1
|
Alipitchay S, Alias MA, Hamid SNSSA, Hamzah R, Mansor N, Hamid NA, Othman H. Temporal and interaction dynamics of dengue cases, entomological and meteorological variables in Melaka, Malaysia: A multivariate time series analysis. PLoS One 2025; 20:e0321273. [PMID: 40238834 PMCID: PMC12002457 DOI: 10.1371/journal.pone.0321273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/04/2025] [Indexed: 04/18/2025] Open
Abstract
The complex interaction between dengue cases, entomological and meteorological variables has posed challenges for decades. Validated and updated evidences are in need for enhancing surveillance and vector control of dengue program. This study explores the relationship between the variables in the long run and short-term dynamic in Melaka, Malaysia. A multivariate time series with the application of Johansen Cointegration Test and Vector Error Correction Model are carried out to validate the interaction among dengue cases, temperature, ovitrap index (OI) and sticky ovitrap index (SOI) data from 2020-2022. Cointegration vector validates existence of long-term relationship of which an inverse interaction between temperature and SOI with cases and a direct relationship of OI with cases. Short-term equilibrium displays a robust causality among variables. Interaction of case with case demonstrates positive coefficients at lags -3, -7, and -8. Interaction of SOI with case shows negative coefficients on SOI variable at lags -3 and -4 and positive coefficient on the case variable at lag -1. OI equation with OI variable shows unique interaction of negative coefficients on OI variable at lags -1, -3, and -4. However, it produced positive coefficient on OI variable at lag -9. Case equation reveals negative coefficient of temperature variable at lag -6. This study implies that the variables are linked in a long-term and stable relationship. In the context of public health, VECM is still a new methodology to capture such dynamicity and causality between the variables. In long term interaction, the study expressed the temporal pattern of dengue transmission, which is persistent, stable, and cyclical in nature. Failure to control epidemics resulting in the progression of succession of dengue cases in short term. The model predicts the utility and efficacy of sticky ovitraps acting as dual role; surveillance and control tool. Hence, there is a much broader scope for future directions in dengue control. The long-term equilibrium indicates the ovitrap index as a reliable predictor of dengue cases. Temperature is an overall excellent estimator of the meteorological parameter that has a direct impact on the development of dengue cases.
Collapse
Affiliation(s)
- Shazelin Alipitchay
- Public Health Department, Melaka Health Department, Ministry of Health, Melaka, Malaysia
| | - Muhammad Aswad Alias
- Public Health Department, Melaka Health Department, Ministry of Health, Melaka, Malaysia
- Centre For Toxicology & Health Risk Studies (CORE), National University of Malaysia, Bangi, Malaysia,
| | | | - Rabizah Hamzah
- Public Health Department, Melaka Health Department, Ministry of Health, Melaka, Malaysia
| | - Norain Mansor
- Public Health Department, Melaka Health Department, Ministry of Health, Melaka, Malaysia
| | | | - Hidayatulfathi Othman
- Centre For Toxicology & Health Risk Studies (CORE), National University of Malaysia, Bangi, Malaysia,
| |
Collapse
|
2
|
Samsudin F, Zuzic L, Marzinek JK, Bond PJ. Mechanisms of allostery at the viral surface through the eyes of molecular simulation. Curr Opin Struct Biol 2024; 84:102761. [PMID: 38142635 DOI: 10.1016/j.sbi.2023.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023]
Abstract
The outermost surface layer of any virus is formed by either a capsid shell or envelope. Such layers have traditionally been thought of as immovable structures, but it is becoming apparent that they cannot be viewed exclusively as static architectures protecting the viral genome. A limited number of proteins on the virion surface must perform a multitude of functions in order to orchestrate the viral life cycle, and allostery can regulate their structures at multiple levels of organization, spanning individual molecules, protomers, large oligomeric assemblies, or entire viral surfaces. Here, we review recent contributions from the molecular simulation field to viral surface allostery, with a particular focus on the trimeric spike glycoprotein emerging from the coronavirus surface, and the icosahedral flaviviral envelope complex. As emerging viral pathogens continue to pose a global threat, an improved understanding of viral dynamics and allosteric regulation will prove crucial in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Firdaus Samsudin
- Bioinformatics Institute (A∗STAR), 30 Biopolis Street, 07-01 Matrix, 138671, Singapore
| | - Lorena Zuzic
- Department of Chemistry, Langelandsgade 140, Aarhus University, Aarhus 8000, Denmark
| | - Jan K Marzinek
- Bioinformatics Institute (A∗STAR), 30 Biopolis Street, 07-01 Matrix, 138671, Singapore
| | - Peter J Bond
- Bioinformatics Institute (A∗STAR), 30 Biopolis Street, 07-01 Matrix, 138671, Singapore; Department of Biological Sciences, 16 Science Drive 4, National University of Singapore, 117558, Singapore.
