1
|
Ding Y, Zong Q, Zhang Q, Wang Y, Wang J, Huang W, Sun W, Zhai Y. Gum arabic based multifunctional antibacterial adhesion hydrogel dressings loaded with doxycycline hydrochloride for wound healing. Int J Biol Macromol 2025; 306:141284. [PMID: 39978520 DOI: 10.1016/j.ijbiomac.2025.141284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Infection is a crucial factor impeding wound healing, and hydrogel with three-dimensional network structure has great advantages in promoting wound healing. Herein, a zwitterionic hydrogel is developed by gum arabic, acrylic acid, and sulfobetaine methacrylate. Zwitterions exhibit exceptional hydration properties, thereby imparting hydrogels with superior bacterial adhesion resistance, robust structural stability, and adjustable modulation capabilities. Furthermore, the incorporation of Doxycycline Hydrochloride (DOX) into the formulation aims to address potential wound infections while also imparting exceptional antioxidant properties to the hydrogel (DOX@GASGel). In vitro antibacterial experiments demonstrated that 99.55 ± 0.08 % of S. aureus and 99.55 ± 0.06 % of E. coli were killed, and it exhibited high reactive oxygen species (ROS) scavenging efficacy both in vitro and in vivo. The results of experiments in ICR mice with a full-thickness infected wound model showed a wound healing rate of 97 % for wounds treated with DOX@GASGel hydrogel. This outcome was primarily attributed to hydrogel's capacity to promote collagen deposition and angiogenesis within the wounds, while concurrently reducing ROS levels. In conclusion, the preparation method of the hydrogel dressing designed in this study is straightforward, demonstrating robust wound-healing effects, and holds promising applications in the treatment of infected wounds.
Collapse
Affiliation(s)
- Yan Ding
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qida Zong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qianwen Zhang
- Department of Biomedical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ye Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiaxin Wang
- Department of Biomedical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wanru Huang
- Department of Biomedical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wei Sun
- Department of Biomedical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yinglei Zhai
- Department of Biomedical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
2
|
Peng ZH, Dickerson VM, Fajt VR, Gould EN, Droog M, Thieman Mankin KM. Serum amikacin concentrations in dogs with naturally occurring open wounds treated with topical amikacin in carboxymethylcellulose hydrogel. Vet Surg 2025; 54:453-460. [PMID: 39651702 PMCID: PMC11947291 DOI: 10.1111/vsu.14195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 12/11/2024]
Abstract
OBJECTIVE To quantify serum amikacin concentrations in dogs undergoing wound management with topical amikacin (45 mg/mL) 3% carboxymethylcellulose hydrogel. STUDY DESIGN Prospective clinical study. SAMPLE POPULATION Eleven client-owned dogs. METHODS Dogs with naturally occurring wounds, undergoing treatment with topical amikacin gel, were enrolled. A whole blood sample was collected prior to initial application of the gel. Up to a maximum dose of 30 mg/kg of gel, was applied directly on the wound and the wound was bandaged. Serial blood sampling was performed at approximately 2, 4, 8, 12, 18, 24, 32, 40, 48, 56, 64, and 72 h after application of amikacin gel. The sampling schedule was reset following each bandage change and new application of the gel. Up to 20 samples per dog were collected. The Siemens Syva EMIT Amikacin Assay was used to quantify the concentration of amikacin in each blood serum sample. The lower limit of quantification (LLOQ) of the test was 2.5 μg/mL. RESULTS Amikacin gel was applied a total of 31 times (dose range, 0.1-24.9 mg/kg). A total of 153 samples were analyzed. Five samples in three different dogs were above the LLOQ at approximately 2 h after gel application (range 2.75-3.82 μg/mL). All other samples were below the LLOQ. CONCLUSION Routine use of amikacin gel for open wound management did not result in serum amikacin levels above 5 μg/mL. CLINICAL SIGNIFICANCE Topical amikacin gel may be a safe treatment option for wounds in dogs with resistant infections or biofilms.
Collapse
Affiliation(s)
- Zong H. Peng
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexasUSA
| | - Vanna M. Dickerson
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexasUSA
| | - Virginia R. Fajt
- Department of Veterinary Physiology and Pharmacology, College of Veterinary MedicineTexas A&M UniversityCollege StationTexasUSA
| | - Emily N. Gould
- Gastrointestinal Lab, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexasUSA
| | - Madeline Droog
- Veterinary Medical Teaching Hospital, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexasUSA
| | - Kelley M. Thieman Mankin
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
3
|
Zhu J, Xia F, Wang S, Guan Y, Hu F, Yu F. Recent advances in nanomaterials and their mechanisms for infected wounds management. Mater Today Bio 2025; 31:101553. [PMID: 40182659 PMCID: PMC11966735 DOI: 10.1016/j.mtbio.2025.101553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 04/05/2025] Open
Abstract
Wounds infected by bacteria pose a considerable challenge in the field of healthcare, particularly with the increasing prevalence of antibiotic-resistant pathogens. Traditional antibiotics often fail to achieve effective results due to limited penetration, resistance development, and inadequate local concentration at wound sites. These limitations necessitate the exploration of alternative strategies that can overcome the drawbacks of conventional therapies. Nanomaterials have emerged as a promising solution for tackling bacterial infections and facilitating wound healing, thanks to their distinct physicochemical characteristics and multifunctional capabilities. This review highlights the latest developments in nanomaterials that demonstrated enhanced antibacterial efficacy and improved wound healing outcomes. The antibacterial mechanisms of nanomaterials are varied, including ion release, chemodynamic therapy, photothermal/photodynamic therapy, electrostatic interactions, and delivery of antibacterial drugs, which not only combat bacterial infections but also address the challenges posed by biofilms and antibiotic resistance. Furthermore, these nanomaterials create an optimal environment for tissue regeneration, promoting faster wound closure. By leveraging the unique attributes of nanomaterials, there is a significant opportunity to revolutionize the management of infected wounds and markedly improve patient outcomes.
Collapse
Affiliation(s)
- Jianping Zhu
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Fan Xia
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Shuaifei Wang
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Yan Guan
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fangying Yu
- Department of Ultrasound in Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| |
Collapse
|
4
|
Li X, Pang L, Duan J, Huang N, Chen X, Huang W, Liu Y, Fu C, Zhang C, Tu H, Zeng C, Liu X, Zhang J. Eco-friendly antibacterial electrospinning nanofibrous film containing nano-silver green-synthesized by natural glycoprotein for infected wound healing. J Colloid Interface Sci 2025; 683:256-268. [PMID: 39675240 DOI: 10.1016/j.jcis.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
Infected wounds caused by bacteria commonly cause delayed wound healing and even serious tissue damage, evolving into one of the most problematic clinical issues. Traditional therapies and wound dressings cannot achieve either the ideal antibiotic activity or the accelerated wound healing outcomes. Based on our previous finding that glycoproteins (PAGP) derived from medicinal animal insect Periplaneta americana L. have a significant promoting effect on wound healing, herein we primarily prepared the silver nanoparticles (Ag NPs) by the facile green-synthesis mediated by PAGP, and then the eco-friendly PAGP nanofibrous film inlaid with Ag NPs (Ag NPs@PP film) was fabricated by electrospinning. The obtained nanofibrous dressing had good mechanical properties, surface wettability, biocompatibility, and antibacterial properties. Compared with nanofiber film containing only Ag NPs or PAGP, the Ag NPs@PP film had stronger abilities to promote the M2 polarization of macrophages and higher wound-healing efficacy on fecal bacteria-infected wounds. To sum up, this nanofibrous film held great promise to improve the healing of infected wounds.
Collapse
Affiliation(s)
- Xuebo Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lan Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Sichuan Key Laboratory for Medicinal American Cockroach, Chengdu 610000, China
| | - Jia Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Na Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiangyu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yang Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - He Tu
- Department of Pharmacy, Sichuan Orthopedic Hospital, Chengdu, China
| | - Chenjuan Zeng
- Sichuan Key Laboratory for Medicinal American Cockroach, Chengdu 610000, China; Sichuan Engineering Research Center for Medicinal Animals, Xichang 615000, China.
| | - Xinjun Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
5
|
Wang Z, Li B, Nie C, Zhang R, Qu S, Shao Q, Zhang X, Li J, Li W, Li H, Xiao J, Xing C. Photothermal Conjugated Polymer Microneedle with Biofilm Elimination and Angiogenesis for Diabetic Wound Healing. NANO LETTERS 2025; 25:2911-2921. [PMID: 39913171 DOI: 10.1021/acs.nanolett.4c06284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Diabetic wounds are highly susceptible to bacterial infection, which can lead to the formation of bacterial biofilms, making diabetic wound healing a major challenge. In this study, a composited microneedle that incorporated drug-loaded conjugated polymer nanoparticles and basic fibroblast growth factor was prepared to eliminate biofilms and promote vascular regeneration. This microneedle released minocycline under near-infrared (NIR) light, effectively penetrating bacterial biofilms. The photothermal properties of the conjugated polymers, combined with the antibacterial action of minocycline, contribute to the eradication of biofilms and the elimination of drug-resistant bacteria. Moreover, it regulated the wound microenvironment by reducing the level of oxidative stress, as well as the production of inflammatory factors at the wound site. Meanwhile, it effectively boosted cell migration and promoted angiogenesis to accelerate diabetic wound healing. This composited microneedle for biofilm elimination represents a promising approach for promoting diabetic wound healing.
Collapse
Affiliation(s)
- Zijuan Wang
- Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Boying Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Chenyao Nie
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 325035, P. R. China
| | - Ran Zhang
- Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Key Laboratory of Molecular Biophysics of Hebei Province, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Shuyi Qu
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 325035, P. R. China
| | - Qi Shao
- Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Xin Zhang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 325035, P. R. China
| | - Jie Li
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 325035, P. R. China
| | - Wentai Li
- Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Key Laboratory of Molecular Biophysics of Hebei Province, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Hao Li
- Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Key Laboratory of Molecular Biophysics of Hebei Province, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 325035, P. R. China
| | - Chengfen Xing
- Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
- Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Key Laboratory of Molecular Biophysics of Hebei Province, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
6
|
Olutoye OO, Eriksson E, Menchaca AD, Kirsner RS, Tanaka R, Schultz G, Weir D, Wagner TL, Fabia RB, Naik-Mathuria B, Liu PY, Ead JK, Adebayo T, Armstrong DG, McMullin N, Samora JB, Akingba AG. Management of Acute Wounds-Expert Panel Consensus Statement. Adv Wound Care (New Rochelle) 2024; 13:553-583. [PMID: 38618741 DOI: 10.1089/wound.2023.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Significance: The Wound Healing Foundation recognized the need for consensus-based unbiased recommendations for the treatment of wounds. As a first step, a consensus on the treatment of chronic wounds was developed and published in 2022. The current publication on acute wounds represents the second step in this process. Acute wounds may result from any number of conditions, including burns, military and combat operations, and trauma to specific areas of the body. The management of acute wounds requires timely and evidence-driven intervention to achieve optimal clinical outcomes. This consensus statement provides the clinician with the necessary foundational approaches to the causes, diagnosis, and therapeutic management of acute wounds. Presented in a structured format, this is a useful guide for clinicians and learners in all patient care settings. Recent Advances: Recent advances in the management of acute wounds have centered on stabilization and treatment in the military and combat environment. Specifically, advancements in hemostasis, resuscitation, and the mitigation of infection risk through timely initiation of antibiotics and avoidance of high-pressure irrigation in contaminated soft tissue injury. Critical Issues: Critical issues include infection control, pain management, and the unique considerations for the management of acute wounds in pediatric patients. Future Directions: Future directions include new approaches to preventing the progression and conversion of burns through the use of specific gel formulations. Additionally, the use of three-dimensional bioprinting and photo-modulation for reconstruction is a promising area for continued discovery.
