1
|
Singh N, Xia W, Need E, McManus K, Huang J, Shi S, Goel S. Tumor agnostic ultrasmall nanoprobes for fluorescence-guided surgical resection in peritoneal metastasis. Eur J Nucl Med Mol Imaging 2025; 52:1149-1165. [PMID: 39446146 DOI: 10.1007/s00259-024-06950-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE Surgical excision of metastases is the only curative treatment strategy in peritoneal carcinomatosis management, and the completeness of tumor resection determines the success of the surgery. Tumor-specific fluorescence-guided probes can improve the outcomes of cytoreductive surgery and thereby prognosis. This study aimed to develop and evaluate the feasibility of fluorescently labeled ultrasmall porous silica nanoparticles (UPSN) for image-guided resection of peritoneally disseminated tumors of different origins. METHODS Ultrasmall fluorescent nanoprobes were synthesized and characterized for their physicochemical properties and stability. Tumor-specific uptake and biodistribution profiles were evaluated in syngeneic CT26 colorectal and KPC-689 pancreatic cancer murine models. The practicability of real-time optical UPSN-guided resection was examined in the CT26 colorectal cancer model using a surgical stereomicroscope. Quantitative measurements of tumor sensitivity and specificity were performed. Histopathological examination validated in vivo findings about tumor-specific accumulation and safety of ultrasmall fluorescent probes. RESULTS As-synthesized UPSNs were successfully surface modified with Cy5 or Cy3 dyes maintaining sub-15 nm size and near neutral charge which is beneficial for optimized in vivo pharmacokinetics. UPSN-Cy5 demonstrated high tumor-specific uptake and favorable biodistribution profiles in peritoneal metastasis models of CT26 and KPC tumors. Dye-conjugated UPSN enabled resection of microscopic lesions and achieved a higher tumor-to-background ratios in comparison to FDA-approved indocyanine green (ICG) dye in both models. Microscopic evaluation showed tumor localization and off-target safety profile of the UPSN-Cy5. CONCLUSION Ultrasmall fluorescent probes were effective in surgical resection of peritoneal metastases with high sensitivity and specificity, thus emerging as promising tumor agnostic agents for image-guided cancer surgery.
Collapse
Affiliation(s)
- Neetu Singh
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Wenxi Xia
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Esther Need
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Kylee McManus
- College of Science and Honors College (Biology), University of Utah, Salt Lake City, UT, 84112, USA
| | - Jiemin Huang
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Sixiang Shi
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA.
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Shreya Goel
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA.
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84112, USA.
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
2
|
Martinelli S, Fortuna L, Coratti F, Passagnoli F, Amedei A, Cianchi F. Potential Probes for Targeted Intraoperative Fluorescence Imaging in Gastric Cancer. Cancers (Basel) 2024; 16:4141. [PMID: 39766041 PMCID: PMC11675003 DOI: 10.3390/cancers16244141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Gastric cancer (GC) is a malignant tumor of the gastrointestinal tract associated with high mortality rates and accounting for approximately 1 million new cases diagnosed annually. Surgery, particularly radical gastrectomy, remains the primary treatment; however, there are currently no specific approaches to better distinguish malignant from healthy tissue or to differentiate between metastatic and non-metastatic lymph nodes. As a result, surgeons have to remove all lymph nodes indiscriminately, increasing intraoperative risks for patients and prolonging hospital stay. Near-infrared fluorescence imaging with indocyanine green (ICG) can provide real-time visualization of the surgical field using both conventional laparoscopy and robotic mini-invasive precision surgery platforms. However, its application shows some limits, as ICG is a non-targeted contrast agent. Several studies are now investigating the potential efficacy of fluorescent targeted agents that could selectively bind to the tumor tissue, offering a valuable tool for metastatic mapping during robotic gastrectomy. This review aims to summarize the key fluorescent agents that have been developed to recognize GC markers, as well as those targeting the tumor microenvironment (TME) and metabolic features. These agents hold great potential as valuable tools for enhancing precision surgery in robotic gastrectomy procedures improving the clinical recovery of GC patients.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
| | - Laura Fortuna
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
| | - Francesco Coratti
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
| | - Federico Passagnoli
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50134 Florence, Italy
| | - Fabio Cianchi
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
| |
Collapse
|
3
|
Lauwerends LJ, Zweedijk BE, Galema HA, Neijenhuis LKA, Dekker-Ensink NG, Baatenburg de Jong RJ, Verhoef C, Bhairosingh SS, Kuppen PJK, Vahrmeijer AL, van Ginhoven TM, Koljenović S, Koppes SA, Hilling DE, Keereweer S. Tumour Marker Expression in Head and Neck Malignancies to Identify Potential Targets for Intraoperative Molecular Near-Infrared Imaging. Mol Diagn Ther 2024; 28:811-820. [PMID: 39251469 PMCID: PMC11512873 DOI: 10.1007/s40291-024-00742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Oral and laryngeal squamous cell carcinoma (OSCC and LSCC) and papillary thyroid carcinoma (PTC) are common head and neck cancers (HNCs) typically treated surgically. Challenges in tumour delineation often lead to inadequate resection margins in OSCC and LSCC, and missed multifocality in PTC. Fluorescence imaging (FLI) using near-infrared tumour-targeting tracers may improve intraoperative identification of malignancy, facilitating precise excision. This study evaluates six potential FLI targets in OSCC, LSCC and PTC. MATERIALS AND METHODS Immunohistochemical staining was performed on OSCC (n = 20), LSCC (n = 10) and PTC (n = 10), assessing CEA, c-Met, EpCAM, EGFR, integrin αvβ6 and VEGF-α. Expression was scored (0-12) using the total immunostaining score (TIS) system, and categorized into absent (TIS 0), low (TIS 1-5), moderate (TIS 6-8) or high (TIS 9-12). RESULTS Integrin αvβ6 showed significant overexpression in OSCC (TIS: 12; p < 0.001) and LSCC (TIS: 8; p = 0.002), with 80% of OSCC and 90% of LSCC exhibiting moderate-high expression. Similarly, EGFR expression was moderate-high in most OSCC (87.5%; TIS: 8) and universally high in LSCC (100%; TIS: 12). In PTC, EGFR and VEGF-α expressions were low-moderate, but significantly higher than in healthy tissue (TIS: 6; p < 0.006). CONCLUSION This study highlights integrin αvβ6 and EGFR as viable FLI targets in OSCC and LSCC, especially integrin αvβ6 for tumour margin delineation. In PTC, despite lower expressions, the significant overexpression of VEGF-α, c-MET, and EGFR suggests their potential as FLI targets. Our findings support the development of tumour-targeted FLI tracers to improve surgical precision in HNC.
Collapse
MESH Headings
- Humans
- Biomarkers, Tumor/metabolism
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/surgery
- Head and Neck Neoplasms/diagnostic imaging
- Head and Neck Neoplasms/pathology
- Male
- Female
- Middle Aged
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/surgery
- Carcinoma, Squamous Cell/diagnostic imaging
- Carcinoma, Squamous Cell/pathology
- Aged
- Immunohistochemistry
- Molecular Imaging/methods
- Adult
- Thyroid Cancer, Papillary/metabolism
- Thyroid Cancer, Papillary/surgery
- Thyroid Cancer, Papillary/pathology
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/diagnostic imaging
- Squamous Cell Carcinoma of Head and Neck/surgery
- Squamous Cell Carcinoma of Head and Neck/metabolism
- Squamous Cell Carcinoma of Head and Neck/diagnostic imaging
- Squamous Cell Carcinoma of Head and Neck/pathology
- Squamous Cell Carcinoma of Head and Neck/genetics
- ErbB Receptors/metabolism
- ErbB Receptors/genetics
Collapse
Affiliation(s)
- Lorraine J Lauwerends
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Bo E Zweedijk
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Hidde A Galema
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Lisanne K A Neijenhuis
- Department of Surgery, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, The Netherlands
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Neeltje G Dekker-Ensink
- Department of Surgery, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Robert J Baatenburg de Jong
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Cornelis Verhoef
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Shadhvi S Bhairosingh
- Department of Surgery, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Tessa M van Ginhoven
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Senada Koljenović
- Department of Pathology, Antwerp University Hospital, 2650, Antwerp, Belgium
| | - Sjors A Koppes
- Department of Pathology, Erasmus Medical Centre, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Denise E Hilling
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Surgery, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Stijn Keereweer
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Muilenburg KM, Ehrhorn EG, Olson MT, Isder CC, Klute KA, Talmon GA, Carlson MA, Ly QP, Mohs AM. MUC16 Retention after Neoadjuvant Chemotherapy in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:3439. [PMID: 39456534 PMCID: PMC11506185 DOI: 10.3390/cancers16203439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis. Currently, surgical resection is the only potentially curative treatment. Unfortunately, less than 20% of PDAC patients are eligible for surgical resection at diagnosis. In the past few decades, neoadjuvant chemotherapy treatment (NCT) has been investigated as a way to downstage PDAC tumors for surgical resection. Fluorescence-guided surgery (FGS) is a technique that can aid in increasing complete resection rates by enhancing the tumor through passive or active targeting of a contrast agent. In active targeting, a probe (e.g., antibody) binds a protein differentially upregulated in the tumor compared to normal tissue. Mucin 16 (MUC16), a transmembrane glycoprotein, has recently been explored as an FGS target in preclinical tumor models. However, the impact of chemotherapy on MUC16 expression is unknown. Methods: To investigate this issue, immunohistochemistry was performed on PDAC patient samples. Results: We found that MUC16 expression was retained after NCT in patient samples (mean expression = 5.7) with minimal change in expression between the matched diagnostic (mean expression = 3.66) and PDAC NCT patient samples (mean expression = 4.5). Conclusions: This study suggests that MUC16 is a promising target for FGS and other targeted therapies in PDAC patients treated with NCT.
