1
|
Zhao Z, Dai X, Jiang G, Lin F. Absent, Small, or Homeotic 2-Like-Mediated H3K4 Methylation and Nephrogenesis. J Am Soc Nephrol 2025; 36:798-811. [PMID: 39774048 PMCID: PMC12059113 DOI: 10.1681/asn.0000000600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Key Points Deficits in nephron numbers are associated with higher risk of adult-onset kidney disease seen in congenital anomalies of the kidney and urinary tract. Mouse model experiments suggested that absent, small, or homeotic 2-like was vital for kidney development by activating cell cycle genes through histone methylation. Our findings identified absent, small, or homeotic 2-like–regulated genes as a potential target for treating congenital anomalies of the kidney and urinary tract. Background Many congenital anomalies of the kidney and urinary tract involve deficits in the number of nephrons, which are associated with a higher risk of hypertension and CKD later in life. Prior work has implicated histone modifications in regulating kidney lineage–specific gene transcription and nephron endowment. Our earlier study suggested that absent, small, or homeotic 2-like (ASH2L), a core subunit of the H3K4 methyltransferase complex, plays a role in ureteric bud morphogenesis during mammalian kidney development. However, the potential involvement of ASH2L in nephron formation remains an open question. Methods To investigate the role of ASH2L in nephron development, we inactivated Ash2l specifically in nephron progenitor cells by crossing Six2 -e(Kozak-GFPCre-Wpre-polyA)1 mice with Ash2l fl/fl mice. We used RNA sequencing combined with Cleavage Under Targets and Tagmentation sequencing to screen for gene and epigenomic changes, which were further verified by rescue experiments conducted on ex vivo culture explants. Results Inactivating ASH2L in nephron progenitor cells disrupted H3K4 trimethylation establishment at promoters of genes controlling nephron progenitor cell stemness, differentiation, and cell cycle, inhibiting their progression through the cell cycle and differentiation into epithelial cell types needed to form nephrons. Inhibition of the TGF-β /suppressor of mothers against decapentaplegic signaling pathway partially rescued the dysplastic phenotype of the mutants. Conclusions ASH2L-mediated H3K4 methylation was identified as a novel epigenetic regulator of kidney development. Downregulation of ASH2L expression or H3K4 trimethylation may be linked to congenital anomalies of the kidney and urinary tract.
Collapse
Affiliation(s)
- Ziyi Zhao
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuantong Dai
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gengru Jiang
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Rare Disease, Shanghai, China
| | - Fujun Lin
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Rare Disease, Shanghai, China
| |
Collapse
|
2
|
Sato Y, Koyama D, Yamada S, Kamei N, Fukuchi K, Suzuki K, Uchida Y, Suzuki M, Fukatsu M, Hashimoto Y, Ikezoe T. Successful cord blood transplantation for a unique case of bone marrow failure presenting t(2;19)(p23;q13.3) translocation suggesting disruption of DPY30. Fukushima J Med Sci 2025; 71:129-134. [PMID: 39909446 PMCID: PMC12079049 DOI: 10.5387/fms.24-00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/07/2024] [Indexed: 02/07/2025] Open
Abstract
H3K4 methylation, primarily mediated by MLL family proteins, plays a pivotal role in the epigenetic regulation of gene transcription. Among the MLL family, KMT2A is known for its critical role in hematopoiesis. MLL family proteins feature C-terminal SET catalytic domains, requiring the formation of MLL complexes with proteins like DPY30 to maximize their enzymatic activity. Deletion of DPY30 results in a significant reduction in H3K4me1, H3K4me2, and H3K4me3 levels in bone marrow (BM) cells, underscoring the essential role of DPY30 in facilitating optimal catalytic activity within MLL family complexes. Here, we present a unique case of myelodysplastic neoplasms (MDS) associated with a novel t(2;19)(p23;q13.3) translocation. A 22-year-old pregnant woman initially sought consultation due to thrombocytopenia, which temporarily improved following a miscarriage. However, she later presented with progressive pancytopenia. RNA sequencing analysis of BM mononuclear cells using STAR-Fusion revealed the translocation breakpoint on chromosomes, resulting in the disruption of the DPY30 and CEACAM6 genes. BM failure showed marked improvement following cord blood transplantation. This case represents a novel form of MDS associated with the disruption of the DPY30 gene. Our findings underscore the importance of considering early hematopoietic stem cell transplantation for MDS cases attributed to DPY30 dysfunction.