Collapse
Affiliation(s)
- Oluyinka O Olutoye
- Department of Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Elof Eriksson
- Harvard Medical School, Cambridge, Massachusetts, USA
| | - Alicia D Menchaca
- Department of General Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Robert S Kirsner
- University of Miami Hospital and Clinics Wound Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Rica Tanaka
- Juntendo University Graduate School of Medicine, Division of Regenerative Therapy, Department of Plastic & Reconstructive Surgery, Juntendo University Hospital Podiatry Center, Tokyo, Japan
| | - Greg Schultz
- University of Florida, Gainesville, Florida, USA
| | - Dot Weir
- Saratoga Hospital Center for Wound Healing and Hyperbaric Medicine, Saratoga Springs, New York, USA
| | - Tracey L Wagner
- Department of Pediatrics, Section of Emergency Medicine, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Renata B Fabia
- Department of Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | | | - Paul Y Liu
- Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - J Karim Ead
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Temitope Adebayo
- Temple University School of Podiatric Medicine, Philadelphia, Pennsylvania, USA
| | - David G Armstrong
- Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Neil McMullin
- Plastic Surgery Consultant to the Surgeon General of the Army, Evans Army Community Hospital, Fort Carson, Colorado, USA
| | - Julie Balch Samora
- Department of Orthopedics, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - A George Akingba
- Department of Vascular Surgery, VA Medical Center, Washington, District of Columbia, USA
| |
Collapse
|
7
|
Trafelet N, Johnson S, Schroder J, Serena TE. Audit of Antimicrobial Prescribing Trends in 1447 Outpatient Wound Assessments: Baseline Rates and Impact of Bacterial Fluorescence Imaging. Diagnostics (Basel) 2024; 14:2034. [PMID: 39335713 PMCID: PMC11431003 DOI: 10.3390/diagnostics14182034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: In the field of wound care, the prescription of antibiotics and antimicrobials is haphazard and irrational, which has led to unchecked overprescribing. Recent Joint Commission guidelines mandate that hospital outpatient clinics develop and implement antimicrobial stewardship programs (ASPs). Yet few ASPs exist in wound clinics across the United States (US). Understanding baseline prescribing practices and rates in the US is a critical first step toward rational antimicrobial use and effective ASPs. Methods: This prospective study was conducted across eight outpatient wound clinics from January-December 2022. Data from consecutive patients attending single-time-point initial visits were recorded, including clinical findings, antimicrobial prescribing trends, and sampling practices. Results: A total of 1438 wounds were included; 964 were assessed by clinical examination (standard of care, SoC), and 474 by clinical examination plus fluorescence imaging. SoC patients were prescribed more concurrent medications on average than fluorescence patients (1.4 vs. 1 per patient). Prescriptions were preferentially topical in the fluorescence group (92% vs. 64%, p > 0.0001), and systemic antibiotics represented 36% of the single items prescribed under SoC (vs. 8% in fluorescence group p < 0.0001). Conclusions: Fluorescence imaging provided objective and actionable information at the bedside, which led to a decrease in the use of antibiotics. Real-time diagnostic technologies are essential in establishing a meaningful ASP.
Collapse
Affiliation(s)
- Nancy Trafelet
- SerenaGroup® Inc., 125 Cambridge Park Drive Suite 301, Cambridge, MA 02140, USA
| | - Scott Johnson
- Ascension Via Christi Wound Center, Wichita, KS 67214, USA
| | - Jill Schroder
- SerenaGroup® Inc., 125 Cambridge Park Drive Suite 301, Cambridge, MA 02140, USA
| | - Thomas E Serena
- SerenaGroup® Inc., 125 Cambridge Park Drive Suite 301, Cambridge, MA 02140, USA
| |
Collapse
|
8
|
Gallo C, Girón-Hernández J, Honey DA, Fox EM, Cassa MA, Tonda-Turo C, Camagnola I, Gentile P. Synergistic nanocoating with layer-by-layer functionalized PCL membranes enhanced by manuka honey and essential oils for advanced wound healing. Sci Rep 2024; 14:20715. [PMID: 39237556 PMCID: PMC11377730 DOI: 10.1038/s41598-024-71466-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
Chronic wounds represent a significant global health concern, statistically impacting 1-2% of the population in developed countries throughout their lifetimes. These wounds cause considerable discomfort for patients and necessitate substantial expenditures of time and resources for treatment. Among the emerging therapeutic approaches, medicated dressings incorporating bioactive molecules, including natural compounds, are particularly promising. Hence, the objective of this study was to develop novel antimicrobial dressings for wound treatment. Specifically, polycaprolactone membranes were manufactured using the electrospinning technique and subsequently coated with natural polyelectrolytes (chitosan as a polycation and a mixture of manuka honey with essential oils nanoemulsions as a polyanion) employing the Layer-by-Layer assembly technique. Physico-chemical and morphological characterization was conducted through QCM-D, FTIR-ATR, XPS, and SEM analyses. The results from SEM and QCM-D demonstrated successful layer deposition and coating formation. Furthermore, FTIR-ATR and XPS analyses distinguished among different coating compositions. The coated membranes were tested in the presence of fibroblast cells, demonstrating biocompatibility and expression of genes coding for VEGF, COL1, and TGF-β1, which are associated with the healing process (assessed through RT-qPCR analysis). Finally, the membranes exhibited excellent antibacterial activity against both Staphylococcus aureus and Pseudomonas aeruginosa, with higher bacterial strain inhibition observed when cinnamon essential oil nanoemulsion was incorporated. Taken together, these results demonstrate the potential application of nanocoated membranes for biomedical applications, such as wound healing.
Collapse
Affiliation(s)
- Camilla Gallo
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Joel Girón-Hernández
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Daisy A Honey
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Edward M Fox
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Maria A Cassa
- Department of Mechanical and Aerospace Engineering, Politecnico Di Torino, 10129, Turin, Italy
- Polito BIOMed Lab, Politecnico Di Torino, 10129, Turin, Italy
| | - Chiara Tonda-Turo
- Department of Mechanical and Aerospace Engineering, Politecnico Di Torino, 10129, Turin, Italy
- Polito BIOMed Lab, Politecnico Di Torino, 10129, Turin, Italy
| | - Irene Camagnola
- Department of Mechanical and Aerospace Engineering, Politecnico Di Torino, 10129, Turin, Italy
- Polito BIOMed Lab, Politecnico Di Torino, 10129, Turin, Italy
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| |
Collapse
|
9
|
Turner E, Kelly C, Zuccaro J, Chakera H, Gus E, Fish JS. Assessing Pediatric Burn Wound Infection Using a Point-of-Care Fluorescence Imaging Device. J Burn Care Res 2024; 45:843-850. [PMID: 38833179 DOI: 10.1093/jbcr/irae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Wound infection is the most common complication among pediatric burn patients. When not treated promptly, burn wound infection may lead to delayed healing, failure of skin grafts, or death. Standard burn wound assessment includes inspection for visual signs and symptoms of infection (VSSI) and microbial sampling. To aid in the assessment of burn wound infection, the MolecuLight, a point-of-care autofluorescence imaging device, was introduced at our pediatric burn program in 2020. The MolecuLight uses violet light to illuminate the wound bed, causing clinically relevant quantities of 29 different species of bacteria (>104 CFU/g) to fluoresce in real time. The objectives of this study were to evaluate the role of the MolecuLight in the management of pediatric burn wounds and determine if the findings from the MolecuLight corresponded to VSSI and/or microbial sampling. A retrospective review of patients 0-18 years who had burn wounds assessed with the MolecuLight between November 1, 2020 and June 8, 2023 was conducted. Data were extracted from the medical records of 178 eligible patients with 218 wounds imaged with the device. Fluorescence corresponded with VSSI in 81% of wounds and microbial findings in 82% of wounds. MolecuLight fluorescence, in combination with VSSI, improved sensitivity for detecting wound infections by 39% and decreased specificity by 19% compared to visual signs and symptoms in isolation. Incorporation of the MolecuLight in standard burn wound assessments can improve the detection of infections, which may promote improved wound healing outcomes and antimicrobial stewardship.
Collapse
Affiliation(s)
- Evan Turner
- Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Charis Kelly
- Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Jennifer Zuccaro
- Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Hawwa Chakera
- Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Eduardo Gus
- Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Joel S Fish
- Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
10
|
Huang J, Fan Q, Shi L, Shen J, Wang H. A novel chlorin derivative Shengtaibufen (STBF) mediated photodynamic therapy combined with iodophor for the treatment of chronic superficial leg wounds infected with methicillin-resistant Staphylococcus aureus: A retrospective clinical study. Photodiagnosis Photodyn Ther 2024; 48:104300. [PMID: 39097252 DOI: 10.1016/j.pdpdt.2024.104300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
OBJECTIVE Chronic wounds are costly and difficult to treat, resulting in morbidity and even mortality in some cases due to a high methicillin-resistant Staphylococcus aureus (MRSA) burden contributing to chronicity. We aimed to observe the antimicrobial activity and healing-promoting effect of a novel photosensitizer Shengtaibufen (STBF)-mediated antibacterial photodynamic therapy (PDT) on MRSA-infected chronic leg ulcers. PATIENTS AND METHODS This was a retrospective, comparative, single-center clinical study. A total of 32 patients with chronic lower limb wounds infected with MRSA from January 2022 to December 2023 were finally included in this study by searching the electronic medical records of the dermatology department of Huadong Hospital, including a group of red light combined with iodophor (control+iodophor, n=16, receiving red light once a week for 8 weeks and routine dressing change with iodophor once a day) and a group of STBF-mediated PDT (STBF-PDT) combined with iodophor (STBF-PDT+iodophor, n=16, receiving STBF-PDT and routine dressing change with iodophor once a day). STBF-PDT was performed once a week (1 mg/ml STBF, 1 h incubation, 630 nm red light, 80 J/cm2) for 8 weeks. The primary endpoints included wound clinical signs, wound size, wound-related pain, re-epithelialization score, MRSA load and wound-related quality of life (wound-QoL). Any adverse events were also recorded. RESULTS We found that STBF-PDT+iodophor could effectively alleviate clinical infection symptoms, accelerate wound closure, reduce average biological burden and improve wound-QoL without severe adverse events in comparison to the control+iodophor group. The STBF-PDT+iodophor group obtained a mean percentage reduction of 65.22% in wound size (from 18.96±11.18 cm2 to 6.59±7.94 cm2) and excellent re-epithelialization scores, as compared with a decrease of 30.17% (from 19.23±9.80 cm2 to 13.43±9.32 cm2) for the control+iodophor group. Significant differences in wound area were observed at week 6 (p=0.028*) and week 8 (p=0.002**). The bacterial load decreased by 99.86% (from 6.45 × 107±2.69 × 107 to 8.94 × 104±1.92 × 105 CFU/cm2, p<0.0001) in the STBF-PDT+iodophor group and 1.82% (from 6.61 × 107±2.13 × 107 to 6.49 × 107±2.01 × 107 CFU/cm2, p=0.029) in the control+iodophor group. The wound-QoL in STBF-PDT+iodophor group had a 51.62% decrease in overall score (from 29.65±9.33 at the initial to 14.34±5.17 at week 8, p<0.0001) compared to those receiving red light and routine wound care (from 30.73±17.16 to 29.32±15.89 at week 8, p=0.003). Moreover, patients undergoing STBF-PDT+iodophor exhibited great improvements in all domains of wound-QoL (physical, psychological and everyday-life), whereas the control+iodophor group ameliorated in only one field (everyday-life). CONCLUSION Our data confirmed that a novel photosensitizer, STBF-mediated PDT, when combined with iodophor, served as a potential modality for MRSA infection and a possible therapy for other drug-resistant microorganisms, and as a promising alternative for chronic cutaneous infectious diseases.
Collapse
Affiliation(s)
- Jianhua Huang
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China
| | - Qing Fan
- Department of Dermatology, Shanghai Fengxian District Hospital, Shanghai 201499, PR China
| | - Lei Shi
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China
| | - Jie Shen
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China
| | - Hongwei Wang
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China.
| |
Collapse
|
11
|
Aguilar-Vázquez R, Romero-Montero A, Del Prado-Audelo ML, Cariño-Calvo L, González-Del Carmen M, Vizcaíno-Dorado PA, Caballero-Florán IH, Peña-Corona SI, Chávez-Corona JI, Bernad-Bernad MJ, Magaña JJ, Cortés H, Leyva-Gómez G. Biopolymeric Insulin Membranes for Antimicrobial, Antioxidant, and Wound Healing Applications. Pharmaceutics 2024; 16:1012. [PMID: 39204356 PMCID: PMC11360745 DOI: 10.3390/pharmaceutics16081012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Delayed wound healing increases the wound's vulnerability to possible infections, which may have lethal outcomes. The treatments available can be effective, but the urgency is not fully encompassed. The drug repositioning strategy proposes effective alternatives for enhancing medical therapies for chronic diseases. Likewise, applying wound dressings as biodegradable membranes is extremely attractive due to their ease of application, therapeutic effectiveness, and feasibility in industrial manufacturing. This article aims to demonstrate the pleiotropic effects during insulin repositioning in wound closure by employing a biopolymeric membrane-type formulation with insulin. We prepared biopolymeric membranes with sodium alginate cross-linked with calcium chloride, supported in a mixture of xanthan gum and guar gum, and plasticized with glycerol and sorbitol. Human insulin was combined with poloxamer 188 as a protein stabilizing agent. Our investigation encompassed physicochemical and mechanical characterization, antioxidant and biological activity through antibacterial tests, cell viability assessments, and scratch assays as an in vitro and in vivo wound model. We demonstrated that our biopolymeric insulin membranes exhibited adequate manipulation and suitable mechanical resistance, transparency, high swelling capability (1100%), and 30% antioxidant activity. Furthermore, they exhibited antibacterial activity (growth inhibition of S. aureus at 85% and P. aeruginosa at 75%, respectively), and insulin promoted wound closure in vitro with a 5.5-fold increase and 72% closure at 24 h. Also, insulin promoted in vivo wound closure with a 3.2-fold increase and 92% closure at 10 days compared with the groups without insulin, and this is the first report that demonstrates this therapeutic effect with two administrations of 0.7 IU. In conclusion, we developed a multifunctional insulin-loaded biopolymeric membrane in this study, with the main activity derived from insulin's role in wound closure and antioxidant activity, augmented by the antimicrobial effect attributed to the polymer poloxamer 188. The synergistic combination of excipients enhances its usefulness and highlights our innovation as a promising material in wound healing materials.