Collapse
Affiliation(s)
- Kathryn M. Muilenburg
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; (K.M.M.); (C.C.I.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; (E.G.E.); (M.T.O.); (K.A.K.); (G.A.T.); (M.A.C.); (Q.P.L.)
| | - Evie G. Ehrhorn
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; (E.G.E.); (M.T.O.); (K.A.K.); (G.A.T.); (M.A.C.); (Q.P.L.)
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA
| | - Madeline T. Olson
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; (E.G.E.); (M.T.O.); (K.A.K.); (G.A.T.); (M.A.C.); (Q.P.L.)
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA
| | - Carly C. Isder
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; (K.M.M.); (C.C.I.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; (E.G.E.); (M.T.O.); (K.A.K.); (G.A.T.); (M.A.C.); (Q.P.L.)
| | - Kelsey A. Klute
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; (E.G.E.); (M.T.O.); (K.A.K.); (G.A.T.); (M.A.C.); (Q.P.L.)
- Department of Internal Medicine, University of Nebraska Medical Center, 42nd and Emile, Omaha, NE 68198, USA
| | - Geoffrey A. Talmon
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; (E.G.E.); (M.T.O.); (K.A.K.); (G.A.T.); (M.A.C.); (Q.P.L.)
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mark A. Carlson
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; (E.G.E.); (M.T.O.); (K.A.K.); (G.A.T.); (M.A.C.); (Q.P.L.)
- Department of Surgery, University of Nebraska Medical Center, 983280 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Quan P. Ly
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; (E.G.E.); (M.T.O.); (K.A.K.); (G.A.T.); (M.A.C.); (Q.P.L.)
- Department of Surgery, University of Nebraska Medical Center, 983280 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aaron M. Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; (K.M.M.); (C.C.I.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; (E.G.E.); (M.T.O.); (K.A.K.); (G.A.T.); (M.A.C.); (Q.P.L.)
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, S 45th St, Omaha, NE 68198, USA
| |
Collapse
|
5
|
Mc Larney BE, Sonay A, Apfelbaum E, Mostafa N, Monette S, Goerzen D, Aguirre N, Exner RM, Habjan C, Isaac E, Phung NB, Skubal M, Kim M, Ogirala A, Veach D, Heller DA, Grimm J. A pan-cancer dye for solid-tumour screening, resection and wound monitoring via short-wave and near-infrared fluorescence imaging. Nat Biomed Eng 2024; 8:1092-1108. [PMID: 39251765 PMCID: PMC11699565 DOI: 10.1038/s41551-024-01248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/21/2024] [Indexed: 09/11/2024]
Abstract
The efficacy of fluorescence-guided surgery in facilitating the real-time delineation of tumours depends on the optical contrast of tumour tissue over healthy tissue. Here we show that CJ215-a commercially available, renally cleared carbocyanine dye sensitive to apoptosis, and with an absorption and emission spectra suitable for near-infrared fluorescence imaging (wavelengths of 650-900 nm) and shortwave infrared (SWIR) fluorescence imaging (900-1,700 nm)-can facilitate fluorescence-guided tumour screening, tumour resection and the assessment of wound healing. In tumour models of either murine or human-derived breast, prostate and colon cancers and of fibrosarcoma, and in a model of intraperitoneal carcinomatosis, imaging of CJ215 with ambient light allowed for the delineation of nearly all tumours within 24 h after intravenous injection of the dye, which was minimally taken up by healthy organs. At later timepoints, CJ215 provided tumour-to-muscle contrast ratios up to 100 and tumour-to-liver contrast ratios up to 18. SWIR fluorescence imaging with the dye also allowed for quantifiable non-contact wound monitoring through commercial bandages. CJ215 may be compatible with existing and emerging clinical solutions.
Collapse
Affiliation(s)
| | - Ali Sonay
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Elana Apfelbaum
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Pharmacology Program, Weill Cornell Medical College, New York, NY, USA
| | - Nermin Mostafa
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Sébastien Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, NY, USA
| | - Dana Goerzen
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Nicole Aguirre
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Rüdiger M. Exner
- Department of Radiology, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Christine Habjan
- Pharmacology Program, Weill Cornell Medical College, New York, NY, USA
| | - Elizabeth Isaac
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Pharmacology Program, Weill Cornell Medical College, New York, NY, USA
| | - Ngan Bao Phung
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Pharmacology Program, Weill Cornell Medical College, New York, NY, USA
| | - Magdalena Skubal
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Mijin Kim
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Anuja Ogirala
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Darren Veach
- Department of Radiology, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Department of Radiology, Weill Cornell Medical Center; New York, NY, USA
| | - Daniel A. Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Pharmacology Program, Weill Cornell Medical College, New York, NY, USA
| | - Jan Grimm
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Pharmacology Program, Weill Cornell Medical College, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Department of Radiology, Weill Cornell Medical Center; New York, NY, USA
- Molecular Imaging Therapy Service, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| |
Collapse
|
6
|
Cox KE, Turner MA, Lwin TM, Amirfakhri S, Kelly KJ, Hosseini M, Ghosh P, Obonyo M, Hoffman RM, Yazaki PJ, Bouvet M. Targeting Patient-Derived Orthotopic Gastric Cancers with a Fluorescent Humanized Anti-CEA Antibody. Ann Surg Oncol 2024; 31:6291-6299. [PMID: 38888861 PMCID: PMC11300635 DOI: 10.1245/s10434-024-15570-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Gastric cancer poses a major diagnostic and therapeutic challenge as surgical resection provides the only opportunity for a cure. Specific labeling of gastric cancer could distinguish resectable and nonresectable disease and facilitate an R0 resection, which could improve survival. METHODS Two patient-derived gastric cancer lines, KG8 and KG10, were established from surgical specimens of two patients who underwent gastrectomy for gastric adenocarcinoma. Harvested tumor fragments were implanted into the greater curvature of the stomach to establish patient-derived orthotopic xenograft (PDOX) models. M5A (humanized anti-CEA antibody) or IgG control antibodies were conjugated with the near-infrared dye IRDye800CW. Mice received 50 µg of M5A-IR800 or 50 µg of IgG-IR800 intravenously and were imaged after 72 hr. Fluorescence imaging was performed by using the LI-COR Pearl Imaging System. A tumor-to-background ratio (TBR) was calculated by dividing the mean fluorescence intensity of the tumor versus adjacent stomach tissue. RESULTS M5A-IR800 administration resulted in bright labeling of both KG8 and K10 tumors. In the KG8 PDOX models, the TBR for M5A-IR800 was 5.85 (SE ± 1.64) compared with IgG-IR800 at 0.70 (SE ± 0.17). The K10 PDOX models had a TBR of 3.71 (SE ± 0.73) for M5A-IR800 compared with 0.66 (SE ± 0.12) for IgG-IR800. CONCLUSIONS Humanized anti-CEA (M5A) antibodies conjugated to fluorescent dyes provide bright and specific labeling of gastric cancer PDOX models. This tumor-specific fluorescent antibody is a promising potential clinical tool to detect the extent of disease for the determination of resectability as well as to visualize tumor margins during gastric cancer resection.
Collapse
Affiliation(s)
- Kristin E Cox
- Department of Surgery, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Michael A Turner
- Department of Surgery, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Thinzar M Lwin
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Siamak Amirfakhri
- Department of Surgery, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Kaitlyn J Kelly
- Department of Surgical Oncology, University of Wisconsin, Madison, WI, USA
| | - Mojgan Hosseini
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Marygorret Obonyo
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Robert M Hoffman
- Department of Surgery, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
- AntiCancer Inc, San Diego, CA, USA
| | - Paul J Yazaki
- Department of Immunology & Theranostics, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, La Jolla, CA, USA.
- VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
7
|
Liu Z, Ali M, Sun Q, Zhang Q, Wei C, Wang Y, Tang D, Li X. Current status and future trends of real-time imaging in gastric cancer surgery: A literature review. Heliyon 2024; 10:e36143. [PMID: 39253259 PMCID: PMC11381608 DOI: 10.1016/j.heliyon.2024.e36143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/23/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
Technological advances are crucial for the optimization of gastric cancer surgery, and the success of any gastric cancer surgery is based on the correct and precise anatomical determination of the primary tumour and tissue structures. Real-time imaging-guided surgery is showing increasing potential and utility, mainly because it helps to aid intraoperative decision-making. However, intraoperative imaging faces many challenges in the field of gastric cancer. This article summarizes and discusses the following clinical applications of real-time optical imaging and fluorescence-guided surgery for gastric cancer: (1) the potential of quantitative fluorescence imaging in assessing tissue perfusion, (2) vascular navigation and determination of tumour margins, (3) the advantages and limitations of lymph node drainage assessment, and (4) identification of peritoneal metastases. In addition, preclinical study of tumour-targeted fluorescence imaging are discussed.
Collapse
Affiliation(s)
- Zhu Liu
- The Yangzhou Clinical Medical College of Nanjing Medical University, Yangzhou, 225001, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, China
| | - Muhammad Ali
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, China
| | - Qiannan Sun
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, China
| | - Qi Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, China
| | - Chen Wei
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, China
| | - Yong Wang
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, China
| | - Dong Tang
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, China
| | - Xin Li
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
8
|
Zhao H, Li C, Shi X, Zhang J, Jia X, Hu Z, Gao Y, Tian J. Near-infrared II fluorescence-guided glioblastoma surgery targeting monocarboxylate transporter 4 combined with photothermal therapy. EBioMedicine 2024; 106:105243. [PMID: 39004066 PMCID: PMC11284385 DOI: 10.1016/j.ebiom.2024.105243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Surgery is crucial for glioma treatment, but achieving complete tumour removal remains challenging. We evaluated the effectiveness of a probe targeting monocarboxylate transporter 4 (MCT4) in recognising gliomas, and of near-infrared window II (NIR-II) fluorescent molecular imaging and photothermal therapy as treatment strategies. METHODS We combined an MCT4-specific monoclonal antibody with indocyanine green to create the probe. An orthotopic mouse model and a transwell model were used to evaluate its ability to guide tumour resection using NIR-II fluorescence and to penetrate the blood-brain barrier (BBB), respectively. A subcutaneous tumour model was established to confirm photothermal therapy efficacy. Probe specificity was assessed in brain tissue from mice and humans. Finally, probe effectiveness in photothermal therapy was investigated. FINDINGS MCT4 was differentially expressed in tumour and normal brain tissue. The designed probe exhibited precise tumour targeting. Tumour imaging was precise, with a signal-to-background (SBR) ratio of 2.8. Residual tumour cells were absent from brain tissue postoperatively (SBR: 6.3). The probe exhibited robust penetration of the BBB. Moreover, the probe increased the tumour temperature to 50 °C within 5 min of laser excitation. Photothermal therapy significantly reduced tumour volume and extended survival time in mice without damage to vital organs. INTERPRETATION These findings highlight the potential efficacy of our probe for fluorescence-guided surgery and therapeutic interventions. FUNDING Jilin Province Department of Science and Technology (20200403079SF), Department of Finance (2021SCZ06) and Development and Reform Commission (20200601002JC); National Natural Science Foundation of China (92059207, 92359301, 62027901, 81930053, 81227901, U21A20386); and CAS Youth Interdisciplinary Team (JCTD-2021-08).
Collapse
Affiliation(s)
- Hongyang Zhao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China; CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China; Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Chunzhao Li
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaojing Shi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Jinnan Zhang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China; Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China; Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Xiaohua Jia
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China; National Key Laboratory of Kidney Diseases, Beijing, China.
| | - Yufei Gao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China; Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China; Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China; National Key Laboratory of Kidney Diseases, Beijing, China; Beijing Advanced Innovation Center for Big Data-based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
| |
Collapse
|
9
|
Meijer RPJ, Galema HA, Faber RA, Bijlstra OD, Maat APWM, Cailler F, Braun J, Keereweer S, Hilling DE, Burggraaf J, Vahrmeijer AL, Hutteman M. Intraoperative molecular imaging of colorectal lung metastases with SGM-101: a feasibility study. Eur J Nucl Med Mol Imaging 2024; 51:2970-2979. [PMID: 37552367 PMCID: PMC11300526 DOI: 10.1007/s00259-023-06365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023]
Abstract
PURPOSE Metastasectomy is a common treatment option for patients with colorectal lung metastases (CLM). Challenges exist with margin assessment and identification of small nodules, especially during minimally invasive surgery. Intraoperative fluorescence imaging has the potential to overcome these challenges. The aim of this study was to assess feasibility of targeting CLM with the carcinoembryonic antigen (CEA) specific fluorescent tracer SGM-101. METHODS This was a prospective, open-label feasibility study. The primary outcome was the number of CLM that showed a true positive fluorescence signal with SGM-101. Fluorescence positive signal was defined as a signal-to-background ratio (SBR) ≥ 1.5. A secondary endpoint was the CEA expression in the colorectal lung metastases, assessed with the immunohistochemistry, and scored by the total immunostaining score. RESULTS Thirteen patients were included in this study. Positive fluorescence signal with in vivo, back table, and closed-field bread loaf imaging was observed in 31%, 45%, and 94% of the tumors respectively. Median SBRs for the three imaging modalities were 1.00 (IQR: 1.00-1.53), 1.45 (IQR: 1.00-1.89), and 4.81 (IQR: 2.70-7.41). All tumor lesions had a maximum total immunostaining score for CEA expression of 12/12. CONCLUSION This study demonstrated the potential of fluorescence imaging of CLM with SGM-101. CEA expression was observed in all tumors, and closed-field imaging showed excellent CEA specific targeting of the tracer to the tumor nodules. The full potential of SGM-101 for in vivo detection of the tracer can be achieved with improved minimal invasive imaging systems and optimal patient selection. TRIAL REGISTRATION The study was registered in ClinicalTrial.gov under identifier NCT04737213 at February 2021.
Collapse
Affiliation(s)
- Ruben P J Meijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Center for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, The Netherlands
| | - Hidde A Galema
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Robin A Faber
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Okker D Bijlstra
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Alexander P W M Maat
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Françoise Cailler
- Surgimab, 10 Parc Club du Millénaire, 1025 Avenue Henri Becquerel, 34000, Montpellier, France
| | - Jerry Braun
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Stijn Keereweer
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Denise E Hilling
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Jacobus Burggraaf
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Center for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, The Netherlands
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Merlijn Hutteman
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
- Department of Surgery, Radboud University Medical Center, Geert Grooteplein Zuid 10, GA, 6525, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Boland PA, Hardy NP, Moynihan A, McEntee PD, Loo C, Fenlon H, Cahill RA. Intraoperative near infrared functional imaging of rectal cancer using artificial intelligence methods - now and near future state of the art. Eur J Nucl Med Mol Imaging 2024; 51:3135-3148. [PMID: 38858280 PMCID: PMC11300525 DOI: 10.1007/s00259-024-06731-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/15/2024] [Indexed: 06/12/2024]
Abstract
Colorectal cancer remains a major cause of cancer death and morbidity worldwide. Surgery is a major treatment modality for primary and, increasingly, secondary curative therapy. However, with more patients being diagnosed with early stage and premalignant disease manifesting as large polyps, greater accuracy in diagnostic and therapeutic precision is needed right from the time of first endoscopic encounter. Rapid advancements in the field of artificial intelligence (AI), coupled with widespread availability of near infrared imaging (currently based around indocyanine green (ICG)) can enable colonoscopic tissue classification and prognostic stratification for significant polyps, in a similar manner to contemporary dynamic radiological perfusion imaging but with the advantage of being able to do so directly within interventional procedural time frames. It can provide an explainable method for immediate digital biopsies that could guide or even replace traditional forceps biopsies and provide guidance re margins (both areas where current practice is only approximately 80% accurate prior to definitive excision). Here, we discuss the concept and practice of AI enhanced ICG perfusion analysis for rectal cancer surgery while highlighting recent and essential near-future advancements. These include breakthrough developments in computer vision and time series analysis that allow for real-time quantification and classification of fluorescent perfusion signals of rectal cancer tissue intraoperatively that accurately distinguish between normal, benign, and malignant tissues in situ endoscopically, which are now undergoing international prospective validation (the Horizon Europe CLASSICA study). Next stage advancements may include detailed digital characterisation of small rectal malignancy based on intraoperative assessment of specific intratumoral fluorescent signal pattern. This could include T staging and intratumoral molecular process profiling (e.g. regarding angiogenesis, differentiation, inflammatory component, and tumour to stroma ratio) with the potential to accurately predict the microscopic local response to nonsurgical treatment enabling personalised therapy via decision support tools. Such advancements are also applicable to the next generation fluorophores and imaging agents currently emerging from clinical trials. In addition, by providing an understandable, applicable method for detailed tissue characterisation visually, such technology paves the way for acceptance of other AI methodology during surgery including, potentially, deep learning methods based on whole screen/video detailing.