Collapse
Affiliation(s)
- Yuki Sato
- Department of Hematology, Fukushima Medical University
| | | | - Shoki Yamada
- Department of Diagnostic Pathology, Fukushima Medical University
| | - Naomi Kamei
- Department of Hematology, Fukushima Medical University
| | | | - Kengo Suzuki
- Department of Hematology, Fukushima Medical University
| | | | - Manabu Suzuki
- Department of Hematology, Fukushima Medical University
| | | | - Yuko Hashimoto
- Department of Diagnostic Pathology, Fukushima Medical University
| | | |
Collapse
|
3
|
Grégoire S, Grégoire J, Yang Y, Capitani S, Joshi M, Sarvan S, Zaker A, Ning Z, Figeys D, Ulrich K, Brunzelle JS, Mer A, Couture JF. Structural insights into an atypical histone binding mechanism by a PHD finger. Structure 2024; 32:1498-1506.e4. [PMID: 39029460 DOI: 10.1016/j.str.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 07/21/2024]
Abstract
Complex associating with SET1 (COMPASS) is a histone H3K4 tri-methyltransferase controlled by several regulatory subunits including CXXC zinc finger protein 1 (Cfp1). Prior studies established the structural underpinnings controlling H3K4me3 recognition by the PHD domain of Cfp1's yeast homolog (Spp1). However, metazoans Cfp1PHD lacks structural elements important for H3K4me3 stabilization in Spp1, suggesting that in metazoans, Cfp1PHD domain binds H3K4me3 differently. The structure of Cfp1PHD in complex with H3K4me3 shows unique features such as non-canonical coordination of the first zinc atom and a disulfide bond forcing the reorientation of Cfp1PHD N-terminus, thereby leading to an atypical H3K4me3 binding pocket. This configuration minimizes Cfp1PHD reliance on canonical residues important for histone binding functions of other PHD domains. Cancer-related mutations in Cfp1PHD impair H3K4me3 binding, implying a potential impact on epigenetic signaling. Our work highlights a potential diversification of PHD histone binding modes and the impact of cancer mutations on Cfp1 functions.
Collapse
Affiliation(s)
- Sabrina Grégoire
- Ottawa Institute of Systems Biology, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Janelle Grégoire
- Ottawa Institute of Systems Biology, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Yidai Yang
- Ottawa Institute of Systems Biology, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Sabrina Capitani
- Ottawa Institute of Systems Biology, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Monika Joshi
- Ottawa Institute of Systems Biology, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Sabina Sarvan
- Ottawa Institute of Systems Biology, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Arvin Zaker
- Ottawa Institute of Systems Biology, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Zhibin Ning
- Ottawa Institute of Systems Biology, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Kathrin Ulrich
- Institute of Biochemistry, Cellular Biochemistry, University of Cologne, 50674 Cologne, Germany
| | - Joseph S Brunzelle
- Life Sciences Collaborative Access Team, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Arvind Mer
- Ottawa Institute of Systems Biology, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Jean-Francois Couture
- Ottawa Institute of Systems Biology, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
4
|
Qin Y, Dong X, Lu M, Jing L, Chen Q, Guan F, Xiang Z, Huang J, Yang C, He X, Qu J, Yang Z. PARP1 interacts with WDR5 to enhance target gene recognition and facilitate tumorigenesis. Cancer Lett 2024; 593:216952. [PMID: 38750719 DOI: 10.1016/j.canlet.2024.216952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Poly (ADP-ribose) polymerase-1 (PARP1) is a nuclear protein that attaches negatively charged poly (ADP-ribose) (PAR) to itself and other target proteins. While its function in DNA damage repair is well established, its role in target chromatin recognition and regulation of gene expression remains to be better understood. This study showed that PARP1 interacts with SET1/MLL complexes by binding directly to WDR5. Notably, although PARP1 does not modulate WDR5 PARylation or the global level of H3K4 methylation, it exerts locus-specific effects on WDR5 binding and H3K4 methylation. Interestingly, PARP1 and WDR5 show extensive co-localization on chromatin, with WDR5 facilitating the recognition and expression of target genes regulated by PARP1. Furthermore, we demonstrated that inhibition of the WDR5 Win site impedes the interaction between PARP1 and WDR5, thereby inhibiting PARP1 from binding to target genes. Finally, the combined inhibition of the WDR5 Win site and PARP shows a profound inhibitory effect on the proliferation of cancer cells. These findings illuminate intricate mechanisms underlying chromatin recognition, gene transcription, and tumorigenesis, shedding light on previously unrecognized roles of PARP1 and WDR5 in these processes.
