1
|
Martinez-Sanchez A, Lamm L, Jasnin M, Phelippeau H. Simulating the Cellular Context in Synthetic Datasets for Cryo-Electron Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3742-3754. [PMID: 38717878 DOI: 10.1109/tmi.2024.3398401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Cryo-electron tomography (cryo-ET) allows to visualize the cellular context at macromolecular level. To date, the impossibility of obtaining a reliable ground truth is limiting the application of deep learning-based image processing algorithms in this field. As a consequence, there is a growing demand of realistic synthetic datasets for training deep learning algorithms. In addition, besides assisting the acquisition and interpretation of experimental data, synthetic tomograms are used as reference models for cellular organization analysis from cellular tomograms. Current simulators in cryo-ET focus on reproducing distortions from image acquisition and tomogram reconstruction, however, they can not generate many of the low order features present in cellular tomograms. Here we propose several geometric and organization models to simulate low order cellular structures imaged by cryo-ET. Specifically, clusters of any known cytosolic or membrane-bound macromolecules, membranes with different geometries as well as different filamentous structures such as microtubules or actin-like networks. Moreover, we use parametrizable stochastic models to generate a high diversity of geometries and organizations to simulate representative and generalized datasets, including very crowded environments like those observed in native cells. These models have been implemented in a multiplatform open-source Python package, including scripts to generate cryo-tomograms with adjustable sizes and resolutions. In addition, these scripts provide also distortion-free density maps besides the ground truth in different file formats for efficient access and advanced visualization. We show that such a realistic synthetic dataset can be readily used to train generalizable deep learning algorithms.
Collapse
|
2
|
Chen X, Xu S, Chu B, Guo J, Zhang H, Sun S, Song L, Feng XQ. Applying Spatiotemporal Modeling of Cell Dynamics to Accelerate Drug Development. ACS NANO 2024; 18:29311-29336. [PMID: 39420743 DOI: 10.1021/acsnano.4c12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cells act as physical computational programs that utilize input signals to orchestrate molecule-level protein-protein interactions (PPIs), generating and responding to forces, ultimately shaping all of the physiological and pathophysiological behaviors. Genome editing and molecule drugs targeting PPIs hold great promise for the treatments of diseases. Linking genes and molecular drugs with protein-performed cellular behaviors is a key yet challenging issue due to the wide range of spatial and temporal scales involved. Building predictive spatiotemporal modeling systems that can describe the dynamic behaviors of cells intervened by genome editing and molecular drugs at the intersection of biology, chemistry, physics, and computer science will greatly accelerate pharmaceutical advances. Here, we review the mechanical roles of cytoskeletal proteins in orchestrating cellular behaviors alongside significant advancements in biophysical modeling while also addressing the limitations in these models. Then, by integrating generative artificial intelligence (AI) with spatiotemporal multiscale biophysical modeling, we propose a computational pipeline for developing virtual cells, which can simulate and evaluate the therapeutic effects of drugs and genome editing technologies on various cell dynamic behaviors and could have broad biomedical applications. Such virtual cell modeling systems might revolutionize modern biomedical engineering by moving most of the painstaking wet-laboratory effort to computer simulations, substantially saving time and alleviating the financial burden for pharmaceutical industries.
Collapse
Affiliation(s)
- Xindong Chen
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- BioMap, Beijing 100144, China
| | - Shihao Xu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bizhu Chu
- School of Pharmacy, Shenzhen University, Shenzhen 518055, China
- Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jing Guo
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen 361000, China
| | - Huikai Zhang
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Shuyi Sun
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Le Song
- BioMap, Beijing 100144, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Kay RR, Lutton JE, King JS, Bretschneider T. Making cups and rings: the 'stalled-wave' model for macropinocytosis. Biochem Soc Trans 2024; 52:1785-1794. [PMID: 38934501 PMCID: PMC7616836 DOI: 10.1042/bst20231426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Macropinocytosis is a broadly conserved endocytic process discovered nearly 100 years ago, yet still poorly understood. It is prominent in cancer cell feeding, immune surveillance, uptake of RNA vaccines and as an invasion route for pathogens. Macropinocytic cells extend large cups or flaps from their plasma membrane to engulf droplets of medium and trap them in micron-sized vesicles. Here they are digested and the products absorbed. A major problem - discussed here - is to understand how cups are shaped and closed. Recently, lattice light-sheet microscopy has given a detailed description of this process in Dictyostelium amoebae, leading to the 'stalled-wave' model for cup formation and closure. This is based on membrane domains of PIP3 and active Ras and Rac that occupy the inner face of macropinocytic cups and are readily visible with suitable reporters. These domains attract activators of dendritic actin polymerization to their periphery, creating a ring of protrusive F-actin around themselves, thus shaping the walls of the cup. As domains grow, they drive a wave of actin polymerization across the plasma membrane that expands the cup. When domains stall, continued actin polymerization under the membrane, combined with increasing membrane tension in the cup, drives closure at lip or base. Modelling supports the feasibility of this scheme. No specialist coat proteins or contractile activities are required to shape and close cups: rings of actin polymerization formed around PIP3 domains that expand and stall seem sufficient. This scheme may be widely applicable and begs many biochemical questions.
Collapse
Affiliation(s)
- Robert R Kay
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, U.K
| | - Judith E Lutton
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, U.K
| | - Jason S King
- Department of Biomedical Sciences, Western Bank, Sheffield S10 2TN, U.K
| | - Till Bretschneider
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
4
|
Jawahar A, Vermeil J, Heuvingh J, du Roure O, Piel M. The third dimension of the actin cortex. Curr Opin Cell Biol 2024; 89:102381. [PMID: 38905917 DOI: 10.1016/j.ceb.2024.102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/23/2024]
Abstract
The actin cortex, commonly described as a thin 2-dimensional layer of actin filaments beneath the plasma membrane, is beginning to be recognized as part of a more dynamic and three-dimensional composite material. In this review, we focus on the elements that contribute to the three-dimensional architecture of the actin cortex. We also argue that actin-rich structures such as filopodia and stress fibers can be viewed as specialized integral parts of the 3D actin cortex. This broadens our definition of the cortex, shifting from its simplified characterization as a thin, two-dimensional layer of actin filaments.
Collapse
Affiliation(s)
- Anumita Jawahar
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France; Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France.
| | - Joseph Vermeil
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France; Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| | - Julien Heuvingh
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Olivia du Roure
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| |
Collapse
|
5
|
Liu J. Roles of membrane mechanics-mediated feedback in membrane traffic. Curr Opin Cell Biol 2024; 89:102401. [PMID: 39018789 PMCID: PMC11297666 DOI: 10.1016/j.ceb.2024.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/19/2024]
Abstract
Synthesizing the recent progresses, we present our perspectives on how local modulations of membrane curvature, tension, and bending energy define the feedback controls over membrane traffic processes. We speculate the potential mechanisms of, and the control logic behind, the different membrane mechanics-mediated feedback in endocytosis and exo-endocytosis coupling. We elaborate the path forward with the open questions for theoretical considerations and the grand challenges for experimental validations.
Collapse
Affiliation(s)
- Jian Liu
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
6
|
Chua XL, Tong CS, Su M, Xǔ XJ, Xiao S, Wu X, Wu M. Competition and synergy of Arp2/3 and formins in nucleating actin waves. Cell Rep 2024; 43:114423. [PMID: 38968072 PMCID: PMC11378572 DOI: 10.1016/j.celrep.2024.114423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/23/2024] [Accepted: 06/14/2024] [Indexed: 07/07/2024] Open
Abstract
Actin assembly and dynamics are crucial for maintaining cell structure and changing physiological states. The broad impact of actin on various cellular processes makes it challenging to dissect the specific role of actin regulatory proteins. Using actin waves that propagate on the cortex of mast cells as a model, we discovered that formins (FMNL1 and mDia3) are recruited before the Arp2/3 complex in actin waves. GTPase Cdc42 interactions drive FMNL1 oscillations, with active Cdc42 and the constitutively active mutant of FMNL1 capable of forming waves on the plasma membrane independently of actin waves. Additionally, the delayed recruitment of Arp2/3 antagonizes FMNL1 and active Cdc42. This antagonism is not due to competition for monomeric actin but rather for their common upstream regulator, active Cdc42, whose levels are negatively regulated by Arp2/3 via SHIP1 recruitment. Collectively, our study highlights the complex feedback loops in the dynamic control of the actin cytoskeletal network.