Collapse
Affiliation(s)
- Patrick A Boland
- UCD Centre for Precision Surgery, School of Medicine, University College Dublin, 47 Eccles Street, Dublin 7, Dublin, Ireland
- Department of Colorectal Surgery, Mater Misericordiae University Hospital, Dublin, Ireland
| | - N P Hardy
- UCD Centre for Precision Surgery, School of Medicine, University College Dublin, 47 Eccles Street, Dublin 7, Dublin, Ireland
- Department of Colorectal Surgery, Mater Misericordiae University Hospital, Dublin, Ireland
| | - A Moynihan
- UCD Centre for Precision Surgery, School of Medicine, University College Dublin, 47 Eccles Street, Dublin 7, Dublin, Ireland
- Department of Colorectal Surgery, Mater Misericordiae University Hospital, Dublin, Ireland
| | - P D McEntee
- UCD Centre for Precision Surgery, School of Medicine, University College Dublin, 47 Eccles Street, Dublin 7, Dublin, Ireland
- Department of Colorectal Surgery, Mater Misericordiae University Hospital, Dublin, Ireland
| | - C Loo
- UCD Centre for Precision Surgery, School of Medicine, University College Dublin, 47 Eccles Street, Dublin 7, Dublin, Ireland
| | - H Fenlon
- Department of Radiology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - R A Cahill
- UCD Centre for Precision Surgery, School of Medicine, University College Dublin, 47 Eccles Street, Dublin 7, Dublin, Ireland.
- Department of Colorectal Surgery, Mater Misericordiae University Hospital, Dublin, Ireland.
| |
Collapse
|
11
|
Hitchcock CL, Chapman GJ, Mojzisik CM, Mueller JK, Martin EW. A Concept for Preoperative and Intraoperative Molecular Imaging and Detection for Assessing Extent of Disease of Solid Tumors. Oncol Rev 2024; 18:1409410. [PMID: 39119243 PMCID: PMC11306801 DOI: 10.3389/or.2024.1409410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/28/2024] [Indexed: 08/10/2024] Open
Abstract
The authors propose a concept of "systems engineering," the approach to assessing the extent of diseased tissue (EODT) in solid tumors. We modeled the proof of this concept based on our clinical experience with colorectal carcinoma (CRC) and gastrinoma that included short and long-term survival data of CRC patients. This concept, applicable to various solid tumors, combines resources from surgery, nuclear medicine, radiology, pathology, and oncology needed for preoperative and intraoperative assessments of a patient's EODT. The concept begins with a patient presenting with biopsy-proven cancer. An appropriate preferential locator (PL) is a molecule that preferentially binds to a cancer-related molecular target (i.e., tumor marker) lacking in non-malignant tissue and is the essential element. Detecting the PL after an intravenous injection requires the PL labeling with an appropriate tracer radionuclide, a fluoroprobe, or both. Preoperative imaging of the tracer's signal requires molecular imaging modalities alone or in combination with computerized tomography (CT). These include positron emission tomography (PET), PET/CT, single-photon emission computed tomography (SPECT), SPECT/CT for preoperative imaging, gamma cameras for intraoperative imaging, and gamma-detecting probes for precise localization. Similarly, fluorescent-labeled PLs require appropriate cameras and probes. This approach provides the surgeon with real-time information needed for R0 resection.
Collapse
Affiliation(s)
- Charles L. Hitchcock
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Actis Medical, LLC, Powell, OH, United States
| | - Gregg J. Chapman
- Actis Medical, LLC, Powell, OH, United States
- Department of Electrical and Computer Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | | | | | - Edward W. Martin
- Actis Medical, LLC, Powell, OH, United States
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
12
|
Ullah Z, Roy S, Muhammad S, Yu C, Huang H, Chen D, Long H, Yang X, Du X, Guo B. Fluorescence imaging-guided surgery: current status and future directions. Biomater Sci 2024; 12:3765-3804. [PMID: 38961718 DOI: 10.1039/d4bm00410h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Surgery is one of the most important paradigms for tumor therapy, while fluorescence imaging (FI) offers real-time intraoperative guidance, greatly boosting treatment prognosis. The imaging fidelity heavily relies on not only imaging facilities but also probes for imaging-guided surgery (IGS). So far, a great number of IGS probes with emission in visible (400-700 nm) and near-infrared (NIR 700-1700 nm) windows have been developed for pinpointing disease margins intraoperatively. Herein, the state-of-the-art fluorescent probes for IGS are timely updated, with a special focus on the fluorescent probes under clinical examination. For a better demonstration of the superiority of NIR FI over visible FI, both imaging modalities are critically compared regarding signal-to-background ratio, penetration depth, resolution, tissue autofluorescence, photostability, and biocompatibility. Various types of fluorescence IGS have been summarized to demonstrate its importance in the medical field. Furthermore, the most recent progress of fluorescent probes in NIR-I and NIR-II windows is summarized. Finally, an outlook on multimodal imaging, FI beyond NIR-II, efficient tumor targeting, automated IGS, the use of AI and machine learning for designing fluorescent probes, and the fluorescence-guided da Vinci surgical system is given. We hope this review will stimulate interest among researchers in different areas and expedite the translation of fluorescent probes from bench to bedside.
Collapse
Affiliation(s)
- Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Saz Muhammad
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chen Yu
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haiyan Huang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Dongxiang Chen
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Haodong Long
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Xiulan Yang
- School of Computer Science and Engineering, Yulin Normal University, Yulin, 537000, China.
| | - Xuelian Du
- Department of Gynecology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 1, Fuhua Road, Futian District, Shenzhen, 518033, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| |
Collapse
|
13
|
Aeindartehran L, Sadri Z, Rahimi F, Alinejad T. Fluorescence in depth: integration of spectroscopy and imaging with Raman, IR, and CD for advanced research. Methods Appl Fluoresc 2024; 12:032002. [PMID: 38697201 DOI: 10.1088/2050-6120/ad46e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
Fluorescence spectroscopy serves as a vital technique for studying the interaction between light and fluorescent molecules. It encompasses a range of methods, each presenting unique advantages and applications. This technique finds utility in various chemical studies. This review discusses Fluorescence spectroscopy, its branches such as Time-Resolved Fluorescence Spectroscopy (TRFS) and Fluorescence Lifetime Imaging Microscopy (FLIM), and their integration with other spectroscopic methods, including Raman, Infrared (IR), and Circular Dichroism (CD) spectroscopies. By delving into these methods, we aim to provide a comprehensive understanding of the capabilities and significance of fluorescence spectroscopy in scientific research, highlighting its diverse applications and the enhanced understanding it brings when combined with other spectroscopic methods. This review looks at each technique's unique features and applications. It discusses the prospects of their combined use in advancing scientific understanding and applications across various domains.
Collapse
Affiliation(s)
- Lida Aeindartehran
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States of America
| | - Zahra Sadri
- Department of Biological Science, Southern Methodist University, Dallas, Texas 75205, United States of America
| | - Fateme Rahimi
- Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Tahereh Alinejad
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou 325015, Zhejiang, People's Republic of China
- Institute of Cell Growth Factor, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| |
Collapse
|
14
|
Yao R, Zhu M, Guo Z, Shen J. Refining nanoprobes for monitoring of inflammatory bowel disease. Acta Biomater 2024; 177:37-49. [PMID: 38364928 DOI: 10.1016/j.actbio.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/11/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
Inflammatory bowel disease (IBD) is a gastrointestinal immune disease that requires clear diagnosis, timely treatment, and lifelong monitoring. The diagnosis and monitoring methods of IBD mainly include endoscopy, imaging examination, and laboratory examination, which are constantly developed to achieve early definite diagnosis and accurate monitoring. In recent years, with the development of nanotechnology, the diagnosis and monitoring methods of IBD have been remarkably enriched. Nanomaterials, characterized by their minuscule dimensions that can be tailored, along with their distinctive optical, magnetic, and biodistribution properties, have emerged as valuable contrast agents for imaging and targeted agents for endoscopy. Through both active and passive targeting mechanisms, nanoparticles accumulate at the site of inflammation, thereby enhancing IBD detection. This review comprehensively outlines the existing IBD detection techniques, expounds upon the utilization of nanoparticles in IBD detection and diagnosis, and offers insights into the future potential of in vitro diagnostics. STATEMENT OF SIGNIFICANCE: Due to their small size and unique physical and chemical properties, nanomaterials are widely used in the biological and medical fields. In the area of oncology and inflammatory disease, an increasing number of nanomaterials are being developed for diagnostics and drug delivery. Here, we focus on inflammatory bowel disease, an autoimmune inflammatory disease that requires early diagnosis and lifelong monitoring. Nanomaterials can be used as contrast agents to visualize areas of inflammation by actively or passively targeting them through the intestinal mucosal epithelium where gaps exist due to inflammation stimulation. In this article, we summarize the utilization of nanoparticles in inflammatory bowel disease detection and diagnosis, and offers insights into the future potential of in vitro diagnostics.