Collapse
Affiliation(s)
- Yali Qin
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaochuan Dong
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Manman Lu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lingyun Jing
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qingchuan Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fei Guan
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhengkai Xiang
- Department of Thoracic Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Jiaojuan Huang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chengxuan Yang
- Department of Galactophore, Xinxiang First People's Hospital, Xinxiang, 453000, China
| | - Ximiao He
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Qu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zhenhua Yang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Zhao Z, Dai X, Jiang G, Lin F. ASH2L Controls Ureteric Bud Morphogenesis through the Regulation of RET/GFRA1 Signaling Activity in a Mouse Model. J Am Soc Nephrol 2023; 34:988-1002. [PMID: 36758123 PMCID: PMC10278782 DOI: 10.1681/asn.0000000000000099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
SIGNIFICANCE STATEMENT Causes of congenital anomalies of the kidney and urinary tract (CAKUT) remain unclear. The authors investigated whether and how inactivation of Ash2l -which encodes a subunit of the COMPASS methyltransferase responsible for genome-wide histone H3 lysine K4 (H3K4) methylation-might contribute to CAKUT. In a mouse model, inactivation of Ash2l in the ureteric bud (UB) lineage led to CAKUT-like phenotypes. Removal of ASH2L led to deficient H3K4 trimethylation, which slowed cell proliferation at the UB tip, delaying budding and impairing branching morphogenesis. The absence of ASH2L also downregulated the expression of Ret , Gfra1 , and Wnt11 genes involved in RET/GFRA1 signaling. These findings identify ASH2L-mediated H3K4 methylation as an upstream epigenetic regulator of signaling crucial for UB morphogenesis and indicate that deficiency or dysregulation of these processes may lead to CAKUT. BACKGROUND Ureteric bud (UB) induction and branching morphogenesis are fundamental to the establishment of the renal architecture and are key determinants of nephron number. Defective UB morphogenesis could give rise to a spectrum of malformations associated with congenital anomalies of the kidney and urinary tract (CAKUT). Signaling involving glial cell line-derived neurotrophic factor and its receptor rearranged during transfection (RET) and coreceptor GFRA1 seems to be particularly important in UB development. Recent epigenome profiling studies have uncovered dynamic changes of histone H3 lysine K4 (H3K4) methylation during metanephros development, and dysregulated H3K4 methylation has been associated with a syndromic human CAKUT. METHODS To investigate whether and how inactivation of Ash2l , which encodes a subunit of the COMPASS methyltransferase responsible for genome-wide H3K4 methylation, might contribute to CAKUT, we inactivated Ash2l specifically from the UB lineage in C57BL/6 mice and examined the effects on genome-wide H3K4 methylation and metanephros development. Genes and epigenome changes potentially involved in these effects were screened using RNA-seq combined with Cleavage Under Targets and Tagmentation sequencing. RESULTS UB-specific inactivation of Ash2l caused CAKUT-like phenotypes mainly involving renal dysplasia at birth, which were associated with deficient H3K4 trimethylation. Ash2l inactivation slowed proliferation of cells at the UB tip, delaying budding and impairing UB branching morphogenesis. These effects were associated with downregulation of Ret , Gfra1 , and Wnt11 , which participate in RET/GFRA1 signaling. CONCLUSIONS These experiments identify ASH2L-dependent H3K4 methylation in the UB lineage as an upstream epigenetic regulator of RET/GFRA1 signaling in UB morphogenesis, which, if deficient, may lead to CAKUT.
Collapse
Affiliation(s)
- Ziyi Zhao
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuantong Dai
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gengru Jiang
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Rare Disease, Shanghai, China
| | - Fujun Lin
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Liu Z, Hu W, Qin Y, Sun L, Jing L, Lu M, Li Y, Qu J, Yang Z. Isl1 promotes gene transcription through physical interaction with Set1/Mll complexes. Eur J Cell Biol 2023; 102:151295. [PMID: 36758343 DOI: 10.1016/j.ejcb.2023.151295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Histone H3 lysine 4 (H3K4) methylation is generally recognized as a prominent marker of gene activation. While Set1/Mll complexes are major methyltransferases that are responsible for H3K4 methylation, the mechanism of how these complexes are recruited into the target gene promotor is still unclear. Here, starting with an affinity purification-mass spectrometry approach, we have found that Isl1, a highly tissue-specific expressed LIM/homeodomain transcription factor, is physically associated with Set1/Mll complexes. We then show that Wdr5 directly binds to Isl1. And this binding is likely mediated by the homeodomain of Isl1. Functionally, using mouse β-cell and human neuroblastoma tumor cell lines, we show that both Wdr5 binding and H3K4 methylation level at promoters of some Isl1 target genes are significantly reduced upon depletion of Isl1, suggesting Isl1 is required for efficient locus-specific H3K4 methylation. Taken together, our results establish a critical role of Set1/Mll complexes in regulating the target gene expression of Isl1.