Collapse
Affiliation(s)
- Xiang Le Chua
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557, Singapore
| | - Chee San Tong
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557, Singapore
| | - Maohan Su
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557, Singapore; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - X J Xǔ
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Physics, Yale University, New Haven, CT 06511, USA
| | - Shengping Xiao
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557, Singapore
| | - Xudong Wu
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Min Wu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557, Singapore; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.
| |
Collapse
|
7
|
Schneider J, Jasnin M. Molecular architecture of the actin cytoskeleton: From single cells to whole organisms using cryo-electron tomography. Curr Opin Cell Biol 2024; 88:102356. [PMID: 38608425 DOI: 10.1016/j.ceb.2024.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Cryo-electron tomography (cryo-ET) has begun to provide intricate views of cellular architecture at unprecedented resolutions. Considerable efforts are being made to further optimize and automate the cryo-ET workflow, from sample preparation to data acquisition and analysis, to enable visual proteomics inside of cells. Here, we will discuss the latest advances in cryo-ET that go hand in hand with their application to the actin cytoskeleton. The development of deep learning tools for automated annotation of tomographic reconstructions and the serial lift-out sample preparation procedure will soon make it possible to perform high-resolution structural biology in a whole new range of samples, from multicellular organisms to organoids and tissues.
Collapse
Affiliation(s)
- Jonathan Schneider
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Helmholtz Pioneer Campus, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Marion Jasnin
- Helmholtz Pioneer Campus, Helmholtz Munich, 85764 Neuherberg, Germany; Department of Chemistry, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
8
|
Li W, Li A, Yu B, Zhang X, Liu X, White KL, Stevens RC, Baumeister W, Sali A, Jasnin M, Sun L. In situ structure of actin remodeling during glucose-stimulated insulin secretion using cryo-electron tomography. Nat Commun 2024; 15:1311. [PMID: 38346988 PMCID: PMC10861521 DOI: 10.1038/s41467-024-45648-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
Actin mediates insulin secretion in pancreatic β-cells through remodeling. Hampered by limited resolution, previous studies have offered an ambiguous depiction as depolymerization and repolymerization. We report the in situ structure of actin remodeling in INS-1E β-cells during glucose-stimulated insulin secretion at nanoscale resolution. After remodeling, the actin filament network at the cell periphery exhibits three marked differences: 12% of actin filaments reorient quasi-orthogonally to the ventral membrane; the filament network mainly remains as cell-stabilizing bundles but partially reconfigures into a less compact arrangement; actin filaments anchored to the ventral membrane reorganize from a "netlike" to a "blooming" architecture. Furthermore, the density of actin filaments and microtubules around insulin secretory granules decreases, while actin filaments and microtubules become more densely packed. The actin filament network after remodeling potentially precedes the transport and release of insulin secretory granules. These findings advance our understanding of actin remodeling and its role in glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- Weimin Li
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Angdi Li
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Bing Yu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaoxiao Zhang
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaoyan Liu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Kate L White
- Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
| | - Raymond C Stevens
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wolfgang Baumeister
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany.
| | - Andrej Sali
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA.
| | - Marion Jasnin
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764, Neuherberg, Germany.
- Department of Chemistry, Technical University of Munich, 85748, Garching, Germany.
| | - Liping Sun
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
9
|
Arima T, Okita K, Yumura S. Dynamics of actomyosin filaments in the contractile ring revealed by ultrastructural analysis. Genes Cells 2023; 28:845-856. [PMID: 37844904 DOI: 10.1111/gtc.13073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023]
Abstract
Cytokinesis, the final process of cell division, involves the accumulation of actin and myosin II filaments at the cell's equator, forming a contractile ring that facilitates the division into two daughter cells. While light microscopy has provided valuable insights into the molecular mechanism of this process, it has limitations in examining individual filaments in vivo. In this study, we utilized transmission electron microscopy to observe actin and myosin II filaments in the contractile rings of dividing Dictyostelium cells. To synchronize cytokinesis, we developed a novel method that allowed us to visualize dividing cells undergoing cytokinesis with a frequency as high as 18%. This improvement enabled us to examine the lengths and alignments of individual filaments within the contractile rings. As the furrow constricted, the length of actin filaments gradually decreased. Moreover, both actin and myosin II filaments reoriented perpendicularly to the long axis during furrow constriction. Through experiments involving myosin II null cells, we discovered that myosin II plays a role in regulating both the lengths and alignments of actin filaments. Additionally, dynamin-like protein A was found to contribute to regulating the length of actin filaments, while cortexillins were involved in regulating their alignment.
Collapse
Affiliation(s)
- Takeru Arima
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Keisuke Okita
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
10
|
Le Chua X, Tong CS, Xǔ XJ, Su M, Xiao S, Wu X, Wu M. Competition and Synergy of Arp2/3 and Formins in Nucleating Actin Waves. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557508. [PMID: 37745345 PMCID: PMC10515902 DOI: 10.1101/2023.09.13.557508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The assembly and disassembly of actin filaments and their regulatory proteins are crucial for maintaining cell structure or changing physiological state. However, because of the tremendous global impact of actin on diverse cellular processes, dissecting the specific role of actin regulatory proteins remains challenging. In this study, we employ actin waves that propagate on the cortex of mast cell to investigate the interplay between formins and the Arp2/3 complex in the nucleating and turnover of cortical actin. Our findings reveal that the recruitment of FMNL1 and mDia3 precedes the Arp2/3 complex in cortical actin waves. Membrane and GTPase-interaction can drive oscillations of FMNL1 in an actin-dependent manner, but active Cdc42 waves or constitutively-active FMNL1 mutant can form without actin waves. In addition to the apparent coordinated assembly of formins and Arp2/3, we further reveal their antagonism, where inhibition of Arp2/3 complex by CK-666 led to a transient increase in the recruitment of formins and actin polymerization. Our analysis suggest that the antagonism could not be explained for the competition between FMNL1 and Arp2/3 for monomeric actin. Rather, it is regulated by a limited pool of their common upstream regulator, Cdc42, whose level is negatively regulated by Arp2/3. Collectively, our study highlights the multifaceted interactions, cooperative or competitive, between formins and Arp2/3 complex, in the intricate and dynamic control of actin cytoskeletal network.
Collapse
Affiliation(s)
- Xiang Le Chua
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557
| | - Chee San Tong
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557
| | - X J Xǔ
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Physics, Yale University, New Haven, CT 06511, USA
| | - Maohan Su
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Shengping Xiao
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557
| | - Xudong Wu
- School of Life Sciences, Westlake University, Hangzhou, China 310024
| | - Min Wu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557
- Department of Physics, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
11
|
Ecke M, Prassler J, Gerisch G. Fluctuations of formin binding in the generation of membrane patterns. Biophys J 2023; 122:3386-3394. [PMID: 37488927 PMCID: PMC10465725 DOI: 10.1016/j.bpj.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023] Open
Abstract
Circular actin waves that propagate on the substrate-attached membrane of Dictyostelium cells separate two distinct membrane domains from each other: an inner territory rich in phosphatidyl-(3,4,5) trisphosphate (PIP3) and an external area decorated with the PIP3-degrading 3-phosphatase PTEN. During wave propagation, the inner territory increases at the expense of the external area. Beyond a size limit, the inner territory becomes unstable, breaking into an inner and an external domain. The sharp boundary between these domains is demarcated by the insertion of an actin wave. During the conversion of inner territory to external area, the state of the membrane fluctuates, as visualized by dynamic landscapes of formin B binding. Here we analyze the formin B fluctuations in relation to three markers of the membrane state: activated Ras, PIP3, and PTEN.