Collapse
Affiliation(s)
- Ruchen Yao
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China; NHC Key Laboratory of Digestive Diseases, China
| | - Mingming Zhu
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China; NHC Key Laboratory of Digestive Diseases, China
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jun Shen
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China; NHC Key Laboratory of Digestive Diseases, China.
| |
Collapse
|
15
|
Cox KE, Turner MA, Amirfakhri S, Lwin TM, Hosseini M, Ghosh P, Obonyo M, Murakami T, Hoffman RM, Yazaki PJ, Bouvet M. Humanized Anti-Carcinoembryonic Antigen Antibodies Brightly Target and Label Gastric Cancer in Orthotopic Mouse Models. J Surg Res 2024; 293:701-708. [PMID: 37839102 PMCID: PMC11060874 DOI: 10.1016/j.jss.2023.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/31/2023] [Accepted: 08/26/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION Gastric cancer poses a major therapeutic challenge. Improved visualization of tumor margins at the time of gastrectomy with fluorescent tumor-specific antibodies could improve outcomes. The present report demonstrates the potential of targeting gastric cancer with a humanized anti-carcinoembryonic antigen (CEA) antibody in orthotopic mouse models. METHODS MKN45 cells were injected subcutaneously into nude mice to establish xenograft models. Tumor fragments collected from subcutaneous models were then implanted into the greater curvature of the stomach to establish orthotopic models. For tumor labeling, a humanized anti-CEA antibody (M5A) and IgG as a control, were conjugated with the near-infrared dye IRDye800CW. Time (24-72 h) and dose (50-100 μg) response curves were performed in subcutaneous models. Orthotopic models received 50 μg of M5A-IR800 or 50 μg IgG-IR800 as a control and were imaged after 72 h. Fluorescence imaging was performed on the mice using the LI-COR Pearl Imaging System. RESULTS In subcutaneous models, tumor to background ratios (TBRs) reached 8.85 at 72 h. Median TBRs of orthotopic model primary tumors were 6.25 (interquartile range [IQR] 6.03-7.12) for M5A-IR800 compared to 0.42 (IQR 0.38-0.54) for control. Abdominal wall metastasis median TBRs were 13.52 (IQR 12.79-13.76) for M5A-IR800 and 3.19 (IQR 2.65-3.73) for the control. Immunohistochemistry confirmed CEA expression within tumors. CONCLUSIONS Humanized anti-CEA antibodies conjugated to near-infrared dyes provide specific labeling of gastric cancers in mouse models. Orthotopic models demonstrated bright and specific labeling with TBRs greater than ten times that of control. This tumor-specific fluorescent antibody is a promising potential clinical tool for improving visualization of gastric cancer margins at time of surgical resection.
Collapse
Affiliation(s)
- Kristin E Cox
- Department of Surgery, University of California San Diego, La Jolla, California; Department of Surgery, VA San Diego Healthcare System, La Jolla, California
| | - Michael A Turner
- Department of Surgery, University of California San Diego, La Jolla, California; Department of Surgery, VA San Diego Healthcare System, La Jolla, California
| | - Siamak Amirfakhri
- Department of Surgery, University of California San Diego, La Jolla, California; Department of Surgery, VA San Diego Healthcare System, La Jolla, California
| | - Thinzar M Lwin
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, California
| | - Mojgan Hosseini
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California; Department of Medicine, University of California San Diego, La Jolla, California
| | - Marygorret Obonyo
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Takashi Murakami
- Department of Microbiology, Saitama Medical University, Saitama, Japan
| | - Robert M Hoffman
- Department of Surgery, University of California San Diego, La Jolla, California; Department of Surgery, VA San Diego Healthcare System, La Jolla, California; AntiCancer Inc, San Diego, California
| | - Paul J Yazaki
- Department of Immunology & Theranostics, Beckman Research Institute of the City of Hope, Duarte, California
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, La Jolla, California; Department of Surgery, VA San Diego Healthcare System, La Jolla, California.
| |
Collapse
|
16
|
Seah D, Cheng Z, Vendrell M. Fluorescent Probes for Imaging in Humans: Where Are We Now? ACS NANO 2023; 17:19478-19490. [PMID: 37787658 PMCID: PMC10604082 DOI: 10.1021/acsnano.3c03564] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
Optical imaging has become an indispensable technology in the clinic. The molecular design of cell-targeted and highly sensitive materials, the validation of specific disease biomarkers, and the rapid growth of clinically compatible instrumentation have altogether revolutionized the way we use optical imaging in clinical settings. One prime example is the application of cancer-targeted molecular imaging agents in both trials and routine clinical use to define the margins of tumors and to detect lesions that are "invisible" to the surgeons, leading to improved resection of malignant tissues without compromising viable structures. In this Perspective, we summarize some of the key research advances in chemistry, biology, and engineering that have accelerated the translation of optical imaging technologies for use in human patients. Finally, our paper comments on several research areas where further work will likely render the next generation of technologies for translational optical imaging.
Collapse
Affiliation(s)
- Deborah Seah
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore 637371, Singapore
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
| | - Zhiming Cheng
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| | - Marc Vendrell
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| |
Collapse
|
17
|
Schlam I, Moges R, Morganti S, Tolaney SM, Tarantino P. Next-generation antibody-drug conjugates for breast cancer: Moving beyond HER2 and TROP2. Crit Rev Oncol Hematol 2023; 190:104090. [PMID: 37562695 DOI: 10.1016/j.critrevonc.2023.104090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023] Open
Abstract
Antibody-drug conjugates (ADCs) have reshaped the treatment of several malignancies, including breast cancer. Two ADCs are currently approved for the treatment of each breast cancer subtype, including the HER2 targeted ADCs trastuzumab emtansine (T-DM1) and trastuzumab deruxtecan (T-DXd), and the TROP2-targeted ADC sacituzumab govitecan. Each of the ADC components (antibody, linker, and payload) plays a key role in determining the efficacy and toxicity profile of an individual ADC, and their modification can lead to major changes in the clinical profile of these agents. Leveraging the knowledge from three decades of development in the field, several novel ADCs are currently being investigated. Some approaches include targeting different antigens beyond the established HER2/TROP2, or evaluating innovative constructs, such as bispecific ADCs, ADCs with dual payload, immune-modulating ADCs, radionuclide drug conjugates, and masked ADCs, among others. In this review article we discuss the evolving landscape of novel ADCs, highlighting opportunities and challenges emerging in the field.
Collapse
Affiliation(s)
- Ilana Schlam
- Department of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
| | - Ruth Moges
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Stefania Morganti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Onco-Hematology, University of Milan, Milan, Italy; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sara M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Paolo Tarantino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Onco-Hematology, University of Milan, Milan, Italy.
| |
Collapse
|
18
|
Azari F, Kennedy GT, Chang A, Bernstein E, Nadeem B, Pèlegrin A, Cailler F, Sullivan NT, Kucharczuk J, Singhal S. Glycoprotein Receptor CEACAM5-Targeted Intraoperative Molecular Imaging Tracer in Non-Small Cell Lung Cancer. Ann Thorac Surg 2023; 116:631-641. [PMID: 35644263 PMCID: PMC9701246 DOI: 10.1016/j.athoracsur.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Intraoperative molecular imaging has emerged as a potential tool in addressing challenges faced during lung cancer surgery by localizing small lesions, ensuring negative margins, and identifying synchronous cancers. Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) glycoprotein has emerged as a potential target in fluorescent labeling of non-small cell lung cancer given the high antigen density in tumor cells and absence of expression in normal parenchyma. The goal of our study was to determine whether anti-CEACAM5 targeted near-infrared fluorochrome could be a suitable target in non-small cell lung cancer. METHODS The CEACAM5 expression was evaluated in AB-12 (known negative control), HT29 (known positive control), and H460 (non-small cell lung cancer) cell lines by polymerase chain reaction. SGM-101, a CEACAM5 antibody, coupled with a BM-104 near-infrared fluorescent tracer was evaluated with dose escalation, in vitro cellular localization, and immunofluorescence microscopy. Subsequently, in vivo validation was performed in 52 athymic nude xenografts. RESULTS Polymerase chain reaction analysis demonstrated 3000x relative expression of CEACAM5 in HT-29 cells compared with AB-12. The H460 cells showed 1000x relative expression compared with AB12 (P < .05). Both HT29 and H460 cells showed tracer internalization with signal to background ratio of 4.5 (SD 0.34) whereas there was minimal uptake by AB12 cells with signal to background ratio 1.1 (SD 0.1; P < .05). There was linear fluorescence increase with increasing tracer dosing in receptor expressing cell lines. In preclinical models, HT-29 and H460 cells lines produced near-infrared fluorescence with average tumor to background ratio of 3.89 (SD 0.25) irrespective of tumor size compared with no fluorescence by AB12 tumors (P < .05). The CEACAM5 expressing tumors had excellent dye uptake compared with AB12 tumors. CONCLUSIONS CEACAM5 serves as a possible receptor for targeted intraoperative molecular imaging resections in lung cancer. This study sets a path for evaluation of CEACAM5 targets in future clinical trials.