Collapse
Affiliation(s)
- Rocío Aguilar-Vázquez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
| | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
| | - María L. Del Prado-Audelo
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Ciudad de Mexico, Ciudad de Mexico 14380, Mexico; (M.L.D.P.-A.); (I.H.C.-F.); (J.J.M.)
| | | | | | - Pablo Adrián Vizcaíno-Dorado
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (P.A.V.-D.); (H.C.)
| | - Isaac Hiram Caballero-Florán
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Ciudad de Mexico, Ciudad de Mexico 14380, Mexico; (M.L.D.P.-A.); (I.H.C.-F.); (J.J.M.)
| | - Sheila Iraís Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
| | - Juan Isaac Chávez-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Universidad Nacional Autónoma de México-FESC, Campus 1, Cuautitlán Izcalli 54714, Mexico
| | - María Josefa Bernad-Bernad
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
| | - Jonathan J. Magaña
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Ciudad de Mexico, Ciudad de Mexico 14380, Mexico; (M.L.D.P.-A.); (I.H.C.-F.); (J.J.M.)
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (P.A.V.-D.); (H.C.)
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (P.A.V.-D.); (H.C.)
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 04510, Mexico
| |
Collapse
|
12
|
Ji W, Li B, Li N, Xing C. Design Strategy of Microneedle Systems for Skin Wound Healing: Based on the Structure of Tips and Therapeutic Methodologies. ACS APPLIED BIO MATERIALS 2024; 7:4254-4269. [PMID: 38863157 DOI: 10.1021/acsabm.4c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The skin, being the largest organ of the human body, is susceptible to damage resulting in wounds that are vulnerable to pathogenic attacks and fail to provide effective protection for internal tissues. Therefore, it is crucial to expedite wound healing. In recent years, microneedles have garnered significant attention as an innovative drug delivery system owing to their noninvasive and painless administration, simplified application process, precise control over drug release, and versatile loading capabilities. Consequently, they hold immense potential for the treatment of skin wound. This review presents a comprehensive design strategy for the microneedle system in promoting skin wound healing. First, the process of skin wound healing and the characteristics of specific wounds are elucidated. The design strategies for microneedles are subsequently presented and classified based on their structural and therapeutic methodologies. Finally, a succinct recapitulation of the previously discussed points and a prospective analysis are provided.
Collapse
Affiliation(s)
- Wenchao Ji
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Boying Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ning Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, P. R. China
| | - Chengfen Xing
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
13
|
Ashrafi B, Chehelcheraghi F, Rashidipour M, Hadavand S, Beiranvand B, Taherikalani M, Soroush S. Electrospun Nanofibrous Biocomposite of Royal Jelly/Chitosan/Polyvinyl Alcohol (RJ/CS/PVA) Gel as a Biological Dressing for P. aeruginosa-Infected Burn Wound. Appl Biochem Biotechnol 2024; 196:3162-3183. [PMID: 37632660 DOI: 10.1007/s12010-023-04701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
Burn wounds are vulnerable to various infections due to damage to the tissue and changes in immune responses. Pseudomonas aeruginosa is a critical bacterium that can cause burn wound infections, which can be life-threatening and delay wound healing. Therefore, it is essential to develop an efficient strategy to prevent the spread of infection in burn wounds. The present study aims to investigate the effectiveness of electrospun nanofibers of royal jelly on a chitosan/polyvinyl alcohol polymer scaffold in repairing burn wounds infected with Pseudomonas aeruginosa. To achieve this, the researchers analyzed the morphology and physicochemical properties of the synthesized nanofibers using SEM, FTIR, BET, and TGA analyses. They also examined the antibacterial properties of the nanofibers using agar diffusion and spread plate techniques. In addition, hemolysis tests were carried out to assess biocompatibility. Finally, the ability of the nanofibers to repair burn wounds infected with Pseudomonas aeruginosa was evaluated using a laboratory mouse model. The study results showed that the synthesized nanofibers had desirable morphology and physicochemical properties and significant antibacterial effects in both in vitro and in vivo conditions. Also, loading RJ into the polymer scaffold significantly reduced erythrocyte lysis. The wound healing and contraction rates were significantly higher than the control groups, and tissue repair, re-epithelialization, and collagen synthesis occurred faster, preventing the spread of infection to deeper tissue areas. Based on these findings, the synthesized system has the potential to serve as a suitable substitute for some invasive treatments and chemical drugs to improve chronic wounds and manage infection control in burn injuries.
Collapse
Affiliation(s)
- Behnam Ashrafi
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Farzaneh Chehelcheraghi
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Anatomical Sciences, School of Medicine Lorestan, University of Medical Sciences, Khorramabad, Iran
| | - Marzieh Rashidipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Samaneh Hadavand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Behrouz Beiranvand
- Department of Biostatistics and Epidemiology, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Morovat Taherikalani
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
- Department of Microbiology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Setareh Soroush
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
- Department of Microbiology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
14
|
Hu Y, Yu L, Dai Q, Hu X, Shen Y. Multifunctional antibacterial hydrogels for chronic wound management. Biomater Sci 2024; 12:2460-2479. [PMID: 38578143 DOI: 10.1039/d4bm00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Chronic wounds have gradually evolved into a global health challenge, comprising long-term non-healing wounds, local tissue necrosis, and even amputation in severe cases. Accordingly, chronic wounds place a considerable psychological and economic burden on patients and society. Chronic wounds have multifaceted pathogenesis involving excessive inflammation, insufficient angiogenesis, and elevated reactive oxygen species levels, with bacterial infection playing a crucial role. Hydrogels, renowned for their excellent biocompatibility, moisture retention, swelling properties, and oxygen permeability, have emerged as promising wound repair dressings. However, hydrogels with singular functions fall short of addressing the complex requirements associated with chronic wound healing. Hence, current research emphasises the development of multifunctional antibacterial hydrogels. This article reviews chronic wound characteristics and the properties and classification of antibacterial hydrogels, as well as their potential application in chronic wound management.
Collapse
Affiliation(s)
- Yungang Hu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Lu Yu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Qiang Dai
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Xiaohua Hu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Yuming Shen
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| |
Collapse
|
15
|
Liu M, Ding R, Li Z, Xu N, Gong Y, Huang Y, Jia J, Du H, Yu Y, Luo G. Hyaluronidase-Responsive Bactericidal Cryogel for Promoting Healing of Infected Wounds: Inflammatory Attenuation, ROS Scavenging, and Immune Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306602. [PMID: 38350733 PMCID: PMC11077649 DOI: 10.1002/advs.202306602] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/20/2024] [Indexed: 02/15/2024]
Abstract
Wounds infected with multidrug-resistant (MDR) bacteria are increasingly threatening public health and challenging clinical treatments because of intensive bacterial colonization, excessive inflammatory responses, and superabundant oxidative stress. To overcome this malignant burden and promote wound healing, a multifunctional cryogel (HA/TA2/KR2) composed of hyaluronic acid (HA), tannic acid (TA), and KR-12 peptides is designed. The cryogel exhibited excellent shape-memory properties, strong absorption performance, and hemostatic capacity. In vitro experiments demonstrated that KR-12 in the cryogel can be responsively released by stimulation with hyaluronidase produced by bacteria, reaching robust antibacterial activity against Escherichia coli (E. coli), MDR Pseudomonas aeruginosa (MDR-PA), and methicillin-resistant Staphylococcus aureus (MRSA) by disrupting bacterial cell membranes. Furthermore, the synergetic effect of KR-12 and TA can efficiently scavenge ROS and decrease expression of pro-inflammatory cytokines (tumor necrosis factor (TNF)-α & interleukin (IL)-6), as well as modulate the macrophage phenotype toward the M2 type. In vivo animal tests indicated that the cryogel can effectively destroy bacteria in the wound and promote healing process via accelerating angiogenesis and re-epithelialization. Proteomic analysis revealed the underlying mechanism by which the cryogel mainly reshaped the infected wound microenvironment by inhibiting the Nuclear factor kappa B (NF-κB) signaling pathway and activating the Janus kinase-Signal transducer and activator of transcription (JAK-STAT6) signaling pathway. Therefore, the HA/TA2/KR2 cryogel is a promising dressing candidate for MDR bacteria-infected wound healing.
Collapse
Affiliation(s)
- Menglong Liu
- Institute of Burn ResearchState Key Laboratory of TraumaBurns and Combined InjurySouthwest HospitalThird Military Medical University (Army Medical University)Gaotanyan Street, Shapingba DistrictChongqing400038China
| | - Rui Ding
- College of Chemical Engineering and TechnologyTaiyuan University of TechnologyYingze West Street 79Taiyuan030024China
| | - Zheng Li
- Institute of Burn ResearchState Key Laboratory of TraumaBurns and Combined InjurySouthwest HospitalThird Military Medical University (Army Medical University)Gaotanyan Street, Shapingba DistrictChongqing400038China
| | - Na Xu
- Institute of Burn ResearchState Key Laboratory of TraumaBurns and Combined InjurySouthwest HospitalThird Military Medical University (Army Medical University)Gaotanyan Street, Shapingba DistrictChongqing400038China
| | - Yali Gong
- Institute of Burn ResearchState Key Laboratory of TraumaBurns and Combined InjurySouthwest HospitalThird Military Medical University (Army Medical University)Gaotanyan Street, Shapingba DistrictChongqing400038China
| | - Yong Huang
- Institute of Burn ResearchState Key Laboratory of TraumaBurns and Combined InjurySouthwest HospitalThird Military Medical University (Army Medical University)Gaotanyan Street, Shapingba DistrictChongqing400038China
| | - Jiezhi Jia
- Institute of Burn ResearchState Key Laboratory of TraumaBurns and Combined InjurySouthwest HospitalThird Military Medical University (Army Medical University)Gaotanyan Street, Shapingba DistrictChongqing400038China
| | - Haiyan Du
- College of Chemical Engineering and TechnologyTaiyuan University of TechnologyYingze West Street 79Taiyuan030024China
| | - Yunlong Yu
- Institute of Burn ResearchState Key Laboratory of TraumaBurns and Combined InjurySouthwest HospitalThird Military Medical University (Army Medical University)Gaotanyan Street, Shapingba DistrictChongqing400038China
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of TraumaBurns and Combined InjurySouthwest HospitalThird Military Medical University (Army Medical University)Gaotanyan Street, Shapingba DistrictChongqing400038China
| |
Collapse
|
16
|
Khabipov A, Schreiber A, Kersting S, Hummel R, Höhn J, Partecke LI, Bekeschus S, Glitsch A, Keßler W. Cold Atmospheric Plasma Is a Promising Alternative Treatment Option in Case of Split Skin Graft Failure. Case Rep Surg 2024; 2024:1013445. [PMID: 38601320 PMCID: PMC11006453 DOI: 10.1155/2024/1013445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
Cold atmospheric plasma (CAP) has shown promising potential in promoting wound healing. This case report presents the successful application of CAP in a 42-year-old female patient with extensive wound healing disorders and superinfections following the excision of an abscess in the left thoracic region. After several failed split skin graft attempts, the implementation of CAP led to significant improvements in wound healing. This report highlights the wound healing-promoting effects of CAP and discusses its potential mechanisms of action.
Collapse
Affiliation(s)
- Aydar Khabipov
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Greifswald, Germany
| | - Andre Schreiber
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Greifswald, Germany
| | - Stephan Kersting
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Greifswald, Germany
| | - Richard Hummel
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Greifswald, Germany
| | - Johannes Höhn
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Greifswald, Germany
| | - Lars-Ivo Partecke
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Greifswald, Germany
- Department of General, Visceral, and Thoracic Surgery, Helios Clinic Schleswig, Schleswig, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Clinic and Polyclinic for Dermatology and Venereology, Rostock University Medical Center, Rostock, Germany
| | - Anne Glitsch
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Greifswald, Germany
| | - Wolfram Keßler
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Greifswald, Germany
| |
Collapse
|
17
|
Li S, Gu B, Meng J, Zhu J, Wang J, Wang W, Ding J, Qiu T, Wang W, Liu J, Wu Y, Li K. TCM formula for trauma treatment screening and its role of promoting infectious wound coalescence investigating. Res Vet Sci 2024; 170:105178. [PMID: 38402660 DOI: 10.1016/j.rvsc.2024.105178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/27/2024]
Abstract
In pet clinics, the number of cases using trauma drugs accounts for >10% of the total number of cases, and most wounds are healing by second intention. The prolongation of wound healing time causes inconvenience and burden to pets and pet owners. Therefore, how to reduce wound healing time and achieve maximum recovery of tissue function and aesthetics is one of the focuses of veterinary clinical practice. Wound suppuration caused by Staphylococcus aureus and Pseudomonas aeruginosa is the main cause of delaying wound healing. Clinically, available antimicrobial treatments are almost exhausted due to the production of large numbers of resistant bacteria. At present, there are no bacteria resistant to traditional Chinese medicine (TCM), which makes TCM have the potential to become an effective drug for the treatment of bacterial infections, so the use of TCM in the treatment of traumatic infections has broad prospects. Based on the characteristics of infection syndrome, three different prescriptions were formulated in our laboratory, and the most effective prescription and dosage form was screened and named Lianrong Healing Cream (LRHC). The results showed that LRHC regulated the expression of fibroblast growth factor-2 (FGF-2), epidermal growth factor-1 (EGF-1), transforming growth factor-β (TGF-β) and vascular endothelial growth factor-1 (VEGF-1) genes in wound tissues and fibroblasts, thereby accelerating wound healing and repairing wound appearance and function. The results of this study may be help to develop TCM formulation for traumatic infections.