Collapse
Affiliation(s)
- Mary Ecke
- Cell Dynamics Group, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Jana Prassler
- Cell Dynamics Group, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Günther Gerisch
- Cell Dynamics Group, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| |
Collapse
|
12
|
Lutton JE, Coker HLE, Paschke P, Munn CJ, King JS, Bretschneider T, Kay RR. Formation and closure of macropinocytic cups in Dictyostelium. Curr Biol 2023; 33:3083-3096.e6. [PMID: 37379843 PMCID: PMC7614961 DOI: 10.1016/j.cub.2023.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023]
Abstract
Macropinocytosis is a conserved endocytic process by which cells engulf droplets of medium into micron-sized vesicles. We use light-sheet microscopy to define an underlying set of principles by which macropinocytic cups are shaped and closed in Dictyostelium amoebae. Cups form around domains of PIP3 stretching almost to their lip and are supported by a specialized F-actin scaffold from lip to base. They are shaped by a ring of actin polymerization created by recruiting Scar/WAVE and Arp2/3 around PIP3 domains, but how cups evolve over time to close and form a vesicle is unknown. Custom 3D analysis shows that PIP3 domains expand from small origins, capturing new membrane into the cup, and crucially, that cups close when domain expansion stalls. We show that cups can close in two ways: either at the lip, by inwardly directed actin polymerization, or the base, by stretching and delamination of the membrane. This provides the basis for a conceptual mechanism whereby closure is brought about by a combination of stalled cup expansion, continued actin polymerization at the lip, and membrane tension. We test this through the use of a biophysical model, which can recapitulate both forms of cup closure and explain how 3D cup structures evolve over time to mediate engulfment.
Collapse
Affiliation(s)
- Judith E Lutton
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
| | - Helena L E Coker
- CAMDU, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Peggy Paschke
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Jason S King
- School of Biosciences, Western Bank, Sheffield S10 2TN, UK.
| | - Till Bretschneider
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.
| | - Robert R Kay
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
13
|
Beta C, Edelstein-Keshet L, Gov N, Yochelis A. From actin waves to mechanism and back: How theory aids biological understanding. eLife 2023; 12:e87181. [PMID: 37428017 DOI: 10.7554/elife.87181] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Actin dynamics in cell motility, division, and phagocytosis is regulated by complex factors with multiple feedback loops, often leading to emergent dynamic patterns in the form of propagating waves of actin polymerization activity that are poorly understood. Many in the actin wave community have attempted to discern the underlying mechanisms using experiments and/or mathematical models and theory. Here, we survey methods and hypotheses for actin waves based on signaling networks, mechano-chemical effects, and transport characteristics, with examples drawn from Dictyostelium discoideum, human neutrophils, Caenorhabditis elegans, and Xenopus laevis oocytes. While experimentalists focus on the details of molecular components, theorists pose a central question of universality: Are there generic, model-independent, underlying principles, or just boundless cell-specific details? We argue that mathematical methods are equally important for understanding the emergence, evolution, and persistence of actin waves and conclude with a few challenges for future studies.
Collapse
Affiliation(s)
- Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | | | - Nir Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Arik Yochelis
- Swiss Institute for Dryland Environmental and Energy Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
- Department of Physics, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
14
|
Laurent T, Carlson LA. The organization of double-stranded RNA in the chikungunya virus replication organelle. PLoS Negl Trop Dis 2023; 17:e0011404. [PMID: 37406010 DOI: 10.1371/journal.pntd.0011404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/22/2023] [Indexed: 07/07/2023] Open
Abstract
Alphaviruses are mosquito-borne, positive-sense single-stranded RNA viruses. Amongst the alphaviruses, chikungunya virus is notable as a large source of human illness, especially in tropical and subtropical regions. When they invade a cell, alphaviruses generate dedicated organelles for viral genome replication, so-called spherules. Spherules form as outward-facing buds at the plasma membrane, and it has recently been shown that the thin membrane neck that connects this membrane bud with the cytoplasm is guarded by a two-megadalton protein complex that contains all the enzymatic functions necessary for RNA replication. The lumen of the spherules contains a single copy of the negative-strand template RNA, present in a duplex with newly synthesized positive-sense RNA. Less is known about the organization of this double-stranded RNA as compared to the protein components of the spherule. Here, we analyzed cryo-electron tomograms of chikungunya virus spherules in terms of the organization of the double-stranded RNA replication intermediate. We find that the double-stranded RNA has a shortened apparent persistence length as compared to unconstrained double-stranded RNA. Around half of the genome is present in either of five conformations identified by subtomogram classification, each representing a relatively straight segment of ~25-32 nm. Finally, the RNA occupies the spherule lumen at a homogeneous density, but has a preferred orientation to be perpendicular to a vector pointing from the membrane neck towards the spherule center. Taken together, this analysis lays another piece of the puzzle of the highly coordinated alphavirus genome replication.
Collapse
Affiliation(s)
- Timothée Laurent
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå, Sweden
| | - Lars-Anders Carlson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå, Sweden
| |
Collapse
|
15
|
Berger C, Premaraj N, Ravelli RBG, Knoops K, López-Iglesias C, Peters PJ. Cryo-electron tomography on focused ion beam lamellae transforms structural cell biology. Nat Methods 2023; 20:499-511. [PMID: 36914814 DOI: 10.1038/s41592-023-01783-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 01/20/2023] [Indexed: 03/16/2023]
Abstract
Cryogenic electron microscopy and data processing enable the determination of structures of isolated macromolecules to near-atomic resolution. However, these data do not provide structural information in the cellular environment where macromolecules perform their native functions, and vital molecular interactions can be lost during the isolation process. Cryogenic focused ion beam (FIB) fabrication generates thin lamellae of cellular samples and tissues, enabling structural studies on the near-native cellular interior and its surroundings by cryogenic electron tomography (cryo-ET). Cellular cryo-ET benefits from the technological developments in electron microscopes, detectors and data processing, and more in situ structures are being obtained and at increasingly higher resolution. In this Review, we discuss recent studies employing cryo-ET on FIB-generated lamellae and the technological developments in ultrarapid sample freezing, FIB fabrication of lamellae, tomography, data processing and correlative light and electron microscopy that have enabled these studies. Finally, we explore the future of cryo-ET in terms of both methods development and biological application.
Collapse
Affiliation(s)
- Casper Berger
- Division of Nanoscopy, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
- Structural Biology, The Rosalind Franklin Institute, Didcot, UK
| | - Navya Premaraj
- Division of Nanoscopy, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Raimond B G Ravelli
- Division of Nanoscopy, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Kèvin Knoops
- Division of Nanoscopy, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Carmen López-Iglesias
- Division of Nanoscopy, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Peter J Peters
- Division of Nanoscopy, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
16
|
Deciphering the molecular mechanisms of actin cytoskeleton regulation in cell migration using cryo-EM. Biochem Soc Trans 2023; 51:87-99. [PMID: 36695514 PMCID: PMC9987995 DOI: 10.1042/bst20220221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
The actin cytoskeleton plays a key role in cell migration and cellular morphodynamics in most eukaryotes. The ability of the actin cytoskeleton to assemble and disassemble in a spatiotemporally controlled manner allows it to form higher-order structures, which can generate forces required for a cell to explore and navigate through its environment. It is regulated not only via a complex synergistic and competitive interplay between actin-binding proteins (ABP), but also by filament biochemistry and filament geometry. The lack of structural insights into how geometry and ABPs regulate the actin cytoskeleton limits our understanding of the molecular mechanisms that define actin cytoskeleton remodeling and, in turn, impact emerging cell migration characteristics. With the advent of cryo-electron microscopy (cryo-EM) and advanced computational methods, it is now possible to define these molecular mechanisms involving actin and its interactors at both atomic and ultra-structural levels in vitro and in cellulo. In this review, we will provide an overview of the available cryo-EM methods, applicable to further our understanding of the actin cytoskeleton, specifically in the context of cell migration. We will discuss how these methods have been employed to elucidate ABP- and geometry-defined regulatory mechanisms in initiating, maintaining, and disassembling cellular actin networks in migratory protrusions.