Collapse
Affiliation(s)
- Feredun Azari
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gregory T Kennedy
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ashley Chang
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth Bernstein
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bilal Nadeem
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - André Pèlegrin
- SurgiMab, Montpellier, France; Montpellier Cancer Research Institute, University of Montpellier, INSERM, ICM, Montpellier, France
| | | | - Neil T Sullivan
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John Kucharczuk
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sunil Singhal
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
19
|
Muilenburg KM, Isder CC, Radhakrishnan P, Batra SK, Ly QP, Carlson MA, Bouvet M, Hollingsworth MA, Mohs AM. Mucins as contrast agent targets for fluorescence-guided surgery of pancreatic cancer. Cancer Lett 2023; 561:216150. [PMID: 36997106 PMCID: PMC10150776 DOI: 10.1016/j.canlet.2023.216150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/16/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
Pancreatic cancer is difficult to resect due to its unique challenges, often leading to incomplete tumor resections. Fluorescence-guided surgery (FGS), also known as intraoperative molecular imaging and optical surgical navigation, is an intraoperative tool that can aid surgeons in complete tumor resection through an increased ability to detect the tumor. To target the tumor, FGS contrast agents rely on biomarkers aberrantly expressed in malignant tissue compared to normal tissue. These biomarkers allow clinicians to identify the tumor and its stage before surgical resection and provide a contrast agent target for intraoperative imaging. Mucins, a family of glycoproteins, are upregulated in malignant tissue compared to normal tissue. Therefore, these proteins may serve as biomarkers for surgical resection. Intraoperative imaging of mucin expression in pancreatic cancer can potentially increase the number of complete resections. While some mucins have been studied for FGS, the potential ability to function as a biomarker target extends to the entire mucin family. Therefore, mucins are attractive proteins to investigate more broadly as FGS biomarkers. This review summarizes the biomarker traits of mucins and their potential use in FGS for pancreatic cancer.
Collapse
Affiliation(s)
- Kathryn M Muilenburg
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Carly C Isder
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Prakash Radhakrishnan
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, S 45th St, Omaha, NE, 68198, USA.
| | - Quan P Ly
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Department of Surgery, University of Nebraska Medical Center, 983280 Nebraska Medical Center, Omaha, NE, 68198-3280, USA.
| | - Mark A Carlson
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Department of Surgery, University of Nebraska Medical Center, 983280 Nebraska Medical Center, Omaha, NE, 68198-3280, USA.
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA; VA San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA, 92161, USA.
| | - Michael A Hollingsworth
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, S 45th St, Omaha, NE, 68198, USA.
| |
Collapse
|
20
|
van Manen L, de Muynck LDAN, Baart VM, Bhairosingh S, Debie P, Vahrmeijer AL, Hernot S, Mieog JSD. Near-Infrared Fluorescence Imaging of Pancreatic Cancer Using a Fluorescently Labelled Anti-CEA Nanobody Probe: A Preclinical Study. Biomolecules 2023; 13:biom13040618. [PMID: 37189366 DOI: 10.3390/biom13040618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/18/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Molecular fluorescence-guided surgery using near-infrared light has the potential to improve the rate of complete resection of cancer. Typically, monoclonal antibodies are being used as targeting moieties, however smaller fragments, such as single-domain antibodies (i.e., Nanobodies®) improve tumor specificity and enable tracer injection on the same day as surgery. In this study, the feasibility of a carcinoembryonic antigen-targeting Nanobody (NbCEA5) conjugated to two zwitterionic dyes (ZW800-1 Forte [ZW800F] and ZW800-1) for visualization of pancreatic ductal adenocarcinoma (PDAC) was investigated. After site-specific conjugation of NbCEA5 to the zwitterionic dyes, binding specificity was evaluated on human PDAC cell lines with flow cytometry. A dose escalation study was performed for both NbCEA5-ZW800F and NbCEA5-ZW800-1 in mice with subcutaneously implanted pancreatic tumors. Fluorescence imaging was performed up to 24 h after intravenous injection. Furthermore, the optimal dose for NbCEA5-ZW800-1 was injected in mice with orthotopically implanted pancreatic tumors. A dose-escalation study showed superior mean fluorescence intensities for NbCEA5-ZW800-1 compared to NbCEA5-ZW800F. In the orthotopic tumor models, NbCEA5-ZW800-1 accumulated specifically in pancreatic tumors with a mean in vivo tumor-to-background ratio of 2.4 (SD = 0.23). This study demonstrated the feasibility and potential advantages of using a CEA-targeted Nanobody conjugated to ZW800-1 for intraoperative PDAC imaging.
Collapse
|
21
|
Guo X, Li C, Jia X, Qu Y, Li M, Cao C, Zhang Z, Qu Q, Luo S, Tang J, Liu H, Hu Z, Tian J. NIR-II fluorescence imaging-guided colorectal cancer surgery targeting CEACAM5 by a nanobody. EBioMedicine 2023; 89:104476. [PMID: 36801616 PMCID: PMC9972495 DOI: 10.1016/j.ebiom.2023.104476] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Surgery is the cornerstone of colorectal cancer (CRC) treatment, yet complete removal of the tumour remains a challenge. The second near-infrared window (NIR-II, 1000-1700 nm) fluorescent molecular imaging is a novel technique, which has broad application prospects in tumour surgical navigation. We aimed to evaluate the ability of CEACAM5-targeted probe for CRC recognition and the value of NIR-II imaging-guided CRC resection. METHODS We constructed the probe 2D5-IRDye800CW by conjugated anti-CEACAM5 nanobody (2D5) with near-infrared fluorescent dye IRDye800CW. The performance and benefits of 2D5-IRDye800CW at NIR-II were confirmed by imaging experiments in mouse vascular and capillary phantom. Then mouse colorectal cancer subcutaneous tumour model (n = 15), orthotopic model (n = 15), and peritoneal metastasis model (n = 10) were constructed to investigate biodistribution of probe and imaging differences between NIR-I and NIR-II in vivo, and then tumour resection was guided by NIR-II fluorescence. Fresh human colorectal cancer specimens were incubated with 2D5-IRDye800CW to verify its specific targeting ability. FINDINGS 2D5-IRDye800CW had an NIR-II fluorescence signal extending to 1600 nm and bound specifically to CEACAM5 with an affinity of 2.29 nM. In vivo imaging, 2D5-IRDye800CW accumulated rapidly in tumour (15 min) and could specifically identify orthotopic colorectal cancer and peritoneal metastases. All tumours were resected under NIR-II fluorescence guidance, even smaller than 2 mm tumours were detected, and NIR-II had a higher tumour-to-background ratio than NIR-I (2.55 ± 0.38, 1.94 ± 0.20, respectively). 2D5-IRDye800CW could precisely identify CEACAM5-positive human colorectal cancer tissue. INTERPRETATION 2D5-IRDye800CW combined with NIR-II fluorescence has translational potential as an aid to improve R0 surgery of colorectal cancer. FUNDINGS This study was supported by Beijing Natural Science Foundation (JQ19027), the National Key Research and Development Program of China (2017YFA0205200), National Natural Science Foundation of China (NSFC) (61971442, 62027901, 81930053, 92059207, 81227901, 82102236), Beijing Natural Science Foundation (L222054), CAS Youth Interdisciplinary Team (JCTD-2021-08), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16021200), the Zhuhai High-level Health Personnel Team Project (Zhuhai HLHPTP201703), the Fundamental Research Funds for the Central Universities (JKF-YG-22-B005) and Capital Clinical Characteristic Application Research (Z181100001718178). The authors would like to acknowledge the instrumental and technical support of the multi-modal biomedical imaging experimental platform, Institute of Automation, Chinese Academy of Sciences.