Collapse
Affiliation(s)
- Siya Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Bolin Gu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jinwu Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jinyue Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jinli Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Weiran Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jinxue Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianxin Qiu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenjia Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiaguo Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yi Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kun Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
18
|
Yang X, Guo D, Ji X, Shi C, Messina JM, Suo L, Luo J. Telodendrimer functionalized hydrogel platform for sustained antibiotics release in infection control. Acta Biomater 2024; 178:147-159. [PMID: 38447811 DOI: 10.1016/j.actbio.2024.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Wound infection commonly causes delayed healing, especially in the setting of chronic wounds. Local release of antibiotics is considered a viable approach to treat chronic wounds. We have developed a versatile telodendrimer (TD) platform for efficient loading of charged antibiotic molecules via a combination of multivalent and synergistic charge and hydrophobic interactions. The conjugation of TD in biocompatible hydrogel allows for topical application to provide sustained antibiotic release. Notably, a drug loading capacity as high as 20 % of the drug-to-resin dry weight ratio can be achieved. The payload content (PC) and release profile of the various antibiotics can be optimized by fine-tuning TD density and valency in hydrogel based on the charge and hydrophobic features of the drug, e.g., polymyxin B (PMB), gentamycin (GM), and daptomycin (Dap), for effective infection control. We have shown that hydrogel with moderately reduced TD density demonstrates a more favorable release profile than hydrogel with higher TD density. Antibiotics loaded in TD hydrogel have comparable antimicrobial potency and reduced cytotoxicity compared to the free antibiotics due to a prolonged, controlled drug release profile. In a mouse model of skin and soft tissue infection, the subcutaneous administration of PMB-loaded TD hydrogel effectively eliminated the bacterial burden. Overall, these results suggest that engineerable TD hydrogels have great potential as a topical treatment to control infection for wound healing. STATEMENT OF SIGNIFICANCE: Wound infection causes a significant delay in the wound healing process, which results in a significant financial and resource burden to the healthcare system. PEGA-telodendrimer (TD) resin hydrogel is an innovative and versatile platform that can be fine-tuned to efficiently encapsulate different antibiotics by altering charged and hydrophobic structural moieties. Additionally, this platform is advantageous as the TD density in the resin can also be fine-tuned to provide the desired antibiotic payload release profile. Sustained antibiotics release through optimization of TD density provides a prolonged therapeutic window and reduces burst release-induced cytotoxicity compared to conventional antibiotics application. Studies in a preclinical mouse model of bacteria-induced skin and soft tissue infection demonstrated promising therapeutic efficacy as evidenced by effective infection control and prolonged antibacterial efficacy of antibiotics-loaded PEGA-TD resin. In conclusion, the PEGA-TD resin platform provides a highly customizable approach for effective antibiotics release with significant potential for topical application to treat various bacterial wound infections to promote wound healing.
Collapse
Affiliation(s)
- Xiguang Yang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Dandan Guo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiaotian Ji
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Changying Shi
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Jennifer M Messina
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Liye Suo
- Department of Pathology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States.
| |
Collapse
|
19
|
Moelleken M, Krimphove SH, Krefting F, Benson S, Rammos C, Cyrek AE, Dissemond J. How effective is simple mechanical wound debridement in reducing bacterial colonisation? Results of a prospective clinical study. Int Wound J 2024; 21:e14824. [PMID: 38512118 PMCID: PMC10956538 DOI: 10.1111/iwj.14824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND AND AIMS Bacteria in wounds can lead to stagnation of wound healing as well as to local or even systemic wound infections up to potentially lethal sepsis. Consequently, the bacterial load should be reduced as part of wound treatment. Therefore, the efficacy of simple mechanical wound debridement should be investigated in terms of reducing bacterial colonisation. PATIENTS AND METHODS Patients with acute or chronic wounds were assessed for bacterial colonisation with a fluorescence camera before and after mechanical wound debridement with sterile cotton pads. If bacterial colonisation persisted, a second, targeted wound debridement was performed. RESULTS A total of 151 patients, 68 (45.0%) men and 83 (55.0%) women were included in this study. The male mean age was 71.0 years and the female 65.1 years. By establishing a new analysis method for the image files, we could document that the bacterial colonised areas were distributed 21.9% on the wound surfaces, 60.5% on the wound edges (up to 0.5 cm) and 17.6% on the wound surroundings (up to 1.5 cm). One mechanical debridement achieved a significant reduction of bacterial colonised areas by an average of 29.6% in the wounds, 18.9% in the wound edges and 11.8% in the wound surroundings and was increased by performing it a second time. CONCLUSIONS It has been shown that even a simple mechanical debridement with cotton pads can significantly reduce bacterial colonisation without relevant side effects. In particular, the wound edges were the areas that were often most contaminated with bacteria and should be included in the debridement with special attention. Since bacteria remain in wounds after mechanical debridement, it cannot replace antimicrobial therapy strategies, but offer a complementary strategy to improve wound care. Thus, it could be shown that simple mechanical debridement is effective in reducing bacterial load and should be integrated into a therapeutic approach to wounds whenever appropriate.
Collapse
Affiliation(s)
- Maurice Moelleken
- Department of Dermatology, Venerology and AllergologyUniversity Hospital of EssenEssenGermany
| | | | - Frederik Krefting
- Department of Dermatology, Venerology and AllergologyUniversity Hospital of EssenEssenGermany
| | - Sven Benson
- University Hospital of Essen, Institute of Medical Psychology and Behavioral Immunobiology, Institute of Medical Education, Centre for Translational Neuro‐ and Behavioral SciencesEssenGermany
| | - Christos Rammos
- Department of Cardiology and AngiologyUniversity Hospital of EssenEssenGermany
| | - Anna Ewa Cyrek
- Division of Vascular and Endovascular Surgery, Department of General, Visceral and Transplant SurgeryUniversity Hospital of EssenEssenGermany
| | - Joachim Dissemond
- Department of Dermatology, Venerology and AllergologyUniversity Hospital of EssenEssenGermany
| |
Collapse
|
20
|
Shi X, Li H, Guo F, Li D, Xu F. Novel ray of hope for diabetic wound healing: Hydrogen sulfide and its releasing agents. J Adv Res 2024; 58:105-115. [PMID: 37245638 PMCID: PMC10982866 DOI: 10.1016/j.jare.2023.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a long-term metabolic disease accompanied by difficulties in wound healing placing a severe financial and physical burden on patients. As one of the important signal transduction molecules, both endogenous and exogenous hydrogen sulfide (H2S) was found to promote diabetic wound healing in recent studies. H2S at physiological concentrations can not only promote cell migration and adhesion functions, but also resist inflammation, oxidative stress and inappropriate remodeling of the extracellular matrix. AIM OF REVIEW The purpose of this review is to summarize current research on the function of H2S in diabetic wound healing at all stages, and propose future directions. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, first, the various factors affecting wound healing under diabetic pathological conditions and the in vivo H2S generation pathway are briefly introduced. Second, how H2S may improve diabetic wound healing is categorized and described. Finally, we discuss the relevant H2S donors and new dosage forms, analyze and reveal the characteristics of many typical H2S donors, which may provide new ideas for the development of H2S-released agents to improve diabetic wound healing.
Collapse
Affiliation(s)
- Xinyi Shi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Haonan Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Fengrui Guo
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
21
|
Wang D, Ruan Z, Wang R, Ma L, Tang S, Wang X, Ma A. Decoding the mechanism of earthworm extract against wounds: an integrated metabolomics and network pharmacology study. Mol Divers 2024; 28:631-647. [PMID: 36705857 DOI: 10.1007/s11030-023-10609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
Earthworms are used to cure wounds in Chinese villages for thousands of years. Recently, scientists realized their extracts could promote wound healing and they have anti-inflammatory, antioxidant, anti-apoptosis, and anti-microbial properties, but its mechanism of promoting wound healing remains unclear. In the presented study, electronic literature databases and LC-MS/MS were used to determine earthworms' ingredients and differential metabolites. Swiss Target Prediction database was used for ingredients' target prediction and wound disease-relevant genes were found from GeneCards, OMIM, and DrugBank databases. Network pharmacology was conducted to demonstrate filtering hub targets, biological functions, and the signaling pathways of earthworms extract against wounds. Molecular docking and metabolism analysis were used to look for core target genes and key bioactive molecules from earthworms. Finally, the investigation shows 5 most important signal pathways, 5 core genes, and 6 bioactive ingredients-related cell-cell adhesion, cell proliferation, and cell migration processes could be affected by earthworms' extract. On 3rd day, the extract could regulate HIF1A and EGFR targets to make the differences of quantities of 4-pyridoxate, tetradecanoic acid, and L-kynurenine. While on 7th day, the regulation refers 6 earthworms' bioactive ingredients, 4 core genes (CTNNB1, EGFR, SRC, and CASP3), and 4 differential metabolites (4-hydoxy-2-quinolinecarboxylic acid, urocanate, deoxyinosine, creatine, and sn-glycerol-3-phosphocholine). on 14th day, 2 core genes (EGFR, SRC) are influenced in the biological processes. Briefly, we found that 6 ingredients from earthworms have most bioactive and 5 core genes play an important role in promoting wound-healing processes. These discovers indicates earthworms could against wound via AGE-RAGE, PI3K-Akt, HIF1A, MAPK, and Axon guidance pathways.
Collapse
Affiliation(s)
- Dong Wang
- Medical Research and Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China.
- Shaanxi Key Laboratory of Research on TCM Physical Constitution and Disease Prevention and Treatment, Xianyang, China.
| | - Zhen Ruan
- Xianyang Central Hospital, Xianyang, China
| | - Ruihui Wang
- Medical Research and Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Li Ma
- Medical Research and Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Saiqing Tang
- Second Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xuejing Wang
- Medical Research and Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Axue Ma
- Second Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
22
|
Cavallo I, Sivori F, Mastrofrancesco A, Abril E, Pontone M, Di Domenico EG, Pimpinelli F. Bacterial Biofilm in Chronic Wounds and Possible Therapeutic Approaches. BIOLOGY 2024; 13:109. [PMID: 38392327 PMCID: PMC10886835 DOI: 10.3390/biology13020109] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Wound repair and skin regeneration is a very complex orchestrated process that is generally composed of four phases: hemostasis, inflammation, proliferation, and remodeling. Each phase involves the activation of different cells and the production of various cytokines, chemokines, and other inflammatory mediators affecting the immune response. The microbial skin composition plays an important role in wound healing. Indeed, skin commensals are essential in the maintenance of the epidermal barrier function, regulation of the host immune response, and protection from invading pathogenic microorganisms. Chronic wounds are common and are considered a major public health problem due to their difficult-to-treat features and their frequent association with challenging chronic infections. These infections can be very tough to manage due to the ability of some bacteria to produce multicellular structures encapsulated into a matrix called biofilms. The bacterial species contained in the biofilm are often different, as is their capability to influence the healing of chronic wounds. Biofilms are, in fact, often tolerant and resistant to antibiotics and antiseptics, leading to the failure of treatment. For these reasons, biofilms impede appropriate treatment and, consequently, prolong the wound healing period. Hence, there is an urgent necessity to deepen the knowledge of the pathophysiology of delayed wound healing and to develop more effective therapeutic approaches able to restore tissue damage. This work covers the wound-healing process and the pathogenesis of chronic wounds infected by biofilm-forming pathogens. An overview of the strategies to counteract biofilm formation or to destroy existing biofilms is also provided.