Collapse
|
17
|
A network of mixed actin polarity in the leading edge of spreading cells. Commun Biol 2022; 5:1338. [PMID: 36473943 PMCID: PMC9727120 DOI: 10.1038/s42003-022-04288-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Physical interactions of cells with the underlying extracellular matrix (ECM) play key roles in multiple cellular processes. The actin cytoskeleton is a central driver and regulator of cellular dynamics, that produces membrane-protrusions such as lamellipodia and filopodia. Here, we examined actin organization in expanding lamellipodia during early stages of cell spreading. To gain insight into the 3D actin organization, we plated fibroblasts on galectin-8 coated EM grids, an ECM protein presents in disease states. We then combined cryo-electron tomography with advanced image processing tools for reconstructing the structure of F-actin in the lamellipodia. This approach enabled us to resolve the polarity and orientation of filaments, and the structure of the Arp2/3 complexes associated with F-actin branches. We show that F-actin in lamellipodial protrusions forms a dense network with three distinct sub-domains. One consists primarily of radial filaments, with their barbed ends pointing towards the membrane, the other is enriched with parallel filaments that run between the radial fibers, in addition to an intermediate sub-domain. Surprisingly, a minor, yet significant (~10%) population of actin filaments, are oriented with their barbed-ends towards the cell center. Our results provide structural insights into F-actin assembly and dynamic reorganization in the leading edge of spreading cells.
Collapse
|
18
|
Yochelis A, Flemming S, Beta C. Versatile Patterns in the Actin Cortex of Motile Cells: Self-Organized Pulses Can Coexist with Macropinocytic Ring-Shaped Waves. PHYSICAL REVIEW LETTERS 2022; 129:088101. [PMID: 36053696 DOI: 10.1103/physrevlett.129.088101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Self-organized patterns in the actin cytoskeleton are essential for eukaryotic cellular life. They are the building blocks of many functional structures that often operate simultaneously to facilitate, for example, nutrient uptake and movement of cells. However, identifying how qualitatively distinct actin patterns can coexist remains a challenge. Using bifurcation theory of a mass conserved activator-inhibitor system, we uncover a generic mechanism of how different actin waves-traveling waves and excitable pulses-organize and simultaneously emerge. Live-cell imaging experiments indeed reveal that narrow, planar, and fast-moving excitable pulses may coexist with ring-shaped macropinocytic actin waves in the cortex of motile amoeboid cells.
Collapse
Affiliation(s)
- Arik Yochelis
- Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
- Department of Physics, Ben-Gurion University of the Negev, Be'er Sheva 8410501, Israel
| | - Sven Flemming
- Institute of Physics and Astronomy, University of Potsdam, Potsdam 14476, Germany
| | - Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|
19
|
Jasnin M, Hervy J, Balor S, Bouissou A, Proag A, Voituriez R, Schneider J, Mangeat T, Maridonneau-Parini I, Baumeister W, Dmitrieff S, Poincloux R. Elasticity of podosome actin networks produces nanonewton protrusive forces. Nat Commun 2022; 13:3842. [PMID: 35789161 PMCID: PMC9253342 DOI: 10.1038/s41467-022-30652-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/10/2022] [Indexed: 11/26/2022] Open
Abstract
Actin filaments assemble into force-generating systems involved in diverse cellular functions, including cell motility, adhesion, contractility and division. It remains unclear how networks of actin filaments, which individually generate piconewton forces, can produce forces reaching tens of nanonewtons. Here we use in situ cryo-electron tomography to unveil how the nanoscale architecture of macrophage podosomes enables basal membrane protrusion. We show that the sum of the actin polymerization forces at the membrane is not sufficient to explain podosome protrusive forces. Quantitative analysis of podosome organization demonstrates that the core is composed of a dense network of bent actin filaments storing elastic energy. Theoretical modelling of the network as a spring-loaded elastic material reveals that it exerts forces of a few tens of nanonewtons, in a range similar to that evaluated experimentally. Thus, taking into account not only the interface with the membrane but also the bulk of the network, is crucial to understand force generation by actin machineries. Our integrative approach sheds light on the elastic behavior of dense actin networks and opens new avenues to understand force production inside cells.
Collapse
Affiliation(s)
- Marion Jasnin
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Jordan Hervy
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Stéphanie Balor
- Plateforme de Microscopie Électronique Intégrative, Centre de Biologie Intégrative, CNRS, UPS, Toulouse, France
| | - Anaïs Bouissou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Amsha Proag
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Jonathan Schneider
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Thomas Mangeat
- LITC Core Facility, Centre de Biologie Integrative, Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | | | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Serge Dmitrieff
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France.
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
20
|
Schneider J, Jasnin M. Capturing actin assemblies in cells using in situ cryo-electron tomography. Eur J Cell Biol 2022; 101:151224. [PMID: 35500467 DOI: 10.1016/j.ejcb.2022.151224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022] Open
Abstract
Actin contributes to an exceptionally wide range of cellular processes through the assembly and disassembly of highly dynamic and ordered structures. Visualizing these structures in cells can help us understand how the molecular players of the actin machinery work together to produce force-generating systems. In recent years, cryo-electron tomography (cryo-ET) has become the method of choice for structural analysis of the cell interior at the molecular scale. Here we review advances in cryo-ET workflows that have enabled this transformation, especially the automation of sample preparation procedures, data collection, and processing. We discuss new structural analyses of dynamic actin assemblies in cryo-preserved cells, which have provided mechanistic insights into actin assembly and function at the nanoscale. Finally, we highlight the latest visual proteomics studies of actin filaments and their interactors reaching sub-nanometer resolutions in cells.
Collapse
Affiliation(s)
- Jonathan Schneider
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Marion Jasnin
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
21
|
Serwas D, Akamatsu M, Moayed A, Vegesna K, Vasan R, Hill JM, Schöneberg J, Davies KM, Rangamani P, Drubin DG. Mechanistic insights into actin force generation during vesicle formation from cryo-electron tomography. Dev Cell 2022; 57:1132-1145.e5. [PMID: 35504288 PMCID: PMC9165722 DOI: 10.1016/j.devcel.2022.04.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/18/2022] [Accepted: 04/07/2022] [Indexed: 01/26/2023]
Abstract
Actin assembly provides force for a multitude of cellular processes. Compared to actin-assembly-based force production during cell migration, relatively little is understood about how actin assembly generates pulling forces for vesicle formation. Here, cryo-electron tomography identified actin filament number, organization, and orientation during clathrin-mediated endocytosis in human SK-MEL-2 cells, showing that force generation is robust despite variance in network organization. Actin dynamics simulations incorporating a measured branch angle indicate that sufficient force to drive membrane internalization is generated through polymerization and that assembly is triggered from ∼4 founding "mother" filaments, consistent with tomography data. Hip1R actin filament anchoring points are present along the entire endocytic invagination, where simulations show that it is key to pulling force generation, and along the neck, where it targets filament growth and makes internalization more robust. Actin organization described here allowed direct translation of structure to mechanism with broad implications for other actin-driven processes.