| |
Collapse
|
3
|
Liu Z, Zhang Q, Li L, He J, Guo J, Wang Z, Huang Y, Xi Z, Yuan F, Li Y, Li T. The effect of temperature on dengue virus transmission by Aedes mosquitoes. Front Cell Infect Microbiol 2023; 13:1242173. [PMID: 37808907 PMCID: PMC10552155 DOI: 10.3389/fcimb.2023.1242173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Dengue is prevalent in tropical and subtropical regions. As an arbovirus disease, it is mainly transmitted by Aedes aegypti and Aedes albopictus. According to the previous studies, temperature is closely related to the survival of Aedes mosquitoes, the proliferation of dengue virus (DENV) and the vector competence of Aedes to transmit DENV. This review describes the correlations between temperature and dengue epidemics, and explores the potential reasons including the distribution and development of Aedes mosquitoes, the structure of DENV, and the vector competence of Aedes mosquitoes. In addition, the immune and metabolic mechanism are discussed on how temperature affects the vector competence of Aedes mosquitoes to transmit DENV.
Collapse
Affiliation(s)
- Zhuanzhuan Liu
- Department of Pathogen Biology, Center for Tropical Disease Control and Research, School of Basic Medical Sciences and Life Sciences, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
- Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Qingxin Zhang
- School of Imaging Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Liya Li
- School of Imaging Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Junjie He
- School of Imaging Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Jinyang Guo
- School of Imaging Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Zichen Wang
- School of Imaging Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yige Huang
- School of Imaging Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Zimeng Xi
- School of Imaging Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Fei Yuan
- Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Yiji Li
- Department of Pathogen Biology, Center for Tropical Disease Control and Research, School of Basic Medical Sciences and Life Sciences, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Tingting Li
- Department of Pathogen Biology, Center for Tropical Disease Control and Research, School of Basic Medical Sciences and Life Sciences, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| |
Collapse
|
4
|
Tantirimudalige SN, Raghuvamsi PV, Sharma KK, Wei Bao JC, Anand GS, Wohland T. The ganglioside GM1a functions as a coreceptor/attachment factor for dengue virus during infection. J Biol Chem 2022; 298:102570. [PMID: 36209827 PMCID: PMC9650044 DOI: 10.1016/j.jbc.2022.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/09/2022] Open
Abstract
Dengue virus (DENV) is a flavivirus causing an estimated 390 million infections per year around the world. Despite the immense global health and economic impact of this virus, its true receptor(s) for internalization into live cells has not yet been identified, and no successful antivirals or treatments have been isolated to this date. This study aims to improve our understanding of virus entry routes by exploring the sialic acid-based cell surface molecule GM1a and its role in DENV infection. We studied the interaction of the virus with GM1a using fluorescence correlation spectroscopy, fluorescence crosscorrelation spectroscopy, imaging fluorescence correlation spectroscopy, amide hydrogen/deuterium exchange mass spectrometry, and isothermal titration calorimetry. Additionally, we explored the effect of this interaction on infectivity and movement of the virus during infection was explored using plaque assay and fluorescence-based imaging and single particle tracking. GM1a was deemed to interact with DENV at domain I (DI) and domain II (DII) of the E protein of the protein coat at quaternary contacts of a fully assembled virus, leading to a 10-fold and 7-fold increase in infectivity for DENV1 and DENV2 in mammalian cell systems, respectively. We determined that the interaction of the virus with GM1a triggers a speeding up of virus movement on live cell surfaces, possibly resulting from a reduction in rigidity of cellular rafts during infection. Collectively, our results suggest that GM1a functions as a coreceptor/attachment factor for DENV during infection in mammalian systems.