Collapse
Affiliation(s)
- Zhe Liu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weijing Hu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yali Qin
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Sun
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lingyun Jing
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Manman Lu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Li
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Qu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhenhua Yang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
7
|
Structural insights on the KMT2-NCP interaction. Biochem Soc Trans 2023; 51:427-434. [PMID: 36695549 DOI: 10.1042/bst20221155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Abstract
The MLL/KMT2 family enzymes are frequently mutated in human cancers and congenital diseases. They deposit the majority of histone 3 lysine 4 (H3K4) mono-, di-, or tri-methylation in mammals and are tightly associated with gene activation. Structural and biochemical studies in recent years provide in-depth understanding of how the MLL1 and homologous yeast SET1 complexes interact with the nucleosome core particle (NCP) and how their activities for H3K4 methylation are regulated by the conserved core components. Here, we will discuss the recent single molecule cryo-EM studies on the MLL1 and ySET1 complexes bound on the NCP. These studies highlight the dynamic regulation of the MLL/SET1 family lysine methyltransferases with unique features as compared with other histone lysine methyltransferases. These studies provide insights for loci-specific regulation of H3K4 methylation states in cells. The mechanistic studies on the MLL1 complex have already led to the development of the MLL1 inhibitors that show efficacy in acute leukemia and metastatic breast cancers. Future studies on the MLL/SET1 family enzymes will continue to bring to light potential therapeutic opportunities.
Collapse
|
8
|
Rahman S, Hoffmann NA, Worden EJ, Smith ML, Namitz KEW, Knutson BA, Cosgrove MS, Wolberger C. Multistate structures of the MLL1-WRAD complex bound to H2B-ubiquitinated nucleosome. Proc Natl Acad Sci U S A 2022; 119:e2205691119. [PMID: 36095189 PMCID: PMC9499523 DOI: 10.1073/pnas.2205691119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
The human Mixed Lineage Leukemia-1 (MLL1) complex methylates histone H3K4 to promote transcription and is stimulated by monoubiquitination of histone H2B. Recent structures of the MLL1-WRAD core complex, which comprises the MLL1 methyltransferase, WDR5, RbBp5, Ash2L, and DPY-30, have revealed variability in the docking of MLL1-WRAD on nucleosomes. In addition, portions of the Ash2L structure and the position of DPY30 remain ambiguous. We used an integrated approach combining cryoelectron microscopy (cryo-EM) and mass spectrometry cross-linking to determine a structure of the MLL1-WRAD complex bound to ubiquitinated nucleosomes. The resulting model contains the Ash2L intrinsically disordered region (IDR), SPRY insertion region, Sdc1-DPY30 interacting region (SDI-motif), and the DPY30 dimer. We also resolved three additional states of MLL1-WRAD lacking one or more subunits, which may reflect different steps in the assembly of MLL1-WRAD. The docking of subunits in all four states differs from structures of MLL1-WRAD bound to unmodified nucleosomes, suggesting that H2B-ubiquitin favors assembly of the active complex. Our results provide a more complete picture of MLL1-WRAD and the role of ubiquitin in promoting formation of the active methyltransferase complex.
Collapse
Affiliation(s)
- Sanim Rahman
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Niklas A. Hoffmann
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Evan J. Worden
- Department of Structural Biology, Van Andel Research Institute, Grand Rapids, MI 49503
| | - Marissa L. Smith
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Kevin E. W. Namitz
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Bruce A. Knutson
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Michael S. Cosgrove
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
9
|
Zhao L, Huang N, Mencius J, Li Y, Xu Y, Zheng Y, He W, Li N, Zheng J, Zhuang M, Quan S, Chen Y. DPY30 acts as an ASH2L-specific stabilizer to stimulate the enzyme activity of MLL family methyltransferases on different substrates. iScience 2022; 25:104948. [PMID: 36065180 PMCID: PMC9440282 DOI: 10.1016/j.isci.2022.104948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022] Open
Abstract
Dumpy-30 (DPY30) is a conserved component of the mixed lineage leukemia (MLL) family complex and is essential for robust methyltransferase activity of MLL complexes. However, the biochemical role of DPY30 in stimulating methyltransferase activity of MLL complexes remains elusive. Here, we demonstrate that DPY30 plays a crucial role in regulating MLL1 activity through two complementary mechanisms: A nucleosome-independent mechanism and a nucleosome-specific mechanism. DPY30 functions as an ASH2L-specific stabilizer to increase the stability of ASH2L and enhance ASH2L-mediated interactions. As a result, DPY30 promotes the compaction and stabilization of the MLL1 complex, consequently increasing the HKMT activity of the MLL1 complex on diverse substrates. DPY30-stabilized ASH2L further acquires additional interfaces with H3 and nucleosomal DNA, thereby boosting the methyltransferase activity of the MLL1 complex on nucleosomes. These results collectively highlight the crucial and conserved roles of DPY30 in the complex assembly and activity regulation of MLL family complexes. DPY30 stimulates the enzyme activity of MLL complexes on broad-spectrum substrates DPY30 functions as an ASH2L-specific stabilizer DPY30 promotes the compaction and stabilization of the MLL1 complex DPY30-stabilized ASH2L acquires additional interfaces with H3 and nucleosomal DNA
Collapse
Affiliation(s)
- Lijie Zhao
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Naizhe Huang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Mencius
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai 200237, China
| | - Yanjing Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai 200237, China
| | - Ying Xu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yongxin Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai 200237, China
| | - Wei He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai 200237, China
| | - Na Li
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Jun Zheng
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Min Zhuang