Collapse
Affiliation(s)
- Ilaria Cavallo
- Microbiology and Virology Unit, San Gallicano Dermatological Institute IRCSS, 00144 Rome, Italy
| | - Francesca Sivori
- Microbiology and Virology Unit, San Gallicano Dermatological Institute IRCSS, 00144 Rome, Italy
| | - Arianna Mastrofrancesco
- Microbiology and Virology Unit, San Gallicano Dermatological Institute IRCSS, 00144 Rome, Italy
| | - Elva Abril
- Microbiology and Virology Unit, San Gallicano Dermatological Institute IRCSS, 00144 Rome, Italy
| | - Martina Pontone
- Microbiology and Virology Unit, San Gallicano Dermatological Institute IRCSS, 00144 Rome, Italy
| | - Enea Gino Di Domenico
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology Unit, San Gallicano Dermatological Institute IRCSS, 00144 Rome, Italy
| |
Collapse
|
23
|
Vasanthakumari K, Sharmila C, Jaya Priya S, Vadivel V. Wound healing mechanisms of Couroupita guianensis fruit pulp: An ethnomedicine used by traditional healers in India. Nat Prod Res 2024; 38:634-638. [PMID: 36799649 DOI: 10.1080/14786419.2023.2180636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
In connection to search for safe and alternative plant-based drugs, the wound healing mechanisms of an Indian ethnomedicine Couroupita guianensis fruit pulp was analyzed in this project work. Gas chromatography coupled with mass spectrometer (GC-MS) analysis revealed the existence of phytochemicals such as 2-furoic acid, 2,4-heptadienal, pyrazole and 8-hydroxyquinoline in the methanol extract. Methanol extract of C. guianensis exhibited remarkable radical scavenging activity against 2, 2-diphenyl-1-picrylhydrazyl (DPPH) (89.88%), superoxide (91.51%), hydrogen peroxide (24.25%) and hydroxyl radicals (73.62%). Further, it showed remarkable anti-inflammatory (24.09-62.16%) and anti-bacterial activity (zone of inhibition, ZOI: 13.00 mm, minimum inhibitory concentration, MIC: 6.25 mg/mL and minimum bactericidal concentration, MBC: 12.51 mg/mL) and also controlled the growth rate of methicillin resistant Staphylococcus aureus (MRSA) within 30 min of treatment. The angiogenic potential of C. guianensis was proved in chick chorioallantoic membrane (CAM) model and it does not exhibit any toxicity in peripheral blood monocyte cells (PBMC) model.
Collapse
Affiliation(s)
- Kumaraguru Vasanthakumari
- Chemical Biology Lab (ASK-II-409), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu, India
| | - Chelladurai Sharmila
- Chemical Biology Lab (ASK-II-409), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu, India
| | - Shree Jaya Priya
- Chemical Biology Lab (ASK-II-409), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu, India
| | - Vellingiri Vadivel
- Chemical Biology Lab (ASK-II-409), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu, India
| |
Collapse
|
24
|
Gieroń M, Żarnowiec P, Zegadło K, Gmiter D, Czerwonka G, Kaca W, Kręcisz B. Loop-Mediated Isothermal Amplification of DNA (LAMP) as an Alternative Method for Determining Bacteria in Wound Infections. Int J Mol Sci 2023; 25:411. [PMID: 38203582 PMCID: PMC10778741 DOI: 10.3390/ijms25010411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
The increasing number of patients with chronic wounds requires the development of quick and accurate diagnostics methods. One of the key and challenging aspects of treating ulcers is to control wound infection. Early detection of infection is essential for the application of suitable treatment methods, such as systemic antibiotics or other antimicrobial agents. Clinically, the most frequently used method for detecting microorganisms in wounds is through a swab and culture on appropriate media. This test has major limitations, such as the long bacterial growth time and the selectivity of bacterial growth. This article presents an overview of molecular methods for detecting bacteria in wounds, including real-time polymerase chain reaction (rtPCR), quantitative polymerase chain reaction (qPCR), genotyping, next-generation sequencing (NGS), and loop-mediated isothermal amplification (LAMP). We focus on the LAMP method, which has not yet been widely used to detect bacteria in wounds, but it is an interesting alternative to conventional detection methods. LAMP does not require additional complicated equipment and provides the fastest detection time for microorganisms (approx. 30 min reaction). It also allows the use of many pairs of primers in one reaction and determination of up to 15 organisms in one sample. Isothermal amplification of DNA is currently the easiest and most economical method for microbial detection in wound infection. Direct visualization of the reaction with dyes, along with omitting DNA isolation, has increased the potential use of this method.
Collapse
Affiliation(s)
- Monika Gieroń
- Faculty of Medicine, Jan Kochanowski University in Kielce, 25-369 Kielce, Poland; (M.G.); (B.K.)
- Dermatology Department, Provincial General Hospital, 25-317 Kielce, Poland
| | - Paulina Żarnowiec
- Department of Microbiology, Institute of Biology, Jan Kochanowski University in Kielce, 25-406 Kielce, Poland; (P.Ż.); (K.Z.); (D.G.); (W.K.)
| | - Katarzyna Zegadło
- Department of Microbiology, Institute of Biology, Jan Kochanowski University in Kielce, 25-406 Kielce, Poland; (P.Ż.); (K.Z.); (D.G.); (W.K.)
| | - Dawid Gmiter
- Department of Microbiology, Institute of Biology, Jan Kochanowski University in Kielce, 25-406 Kielce, Poland; (P.Ż.); (K.Z.); (D.G.); (W.K.)
| | - Grzegorz Czerwonka
- Department of Microbiology, Institute of Biology, Jan Kochanowski University in Kielce, 25-406 Kielce, Poland; (P.Ż.); (K.Z.); (D.G.); (W.K.)
| | - Wiesław Kaca
- Department of Microbiology, Institute of Biology, Jan Kochanowski University in Kielce, 25-406 Kielce, Poland; (P.Ż.); (K.Z.); (D.G.); (W.K.)
| | - Beata Kręcisz
- Faculty of Medicine, Jan Kochanowski University in Kielce, 25-369 Kielce, Poland; (M.G.); (B.K.)
- Dermatology Department, Provincial General Hospital, 25-317 Kielce, Poland
| |
Collapse
|
25
|
Sezen S, Ertuğrul MS, Balpınar Ö, Bayram C, Özkaraca M, Okkay IF, Hacımüftüoğlu A, Güllüce M. Assessment of antimicrobial activity and In Vitro wound healing potential of ZnO nanoparticles synthesized with Capparis spinosa extract. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117609-117623. [PMID: 37872332 DOI: 10.1007/s11356-023-30417-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/08/2023] [Indexed: 10/25/2023]
Abstract
Agents that will accelerate wound healing maintain their clinical importance in all aspects. The aim of this study is to determine the antimicrobial activity of zinc oxide nanoparticles (ZnO NPs) ZnO nanoparticles obtained by green synthesis from Capparis spinosa L. extract and their effect on in vitro wound healing. ZnO NPs were synthesized and characterized using Capparis spinosa L. extract. ZnO NPs were tested against nine ATCC-coded pathogen strains to determine antimicrobial activity. The effects of different doses (0.0390625-20 µg/mL) of NPs on cell viability were determined by MTT assay. The effect of ZnO NPs doses (0.0390625 µg/mL, 0.078125 µg/mL, 0.15625 µg/mL, 0.3125 µg/mL, 0.625 µg/mL, 1.25 µg/mL) that increase proliferation and migration on wound healing was investigated in an in vitro wound experiment. Cell culture medium obtained from the in vitro wound assay was used for biochemical analysis, and plate alcohol-fixed cells were used for immunohistochemical staining. It was determined that NPs formed an inhibition zone against the tested Gram-positive bacteria. The ZnO NPs doses determined in the MTT test provided faster wound closure in in-vitro conditions compared to the DMSO group. Biochemical analyses showed that inflammation and oxidative status decreased, while antioxidant levels increased in ZnO NPs groups. Immunohistochemical analyses showed increased expression levels of Bek/FGFR2, IGF, and TGF-β associated with wound healing. The findings reveal the antimicrobial effect of ZnO nanoparticles obtained using Capparis spinosa L. extract in vitro and their potential applications in wound healing.
Collapse
Affiliation(s)
- Selma Sezen
- Department of Medical Pharmacology, Faculty of Medicine, Agri Ibrahim Cecen University, Agri, Türkiye
| | | | - Özge Balpınar
- Hemp Research Institute, Ondokuz Mayıs University, Samsun, Türkiye
| | - Cemil Bayram
- Department of Pharmacology and Toxicology, Faculty of Veterinary, Ataturk University, Erzurum, Türkiye
| | - Mustafa Özkaraca
- Department of Pathology, Faculty of Veterinary, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Irmak Ferah Okkay
- Department of Pharmacology, Faculty of Pharmacy, Ataturk University, Erzurum, Türkiye
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Türkiye
| | - Medine Güllüce
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Türkiye
| |
Collapse
|
26
|
Ju Y, Zeng H, Ye X, Dai M, Fang B, Liu L. Zn 2+ incorporated composite polysaccharide microspheres for sustained growth factor release and wound healing. Mater Today Bio 2023; 22:100739. [PMID: 37521525 PMCID: PMC10374596 DOI: 10.1016/j.mtbio.2023.100739] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/17/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023] Open
Abstract
The development of new wound dressings has always been an issue of great clinical importance and research promise. In this study, we designed a novel double cross-linked polysaccharide hydrogel microspheres based on alginate (ALG) and hyaluronic acid methacrylate (HAMA) from gas-assisted microfluidics for wound healing. The microspheres from gas-assisted microfluidics showed an uniform size and good microsphere morphology. Moreover, this composite polysaccharide hydrogel microspheres were constructed by harnessing the fact that zinc ions (Zn2+) can cross-link with ALG as well as histidine-tagged vascular endothelial growth (His-VEGF) to achieve long-term His-VEGF release, thus promoting angiogenesis and wound healing. Meanwhile, Zn2+, as an important trace element, can exert antibacterial and anti-inflammatory effects, reshaping the trauma microenvironment. In addition, photo cross-linked HAMA was introduced into the microspheres to further improve its mechanical properties and drug release ability. In summary, this novel Zn2+ composite polysaccharide hydrogel microspheres loaded with His-VEGF based on a dual cross-linked strategy exhibited synergistic antimicrobial and angiogenic effects in promoting wound healing.
Collapse
Affiliation(s)
- Yikun Ju
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Huanxuan Zeng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xiuzhi Ye
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| |
Collapse
|
27
|
Mo X, Zhao S, Zhao J, Huang Y, Li T, Zhu Y, Li G, Li Y, Shan H. Targeting collagen damage for sustained in situ antimicrobial activities. J Control Release 2023; 360:122-132. [PMID: 37321327 DOI: 10.1016/j.jconrel.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/26/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
Antimicrobial peptides (AMPs) are promising anti-infective drugs, but their use is restricted by their short-term retention at the infection site, non-targeted uptake, and adverse effects on normal tissues. Since infection often follows an injury (e.g., in a wound bed), directly immobilizing AMPs to the damaged collagenous matrix of the injured tissues may help overcome these limitations by transforming the extracellular matrix microenvironment of the infection site into a natural reservoir of AMPs for sustained in situ release. Here, we developed and demonstrated an AMP-delivery strategy by conjugating a dimeric construct of AMP Feleucin-K3 (Flc) and a collagen hybridizing peptide (CHP), which enabled selective and prolonged anchoring of the Flc-CHP conjugate to the damaged and denatured collagen in the infected wounds in vitro and in vivo. We found that the dimeric Flc and CHP conjugate design preserved the potent and broad-spectrum antimicrobial activities of Flc while significantly enhancing and extending its antimicrobial efficacy in vivo and facilitating tissue repair in a rat wound healing model. Because collagen damage is ubiquitous in almost all injuries and infections, our strategy of targeting collagen damage may open up new avenues for antimicrobial treatments in a range of infected tissues.
Collapse
Affiliation(s)
- Xiaoyun Mo
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, and Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Suwen Zhao
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, and Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Jie Zhao
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, and Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yongjie Huang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, and Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Tao Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, and Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yongqiao Zhu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, and Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Gang Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, and Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yang Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, and Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
| | - Hong Shan
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, and Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China; Department of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
| |
Collapse
|
28
|
Chelmuș-Burlacu A, Tang E, Pieptu D. Phenotypic Modulation of Adipose-Derived Stem Cells and Fibroblasts Treated with Povidone-Iodine and Chlorhexidine in Mono and Coculture Models. Biomedicines 2023; 11:1855. [PMID: 37509495 PMCID: PMC10377167 DOI: 10.3390/biomedicines11071855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/10/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Topical antiseptics are essential in wound treatment, and adipose-derived stem cells (ADSCs) have recently been proven to facilitate healing. However, the impact of antiseptics on ADSCs has not been fully elucidated, especially in relation to other relevant cell types present in the wound microenvironment, e.g., fibroblasts. This study evaluated the effects of chlorhexidine and povidone-iodine on four cellular constructs in 2D and 3D in vitro culture systems. Cell constructs were treated with two concentrations of each antiseptic, after which cell migration activity, α-SMA, and Ki67 marker expressions were assessed and compared. Both tested concentrations of povidone-iodine impaired migration and sprouting compared to chlorhexidine, which had minimal effects when used in low concentrations. The gap in the wound healing assay did not close after 24 h of povidone-iodine treatment, although, at the lower concentration, cells started to migrate in a single-cell movement pattern. Similarly, in 3D culture systems, sprouting with reduced spike formation was observed at high povidone-iodine concentrations. Both antiseptics modulated α-SMA and Ki67 marker expressions at 5 days following treatment. Although both antiseptics had cytotoxic effects dependent on drug concentration and cell type, povidone-iodine contributed more substantially to the healing process than chlorhexidine, acting especially on fibroblasts.