Collapse
Affiliation(s)
- Sarala Neomi Tantirimudalige
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Palur Venkata Raghuvamsi
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Bioinformatics Institute (A∗STAR), Singapore, Singapore
| | - Kamal Kant Sharma
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Jonathan Chua Wei Bao
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Thorsten Wohland
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore; Department of Chemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Villalaín J. Interaction of Lassa virus fusion and membrane proximal peptides with late endosomal membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184031. [PMID: 35964711 DOI: 10.1016/j.bbamem.2022.184031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Mammarenaviruses include many significant worldwide-widespread human pathogens, among them Lassa virus (LASV), having a dramatic morbidity and mortality rate. They are a potential high-risk menace to the worldwide public health since there are no treatments and there is a high possibility of animal-to-human and human-to-human viral transmission. These viruses enter into the cells by endocytosis fusing its membrane envelope with the late endosomal membrane thanks to the glycoprotein GP2, a membrane fusion protein of class I. This protein contains different domains, among them the N-terminal fusion peptide (NFP), the internal fusion loop (IFL), the membrane proximal external region (MPER) and the transmembrane domain (TMD). All these domains are implicated in the membrane fusion process. In this work, we have used an all-atom molecular dynamics study to know the binding of these protein domains with a complex membrane mimicking the late endosome one. We show that the NFP/IFL domain is capable of spontaneously inserting into the membrane without a significant change of secondary structure, the MPER domain locates at the bilayer interface with an orientation parallel to the membrane surface and tends to interact with other MPER domains, and the TMD domain tilts inside the bilayer. Moreover, they predominantly interact with negatively charged phospholipids. Overall, these membrane-interacting domains would characterise a target that would make possible to find effective antiviral molecules against LASV in particular and Mammarenaviruses in general.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universitas "Miguel Hernández", E-03202 Elche-Alicante, Spain.
| |
Collapse
|
6
|
Park J, Kim J, Jang YS. Current status and perspectives on vaccine development against dengue virus infection. J Microbiol 2022; 60:247-254. [PMID: 35157223 PMCID: PMC8853353 DOI: 10.1007/s12275-022-1625-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 10/31/2022]
Abstract
Dengue virus (DENV) consists of four serotypes in the family Flaviviridae and is a causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. DENV is transmitted by mosquitoes, Aedes aegypti and A. albopictus, and is mainly observed in areas where vector mosquitoes live. The number of dengue cases reported by the World Health Organization increased more than 8-fold over the last two decades from 505,430 in 2000 to over 2.4 million in 2010 to 5.2 million in 2019. Although vaccine is the most effective method against DENV, only one commercialized vaccine exists, and it cannot be administered to children under 9 years of age. Currently, many researchers are working to resolve the various problems hindering the development of effective dengue vaccines; understanding of the viral antigen configuration would provide insight into the development of effective vaccines against DENV infection. In this review, the current status and perspectives on effective vaccine development for DENV are examined. In addition, a plausible direction for effective vaccine development against DENV is suggested.
Collapse
Affiliation(s)
- Jisang Park
- Department of Bioactive Material Sciences and the Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea.,Innovative Research and Education Center for Integrated Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Ju Kim
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Yong-Suk Jang
- Department of Bioactive Material Sciences and the Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea. .,Innovative Research and Education Center for Integrated Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea. .,Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
7
|
Kudlacek ST, Metz S, Thiono D, Payne AM, Phan TTN, Tian S, Forsberg LJ, Maguire J, Seim I, Zhang S, Tripathy A, Harrison J, Nicely NI, Soman S, McCracken MK, Gromowski GD, Jarman RG, Premkumar L, de Silva AM, Kuhlman B. Designed, highly expressing, thermostable dengue virus 2 envelope protein dimers elicit quaternary epitope antibodies. SCIENCE ADVANCES 2021; 7:eabg4084. [PMID: 34652943 PMCID: PMC8519570 DOI: 10.1126/sciadv.abg4084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/25/2021] [Indexed: 05/30/2023]
Abstract
Dengue virus (DENV) is a worldwide health burden, and a safe vaccine is needed. Neutralizing antibodies bind to quaternary epitopes on DENV envelope (E) protein homodimers. However, recombinantly expressed soluble E proteins are monomers under vaccination conditions and do not present these quaternary epitopes, partly explaining their limited success as vaccine antigens. Using molecular modeling, we found DENV2 E protein mutations that induce dimerization at low concentrations (<100 pM) and enhance production yield by more than 50-fold. Cross-dimer epitope antibodies bind to the stabilized dimers, and a crystal structure resembles the wild-type (WT) E protein bound to a dimer epitope antibody. Mice immunized with the stabilized dimers developed antibodies that bind to E dimers and not monomers and elicited higher levels of DENV2-neutralizing antibodies compared to mice immunized with WT E antigen. Our findings demonstrate the feasibility of using structure-based design to produce subunit vaccines for dengue and other flaviviruses.