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Shu Quan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai 200237, China
| | - Yong Chen
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
- Corresponding author
| |
Collapse
|
10
|
Dixit D, Prager BC, Gimple RC, Miller TE, Wu Q, Yomtoubian S, Kidwell RL, Lv D, Zhao L, Qiu Z, Zhang G, Lee D, Park DE, Wechsler-Reya RJ, Wang X, Bao S, Rich JN. Glioblastoma stem cells reprogram chromatin in vivo to generate selective therapeutic dependencies on DPY30 and phosphodiesterases. Sci Transl Med 2022; 14:eabf3917. [PMID: 34985972 DOI: 10.1126/scitranslmed.abf3917] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glioblastomas are universally fatal cancers and contain self-renewing glioblastoma stem cells (GSCs) that initiate tumors. Traditional anticancer drug discovery based on in vitro cultures tends to identify targets with poor therapeutic indices and fails to accurately model the effects of the tumor microenvironment. Here, leveraging in vivo genetic screening, we identified the histone H3 lysine 4 trimethylation (H3K4me3) regulator DPY30 (Dpy-30 histone methyltransferase complex regulatory subunit) as an in vivo–specific glioblastoma dependency. On the basis of the hypothesis that in vivo epigenetic regulation may define critical GSC dependencies, we interrogated active chromatin landscapes of GSCs derived from intracranial patient-derived xenografts (PDXs) and cell culture through H3K4me3 chromatin immunoprecipitation and transcriptome analyses. Intracranial-specific genes marked by H3K4me3 included FOS, NFκB, and phosphodiesterase (PDE) family members. In intracranial PDX tumors, DPY30 regulated angiogenesis and hypoxia pathways in an H3K4me3-dependent manner but was dispensable in vitro in cultured GSCs. PDE4B was a key downstream effector of DPY30, and the PDE4 inhibitor rolipram preferentially targeted DPY30-expressing cells and impaired PDX tumor growth in mice without affecting tumor cells cultured in vitro. Collectively, the MLL/SET1 (mixed lineage leukemia/SET domain-containing 1, histone lysine methyltransferase) complex member DPY30 selectively regulates H3K4me3 modification on genes critical to support angiogenesis and tumor growth in vivo, suggesting the DPY30-PDE4B axis as a specific therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Deobrat Dixit
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA
| | - Briana C Prager
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tyler E Miller
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Qiulian Wu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Shira Yomtoubian
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA
| | - Reilly L Kidwell
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA
| | - Deguan Lv
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Linjie Zhao
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Zhixin Qiu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Guoxin Zhang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA
| | - Derrick Lee
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Donglim Esther Park
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Xiuxing Wang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA
| | - Shideng Bao
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44106, USA
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
11
|
Histone modifications in neurodifferentiation of embryonic stem cells. Heliyon 2022; 8:e08664. [PMID: 35028451 PMCID: PMC8741459 DOI: 10.1016/j.heliyon.2021.e08664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
Post-translational modifications of histone proteins regulate a long cascade of downstream cellular activities, including transcription and replication. Cellular lineage differentiation involves large-scale intracellular signaling and extracellular context. In particular, histone modifications play instructive and programmatic roles in central nervous system development. Deciphering functions of histone could offer feasible molecular strategies for neural diseases caused by histone modifications. Here, we review recent advances of in vitro and in vivo studies on histone modifications in neural differentiation.
Collapse
|
12
|
Ayoub A, Park SH, Lee YT, Cho US, Dou Y. Regulation of MLL1 Methyltransferase Activity in Two Distinct Nucleosome Binding Modes. Biochemistry 2021; 61:1-9. [DOI: 10.1021/acs.biochem.1c00603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alex Ayoub
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sang Ho Park
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Young-Tae Lee
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Uhn-Soo Cho
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yali Dou
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Campbell SA, Bégin J, McDonald CL, Vanderkruk B, Stephan TL, Hoffman BG. H3K4 Trimethylation Is Required for Postnatal Pancreatic Endocrine Cell Functional Maturation. Diabetes 2021; 70:2568-2579. [PMID: 34376477 DOI: 10.2337/db20-1214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 08/03/2021] [Indexed: 11/13/2022]
Abstract
During pancreas development, endocrine progenitors differentiate into the islet cell subtypes, which undergo further functional maturation in postnatal islet development. In islet β-cells, genes involved in glucose-stimulated insulin secretion are activated, and glucose exposure increases the insulin response as β-cells mature. We investigated the role of H3K4 trimethylation in endocrine cell differentiation and functional maturation by disrupting TrxG complex histone methyltransferase activity in mouse endocrine progenitors. In the embryo, genetic inactivation of TrxG component Dpy30 in NEUROG3+ cells did not affect the number of endocrine progenitors or endocrine cell differentiation. H3K4 trimethylation was progressively lost in postnatal islets, and the mice displayed elevated nonfasting and fasting glycemia as well as impaired glucose tolerance by postnatal day 24. Although postnatal endocrine cell proportions were equivalent to controls, islet RNA sequencing revealed a downregulation of genes involved in glucose-stimulated insulin secretion and an upregulation of immature β-cell genes. Comparison of histone modification enrichment profiles in NEUROG3+ endocrine progenitors and mature islets suggested that genes downregulated by loss of H3K4 trimethylation more frequently acquire active histone modifications during maturation. Taken together, these findings suggest that H3K4 trimethylation is required for the activation of genes involved in the functional maturation of pancreatic islet endocrine cells.