Collapse
Affiliation(s)
- Xiaoyong Guo
- Clinical College of Armed Police General Hospital of Anhui Medical University, Department of Gastroenterology of The Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Changjian Li
- School of Engineering Medicine, Beihang University, Beijing, 100191, China; Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, 100191, China
| | - Xiaohua Jia
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yawei Qu
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China; Beijing Mentougou District Hospital, Beijing, 102300, China
| | - Miaomiao Li
- Clinical College of Armed Police General Hospital of Anhui Medical University, Department of Gastroenterology of The Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Caiguang Cao
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zeyu Zhang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China; Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, 100191, China
| | - Qiaojun Qu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, China
| | - Shuangling Luo
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China
| | - Jianqiang Tang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Haifeng Liu
- Clinical College of Armed Police General Hospital of Anhui Medical University, Department of Gastroenterology of The Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; Beijing Mentougou District Hospital, Beijing, 102300, China.
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Medicine, Beihang University, Beijing, 100191, China; Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, 100191, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Azari F, Kennedy G, Zhang K, Bernstein E, Chang A, Nadeem B, Segil A, Desphande C, Delikatny J, Kucharczuk J, Singhal S. Effects of Light-absorbing Carbons in Intraoperative Molecular Imaging-Guided Lung Cancer Resections. Mol Imaging Biol 2023; 25:156-167. [PMID: 35290565 PMCID: PMC9474735 DOI: 10.1007/s11307-021-01699-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 10/18/2022]
Abstract
BACKGROUND One of the novel advancements to enhance the visual aspects of lung cancer identification is intraoperative molecular imaging (IMI), which can reliably detect tumors that would otherwise be missed by standard techniques such as tactile and visual feedback, particularly for sub-centimeter or ground-glass nodules. However, there remains a subset of patients who do not benefit from IMI due to excessive background fluorescence secondary to parenchymal light-absorbing carbon deposition. Our goal was to identify the effects of these carbonaceous materials on the quality of IMI-guided lung cancer resections. STUDY DESIGN AND METHODS Between July 2014 and May 2021, a total of 311 patients were included in the study. Patients underwent infusion of the study drug OTL38 or ICG up to 24 h prior to VATS for lung cancer. Several factors such as age, tumor subtype, PET SUV, smoking, demographics, chronic lung conditions, patient domicile, and anthracosis were analyzed with respect to lung fluorescence during IMI. P values < 0.05 were considered statistically significant. RESULTS Variables such as age, sex, and race had no statistical correlation to IMI success. However, smoking status and pack year had a statistically significant correlation with background parenchymal fluorescence and lung inflammation (p < 0.05). MFI of background (lung parenchyma) correlated with smoking history (p < 0.05) which led to decreased tumor-to-background ratio (TBR) measurements for all patients with proven malignancy (p < 0.05). Patients with chronic lung disease appear to have increased background parenchymal fluorescence regardless of smoking history (287 vs. 154, p < 0.01). City dwellers compared to other groups appear to be exposed to higher pollutant load and have higher rates of anthracosis, but living location's impact on fluorescence quantification appears to be not statistically significant. CONCLUSION Smokers with greater than 10 PPY and those with chronic lung disease appear to have decreased lesion-to-background discrimination, significant anthracosis, and reduced IMI efficacy secondary to light-absorbing carbon deposition.
Collapse
Affiliation(s)
- Feredun Azari
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gregory Kennedy
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kevin Zhang
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elizabeth Bernstein
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ashley Chang
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bilal Nadeem
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Alix Segil
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Charuhas Desphande
- Department of Pathology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - James Delikatny
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - John Kucharczuk
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sunil Singhal
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Slomka B, Duan S, Knapp TG, Lima N, Sontz R, Merchant JL, Sawyer TW. Design, fabrication, and preclinical testing of a miniaturized, multispectral, chip-on-tip, imaging probe for intraluminal fluorescence imaging of the gastrointestinal tract. FRONTIERS IN PHOTONICS 2023; 3:1067651. [PMID: 37691859 PMCID: PMC10488317 DOI: 10.3389/fphot.2022.1067651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Gastrointestinal cancers continue to account for a disproportionately large percentage of annual cancer deaths in the US. Advancements in miniature imaging technology combined with a need for precise and thorough tumor detection in gastrointestinal cancer screenings fuel the demand for new, small-scale, and low-cost methods of localization and margin identification with improved accuracy. Here, we report the development of a miniaturized, chip-on-tip, multispectral, fluorescence imaging probe designed to port through a gastroscope working channel with the aim of detecting cancerous lesions in point-of-care endoscopy of the gastrointestinal lumen. Preclinical testing has confirmed fluorescence sensitivity and supports that this miniature probe can locate structures of interest via detection of fluorescence emission from exogenous contrast agents. This work demonstrates the design and preliminary performance evaluation of a miniaturized, single-use, chip-on-tip fluorescence imaging system, capable of detecting multiple fluorochromes, and devised for deployment via the accessory channel of a standard gastroscope.
Collapse
Affiliation(s)
- Bridget Slomka
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ, United States
| | - Suzann Duan
- Department of Medicine, College of Medicine Tucson, University of Arizona, Tucson, AZ, United States
| | - Thomas G. Knapp
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ, United States
| | - Natzem Lima
- Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona, United States
| | - Ricky Sontz
- Department of Medicine, College of Medicine Tucson, University of Arizona, Tucson, AZ, United States
| | - Juanita L. Merchant
- Department of Medicine, College of Medicine Tucson, University of Arizona, Tucson, AZ, United States
| | - Travis W. Sawyer
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ, United States
- Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona, United States
| |
Collapse
|
24
|
Azari F, Meijer RPJ, Kennedy GT, Hanna A, Chang A, Nadeem B, Din A, Pèlegrin A, Framery B, Cailler F, Sullivan NT, Kucharczuk J, Martin LW, Vahrmeijer AL, Singhal S. Carcinoembryonic Antigen-Related Cell Adhesion Molecule Type 5 Receptor-Targeted Fluorescent Intraoperative Molecular Imaging Tracer for Lung Cancer: A Nonrandomized Controlled Trial. JAMA Netw Open 2023; 6:e2252885. [PMID: 36705924 PMCID: PMC10292762 DOI: 10.1001/jamanetworkopen.2022.52885] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Importance Localization of subcentimeter ground glass opacities during minimally invasive thoracoscopic lung cancer resections is a significant challenge in thoracic oncology. Intraoperative molecular imaging has emerged as a potential solution, but the availability of suitable fluorescence agents is a limiting factor. Objective To evaluate the suitability of SGM-101, a carcinoembryonic antigen-related cell adhesion molecule type 5 (CEACAM5) receptor-targeted near-infrared fluorochrome, for molecular imaging-guided lung cancer resections, because glycoprotein is expressed in more than 80% of adenocarcinomas. Design, Setting, and Participants For this nonrandomized, proof-of-principal, phase 1 controlled trial, patients were divided into 2 groups between August 1, 2020, and January 31, 2022. Patients with known CEACAM5-positive gastrointestinal tumors suggestive of lung metastasis were selected as proof-of-principle positive controls. The investigative group included patients with lung nodules suggestive of primary lung malignant neoplasms. Patients 18 years or older without significant comorbidities that precluded surgical exploration with suspicious pulmonary nodules requiring surgical biopsy were included in the study. Interventions SGM-101 (10 mg) was infused up to 5 days before index operation, and pulmonary nodules were imaged using a near-infrared camera system with a dedicated thoracoscope. Main Outcomes and Measures SGM-101 localization to pulmonary nodules and its correlation with CEACAM5 glycoprotein expression by the tumor as quantified by tumor and normal pulmonary parenchymal fluorescence. Results Ten patients (5 per group; 5 male and 5 female; median [IQR] age, 66 [58-69] years) with 14 total lesions (median [range] lesion size, 0.91 [0.90-2.00] cm) were enrolled in the study. In the control group of 4 patients (1 patient did not undergo surgical resection because of abnormal preoperative cardiac clearance findings that were not deemed related to SGM-101 infusion), the mean (SD) lesion size was 1.33 (0.48) cm, 2 patients had elevated serum CEA markers, and 2 patients had normal serum CEA levels. Of the 4 patients who underwent surgical intervention, those with 2+ and 3+ tissue CEACAM5 expression had excellent tumor fluorescence, with a mean (SD) tumor to background ratio of 3.11 (0.45). In the patient cohort, the mean (SD) lesion size was 0.68 (0.22) cm, and no elevations in serum CEA levels were found. Lack of SGM-101 fluorescence was associated with benign lesions and with lack of CEACAM5 staining. Conclusions and Relevance This in-human proof-of-principle nonrandomized controlled trial demonstrated SGM-101 localization to CEACAM5-positive tumors with the detection of real-time near-infrared fluorescence in situ, ex vivo, and by immunofluorescence microscopy. These findings suggest that SGM-101 is a safe, receptor-specific, and feasible intraoperative molecular imaging fluorochrome that should be further evaluated in randomized clinical trials. Trial Registration ClinicalTrials.gov identifier: NCT04315467.