Collapse
Affiliation(s)
- Stephan T. Kudlacek
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Stefan Metz
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Devina Thiono
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Alexander M. Payne
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Thanh T. N. Phan
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Shaomin Tian
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Lawrence J. Forsberg
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Jack Maguire
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Ian Seim
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27514, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27514, USA
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Shu Zhang
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Ashutosh Tripathy
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Joseph Harrison
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Nathan I. Nicely
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Sandrine Soman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Michael K. McCracken
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Gregory D. Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Richard G. Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Aravinda M. de Silva
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27514, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27514, USA
| |
Collapse
|
8
|
James EI, Murphree TA, Vorauer C, Engen JR, Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem Rev 2021; 122:7562-7623. [PMID: 34493042 PMCID: PMC9053315 DOI: 10.1021/acs.chemrev.1c00279] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Solution-phase hydrogen/deuterium
exchange (HDX) coupled to mass
spectrometry (MS) is a widespread tool for structural analysis across
academia and the biopharmaceutical industry. By monitoring the exchangeability
of backbone amide protons, HDX-MS can reveal information about higher-order
structure and dynamics throughout a protein, can track protein folding
pathways, map interaction sites, and assess conformational states
of protein samples. The combination of the versatility of the hydrogen/deuterium
exchange reaction with the sensitivity of mass spectrometry has enabled
the study of extremely challenging protein systems, some of which
cannot be suitably studied using other techniques. Improvements over
the past three decades have continually increased throughput, robustness,
and expanded the limits of what is feasible for HDX-MS investigations.
To provide an overview for researchers seeking to utilize and derive
the most from HDX-MS for protein structural analysis, we summarize
the fundamental principles, basic methodology, strengths and weaknesses,
and the established applications of HDX-MS while highlighting new
developments and applications.
Collapse
Affiliation(s)
- Ellie I James
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
9
|
Machado MR, Pantano S. Fighting viruses with computers, right now. Curr Opin Virol 2021; 48:91-99. [PMID: 33975154 DOI: 10.1016/j.coviro.2021.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/20/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
The synergistic conjunction of various technological revolutions with the accumulated knowledge and workflows is rapidly transforming several scientific fields. Particularly, Virology can now feed from accurate physical models, polished computational tools, and massive computational power to readily integrate high-resolution structures into biological representations of unprecedented detail. That preparedness allows for the first time to get crucial information for vaccine and drug design from in-silico experiments against emerging pathogens of worldwide concern at relevant action windows. The present work reviews some of the main milestones leading to these breakthroughs in Computational Virology, providing an outlook for future developments in capacity building and accessibility to computational resources.
Collapse
Affiliation(s)
- Matías R Machado
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay.
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay.