Collapse
Affiliation(s)
- Daniel Serwas
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| | - Matthew Akamatsu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Amir Moayed
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Karthik Vegesna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ritvik Vasan
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer M Hill
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Johannes Schöneberg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Karen M Davies
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
22
|
Martinez-Sanchez A, Baumeister W, Lučić V. Statistical spatial analysis for cryo-electron tomography. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 218:106693. [PMID: 35240361 DOI: 10.1016/j.cmpb.2022.106693] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/23/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Cryo-electron tomography (cryo-ET) is uniquely suited to precisely localize macromolecular complexes in situ, that is in a close-to-native state within their cellular compartments, in three-dimensions at high resolution. Point pattern analysis (PPA) allows quantitative characterization of the spatial organization of particles. However, current implementations of PPA functions are not suitable for applications to cryo-ET data because they do not consider the real, typically irregular 3D shape of cellular compartments and molecular complexes. Here, we designed and implemented first and the second-order, uni- and bivariate PPA functions in a Python package for statistical spatial analysis of particles located in three dimensional regions of arbitrary shape, such as those encountered in cellular cryo-ET imaging (PyOrg). To validate the implemented functions, we applied them to specially designed synthetic datasets. This allowed us to find the algorithmic solutions that provide the best accuracy and computational performance, and to evaluate the precision of the implemented functions. Applications to experimental data showed that despite the higher computational demand, the use of the second-order functions is advantageous to the first-order ones, because they allow characterization of the particle organization and statistical inference over a range of distance scales, as well as the comparative analysis between experimental groups comprising multiple tomograms. Altogether, PyOrg is a versatile, precise, and efficient open-source software for reliable quantitative characterization of macromolecular organization within cellular compartments imaged in situ by cryo-ET, as well as to other 3D imaging systems where real-size particles are located within regions possessing complex geometry.
Collapse
Affiliation(s)
- Antonio Martinez-Sanchez
- Department of Computer Sciences, Faculty of Sciences - Campus Llamaquique, University of Oviedo, Oviedo 33007, Spain; Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, Oviedo 33011, Spain; Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany; Department of Molecular Structural Biology, Max Planck Institute for Biochemistry, Am Klopferespitz 18, Martinsried 82152, Germany.
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute for Biochemistry, Am Klopferespitz 18, Martinsried 82152, Germany
| | - Vladan Lučić
- Department of Molecular Structural Biology, Max Planck Institute for Biochemistry, Am Klopferespitz 18, Martinsried 82152, Germany.
| |
Collapse
|
23
|
Abstract
The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers-actin filaments, microtubules, and intermediate filaments-are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher-order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton.This article describes application of rotary shadowing (or platinum replica ) EM (PREM) for visualization of the cytoskeleton . The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction (or mechanical "unroofing") of cells to expose their cytoskeleton , chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved and individual proteins can be identified by immunogold labeling. More importantly, PREM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high-resolution structural organization of the cytoskeleton in the same cell.
Collapse
Affiliation(s)
- Tatyana Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Kay RR, Lutton J, Coker H, Paschke P, King JS, Bretschneider T. The Amoebal Model for Macropinocytosis. Subcell Biochem 2022; 98:41-59. [PMID: 35378702 DOI: 10.1007/978-3-030-94004-1_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Macropinocytosis is a relatively unexplored form of large-scale endocytosis driven by the actin cytoskeleton. Dictyostelium amoebae form macropinosomes from cups extended from the plasma membrane, then digest their contents and absorb the nutrients in the endo-lysosomal system. They use macropinocytosis for feeding, maintaining a high rate of fluid uptake that makes assay and experimentation easy. Mutants collected over the years identify cytoskeletal and signalling proteins required for macropinocytosis. Cups are organized around plasma membrane domains of intense PIP3, Ras and Rac signalling, proper formation of which also depends on the RasGAPs NF1 and RGBARG, PTEN, the PIP3-regulated protein kinases Akt and SGK and their activators PDK1 and TORC2, Rho proteins, plus other components yet to be identified. This PIP3 domain directs dendritic actin polymerization to the extending lip of macropinocytic cups by recruiting a ring of the SCAR/WAVE complex around itself and thus activating the Arp2/3 complex. The dynamics of PIP3 domains are proposed to shape macropinocytic cups from start to finish. The role of the Ras-PI3-kinase module in organizing feeding structures in unicellular organisms most likely predates its adoption into growth factor signalling, suggesting an evolutionary origin for growth factor signalling.
Collapse
Affiliation(s)
- Robert R Kay
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Josiah Lutton
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Helena Coker
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Peggy Paschke
- MRC Laboratory of Molecular Biology, Cambridge, UK.,Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Jason S King
- School of Biomedical Sciences, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
25
|
Microtopographical guidance of macropinocytic signaling patches. Proc Natl Acad Sci U S A 2021; 118:2110281118. [PMID: 34876521 PMCID: PMC8685668 DOI: 10.1073/pnas.2110281118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/28/2022] Open
Abstract
Morphologies of amoebae and immune cells are highly deformable and dynamic, which facilitates migration in various terrains, as well as ingestion of extracellular solutes and particles. It remains largely unexplored whether and how the underlying membrane protrusions are triggered and guided by the geometry of the surface in contact. In this study, we show that in Dictyostelium, the precursor of a structure called macropinocytic cup, which has been thought to be a constitutive process for the uptake of extracellular fluid, is triggered by micrometer-scale surface features. Imaging analysis and computational simulations demonstrate how the topographical dependence of the self-organizing dynamics supports efficient guidance and capturing of the membrane protrusion and hence movement of an entire cell along such surface features. In fast-moving cells such as amoeba and immune cells, dendritic actin filaments are spatiotemporally regulated to shape large-scale plasma membrane protrusions. Despite their importance in migration, as well as in particle and liquid ingestion, how their dynamics are affected by micrometer-scale features of the contact surface is still poorly understood. Here, through quantitative image analysis of Dictyostelium on microfabricated surfaces, we show that there is a distinct mode of topographical guidance directed by the macropinocytic membrane cup. Unlike other topographical guidance known to date that depends on nanometer-scale curvature sensing protein or stress fibers, the macropinocytic membrane cup is driven by the Ras/PI3K/F-actin signaling patch and its dependency on the micrometer-scale topographical features, namely PI3K/F-actin–independent accumulation of Ras-GTP at the convex curved surface, PI3K-dependent patch propagation along the convex edge, and its actomyosin-dependent constriction at the concave edge. Mathematical model simulations demonstrate that the topographically dependent initiation, in combination with the mutually defining patch patterning and the membrane deformation, gives rise to the topographical guidance. Our results suggest that the macropinocytic cup is a self-enclosing structure that can support liquid ingestion by default; however, in the presence of structured surfaces, it is directed to faithfully trace bent and bifurcating ridges for particle ingestion and cell guidance.
Collapse
|
26
|
Dimchev G, Amiri B, Fäßler F, Falcke M, Schur FK. Computational toolbox for ultrastructural quantitative analysis of filament networks in cryo-ET data. J Struct Biol 2021; 213:107808. [PMID: 34742832 DOI: 10.1016/j.jsb.2021.107808] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/24/2021] [Accepted: 10/31/2021] [Indexed: 11/29/2022]
Abstract
A precise quantitative description of the ultrastructural characteristics underlying biological mechanisms is often key to their understanding. This is particularly true for dynamic extra- and intracellular filamentous assemblies, playing a role in cell motility, cell integrity, cytokinesis, tissue formation and maintenance. For example, genetic manipulation or modulation of actin regulatory proteins frequently manifests in changes of the morphology, dynamics, and ultrastructural architecture of actin filament-rich cell peripheral structures, such as lamellipodia or filopodia. However, the observed ultrastructural effects often remain subtle and require sufficiently large datasets for appropriate quantitative analysis. The acquisition of such large datasets has been enabled by recent advances in high-throughput cryo-electron tomography (cryo-ET) methods. This also necessitates the development of complementary approaches to maximize the extraction of relevant biological information. We have developed a computational toolbox for the semi-automatic quantification of segmented and vectorized filamentous networks from pre-processed cryo-electron tomograms, facilitating the analysis and cross-comparison of multiple experimental conditions. GUI-based components simplify the processing of data and allow users to obtain a large number of ultrastructural parameters describing filamentous assemblies. We demonstrate the feasibility of this workflow by analyzing cryo-ET data of untreated and chemically perturbed branched actin filament networks and that of parallel actin filament arrays. In principle, the computational toolbox presented here is applicable for data analysis comprising any type of filaments in regular (i.e. parallel) or random arrangement. We show that it can ease the identification of key differences between experimental groups and facilitate the in-depth analysis of ultrastructural data in a time-efficient manner.