Collapse
Affiliation(s)
- Alina Chelmuș-Burlacu
- Plastic Surgery Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Eric Tang
- Phoenix Biomedical Ltd., Macclesfield SK10 3HZ, UK
| | - Dragoș Pieptu
- Plastic Surgery Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Plastic Surgery Department, Regional Oncology Institute, 700483 Iași, Romania
| |
Collapse
|
29
|
Jiang Y, Li G, Qiao J, Yan P, Tang K. Hydrophobically modified hydrogel with enhanced tissue adhesion and antibacterial capacity for wound healing. Colloids Surf B Biointerfaces 2023; 228:113424. [PMID: 37356138 DOI: 10.1016/j.colsurfb.2023.113424] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
The increasing emergence of drug-resistant bacteria and bacteria-infected wounds highlights the urgent need for new kinds of antibacterial wound dressing. Herein, we reported a novel bio-adhesive and antibacterial hydrogel consisting of hydrophobically modified gelatin, oxidized konjac glucomannan, and dopamine. This kind of functional hydrogel was endowed with developed stability in a liquid environment and strong tissue adhesion, even much higher than the commercial fibrin glue to wounds. The excellent bacteria-killing efficiency of hydrophobically modified hydrogel against S. aureus and E. coli was verified, as well as the low hemolysis ratio against erythrocytes in vitro. The hydrogel also exhibited good cytocompatibility in terms of supporting cell proliferation. Most importantly, these abovementioned properties could be customized by altering the substitution degree of hydrophobic groups during manufacturing, demonstrating its great potential in biomedical fields such as tissue adhesive and wound dressing.
Collapse
Affiliation(s)
- Yongchao Jiang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Gaiying Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jialu Qiao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Pengfei Yan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
30
|
Vivcharenko V, Trzaskowska M, Przekora A. Wound Dressing Modifications for Accelerated Healing of Infected Wounds. Int J Mol Sci 2023; 24:ijms24087193. [PMID: 37108356 PMCID: PMC10139077 DOI: 10.3390/ijms24087193] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Infections that occur during wound healing involve the most frequent complications in the field of wound care which not only inhibit the whole process but also lead to non-healing wound formation. The diversity of the skin microbiota and the wound microenvironment can favor the occurrence of skin infections, contributing to an increased level of morbidity and even mortality. As a consequence, immediate effective treatment is required to prevent such pathological conditions. Antimicrobial agents loaded into wound dressings have turned out to be a great option to reduce wound colonization and improve the healing process. In this review paper, the influence of bacterial infections on the wound-healing phases and promising modifications of dressing materials for accelerated healing of infected wounds are discussed. The review paper mainly focuses on the novel findings on the use of antibiotics, nanoparticles, cationic organic agents, and plant-derived natural compounds (essential oils and their components, polyphenols, and curcumin) to develop antimicrobial wound dressings. The review article was prepared on the basis of scientific contributions retrieved from the PubMed database (supported with Google Scholar searching) over the last 5 years.
Collapse
Affiliation(s)
- Vladyslav Vivcharenko
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Marta Trzaskowska
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Agata Przekora
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| |
Collapse
|
31
|
Han Y, Jiang N, Xu H, Yuan Z, Xiu J, Mao S, Liu X, Huang J. Extracellular Matrix Rigidities Regulate the Tricarboxylic Acid Cycle and Antibiotic Resistance of Three-Dimensionally Confined Bacterial Microcolonies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206153. [PMID: 36658695 PMCID: PMC10037996 DOI: 10.1002/advs.202206153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/22/2022] [Indexed: 06/06/2023]
Abstract
As a major cause of clinical chronic infection, microbial biofilms/microcolonies in host tissues essentially live in 3D-constrained microenvironments, which potentially modulate their spatial self-organization and morphodynamics. However, it still remains unclear whether and how mechanical cues of 3D confined microenvironments, for example, extracellular matrix (ECM) stiffness, exert an impact on antibiotic resistance of bacterial biofilms/microcolonies. With a high-throughput antibiotic sensitivity testing (AST) platform, it is revealed that 3D ECM rigidities greatly modulate their resistance to diverse antibiotics. The microcolonies in 3D ECM with human tissue-specific rigidities varying from 0.5 to 20 kPa show a ≈2-10 000-fold increase in minimum inhibitory concentration, depending on the types of antibiotics. The authors subsequently identified that the increase in 3D ECM rigidities leads to the downregulation of the tricarboxylic acid (TCA) cycle, which is responsible for enhanced antibiotic resistance. Further, it is shown that fumarate, as a potentiator of TCA cycle activity, can alleviate the elevated antibiotic resistance and thus remarkably improve the efficacy of antibiotics against bacterial microcolonies in 3D confined ECM, as confirmed in the chronic infection mice model. These findings suggest fumarate can be employed as an antibiotic adjuvant to effectively treat infections induced by bacterial biofilms/microcolonies in a 3D-confined environment.
Collapse
Affiliation(s)
- Yiming Han
- Department of Mechanics and Engineering Science, and Beijing Innovation Center for Engineering Science and Advanced TechnologyCollege of EngineeringPeking University100871BeijingChina
| | - Nan Jiang
- Department of Mechanics and Engineering Science, and Beijing Innovation Center for Engineering Science and Advanced TechnologyCollege of EngineeringPeking University100871BeijingChina
| | - Hongwei Xu
- Department of Mechanics and Engineering Science, and Beijing Innovation Center for Engineering Science and Advanced TechnologyCollege of EngineeringPeking University100871BeijingChina
| | - Zuoying Yuan
- Department of Mechanics and Engineering Science, and Beijing Innovation Center for Engineering Science and Advanced TechnologyCollege of EngineeringPeking University100871BeijingChina
| | - Jidong Xiu
- Department of Mechanics and Engineering Science, and Beijing Innovation Center for Engineering Science and Advanced TechnologyCollege of EngineeringPeking University100871BeijingChina
| | - Sheng Mao
- Department of Mechanics and Engineering Science, and Beijing Innovation Center for Engineering Science and Advanced TechnologyCollege of EngineeringPeking University100871BeijingChina
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature InfantsFifth Central Hospital of TianjinTianjin300450China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, and Beijing Innovation Center for Engineering Science and Advanced TechnologyCollege of EngineeringPeking University100871BeijingChina
| |
Collapse
|
32
|
Turzańska K, Adesanya O, Rajagopal A, Pryce MT, Fitzgerald Hughes D. Improving the Management and Treatment of Diabetic Foot Infection: Challenges and Research Opportunities. Int J Mol Sci 2023; 24:ijms24043913. [PMID: 36835330 PMCID: PMC9959562 DOI: 10.3390/ijms24043913] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Diabetic foot infection (DFI) management requires complex multidisciplinary care pathways with off-loading, debridement and targeted antibiotic treatment central to positive clinical outcomes. Local administration of topical treatments and advanced wound dressings are often used for more superficial infections, and in combination with systemic antibiotics for more advanced infections. In practice, the choice of such topical approaches, whether alone or as adjuncts, is rarely evidence-based, and there does not appear to be a single market leader. There are several reasons for this, including a lack of clear evidence-based guidelines on their efficacy and a paucity of robust clinical trials. Nonetheless, with a growing number of people living with diabetes, preventing the progression of chronic foot infections to amputation is critical. Topical agents may increasingly play a role, especially as they have potential to limit the use of systemic antibiotics in an environment of increasing antibiotic resistance. While a number of advanced dressings are currently marketed for DFI, here we review the literature describing promising future-focused approaches for topical treatment of DFI that may overcome some of the current hurdles. Specifically, we focus on antibiotic-impregnated biomaterials, novel antimicrobial peptides and photodynamic therapy.
Collapse
Affiliation(s)
- Kaja Turzańska
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Education and Research Centre, Beaumont Hospital, D09 YD60 Dublin, Ireland
| | - Oluwafolajimi Adesanya
- School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Ashwene Rajagopal
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Education and Research Centre, Beaumont Hospital, D09 YD60 Dublin, Ireland
| | - Mary T. Pryce
- School of Chemical Sciences, Dublin City University, D09 V209 Dublin, Ireland
| | - Deirdre Fitzgerald Hughes
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Education and Research Centre, Beaumont Hospital, D09 YD60 Dublin, Ireland
- Correspondence: ; Tel.: +353-1-8093711
| |
Collapse
|
33
|
Morris D, Flores M, Harris L, Gammon J, Nigam Y. Larval Therapy and Larval Excretions/Secretions: A Potential Treatment for Biofilm in Chronic Wounds? A Systematic Review. Microorganisms 2023; 11:microorganisms11020457. [PMID: 36838422 PMCID: PMC9965881 DOI: 10.3390/microorganisms11020457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Chronic wounds present a global healthcare challenge and are increasing in prevalence, with bacterial biofilms being the primary roadblock to healing in most cases. A systematic review of the to-date knowledge on larval therapy's interaction with chronic-wound biofilm is presented here. The findings detail how larval therapy-the controlled application of necrophagous blowfly larvae-acts on biofilms produced by chronic-wound-relevant bacteria through their principle pharmacological mode of action: the secretion and excretion of biologically active substances into the wound bed. A total of 12 inclusion-criteria-meeting publications were identified following the application of a PRISMA-guided methodology for a systematic review. The findings of these publications were qualitatively analyzed to provide a summary of the prevailing understanding of larval therapy's effects on bacterial biofilm. A further review assessed the quality of the existing evidence to identify knowledge gaps and suggest ways these may be bridged. In summary, larval therapy has a seemingly unarguable ability to inhibit and degrade bacterial biofilms associated with impaired wound healing. However, further research is needed to clarify and standardize the methodological approach in this area of investigation. Such research may lead to the clinical application of larval therapy or derivative treatments for the management of chronic-wound biofilms and improve patient healing outcomes at a time when alternative therapies are desperately needed.
Collapse
Affiliation(s)
- Daniel Morris
- Faculty of Medicine, Health, and Life Science, Swansea University, Swansea SA2 8PP, UK
- BioMonde, Bridgend CF31 3BG, UK
| | | | - Llinos Harris
- Faculty of Medicine, Health, and Life Science, Swansea University, Swansea SA2 8PP, UK
| | - John Gammon
- Faculty of Medicine, Health, and Life Science, Swansea University, Swansea SA2 8PP, UK
| | - Yamni Nigam
- Faculty of Medicine, Health, and Life Science, Swansea University, Swansea SA2 8PP, UK
- Correspondence:
| |
Collapse
|
34
|
Gong W, Huang HB, Wang XC, He WY, Hu JN. Coassembly of Fiber Hydrogel with Antibacterial Activity for Wound Healing. ACS Biomater Sci Eng 2023; 9:375-387. [PMID: 36520681 DOI: 10.1021/acsbiomaterials.2c00716] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Wound healing remains a critical challenge due to its vulnerability to bacterial infection and the complicated inflammatory microenvironment. Herein, we report a novel antibacterial hydrogel constructed only by gallic acid (GA) and phycocyanin (PC), which is expected for the treatment of bacteria-infected wounds. These GA/PC hydrogels (GP) was found to coassemble into fibrous networks with a diameter of around 2 μm mainly through noncovalent interactions of hydrogen bonds, van der Waals force, and π interaction. Notably, these GP hydrogels showed excellent rheological properties (i.e., storage modulus of more than 9.0 × 104 Pa) and outstanding biocompatibility and antibacterial activities. Thanks to the incorporation of GA and PC, the GP hydrogels enabled adherence to the moist wound tissue and achieved a sustained release of GA and PC into the wound skin, therefore effectively attenuating inflammation and accelerating wound healing both in normal mice and bacteria-infected mice through regulating the expression of the tight junction protein and the alleviation of oxidative stress. Considering these results, these GP hydrogels are demonstrated to be a promising candidate for bacteria-infected wound healing.
Collapse
Affiliation(s)
- Wei Gong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hai-Bo Huang
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xin-Chuang Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wan-Ying He
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiang-Ning Hu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
35
|
Role of wound microbiome, strategies of microbiota delivery system and clinical management. Adv Drug Deliv Rev 2023; 192:114671. [PMID: 36538989 DOI: 10.1016/j.addr.2022.114671] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/23/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Delayed wound healing is one of the most global public health threats affecting nearly 100 million people each year, particularly the chronic wounds. Many confounding factors such as aging, diabetic disease, medication, peripheral neuropathy, immunocompromises or arterial and venous insufficiency hyperglycaemia are considered to inhibit wound healing. Therapeutic approaches for slow wound healing include anti-infection, debridement and the use of various wound dressings. However, the current clinical outcomes are still unsatisfied. In this review, we discuss the role of skin and wound commensal microbiota in the different healing stages, including inflammation, cell proliferation, re-epithelialization and remodelling phase, followed by multiple immune cell responses to commensal microbiota. Current clinical management in treating surgical wounds and chronic wounds was also reviewed together with potential controlled delivery systems which may be utilized in the future for the topical administration of probiotics and microbiomes. This review aims to introduce advances, novel strategies, and pioneer ideas in regulating the wound microbiome and the design of controlled delivery systems.