Collapse
Affiliation(s)
- Stephanie A Campbell
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Jocelyn Bégin
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Cassandra L McDonald
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ben Vanderkruk
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Tabea L Stephan
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brad G Hoffman
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Zhai X, Brownell JE. Biochemical perspectives on targeting KMT2 methyltransferases in cancer. Trends Pharmacol Sci 2021; 42:688-699. [PMID: 34074527 DOI: 10.1016/j.tips.2021.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/20/2021] [Accepted: 05/05/2021] [Indexed: 02/05/2023]
Abstract
KMT2 methyltransferases are important regulators of gene transcription through the methylation of histone H3 lysine 4 at promoter and enhancer regions. They reside in large, multisubunit protein complexes, which not only regulate their catalytic activities but also mediate their interactions with chromatin. The KMT2 family was initially associated with cancer due to the discovery of KMT2A translocations in mixed-lineage leukemia (MLL). However, emerging evidences suggest that the methyltransferase activity of KMT2 enzymes can also be important in cancer, raising the prospect of targeting the catalytic domain of KMT2 as a therapeutic strategy. In this review, we summarize recent advances in our understanding of KMT2 enzyme mechanisms and their regulation on nucleosomes, which will provide mechanistic insights into therapeutic discoveries targeting their methyltransferase activities.
Collapse
Affiliation(s)
- Xiang Zhai
- Mechanistic Biology & Profiling, Discovery Sciences, R&D, AstraZeneca, Waltham, MA 02451, USA.
| | | |
Collapse
|
15
|
Mechanism for DPY30 and ASH2L intrinsically disordered regions to modulate the MLL/SET1 activity on chromatin. Nat Commun 2021; 12:2953. [PMID: 34012049 PMCID: PMC8134635 DOI: 10.1038/s41467-021-23268-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 04/16/2021] [Indexed: 12/28/2022] Open
Abstract
Recent cryo-EM structures show the highly dynamic nature of the MLL1-NCP (nucleosome core particle) interaction. Functional implication and regulation of such dynamics remain unclear. Here we show that DPY30 and the intrinsically disordered regions (IDRs) of ASH2L work together in restricting the rotational dynamics of the MLL1 complex on the NCP. We show that DPY30 binding to ASH2L leads to stabilization and integration of ASH2L IDRs into the MLL1 complex and establishes new ASH2L-NCP contacts. The significance of ASH2L-DPY30 interactions is demonstrated by requirement of both ASH2L IDRs and DPY30 for dramatic increase of processivity and activity of the MLL1 complex. This DPY30 and ASH2L-IDR dependent regulation is NCP-specific and applies to all members of the MLL/SET1 family of enzymes. We further show that DPY30 is causal for de novo establishment of H3K4me3 in ESCs. Our study provides a paradigm of how H3K4me3 is regulated on chromatin and how H3K4me3 heterogeneity can be modulated by ASH2L IDR interacting proteins. Regulation of the MLL family of histone H3K4 methyltransferases on the nucleosome core particle (NCP) remains largely unknown. Here the authors show that intrinsically disordered regions of ASH2L and DPY30 restrict the rotational dynamics of MLL1 on the NCP, allowing more efficient enzyme-substrate engagement and higher H3K4 trimethylation activity.