Collapse
Affiliation(s)
- Georgi Dimchev
- Institute of Science and Technology (IST) Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Behnam Amiri
- Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, Berlin 13125, Germany
| | - Florian Fäßler
- Institute of Science and Technology (IST) Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Martin Falcke
- Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, Berlin 13125, Germany
| | - Florian Km Schur
- Institute of Science and Technology (IST) Austria, Am Campus 1, Klosterneuburg 3400, Austria.
| |
Collapse
|
27
|
Saito N, Sawai S. Three-dimensional morphodynamic simulations of macropinocytic cups. iScience 2021; 24:103087. [PMID: 34755081 PMCID: PMC8560551 DOI: 10.1016/j.isci.2021.103087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/13/2021] [Accepted: 09/01/2021] [Indexed: 12/02/2022] Open
Abstract
Macropinocytosis refers to the non-specific uptake of extracellular fluid, which plays ubiquitous roles in cell growth, immune surveillance, and virus entry. Despite its widespread occurrence, it remains unclear how its initial cup-shaped plasma membrane extensions form without any external solid support, as opposed to the process of particle uptake during phagocytosis. Here, by developing a computational framework that describes the coupling between the bistable reaction-diffusion processes of active signaling patches and membrane deformation, we demonstrated that the protrusive force localized to the edge of the patches can give rise to a self-enclosing cup structure, without further assumptions of local bending or contraction. Efficient uptake requires a balance among the patch size, magnitude of protrusive force, and cortical tension. Furthermore, our model exhibits cyclic cup formation, coexistence of multiple cups, and cup-splitting, indicating that these complex morphologies self-organize via a common mutually-dependent process of reaction-diffusion and membrane deformation.
Collapse
Affiliation(s)
- Nen Saito
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Satoshi Sawai
- Department of Basic Science, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
28
|
Abstract
Cryo-electron tomography has stepped fully into the spotlight. Enthusiasm is high. Fortunately for us, this is an exciting time to be a cryotomographer, but there is still a way to go before declaring victory. Despite its potential, cryo-electron tomography possesses many inherent challenges. How do we image through thick cell samples, and possibly even tissue? How do we identify a protein of interest amidst the noisy, crowded environment of the cytoplasm? How do we target specific moments of a dynamic cellular process for tomographic imaging? In this review, we cover the history of cryo-electron tomography and how it came to be, roughly speaking, as well as the many approaches that have been developed to overcome its intrinsic limitations.
Collapse
Affiliation(s)
- Ryan K. Hylton
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Matthew T. Swulius
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
29
|
Structural analysis of receptors and actin polarity in platelet protrusions. Proc Natl Acad Sci U S A 2021; 118:2105004118. [PMID: 34504018 PMCID: PMC8449362 DOI: 10.1073/pnas.2105004118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 11/18/2022] Open
Abstract
During activation the platelet cytoskeleton is reorganized, inducing adhesion to the extracellular matrix and cell spreading. These processes are critical for wound healing and clot formation. Initially, this task relies on the formation of strong cellular-extracellular matrix interactions, exposed in subendothelial lesions. Despite the medical relevance of these processes, there is a lack of high-resolution structural information on the platelet cytoskeleton controlling cell spreading and adhesion. Here, we present in situ structural analysis of membrane receptors and the underlying cytoskeleton in platelet protrusions by applying cryoelectron tomography to intact platelets. We utilized three-dimensional averaging procedures to study receptors at the plasma membrane. Analysis of substrate interaction-free receptors yielded one main structural class resolved to 26 Å, resembling the αIIbβ3 integrin folded conformation. Furthermore, structural analysis of the actin network in pseudopodia indicates a nonuniform polarity of filaments. This organization would allow generation of the contractile forces required for integrin-mediated cell adhesion.
Collapse
|
30
|
Arthur AL, Crawford A, Houdusse A, Titus MA. VASP-mediated actin dynamics activate and recruit a filopodia myosin. eLife 2021; 10:68082. [PMID: 34042588 PMCID: PMC8352590 DOI: 10.7554/elife.68082] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
Abstract
Filopodia are thin, actin-based structures that cells use to interact with their environments. Filopodia initiation requires a suite of conserved proteins but the mechanism remains poorly understood. The actin polymerase VASP and a MyTH-FERM (MF) myosin, DdMyo7 in amoeba, are essential for filopodia initiation. DdMyo7 is localized to dynamic regions of the actin-rich cortex. Analysis of VASP mutants and treatment of cells with anti-actin drugs shows that myosin recruitment and activation in Dictyostelium requires localized VASP-dependent actin polymerization. Targeting of DdMyo7 to the cortex alone is not sufficient for filopodia initiation; VASP activity is also required. The actin regulator locally produces a cortical actin network that activates myosin and together they shape the actin network to promote extension of parallel bundles of actin during filopodia formation. This work reveals how filopodia initiation requires close collaboration between an actin-binding protein, the state of the actin cytoskeleton and MF myosin activity.
Collapse
Affiliation(s)
- Ashley L Arthur
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| | - Amy Crawford
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| | - Anne Houdusse
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, Paris, France
| | - Margaret A Titus
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| |
Collapse
|
31
|
Berger C, Ravelli RBG, López-Iglesias C, Peters PJ. Endocytosed nanogold fiducials for improved in-situ cryo-electron tomography tilt-series alignment. J Struct Biol 2021; 213:107698. [PMID: 33545353 DOI: 10.1016/j.jsb.2021.107698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/24/2020] [Accepted: 01/13/2021] [Indexed: 11/17/2022]
Abstract
Cryo-electron tomography (CET) on cryo-focused ion beam (FIB)-milled lamellae is becoming a powerful technique for determining the structure of macromolecular complexes in their native cellular environment. Prior to tomogram reconstruction, CET tilt-series recorded on FIB lamellae need to be aligned. Traditionally, CET tilt-series alignment is performed with 5-20 nm gold fiducials, but it has thus far proven difficult to apply this to FIB lamellae of eukaryotic cells. In here, we describe a simple method to allow uptake of bovine serum albumin (BSA)-gold fiducials into mammalian cells via endocytosis, which can subsequently be used as fiducials for tilt-series alignment of cryo-FIB lamellae. We compare the alignment of tilt-series with BSA-gold fiducials to fiducial-less patch-tracking, and find better alignment results with BSA-gold. This technique can contribute to understand cells at a structural and ultrastructural level with both cryo- and room-temperature electron tomography. Furthermore, fluorescently labeled BSA-gold has the potential to be used as fiducials for correlative light and electron microscopy studies.
Collapse
Affiliation(s)
- Casper Berger
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, the Netherlands
| | - Raimond B G Ravelli
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, the Netherlands
| | - Carmen López-Iglesias
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, the Netherlands
| | - Peter J Peters
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, the Netherlands.
| |
Collapse
|
32
|
Ecker N, Kruse K. Excitable actin dynamics and amoeboid cell migration. PLoS One 2021; 16:e0246311. [PMID: 33524055 PMCID: PMC7850500 DOI: 10.1371/journal.pone.0246311] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/15/2021] [Indexed: 11/23/2022] Open
Abstract
Amoeboid cell migration is characterized by frequent changes of the direction of motion and resembles a persistent random walk on long time scales. Although it is well known that cell migration is typically driven by the actin cytoskeleton, the cause of this migratory behavior remains poorly understood. We analyze the spontaneous dynamics of actin assembly due to nucleation promoting factors, where actin filaments lead to an inactivation of these factors. We show that this system exhibits excitable dynamics and can spontaneously generate waves, which we analyze in detail. By using a phase-field approach, we show that these waves can generate cellular random walks. We explore how the characteristics of these persistent random walks depend on the parameters governing the actin-nucleator dynamics. In particular, we find that the effective diffusion constant and the persistence time depend strongly on the speed of filament assembly and the rate of nucleator inactivation. Our findings point to a deterministic origin of the random walk behavior and suggest that cells could adapt their migration pattern by modifying the pool of available actin.