Collapse
|
36
|
Gao L, Liu X, Zhao W, Li C, Wang F, Gao J, Liao X, Wei L, Wu H, Zheng Y, Wang L. Extracellular-matrix-mimicked 3D nanofiber and hydrogel interpenetrated wound dressing with a dynamic autoimmune-derived healing regulation ability based on wound exudate. Biofabrication 2022; 15. [PMID: 36579621 DOI: 10.1088/1758-5090/acaa01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Dynamic regulation of wound physiological signals is the basis of wound healing. Conventional biomaterials delivering growth factors to drive wound healing leads to the passive repair of soft tissues because of the mismatch of wound healing stages. Meanwhile, the bioactivity of wound exudate is often restricted by oxidation and bacterial contamination. Herein, an extracellular matrix mimicked nanofiber/hydrogel interpenetrated network (NFHIN) was constructed with a 3D nanofibrous framework for cell immigration, and interfiled aerogel containing cross-linked hyaluronic acid and hyperbranched polyamidoamine to balance the wound microenvironment. The aerogel can collect wound exudate and transform into a polycationic hydrogel with contact-killing effects even against intracellular pathogens (bactericidal rate > 99.9% in 30 min) and real-time scavenging property of reactive oxygen species. After co-culturing with the NFHIN, the bioactivity of fibroblast in theex vivoblister fluid was improved by 389.69%. The NFHIN showed sustainable exudate management with moisture-vapor transferring rate (6000 g m-2×24 h), equilibrium liquid content (75.3%), Young's modulus (115.1 ± 7 kPa), and anti-tearing behavior similar to human skin. The NFHIN can collect and activate wound exudate, turning it from a clinical problem to an autoimmune-derived wound regulation system, showing potential for wound care in critical skin diseases.
Collapse
Affiliation(s)
- Liheng Gao
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Xingxing Liu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Wenshuo Zhao
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Chaojin Li
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Fujun Wang
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Jing Gao
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Xinqin Liao
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Hao Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | - Yuanjin Zheng
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Lu Wang
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
37
|
Caputo WJ, Monterosa P, Beggs D. Antibiotic Misuse in Wound Care: Can Bacterial Localization through Fluorescence Imaging Help? Diagnostics (Basel) 2022; 12:3207. [PMID: 36553214 PMCID: PMC9778012 DOI: 10.3390/diagnostics12123207] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
(1) Background: Systemic antibiotic use in chronic wounds is alarmingly high worldwide. Between 53% to 71% of patients are prescribed at least one course per chronic wound. Systemic antibiotic use should follow antibiotic stewardship guidelines and ought to be reserved for situations where their use is deemed supported by clinical indications. Unfortunately, in the field of wound care, indiscriminate and often inadequate use of systemic antibiotics is leading to both patient complications and worsening antibiotic resistance rates. Implementing novel tools that help clinicians prevent misuse or objectively determine the true need for systemic antibiotics is essential to reduce prescribing rates. (2) Methods: We present a compendium of available systemic antibiotic prescription rates in chronic wounds. The impact of various strategies used to improve these rates, as well as preliminary data on the impact of implementing fluorescence imaging technology to finesse wound status diagnosis, are presented. (3) Results: Interventions including feedback from wound care surveillance and treatment data registries as well as better diagnostic strategies can ameliorate antibiotic misuse. (4) Conclusions: Interventions that mitigate unnecessary antibiotic use are needed. Effective strategies include those that raise awareness of antibiotic overprescribing and those that enhance diagnosis of infection, such as fluorescence imaging.
Collapse
Affiliation(s)
- Wayne J. Caputo
- Director of the Wound Care Center at Clara Maass Medical Center, Belleville, NJ 07109, USA
| | | | - Donald Beggs
- Infectious Disease, Clara Maass Medical Center, Belleville, NJ 07109, USA
| |
Collapse
|
38
|
Swingler S, Gupta A, Gibson H, Kowalczuk M, Adamus G, Heaselgrave W, Radecka I. Thymoquinone: Hydroxypropyl-β-cyclodextrin Loaded Bacterial Cellulose for the Management of Wounds. Pharmaceutics 2022; 14:pharmaceutics14122816. [PMID: 36559309 PMCID: PMC9781873 DOI: 10.3390/pharmaceutics14122816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/23/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The need for more advantageous and pharmaceutically active wound dressings is a pressing matter in the area of wound management. In this study, we explore the possibility of incorporating thymoquinone within bacterial cellulose, utilising cyclodextrins as a novel method of solubilising hydrophobic compounds. The thymoquinone was not soluble in water, so was incorporated within hydroxypropyl-β-cyclodextrin before use. Thymoquinone: hydroxypropyl-β-cyclodextrin inclusion complex produced was found to be soluble in water up to 7% (w/v) and was stable with no crystal formation for at least 7 days with the ability to be loaded within the bacterial cellulose matrix. The inclusion complex was found to be thermally stable up to 280 °C which is far greater than the production temperature of 80 °C and was stable in phosphate-buffered saline and extraction solvents in permeation and dose experiments. The adhesion properties of the Thymoquinone: hydroxypropyl-β-cyclodextrin loaded bacterial cellulose dressings were tested and found to be 2.09 N. Permeation studies on skin mimicking membrane Strat-M showed a total permeated amount (0-24 h) of 538.8 µg cm-2 and average flux after a 2 h lag of 22.4 µg h-1 cm-2. To the best of our knowledge, the methods outlined in this study are the first instance of loading bacterial cellulose with thymoquinone inclusion complex with the aim of producing a pharmaceutically active wound dressing.
Collapse
Affiliation(s)
- Sam Swingler
- Department of Biology, Chemistry and Forensic Science, School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- Correspondence: (S.S.); (I.R.)
| | - Abhishek Gupta
- School of Allied Health and Midwifery, Faculty of Education, Health and Wellbeing, University of Wolverhampton, Walsall WS1 3BD, UK
| | - Hazel Gibson
- Department of Biology, Chemistry and Forensic Science, School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Grazyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Wayne Heaselgrave
- Department of Biomedical Science, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Iza Radecka
- Department of Biology, Chemistry and Forensic Science, School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- Correspondence: (S.S.); (I.R.)
| |
Collapse
|
39
|
Serena TE, Gould L, Ousey K, Kirsner RS. Reliance on Clinical Signs and Symptoms Assessment Leads to Misuse of Antimicrobials: Post hoc Analysis of 350 Chronic Wounds. Adv Wound Care (New Rochelle) 2022; 11:639-649. [PMID: 34714159 PMCID: PMC9527054 DOI: 10.1089/wound.2021.0146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/09/2021] [Indexed: 01/29/2023] Open
Abstract
Objectives: Bacteria frequently impede wound healing and cause infection. Clinicians rely on clinical signs and symptoms (CSS) to assess for bacteria at the point of care, and inform prescription of antibiotics and other antimicrobials. Yet, robust evidence suggests that CSS has poor sensitivity for detection of problematic bacterial burden and infection, hindering antimicrobial stewardship efforts. This study evaluated CSS-based antimicrobial prescribing practices across 14 wound care centers. Approach: Data were analyzed from the fluorescence assessment and guidance (FLAAG) trial, a study of 350 chronic wounds across 20 clinicians. Clinicians reviewed patient history and assessed for CSS using the International Wound Infection Institute infection checklist. Wounds with >3 criteria or any overwhelming symptom were considered CSS+. Bacterial levels were confirmed with quantitative tissue culture of wound biopsies. Results: Antimicrobials (including dressings, topicals, and systemic antibiotics) were prescribed at a similar rate for wounds identified as CSS+ (75.0%) and CSS- (72.8%, p = 0.76). Antimicrobial dressings, the most frequently prescribed antimicrobial, were prescribed at a similar rate for CSS+ (83.3%) and CSS- (89.5%, p = 0.27) wounds. In 33.3% of patients prescribed systemic antibiotics, no CSS were present. Prescribing patterns did not correlate with bacterial load. Innovation: This study is the first to evaluate antimicrobial prescribing trends in a large, multisite cohort of chronic wound patients. Conclusions: Reliance on CSS to diagnose clinically significant bacterial burden in chronic wounds leads to the haphazard use of antimicrobials. Improved methods of identifying bacterial burden and infection are needed to enhance antimicrobial stewardship efforts in wound care. Clinicaltrials.gov ID. NCT03540004.
Collapse
Affiliation(s)
- Thomas E Serena
- SerenaGroup® Research Foundation, Cambridge, Massachusetts, USA
| | - Lisa Gould
- South Shore Health Department of Surgery (or Brown Alpert Department of Medicine), Weymouth, Massachusetts, USA
| | - Karen Ousey
- School of Human and Health Sciences, University of Huddersfield, West Yorkshire, United Kingdom
| | - Robert S Kirsner
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
40
|
Hoque MN, Jahan MI, Hossain MA, Sultana M. Genomic diversity and molecular epidemiology of a multidrug-resistant Pseudomonas aeruginosa DMC30b isolated from a hospitalized burn patient in Bangladesh. J Glob Antimicrob Resist 2022; 31:110-118. [PMID: 36058512 DOI: 10.1016/j.jgar.2022.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Pseudomonas aeruginosa is a key opportunistic pathogen causing a wide range of community- and hospital-acquired infections in immunocompromised or catheterized patients. Here, we report the complete genome sequence of a multidrug-resistant (MDR) P. aeruginosa DMC30b to elucidate the genetic diversity, molecular epidemiology, and underlying mechanisms for antimicrobial resistance and virulence. METHODS P. aeruginosa DMC30b was isolated from septic wound swab of a severe burn patient. Whole-genome sequencing was performed under Ion Torrent platform. The genome was assembled using the SPAdes v. 3.12.01 in an integrated Genome Analysis Platform for Ion Torrent sequence data. The genome was annotated using the National Center for Biotechnology Information (NCBI) Prokaryotic Genome Annotation Pipeline. In-silico predictions of antimicrobial resistance genes, virulence factor genes, and metabolic functional potentials were performed using different curated bioinformatics tools. RESULTS P. aeruginosa DMC30b was found as a MDR strain and belonged to sequence type 244 (ST244). The complete genome size is 6 994 756 bp with a coverage of 76.76x, guanine-cytosine content of 65.7% and a Benchmarking Universal Single-Copy Orthologs score of 100. The genome of P. aeruginosa DMC30b harboured two predicted plasmid replicons (e,g. IncP-6; 78 007 bp and ColRNAI; 9359 bp), 35 resistomes (antimicrobial resistance genes) conferring resistance to 18 different antibiotics (including four beta-lactam classes), and 214 virulence factor genes. It was identified as the 167th ST244 strain among ∼ 5800 whole-genome sequences of P. aeruginosa available in the NCBI database. CONCLUSION The MDR P. aeruginosa DMC30b was identified as the 167th ST244 complete genome to be submitted to the NCBI, and the first ST244 isolate sequenced from Bangladesh. The complete genome data with high genetic diversity and underlying mechanisms for antimicrobial resistance and virulence of P. aeruginosa DMC30b will aid in understanding the evolution and phylogeny of such high-risk clones and provide a solid basis for further research on MDR or extensively drug resistant strains.
Collapse
Affiliation(s)
- M Nazmul Hoque
- Department of Gynaecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - M Ishrat Jahan
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - M Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh.
| |
Collapse
|
41
|
Zhan X, Yan J, Tang H, Xia D, Lin H. Antibacterial Properties of Gold Nanoparticles in the Modification of Medical Implants: A Systematic Review. Pharmaceutics 2022; 14:pharmaceutics14122654. [PMID: 36559152 PMCID: PMC9785922 DOI: 10.3390/pharmaceutics14122654] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
The widespread occurrence of bacterial infections and their increased resistance to antibiotics has led to the development of antimicrobial coatings for multiple medical implants. Owing to their desirable properties, gold nanoparticles (AuNPs) have been developed as antibacterial agents. This systematic investigation sought to analyze the antibacterial effects of implant material surfaces modified with AuNPs. The data from 27 relevant studies were summed up. The included articles were collected from September 2011 to September 2021. According to the retrieved literature, we found that medical implants modified by AuNPs have good antibacterial effects against gram-positive and gram-negative bacteria, and the antibacterial effects would be improved by near-infrared (NIR) radiation.