Collapse
Affiliation(s)
- Feredun Azari
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia
| | - Ruben P J Meijer
- Centre for Human Drug Research, Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Gregory T Kennedy
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia
| | - Andrew Hanna
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Ashley Chang
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia
| | - Bilal Nadeem
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia
| | - Azra Din
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia
| | - André Pèlegrin
- SurgiMab, Montpellier, France
- Institute of Cancer Research of Montpellier, University of Montpellier, Montpellier, France
| | | | | | - Neil T Sullivan
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia
| | - John Kucharczuk
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia
| | - Linda W Martin
- Department of Thoracic Surgery, University of Virginia School of Medicine, Charlottesville
| | - Alexander L Vahrmeijer
- Centre for Human Drug Research, Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Sunil Singhal
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia
| |
Collapse
|
25
|
Nishino H, Turner MA, Amirfakhri S, Lwin TM, Hosseini M, Singer BB, Hoffman RM, Bouvet M. Proof of Principle of Combining Fluorescence-Guided Surgery with Photoimmunotherapy to Improve the Outcome of Pancreatic Cancer Therapy in an Orthotopic Mouse Model. Ann Surg Oncol 2023; 30:618-625. [PMID: 36057899 PMCID: PMC9726788 DOI: 10.1245/s10434-022-12466-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Pancreatic cancer is a recalcitrant disease in which R0 resection is often not achieved owing to difficulty in visualization of the tumor margins and proximity of adjacent vessels. To improve outcomes, we have developed fluorescence-guided surgery (FGS) and photoimmunotherapy (PIT) using a fluorescent tumor-specific antibody. METHODS Nude mice received surgical orthotopic implantation (SOI) of the human pancreatic cancer cell line BxPC-3 expressing green fluorescent protein. An anti-carcinoembryonic antigen-related cell adhesion molecule (CEACAM) monoclonal antibody (6G5j) was conjugated to the 700-nm fluorescent dye IR700DyeDX (6G5j-IR700DX). Three weeks after SOI, 16 mice received 50 μg 6G5j-IR700DX via the tail vein 24 h before surgery and were randomized to two groups: FGS-only (n = 8) and FGS + PIT (n = 8). All tumors were imaged with the Pearl Trilogy imaging system and resected under the guidance of the FLARE imaging system. The FGS + PIT group received PIT of the post-surgical bed at an intensity of 150 mW/cm2 for 30 min. Mice were sacrificed 4 weeks after initial surgery, and tumors were imaged with a Dino-Lite digital microscope, excised, and weighed. RESULTS The 6G5j-IR700DX dye illuminated the orthotopic pancreatic tumors for FGS and PIT. The metastatic recurrence rate was 100.0% for FGS-only and 25.0% for FGS + PIT (p = 0.007). The average total recurrent tumor weight was 2370.3 ± 1907.8 mg for FGS-only and 705.5 ± 1200.0 mg for FGS + PIT (p = 0.039). CONCLUSIONS FGS and adjuvant PIT can be combined by using a single antibody-fluorophore conjugate to significantly reduce the frequency of pancreatic cancer recurrence.
Collapse
Affiliation(s)
- Hiroto Nishino
- Department of Surgery, UCSD Moores Cancer Center, University of California San Diego, San Diego, CA USA ,Department of Surgery, VA San Diego Healthcare System, San Diego, CA USA ,Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Michael A. Turner
- Department of Surgery, UCSD Moores Cancer Center, University of California San Diego, San Diego, CA USA ,Department of Surgery, VA San Diego Healthcare System, San Diego, CA USA
| | - Siamak Amirfakhri
- Department of Surgery, UCSD Moores Cancer Center, University of California San Diego, San Diego, CA USA ,Department of Surgery, VA San Diego Healthcare System, San Diego, CA USA
| | - Thinzar M. Lwin
- Department of Surgery, UCSD Moores Cancer Center, University of California San Diego, San Diego, CA USA ,Department of Surgical Oncology, Dana Farber Cancer Center, Boston, MA USA
| | - Mojgan Hosseini
- Department of Pathology, University of California San Diego, San Diego, CA USA
| | - Bernhard B. Singer
- Medical Faculty, Institute of Anatomy, University of Duisburg-Essen, Essen, Germany
| | - Robert M. Hoffman
- Department of Surgery, UCSD Moores Cancer Center, University of California San Diego, San Diego, CA USA ,AntiCancer, Inc., San Diego, CA USA
| | - Michael Bouvet
- Department of Surgery, UCSD Moores Cancer Center, University of California San Diego, San Diego, CA USA ,Department of Surgery, VA San Diego Healthcare System, San Diego, CA USA
| |
Collapse
|
26
|
Intraoperative Tumor Detection Using Pafolacianine. Int J Mol Sci 2022; 23:ijms232112842. [PMID: 36361630 PMCID: PMC9658182 DOI: 10.3390/ijms232112842] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is a leading cause of death worldwide, with increasing numbers of new cases each year. For the vast majority of cancer patients, surgery is the most effective procedure for the complete removal of the malignant tissue. However, relapse due to the incomplete resection of the tumor occurs very often, as the surgeon must rely primarily on visual and tactile feedback. Intraoperative near-infrared imaging with pafolacianine is a newly developed technology designed for cancer detection during surgery, which has been proven to show excellent results in terms of safety and efficacy. Therefore, pafolacianine was approved by the U.S. Food and Drug Administration (FDA) on 29 November 2021, as an additional approach that can be used to identify malignant lesions and to ensure the total resection of the tumors in ovarian cancer patients. Currently, various studies have demonstrated the positive effects of pafolacianine’s use in a wide variety of other malignancies, with promising results expected in further research. This review focuses on the applications of the FDA-approved pafolacianine for the accurate intraoperative detection of malignant tissues. The cancer-targeting fluorescent ligands can shift the paradigm of surgical oncology by enabling the visualization of cancer lesions that are difficult to detect by inspection or palpation. The enhanced detection and removal of hard-to-detect cancer tissues during surgery will lead to remarkable outcomes for cancer patients and society, specifically by decreasing the cancer relapse rate, increasing the life expectancy and quality of life, and decreasing future rates of hospitalization, interventions, and costs.
Collapse
|
27
|
Olson MT, Aguilar EN, Brooks CL, Isder CC, Muilenburg KM, Talmon GA, Ly QP, Carlson MA, Hollingsworth MA, Mohs AM. Preclinical Evaluation of a Humanized, Near-Infrared Fluorescent Antibody for Fluorescence-Guided Surgery of MUC16-Expressing Pancreatic Cancer. Mol Pharm 2022; 19:3586-3599. [PMID: 35640060 PMCID: PMC9864431 DOI: 10.1021/acs.molpharmaceut.2c00203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Surgery remains the only potentially curative treatment option for pancreatic cancer, but resections are made more difficult by infiltrative disease, proximity of critical vasculature, peritumoral inflammation, and dense stroma. Surgeons are limited to tactile and visual cues to differentiate cancerous tissue from normal tissue. Furthermore, translating preoperative images to the intraoperative setting poses additional challenges for tumor detection, and can result in undetected and unresected lesions. Thus, pancreatic ductal adenocarcinoma (PDAC) has high rates of incomplete resections, and subsequently, disease recurrence. Fluorescence-guided surgery (FGS) has emerged as a method to improve intraoperative detection of cancer and ultimately improve surgical outcomes. Initial clinical trials have demonstrated feasibility of FGS for PDAC, but there are limited targeted probes under investigation for this disease, highlighting the need for development of additional novel biomarkers to reflect the PDAC heterogeneity. MUCIN16 (MUC16) is a glycoprotein that is overexpressed in 60-80% of PDAC. In our previous work, we developed a MUC16-targeted murine antibody near-infrared conjugate, termed AR9.6-IRDye800, that showed efficacy in detecting pancreatic cancer. To build on the translational potential of this imaging probe, a humanized variant of the AR9.6 fluorescent conjugate was developed and investigated herein. This conjugate, termed huAR9.6-IRDye800, showed equivalent binding properties to its murine counterpart. Using an optimized dye:protein ratio of 1:1, in vivo studies demonstrated high tumor to background ratios in MUC16-expressing tumor models, and delineation of tumors in a patient-derived xenograft model. Safety, biodistribution, and toxicity studies were conducted. These studies demonstrated that huAR9.6-IRDye800 was safe, did not yield evidence of histological toxicity, and was well tolerated in vivo. The results from this work suggest that AR9.6-IRDye800 is an efficacious and safe imaging agent for identifying pancreatic cancer intraoperatively through fluorescence-guided surgery.
Collapse
Affiliation(s)
- Madeline T. Olson
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| | - Eric N. Aguilar
- Department of Chemistry and Biochemistry, California State University Fresno, Fresno, CA 93740
| | - Cory L. Brooks
- Department of Chemistry and Biochemistry, California State University Fresno, Fresno, CA 93740
| | - Carly C. Isder
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198
| | - Kathtyn M. Muilenburg
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198
| | - