIS 2019. [DOI: 10.1007/978-3-030-29168-6_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Hu J, Wei P, Seeberger PH, Yin J. Mannose-Functionalized Nanoscaffolds for Targeted Delivery in Biomedical Applications. Chem Asian J 2018; 13:3448-3459. [PMID: 30251341 DOI: 10.1002/asia.201801088] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/18/2018] [Indexed: 12/27/2022]
Abstract
Targeted drug delivery by nanomaterials has been extensively investigated as an effective strategy to surmount obstacles in the conventional treatment of cancer and infectious diseases, such as systemic toxicity, low drug efficacy, and drug resistance. Mannose-binding C-type lectins, which primarily include mannose receptor (MR, CD206) and dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), are highly expressed on various cancer cells, endothelial cells, macrophages, and dendritic cells (DCs), which make them attractive targets for therapeutic effect. Mannosylated nanomaterials hold great potential in cancer and infection treatment on account of their direct therapeutic effect on targeted cells, modulation of the tumor microenvironment, and stimulation of immune response through antigen presentation. This review presents the recent advances in mannose-based targeted delivery nanoplatforms incorporated with different therapies in the biomedical field.
Collapse
Affiliation(s)
- Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| | - Peng Wei
- Department Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jian Yin
- Department Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| |
Collapse
|