Collapse
Affiliation(s)
- Xinxin Zhan
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Jianglong Yan
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Hao Tang
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Dandan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
- Correspondence: (D.X.); (H.L.)
| | - Hong Lin
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
- Correspondence: (D.X.); (H.L.)
| |
Collapse
|
42
|
Suda T, Hanawa T, Tanaka M, Tanji Y, Miyanaga K, Hasegawa-Ishii S, Shirato K, Kizaki T, Matsuda T. Modification of the immune response by bacteriophages alters methicillin-resistant Staphylococcus aureus infection. Sci Rep 2022; 12:15656. [PMID: 36123529 PMCID: PMC9483902 DOI: 10.1038/s41598-022-19922-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
There is an urgent need to develop phage therapies for multidrug-resistant bacterial infections. However, although bacteria have been shown to be susceptible to phage therapy, phage therapy is not sufficient in some cases. PhiMR003 is a methicillin-resistant Staphylococcus aureus phage previously isolated from sewage influent, and it has demonstrated high lytic activity and a broad host range to MRSA clinical isolates in vitro. To investigate the potential of phiMR003 for the treatment of MRSA infection, the effects of phiMR003 on immune responses in vivo were analysed using phiMR003-susceptible MRSA strains in a mouse wound infection model. Additionally, we assessed whether phiMR003 could affect the immune response to infection with a nonsusceptible MRSA strain. Interestingly, wounds infected with both susceptible and nonsusceptible MRSA strains treated with phiMR003 demonstrated decreased bacterial load, reduced inflammation and accelerated wound closure. Moreover, the infiltration of inflammatory cells in infected tissue was altered by phiMR003. While the effects of phiMR003 on inflammation and bacterial load disappeared with heat inactivation of phiMR003. Transcripts of proinflammatory cytokines induced by lipopolysaccharide were reduced in mouse peritoneal macrophages. These results show that the immune modulation occurring as a response to the phage itself improves the clinical outcomes of phage therapy.
Collapse
Affiliation(s)
- Tomoya Suda
- Department of General Medicine, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Tomoko Hanawa
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| | - Mayuko Tanaka
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Yasunori Tanji
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J3-8 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Kazuhiko Miyanaga
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J3-8 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.,Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Sanae Hasegawa-Ishii
- Pathology Research Team, Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan
| | - Ken Shirato
- Department of Molecular Predictive Medicine and Sport Science, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Takako Kizaki
- Department of Molecular Predictive Medicine and Sport Science, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Takeaki Matsuda
- Department of General Medicine, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka, Tokyo, 181-8611, Japan. .,Department of Traumatology and Critical Care Medicine, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| |
Collapse
|
43
|
Zhong Y, Huang S, Feng Z, Fu Y, Mo A. Recent advances and trends in the applications of MXene nanomaterials for tissue engineering and regeneration. J Biomed Mater Res A 2022; 110:1840-1859. [PMID: 35975580 DOI: 10.1002/jbm.a.37438] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/14/2022] [Accepted: 08/03/2022] [Indexed: 11/08/2022]
Abstract
MXene, as a new two-dimensional nanomaterial, is endowed with lots of particular properties, such as large surface area, excellent conductivity, biocompatibility, biodegradability, hydrophilicity, antibacterial activity, and so on. In the past few years, MXene nanomaterials have become a rising star in biomedical fields including biological imaging, tumor diagnosis, biosensor, and tissue engineering. In this review, we sum up the recent applications of MXene nanomaterials in the field of tissue engineering and regeneration. First, we briefly introduced the synthesis and surface modification engineering of MXene. Then we focused on the application and development of MXene and MXene-based composites in skin, bone, nerve and heart tissue engineering. Uniquely, we also paid attention to some research on MXene with few achievements at present but might become a new trend in tissue engineering and regeneration in the future. Finally, this paper will also discuss several challenges faced by MXene nanomaterials in the clinical application of tissue engineering.
Collapse
Affiliation(s)
- Yongjin Zhong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Si Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zeru Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Anchun Mo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Ning X, He G, Zeng W, Xia Y. The photosensitizer-based therapies enhance the repairing of skin wounds. Front Med (Lausanne) 2022; 9:915548. [PMID: 36035433 PMCID: PMC9403269 DOI: 10.3389/fmed.2022.915548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Abstract
Wound repair remains a clinical challenge and bacterial infection is a common complication that may significantly delay healing. Therefore, proper and effective wound management is essential. The photosensitizer-based therapies mainly stimulate the photosensitizer to generate reactive oxygen species through appropriate excitation source irradiation, thereby killing pathogenic microorganisms. Moreover, they initiate local immune responses by inducing the recruitment of immune cells as well as the production of proinflammatory cytokines. In addition, these therapies can stimulate the proliferation, migration and differentiation of skin resident cells, and improve the deposition of extracellular matrix; subsequently, they promote the re-epithelialization, angiogenesis, and tissue remodeling. Studies in multiple animal models and human skin wounds have proved that the superior sterilization property and biological effects of photosensitizer-based therapies during different stages of wound repair. In this review, we summarize the recent advances in photosensitizer-based therapies for enhancing tissue regeneration, and suggest more effective therapeutics for patients with skin wounds.
Collapse
Affiliation(s)
- Xiaoying Ning
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Gang He
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Weihui Zeng
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Yumin Xia,
| |
Collapse
|
45
|
Rippon MG, Rogers AA, Ousey K, Atkin L, Williams K. The importance of periwound skin in wound healing: an overview of the evidence. J Wound Care 2022; 31:648-659. [PMID: 36001708 DOI: 10.12968/jowc.2022.31.8.648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
DECLARATION OF INTEREST The authors have no conflicts of interest.
Collapse
Affiliation(s)
| | | | - Karen Ousey
- Institute of Skin Integrity and Infection Prevention, Department of Nursing and Midwifery, University of Huddersfield.,Adjunct Professor, School of Nursing, Faculty of Health at the Queensland University of Technology, Australia.,Visiting Professor, RCSI, Dublin, Ireland
| | | | - Kate Williams
- Department of Nursing and Midwifery, School of Human and Health Sciences, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
46
|
Rahma S, Woods J, Brown S, Nixon J, Russell D. The Use of Point-of-Care Bacterial Autofluorescence Imaging in the Management of Diabetic Foot Ulcers: A Pilot Randomized Controlled Trial. Diabetes Care 2022; 45:1601-1609. [PMID: 35796769 DOI: 10.2337/dc21-2218] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/17/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To estimate comparative healing rates and decision-making associated with the use of bacterial autofluorescence imaging in the management of diabetic foot ulcers (DFUs). RESEARCH DESIGN AND METHODS This is a single-center (multidisciplinary outpatient clinic), prospective pilot, randomized controlled trial (RCT) in patients with an active DFU and no suspected clinical infection. Consenting patients were randomly assigned 1:1 to either treatment as usual informed by autofluorescence imaging (intervention), or treatment as usual alone (control). The primary outcome was the proportion of ulcers healed at 12 weeks by blinded assessment. Secondary outcomes included wound area reduction at 4 and 12 weeks, patient quality of life, and change in management decisions after autofluorescence imaging. RESULTS Between November 2017 and November 2019, 56 patients were randomly assigned to the control or intervention group. The proportion of ulcers healed at 12 weeks in the autofluorescence arm was 45% (n = 13 of 29) vs. 22% (n = 6 of 27) in the control arm. Wound area reduction was 40.4% (autofluorescence) vs. 38.6% (control) at 4 weeks and 91.3% (autofluorescence) vs. 72.8% (control) at 12 weeks. Wound debridement was the most common intervention in wounds with positive autofluorescence imaging. There was a stepwise trend in healing favoring those with negative autofluorescence imaging, followed by those with positive autofluorescence who had intervention, and finally those with positive autofluorescence with no intervention. CONCLUSIONS In the first RCT, to our knowledge, assessing the use of autofluorescence imaging in DFU management, our results suggest that a powered RCT is feasible and justified. Autofluorescence may be valuable in addition to standard care in the management of DFU.
Collapse
Affiliation(s)
- Sara Rahma
- Diabetes Limb Salvage Service, Leeds Teaching Hospitals NHS Trust, Leeds, U.K
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, U.K
| | - Janet Woods
- Diabetes Limb Salvage Service, Leeds Teaching Hospitals NHS Trust, Leeds, U.K
| | - Sarah Brown
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, U.K
| | - Jane Nixon
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, U.K
| | - David Russell
- Diabetes Limb Salvage Service, Leeds Teaching Hospitals NHS Trust, Leeds, U.K
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, U.K
| |
Collapse
|
47
|
Shahriari-Khalaji M, Li G, Liu L, Sattar M, Chen L, Zhong C, Hong FF. A poly-l-lysine-bonded TEMPO-oxidized bacterial nanocellulose-based antibacterial dressing for infected wound treatment. Carbohydr Polym 2022; 287:119266. [DOI: 10.1016/j.carbpol.2022.119266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/03/2022] [Accepted: 02/16/2022] [Indexed: 12/17/2022]
|
48
|
Hurlow J, Bowler PG. Acute and chronic wound infections: microbiological, immunological, clinical and therapeutic distinctions. J Wound Care 2022; 31:436-445. [PMID: 35579319 DOI: 10.12968/jowc.2022.31.5.436] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Wound infection is a complex pathology that may manifest either as a rapid onset acute condition, or as a prolonged chronic condition. Although systemic antibiotic therapy is often appropriate and necessary for acute wound infections, it is often used inappropriately, excessively and unsuccessfully in chronic wound infections. Overuse of antibiotics in chronic (hard-to-heal) wound management contributes to antibiotic resistance. This literature review confirms that acute and chronic wound infections are significantly differentiated by their cause (microbial phenotype), the subsequent host immune response and by the resulting clinical manifestations. Consequently, recognition of the type of wound infection followed by appropriate and timely therapy is required to improve wound healing outcomes while encouraging more judicious and responsible use of antibiotics.
Collapse
|
49
|
Rippon MG, Westgate S, Rogers AA. Implications of endotoxins in wound healing: a narrative review. J Wound Care 2022; 31:380-392. [PMID: 35579309 DOI: 10.12968/jowc.2022.31.5.380] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial toxins are thought to play a role in delayed wound healing in critically colonised and infected wounds. Endotoxins are released from Gram-negative bacteria when they are lysed by host phagocytic cells during an immune response, or by antimicrobial agents, potentially leading to a detrimental effect on the host tissues. Endotoxins can affect all aspects of the wound healing process, leading to delayed healing and contributing to wound chronicity. Release of endotoxins by bacteria can also have serious systemic effects (for example, septic shock) that can lead to high levels of patient mortality. This review summarises the role and implications on wound healing of bacterial endotoxins, describing the impact of endotoxins on the various phases of the wound healing response. There is a paucity of in vivo/clinical evidence linking endotoxins attributed to a wound (via antibiotic treatment) or their release from infecting bacteria with parameters of delayed wound healing. Future work should investigate if this link is apparent and determine the mechanism(s) by which such detrimental effects occur, offering an opportunity to identify possible treatment pathways. This paper describes the phenomenon of antimicrobial-induced endotoxin release and summarises the use of wound dressings to reduce wound bioburden without inducing microbial death and subsequent release of endotoxins, thus limiting their detrimental effects.
Collapse
Affiliation(s)
- Mark G Rippon
- University of Huddersfield, Queensgate, Huddersfield, UK
| | | | | |
Collapse
|
50
|
Wu J, Pan Z, Zhao ZY, Wang MH, Dong L, Gao HL, Liu CY, Zhou P, Chen L, Shi CJ, Zhang ZY, Yang C, Yu SH, Zou DH. Anti-Swelling, Robust, and Adhesive Extracellular Matrix-Mimicking Hydrogel Used as Intraoral Dressing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200115. [PMID: 35128734 DOI: 10.1002/adma.202200115] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Due to the wet and dynamic environment of the oral cavity, the healing of intraoral wounds, such as tooth extraction wounds, requires stable and firm wound dressings. In clinical practice, cotton balls and gauzes, sponge plugs, or sutures are used to treat extraction wounds, but none of these means can continuously isolate the wound from the intraoral environment and facilitate ideal healing conditions. Herein, inspired by the natural extracellular matrix, a family of wound dressings is developed for intraoral wound repair. Infiltrating a ductile long-chain hydrogel network into a prefabricated, sturdy macromolecular meshwork and in situ crosslinking endowed the composite hydrogel with controllable swelling behaviors and robust mechanical properties. The macromolecular meshwork functioned as the backbone to support the composite and restricts the swelling of the long-chain hydrogel network. In vitro tests verified that this wound dressing can provide durable protection for intraoral wounds against complex irritations. Furthermore, accelerated wound healing occurred when the wound dressing is applied in vivo on a canine tooth extraction model, due to the effective reduction of acute inflammation. These results suggest that this family of bioinspired hydrogels has great potential for application as intraoral wound dressing.
Collapse
Affiliation(s)
- Jing Wu
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhao Pan
- Department of Chemistry, Institute of Biomimetic Materials, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zheng-Yi Zhao
- Department of Dental Implant Center, Stomatology Hospital & College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Mo-Han Wang
- Department of Dental Implant Center, Stomatology Hospital & College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Liang Dong
- Department of Chemistry, Institute of Biomimetic Materials, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Huai-Ling Gao
- Department of Chemistry, Institute of Biomimetic Materials, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Chong-Yuan Liu
- Department of Dental Implant Center, Stomatology Hospital & College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Pu Zhou
- Department of Dental Implant Center, Stomatology Hospital & College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Lu Chen
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chao-Ji Shi
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhi-Yuan Zhang
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chi Yang
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Duo-Hong Zou
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Department of Dental Implant Center, Stomatology Hospital & College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|