Collapse
|
16
|
Campbell SA, McDonald CL, Krentz NAJ, Lynn FC, Hoffman BG. TrxG Complex Catalytic and Non-catalytic Activity Play Distinct Roles in Pancreas Progenitor Specification and Differentiation. Cell Rep 2020; 28:1830-1844.e6. [PMID: 31412250 DOI: 10.1016/j.celrep.2019.07.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/04/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023] Open
Abstract
Appropriate regulation of genes that coordinate pancreas progenitor proliferation and differentiation is required for pancreas development. Here, we explore the role of H3K4 methylation and the Trithorax group (TrxG) complexes in mediating gene expression during pancreas development. Disruption of TrxG complex assembly, but not catalytic activity, prevented endocrine cell differentiation in pancreas progenitor spheroids. In vivo loss of TrxG catalytic activity in PDX1+ cells increased apoptosis and the fraction of progenitors in the G1 phase of the cell cycle. Pancreas progenitors were reallocated to the acinar lineage, primarily at the expense of NEUROG3+ endocrine progenitors. Later in development, acinar and endocrine cell numbers were decreased, and increased gene expression variance and reduced terminal marker activation in acinar cells led to their incomplete differentiation. These findings demonstrate that TrxG co-activator activity is required for gene induction, whereas TrxG catalytic activity and H3K4 methylation help maintain transcriptional stability.
Collapse
Affiliation(s)
- Stephanie A Campbell
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 4E3, Canada; Diabetes Research Group, British Columbia Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Cassandra L McDonald
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 4E3, Canada
| | - Nicole A J Krentz
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 4E3, Canada; Diabetes Research Group, British Columbia Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Francis C Lynn
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 4E3, Canada; Diabetes Research Group, British Columbia Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Brad G Hoffman
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 4E3, Canada; Diabetes Research Group, British Columbia Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
17
|
Janna A, Davarinejad H, Joshi M, Couture JF. Structural Paradigms in the Recognition of the Nucleosome Core Particle by Histone Lysine Methyltransferases. Front Cell Dev Biol 2020; 8:600. [PMID: 32850785 PMCID: PMC7412744 DOI: 10.3389/fcell.2020.00600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/19/2020] [Indexed: 12/18/2022] Open
Abstract
Post-translational modifications (PTMs) of histone proteins play essential functions in shaping chromatin environment. Alone or in combination, these PTMs create templates recognized by dedicated proteins or change the chemistry of chromatin, enabling a myriad of nuclear processes to occur. Referred to as cross-talk, the positive or negative impact of a PTM on another PTM has rapidly emerged as a mechanism controlling nuclear transactions. One of those includes the stimulatory functions of histone H2B ubiquitylation on the methylation of histone H3 on K79 and K4 by Dot1L and COMPASS, respectively. While these findings were established early on, the structural determinants underlying the positive impact of H2B ubiquitylation on H3K79 and H3K4 methylation were resolved only recently. We will also review the molecular features controlling these cross-talks and the impact of H3K27 tri-methylation on EZH2 activity when embedded in the PRC2 complex.
Collapse
Affiliation(s)
- Ashley Janna
- Ottawa Institute of Systems Biology, Shanghai Institute of Materia Medica-University of Ottawa Research Center in Systems and Personalized Pharmacology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Hossein Davarinejad
- Ottawa Institute of Systems Biology, Shanghai Institute of Materia Medica-University of Ottawa Research Center in Systems and Personalized Pharmacology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Monika Joshi
- Ottawa Institute of Systems Biology, Shanghai Institute of Materia Medica-University of Ottawa Research Center in Systems and Personalized Pharmacology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jean-Francois Couture
- Ottawa Institute of Systems Biology, Shanghai Institute of Materia Medica-University of Ottawa Research Center in Systems and Personalized Pharmacology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
18
|
Jiang H. The complex activities of the SET1/MLL complex core subunits in development and disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194560. [PMID: 32302696 DOI: 10.1016/j.bbagrm.2020.194560] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/14/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022]
Abstract
In mammalian cells, the SET1/MLL complexes are the main writers of the H3K4 methyl mark that is associated with active gene expression. The activities of these complexes are critically dependent on the association of the catalytic subunit with their shared core subunits, WDR5, RBBP5, ASH2L, and DPY30, collectively referred as WRAD. In addition, some of these core subunits can bind to proteins other than the SET1/MLL complex components. This review starts with discussion of the molecular activities of these core subunits, with an emphasis on DPY30 in organizing the assembly of the SET1/MLL complexes with other associated factors. This review then focuses on the roles of the core subunits in stem cells and development, as well as in diseased cell states, mainly cancer, and ends with discussion on dissecting the responsible activities of the core subunits and how we may target them for potential disease treatment. This article is part of a Special Issue entitled: The MLL family of proteins in normal development and disease edited by Thomas A Milne.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
19
|
Yang Y, Joshi M, Takahashi YH, Ning Z, Qu Q, Brunzelle JS, Skiniotis G, Figeys D, Shilatifard A, Couture JF. A non-canonical monovalent zinc finger stabilizes the integration of Cfp1 into the H3K4 methyltransferase complex COMPASS. Nucleic Acids Res 2020; 48:421-431. [PMID: 31724694 PMCID: PMC7145517 DOI: 10.1093/nar/gkz1037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 12/28/2022] Open
Abstract
COMPlex ASsociating with SET1 (COMPASS) is a histone H3 Lys-4 methyltransferase that typically marks the promoter region of actively transcribed genes. COMPASS is a multi-subunit complex in which the catalytic unit, SET1, is required for H3K4 methylation. An important subunit known to regulate SET1 methyltransferase activity is the CxxC zinc finger protein 1 (Cfp1). Cfp1 binds to COMPASS and is critical to maintain high level of H3K4me3 in cells but the mechanisms underlying its stimulatory activity is poorly understood. In this study, we show that Cfp1 only modestly activates COMPASS methyltransferase activity in vitro. Binding of Cfp1 to COMPASS is in part mediated by a new type of monovalent zinc finger (ZnF). This ZnF interacts with the COMPASS's subunits RbBP5 and disruption of this interaction blunts its methyltransferase activity in cells and in vivo. Collectively, our studies reveal that a novel form of ZnF on Cfp1 enables its integration into COMPASS and contributes to epigenetic signaling.