Collapse
Affiliation(s)
- Nicolas Ecker
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
- Department of Theoretical Physics, University of Geneva, Geneva, Switzerland
| | - Karsten Kruse
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
- Department of Theoretical Physics, University of Geneva, Geneva, Switzerland
- NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
33
|
Martins B, Sorrentino S, Chung WL, Tatli M, Medalia O, Eibauer M. Unveiling the polarity of actin filaments by cryo-electron tomography. Structure 2021; 29:488-498.e4. [PMID: 33476550 PMCID: PMC8111420 DOI: 10.1016/j.str.2020.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/04/2020] [Accepted: 12/23/2020] [Indexed: 01/01/2023]
Abstract
The actin cytoskeleton plays a fundamental role in numerous cellular processes, such as cell motility, cytokinesis, and adhesion to the extracellular matrix. Revealing the polarity of individual actin filaments in intact cells would foster an unprecedented understanding of cytoskeletal processes and their associated mechanical forces. Cryo-electron tomography provides the means for high-resolution structural imaging of cells. However, the low signal-to-noise ratio of cryo-tomograms obscures the high frequencies, and therefore the polarity of actin filaments cannot be directly measured. Here, we developed a method that enables us to determine the polarity of actin filaments in cellular cryo-tomograms. We applied it to reveal the actin polarity distribution in focal adhesions, and show a linear relation between actin polarity and distance from the apical boundary of the adhesion site. Determining the polarity of individual actin filaments inside cells Reconstruction of actin networks from cryo-tomograms The polarity of actin changes from mixed to uniform along focal adhesions
Collapse
Affiliation(s)
- Bruno Martins
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Simona Sorrentino
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Wen-Lu Chung
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Meltem Tatli
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Matthias Eibauer
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
34
|
Fäßler F, Dimchev G, Hodirnau VV, Wan W, Schur FKM. Cryo-electron tomography structure of Arp2/3 complex in cells reveals new insights into the branch junction. Nat Commun 2020; 11:6437. [PMID: 33353942 PMCID: PMC7755917 DOI: 10.1038/s41467-020-20286-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
The actin-related protein (Arp)2/3 complex nucleates branched actin filament networks pivotal for cell migration, endocytosis and pathogen infection. Its activation is tightly regulated and involves complex structural rearrangements and actin filament binding, which are yet to be understood. Here, we report a 9.0 Å resolution structure of the actin filament Arp2/3 complex branch junction in cells using cryo-electron tomography and subtomogram averaging. This allows us to generate an accurate model of the active Arp2/3 complex in the branch junction and its interaction with actin filaments. Notably, our model reveals a previously undescribed set of interactions of the Arp2/3 complex with the mother filament, significantly different to the previous branch junction model. Our structure also indicates a central role for the ArpC3 subunit in stabilizing the active conformation.
Collapse
Affiliation(s)
- Florian Fäßler
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Georgi Dimchev
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | | | - William Wan
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, United States of America
| | - Florian K M Schur
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria.
| |
Collapse
|
35
|
Turk M, Baumeister W. The promise and the challenges of cryo-electron tomography. FEBS Lett 2020; 594:3243-3261. [PMID: 33020915 DOI: 10.1002/1873-3468.13948] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 01/11/2023]
Abstract
Structural biologists have traditionally approached cellular complexity in a reductionist manner in which the cellular molecular components are fractionated and purified before being studied individually. This 'divide and conquer' approach has been highly successful. However, awareness has grown in recent years that biological functions can rarely be attributed to individual macromolecules. Most cellular functions arise from their concerted action, and there is thus a need for methods enabling structural studies performed in situ, ideally in unperturbed cellular environments. Cryo-electron tomography (Cryo-ET) combines the power of 3D molecular-level imaging with the best structural preservation that is physically possible to achieve. Thus, it has a unique potential to reveal the supramolecular architecture or 'molecular sociology' of cells and to discover the unexpected. Here, we review state-of-the-art Cryo-ET workflows, provide examples of biological applications, and discuss what is needed to realize the full potential of Cryo-ET.
Collapse
Affiliation(s)
- Martin Turk
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
36
|
Wu M, Liu J. Mechanobiology in cortical waves and oscillations. Curr Opin Cell Biol 2020; 68:45-54. [PMID: 33039945 DOI: 10.1016/j.ceb.2020.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022]
Abstract
Cortical actin waves have emerged as a widely prevalent phenomena and brought pattern formation to many fields of cell biology. Cortical excitabilities, reminiscent of the electric excitability in neurons, are likely fundamental property of the cell cortex. Although they have been mostly considered to be biochemical in nature, accumulating evidence support the role of mechanics in the pattern formation process. Both pattern formation and mechanobiology approach biological phenomena at the collective level, either by looking at the mesoscale dynamical behavior of molecular networks or by using collective physical properties to characterize biological systems. As such they are very different from the traditional reductionist, bottom-up view of biology, which brings new challenges and potential opportunities. In this essay, we aim to provide our perspectives on what the proposed mechanochemical feedbacks are and open questions regarding their role in cortical excitable and oscillatory dynamics.
Collapse
Affiliation(s)
- Min Wu
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8002, USA..
| | - Jian Liu
- Department of Cell Biology, School of Medicine, Johns Hopkins University, 855 N Wolfe Street, Baltimore, MD, 21025, USA
| |
Collapse
|
37
|
Fäßler F, Zens B, Hauschild R, Schur FKM. 3D printed cell culture grid holders for improved cellular specimen preparation in cryo-electron microscopy. J Struct Biol 2020; 212:107633. [PMID: 32987119 DOI: 10.1016/j.jsb.2020.107633] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/11/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
Cryo-electron microscopy (cryo-EM) of cellular specimens provides insights into biological processes and structures within a native context. However, a major challenge still lies in the efficient and reproducible preparation of adherent cells for subsequent cryo-EM analysis. This is due to the sensitivity of many cellular specimens to the varying seeding and culturing conditions required for EM experiments, the often limited amount of cellular material and also the fragility of EM grids and their substrate. Here, we present low-cost and reusable 3D printed grid holders, designed to improve specimen preparation when culturing challenging cellular samples directly on grids. The described grid holders increase cell culture reproducibility and throughput, and reduce the resources required for cell culturing. We show that grid holders can be integrated into various cryo-EM workflows, including micro-patterning approaches to control cell seeding on grids, and for generating samples for cryo-focused ion beam milling and cryo-electron tomography experiments. Their adaptable design allows for the generation of specialized grid holders customized to a large variety of applications.
Collapse
Affiliation(s)
- Florian Fäßler
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Austria
| | - Bettina Zens
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Austria
| | - Robert Hauschild
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Austria
| | - Florian K M Schur
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Austria.
| |
Collapse
|
38
|
Beta C, Gov NS, Yochelis A. Why a Large-Scale Mode Can Be Essential for Understanding Intracellular Actin Waves. Cells 2020; 9:cells9061533. [PMID: 32585983 PMCID: PMC7349605 DOI: 10.3390/cells9061533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 01/18/2023] Open
Abstract
During the last decade, intracellular actin waves have attracted much attention due to their essential role in various cellular functions, ranging from motility to cytokinesis. Experimental methods have advanced significantly and can capture the dynamics of actin waves over a large range of spatio-temporal scales. However, the corresponding coarse-grained theory mostly avoids the full complexity of this multi-scale phenomenon. In this perspective, we focus on a minimal continuum model of activator-inhibitor type and highlight the qualitative role of mass conservation, which is typically overlooked. Specifically, our interest is to connect between the mathematical mechanisms of pattern formation in the presence of a large-scale mode, due to mass conservation, and distinct behaviors of actin waves.