| |
Collapse
|
10
|
Affiliation(s)
- Tobias
P. Wörner
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Tatiana M. Shamorkina
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
11
|
Yong XE, Raghuvamsi PV, Anand GS, Wohland T, Sharma KK. Dengue virus strain 2 capsid protein switches the annealing pathway and reduces intrinsic dynamics of the conserved 5' untranslated region. RNA Biol 2021; 18:718-731. [PMID: 33406991 PMCID: PMC8078513 DOI: 10.1080/15476286.2020.1860581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The capsid protein of dengue virus strain 2 (DENV2C) promotes nucleic acid structural rearrangements using chaperone activity. However, the role of DENV2C during the interaction of RNA elements in the conserved 5' untranslated region (5'UTR) to the 3' untranslated region (3'UTR) is still unclear. Thus, we investigated the effect of DENV2C on the annealing mechanism of two RNA hairpin elements from the 5'UTR to their complementary sequences during (+)/(-) ds-RNAformation and (+) RNA circularization. DENV2C was found to switch the annealing pathway for RNA elements involved in (+)/(-) ds-RNA formation, but not for RNA elements related to (+) RNA circularization. In addition, we also determined that DENV2C modulates intrinsic dynamics and reduces kinetically trapped unfavourable conformations of the 5'UTR sequence. Thus, our results provide mechanistic insights by which DENV2C chaperones the interactions between RNA elements at the 5' and 3' ends during genome recombination, a prerequisite for DENV replication.
Collapse
Affiliation(s)
- Xin Ee Yong
- NUS Graduate School for integrative Sciences and Engineering Programme, National University of Singapore, Singapore.,Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | | | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Thorsten Wohland
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Kamal K Sharma
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Huber RG, Marzinek JK, Boon PLS, Yue W, Bond PJ. Computational modelling of flavivirus dynamics: The ins and outs. Methods 2021; 185:28-38. [PMID: 32526282 PMCID: PMC7278654 DOI: 10.1016/j.ymeth.2020.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/24/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Enveloped viruses such as the flaviviruses represent a significant burden to human health around the world, with hundreds of millions of people each year affected by dengue alone. In an effort to improve our understanding of the molecular basis for the infective mechanisms of these viruses, extensive computational modelling approaches have been applied to elucidate their conformational dynamics. Multiscale protocols have been developed to simulate flavivirus envelopes in close accordance with biophysical data, in particular derived from cryo-electron microscopy, enabling high-resolution refinement of their structures and elucidation of the conformational changes associated with adaptation both to host environments and to immunological factors such as antibodies. Likewise, integrative modelling efforts combining data from biophysical experiments and from genome sequencing with chemical modification are providing unparalleled insights into the architecture of the previously unresolved nucleocapsid complex. Collectively, this work provides the basis for the future rational design of new antiviral therapeutics and vaccine development strategies targeting enveloped viruses.
Collapse
Affiliation(s)
- Roland G Huber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore
| | - Jan K Marzinek
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore
| | - Priscilla L S Boon
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (NUS), University Hall, Tan Chin Tuan Wing #04-02, 119077, Singapore; Department of Biological Sciences (DBS), National University of Singapore (NUS), 16 Science Drive 4, Building S3, Singapore
| | - Wan Yue
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome #02-01, 138672, Singapore
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore; Department of Biological Sciences (DBS), National University of Singapore (NUS), 16 Science Drive 4, Building S3, Singapore.
| |
Collapse
|
13
|
Zuzic L, Marzinek JK, Warwicker J, Bond PJ. A Benzene-Mapping Approach for Uncovering Cryptic Pockets in Membrane-Bound Proteins. J Chem Theory Comput 2020; 16:5948-5959. [PMID: 32786908 DOI: 10.1021/acs.jctc.0c00370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics (MD) simulations in combination with small organic probes present in the solvent have previously been used as a method to reveal cryptic pockets that may not have been identified in experimental structures. We report such a method implemented within the CHARMM force field using the GROMACS simulation package to effectively explore cryptic pockets on the surfaces of membrane-embedded proteins using benzene as a probe molecule. This method, for which we have made implementation files freely available, relies on modified nonbonded parameters in addition to repulsive potentials between membrane lipids and benzene molecules. The method was tested on part of the outer shell of the dengue virus (DENV), for which research into a safe and effective neutralizing antibody or drug molecule is still ongoing. In particular, the envelope (E) protein, associated with the membrane (M) protein, is a lipid membrane-embedded complex which forms a dimer in the mature viral envelope. Solvent mapping was performed for the full, membrane-embedded EM protein complex and compared with similar calculations performed for the isolated, soluble E protein ectodomain dimer in the solvent. Ectodomain-only simulations with benzene exhibited unfolding effects not observed in the more physiologically relevant membrane-associated systems. A cryptic pocket which has been experimentally shown to bind n-octyl-β-d-glucoside detergent was consistently revealed in all benzene-containing simulations. The addition of benzene also enhanced the flexibility and hydrophobic exposure of cryptic pockets at a key, functional interface in the E protein and revealed a novel, potentially druggable pocket that may be targeted to prevent conformational changes associated with viral entry into the cell.
Collapse
Affiliation(s)
- Lorena Zuzic
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, 07-01 Matrix, Singapore 138671, Singapore.,Department of Chemistry, Faculty of Science and Engineering, Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Jan K Marzinek
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, 07-01 Matrix, Singapore 138671, Singapore
| | - Jim Warwicker
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Peter J Bond
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, 07-01 Matrix, Singapore 138671, Singapore.,Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| |
Collapse
|
14
|
Engen JR, Komives EA. Complementarity of Hydrogen/Deuterium Exchange Mass Spectrometry and Cryo-Electron Microscopy. Trends Biochem Sci 2020; 45:906-918. [PMID: 32487353 DOI: 10.1016/j.tibs.2020.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/23/2020] [Accepted: 05/08/2020] [Indexed: 12/18/2022]
Abstract
Methodological improvements in both single particle cryo-electron microscopy (cryo-EM) and hydrogen/deuterium exchange mass spectrometry (HDX-MS) mean that the two methods are being more frequently used together to tackle complex problems in structural biology. There are many benefits to this combination, including for the analysis of low-resolution density, for structural validation, in the analysis of individual proteins versus the same proteins in large complexes, studies of allostery, protein quality control during cryo-EM construct optimization, and in the study of protein movements/dynamics during function. As will be highlighted in this review, through careful considerations of potential sample and conformational heterogeneity, many joint studies have recently been demonstrated, and many future studies using this combination are anticipated.
Collapse
Affiliation(s)
- John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
15
|
Multiscale modelling and simulation of viruses. Curr Opin Struct Biol 2020; 61:146-152. [PMID: 31991326 DOI: 10.1016/j.sbi.2019.12.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 11/20/2022]
Abstract
In recent years, advances in structural biology, integrative modelling, and simulation approaches have allowed us to gain unprecedented insights into viral structure and dynamics. In this article we survey recent studies utilizing this wealth of structural information to build computational models of partial or complete viruses and to elucidate mechanisms of viral function. Additionally, the close interplay of viral pathogens with host factors - such as cellular and intracellular membranes, receptors, antibodies, and other host proteins - makes accurate models of viral interactions and dynamics essential. As viruses continue to pose severe challenges in prevention and treatment, enhancing our mechanistic understanding of viral infection is vital to enable the development of novel therapeutic strategies.
Collapse
|
16
|
Computational Analysis of Dengue Virus Envelope Protein (E) Reveals an Epitope with Flavivirus Immunodiagnostic Potential in Peptide Microarrays. Int J Mol Sci 2019; 20:ijms20081921. [PMID: 31003530 PMCID: PMC6514720 DOI: 10.3390/ijms20081921] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 01/14/2023] Open
Abstract
The mosquito-borne viral disease caused by the Dengue virus is an expanding global threat. Diagnosis in low-resource-settings and epidemiological surveillance urgently requires new immunoprobes for serological tests. Structure-based epitope prediction is an efficient method to design diagnostic peptidic probes able to reveal specific antibodies elicited in response to infections in patients’ sera. In this study, we focused on the Dengue viral envelope protein (E); computational analyses ranging from extensive Molecular Dynamics (MD) simulations and energy-decomposition-based prediction of potentially immunoreactive regions identified putative epitope sequences. Interestingly, one such epitope showed internal dynamic and energetic properties markedly different from those of other predicted sequences. The epitope was thus synthesized as a linear peptide, modified for chemoselective immobilization on microarrays and used in a serological assay to discriminate Dengue-infected individuals from healthy controls. The synthetic epitope probe showed a diagnostic performance comparable to that of the full antigen in terms of specificity and sensitivity. Given the high level of sequence identity among different flaviviruses, the epitope was immune-reactive towards Zika-infected sera as well. The results are discussed in the context of the quest for new possible structure-dynamics-based rules for the prediction of the immunoreactivity of selected antigenic regions with potential pan-flavivirus immunodiagnostic capacity.
Collapse
|