Collapse
Affiliation(s)
- Yidai Yang
- Shanghai Institute of Materia Medica-University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology , University of Ottawa, Ottawa , ON K1H 8M5 , Canada
| | - Monika Joshi
- Shanghai Institute of Materia Medica-University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology , University of Ottawa, Ottawa , ON K1H 8M5 , Canada
| | - Yoh-hei Takahashi
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - Zhibin Ning
- Shanghai Institute of Materia Medica-University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology , University of Ottawa, Ottawa , ON K1H 8M5 , Canada
| | - Qianhui Qu
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph S Brunzelle
- Northwestern Synchrotron Research Centers, Life Science Collaborative Access Team, Northwestern University, Evanston, IL, USA
| | - Georgios Skiniotis
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel Figeys
- Shanghai Institute of Materia Medica-University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology , University of Ottawa, Ottawa , ON K1H 8M5 , Canada
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - Jean-François Couture
- Shanghai Institute of Materia Medica-University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology , University of Ottawa, Ottawa , ON K1H 8M5 , Canada
| |
Collapse
|
20
|
Park SH, Ayoub A, Lee YT, Xu J, Kim H, Zheng W, Zhang B, Sha L, An S, Zhang Y, Cianfrocco MA, Su M, Dou Y, Cho US. Cryo-EM structure of the human MLL1 core complex bound to the nucleosome. Nat Commun 2019; 10:5540. [PMID: 31804488 PMCID: PMC6895043 DOI: 10.1038/s41467-019-13550-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022] Open
Abstract
Mixed lineage leukemia (MLL) family histone methyltransferases are enzymes that deposit histone H3 Lys4 (K4) mono-/di-/tri-methylation and regulate gene expression in mammals. Despite extensive structural and biochemical studies, the molecular mechanisms whereby the MLL complexes recognize histone H3K4 within nucleosome core particles (NCPs) remain unclear. Here we report the single-particle cryo-electron microscopy (cryo-EM) structure of the NCP-bound human MLL1 core complex. We show that the MLL1 core complex anchors to the NCP via the conserved RbBP5 and ASH2L, which interact extensively with nucleosomal DNA and the surface close to the N-terminal tail of histone H4. Concurrent interactions of RbBP5 and ASH2L with the NCP uniquely align the catalytic MLL1SET domain at the nucleosome dyad, thereby facilitating symmetrical access to both H3K4 substrates within the NCP. Our study sheds light on how the MLL1 complex engages chromatin and how chromatin binding promotes MLL1 tri-methylation activity. MLL family histone methyltransferases deposit histone H3 Lys4 mono-/di-/tri-methylation and regulate gene expression in mammals. Here the authors report the single-particle cryo-EM structure of the NCP-bound human MLL1 core complex, shedding light on how the MLL1 complex engages chromatin and how chromatin binding promotes MLL1 tri-methylation activity.
Collapse
Affiliation(s)
- Sang Ho Park
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Alex Ayoub
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Young-Tae Lee
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Jing Xu
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Hanseong Kim
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Wei Zheng
- Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Biao Zhang
- Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Liang Sha
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Sojin An
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Yang Zhang
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA.,Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Michael A Cianfrocco
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Min Su
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Yali Dou
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA. .,Department of Pathology, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| | - Uhn-Soo Cho
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
21
|
Dilworth D, Arrowsmith CH. Guiding COMPASS: Dpy-30 Positions SET1/MLL Epigenetic Signaling. Structure 2019; 26:1567-1570. [PMID: 30517884 DOI: 10.1016/j.str.2018.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this issue of Structure, Haddad et al. (2018) solve the high-resolution trimeric crystal structure of human COMPASS-like components Dpy-30 and Ash2L (2:1) to unravel an uncharacterized interaction surface required for competent H3K4 methylation in cells and clarify Dpy-30's role in the allosteric regulation of KMT2 enzymes.
Collapse
Affiliation(s)
- David Dilworth
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|