Collapse
Affiliation(s)
- Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany;
| | - Nir S. Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Arik Yochelis
- Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research (BIDR), Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
- Department of Physics, Ben-Gurion University of the Negev, Be’er Sheva 8410501, Israel
- Correspondence:
| |
Collapse
|
39
|
Chakraborty S, Jasnin M, Baumeister W. Three-dimensional organization of the cytoskeleton: A cryo-electron tomography perspective. Protein Sci 2020; 29:1302-1320. [PMID: 32216120 PMCID: PMC7255506 DOI: 10.1002/pro.3858] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 01/01/2023]
Abstract
Traditionally, structures of cytoskeletal components have been studied ex situ, that is, with biochemically purified materials. There are compelling reasons to develop approaches to study them in situ in their native functional context. In recent years, cryo-electron tomography emerged as a powerful method for visualizing the molecular organization of unperturbed cellular landscapes with the potential to attain near-atomic resolution. Here, we review recent works on the cytoskeleton using cryo-electron tomography, demonstrating the power of in situ studies. We also highlight the potential of this method in addressing important questions pertinent to the field of cytoskeletal biomechanics.
Collapse
Affiliation(s)
- Saikat Chakraborty
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Marion Jasnin
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Wolfgang Baumeister
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|
40
|
Abstract
Cytokinesis-the division of a cell into two daughter cells-is a key step in cell growth and proliferation. It typically occurs in synchrony with the cell cycle to ensure that a complete copy of the genetic information is passed on to the next generation of daughter cells. In animal cells, cytokinesis commonly relies on an actomyosin contractile ring that drives equatorial furrowing and separation into the two daughter cells. However, also contractile ring-independent forms of cell division are known that depend on substrate-mediated traction forces. Here, we report evidence of an as yet unknown type of contractile ring-independent cytokinesis that we termed wave-mediated cytofission. It is driven by self-organized cortical actin waves that travel across the ventral membrane of oversized, multinucleated Dictyostelium discoideum cells. Upon collision with the cell border, waves may initiate the formation of protrusions that elongate and eventually pinch off to form separate daughter cells. They are composed of a stable elongated wave segment that is enclosed by a cell membrane and moves in a highly persistent fashion. We rationalize our observations based on a noisy excitable reaction-diffusion model in combination with a dynamic phase field to account for the cell shape and demonstrate that daughter cells emerging from wave-mediated cytofission exhibit a well-controlled size.
Collapse
|
41
|
Ecke M, Prassler J, Tanribil P, Müller-Taubenberger A, Körber S, Faix J, Gerisch G. Formins specify membrane patterns generated by propagating actin waves. Mol Biol Cell 2020; 31:373-385. [PMID: 31940262 PMCID: PMC7183788 DOI: 10.1091/mbc.e19-08-0460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/18/2022] Open
Abstract
Circular actin waves separate two distinct areas on the substrate-attached cell surface from each other: an external area from an inner territory that is circumscribed by the wave. These areas differ in composition of actin-associated proteins and of phosphoinositides in the membrane. At the propagating wave, one area is converted into the other. By photo-conversion of Eos-actin and analysis of actin network structures we show that both in the inner territory and the external area the actin network is subject to continuous turnover. To address the question of whether areas in the wave pattern are specified by particular actin polymerizing machines, we locate five members of the formin family to specific regions of the wave landscape using TIRF microscopy and constitutively active formin constructs tagged with fluorescent protein. Formin ForB favors the actin wave and ForG the inner territory, whereas ForA, ForE, and ForH are more strongly recruited to the external area. Fluctuations of membrane binding peculiar to ForB indicate transient states in the specification of membrane domains before differentiation into ForB decorated and depleted ones. Annihilation of the patterns by 1 µM of the formin inhibitor SMIFH2 supports the implication of formins in their generation.
Collapse
Affiliation(s)
- Mary Ecke
- Max Planck Institute of Biochemistry, D-82152 Martinsried, Munich, Germany
| | - Jana Prassler
- Max Planck Institute of Biochemistry, D-82152 Martinsried, Munich, Germany
| | - Patrick Tanribil
- Max Planck Institute of Biochemistry, D-82152 Martinsried, Munich, Germany
| | - Annette Müller-Taubenberger
- Department of Cell Biology (Anatomy III), Ludwig Maximilian University of Munich, D-82152 Planegg-Martinsried, Munich, Germany
| | - Sarah Körber
- Institute of Biophysical Chemistry, Hannover Medical School, D-30625 Hannover, Germany
| | - Jan Faix
- Institute of Biophysical Chemistry, Hannover Medical School, D-30625 Hannover, Germany
| | - Günther Gerisch
- Max Planck Institute of Biochemistry, D-82152 Martinsried, Munich, Germany
| |
Collapse
|
42
|
Wu M. Deconstructing Actin Waves. Structure 2020; 27:1187-1189. [PMID: 31390543 DOI: 10.1016/j.str.2019.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In this issue of Structure, Jasnin et al. (2019) shows how actin waves on the ventral membrane of Dictyostelium cells propagate by de novo nucleation of oblique filaments that are polarized toward the ventral membrane without a preference to the wave direction.
Collapse
Affiliation(s)
- Min Wu
- Department of Biological Sciences, Centre for Bioimaging Sciences, Mechanobiology Institute, National University of Singapore, Singapore.
| |
Collapse
|
43
|
Ng CT, Gan L. Investigating eukaryotic cells with cryo-ET. Mol Biol Cell 2020; 31:87-100. [PMID: 31935172 PMCID: PMC6960407 DOI: 10.1091/mbc.e18-05-0329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 01/06/2023] Open
Abstract
The interior of eukaryotic cells is mysterious. How do the large communities of macromolecular machines interact with each other? How do the structures and positions of these nanoscopic entities respond to new stimuli? Questions like these can now be answered with the help of a method called electron cryotomography (cryo-ET). Cryo-ET will ultimately reveal the inner workings of a cell at the protein, secondary structure, and perhaps even side-chain levels. Combined with genetic or pharmacological perturbation, cryo-ET will allow us to answer previously unimaginable questions, such as how structure, biochemistry, and forces are related in situ. Because it bridges structural biology and cell biology, cryo-ET is indispensable for structural cell biology-the study of the 3-D macromolecular structure of cells. Here we discuss some of the key ideas, strategies, auxiliary techniques, and innovations that an aspiring structural cell biologist will consider when planning to ask bold questions.
Collapse
Affiliation(s)
- Cai Tong Ng
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543
| | - Lu Gan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543
| |
Collapse
|
44
|
Merino F, Pospich S, Raunser S. Towards a structural understanding of the remodeling of the actin cytoskeleton. Semin Cell Dev Biol 2019; 102:51-64. [PMID: 31836290 PMCID: PMC7221352 DOI: 10.1016/j.semcdb.2019.11.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/03/2022]
Abstract
Actin filaments (F-actin) are a key component of eukaryotic cells. Whether serving as a scaffold for myosin or using their polymerization to push onto cellular components, their function is always related to force generation. To control and fine-tune force production, cells have a large array of actin-binding proteins (ABPs) dedicated to control every aspect of actin polymerization, filament localization, and their overall mechanical properties. Although great advances have been made in our biochemical understanding of the remodeling of the actin cytoskeleton, the structural basis of this process is still being deciphered. In this review, we summarize our current understanding of this process. We outline how ABPs control the nucleation and disassembly, and how these processes are affected by the nucleotide state of the filaments. In addition, we highlight recent advances in the understanding of actomyosin force generation, and describe recent advances brought forward by the developments of electron cryomicroscopy.
Collapse
Affiliation(s)
- Felipe Merino
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Sabrina Pospich
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|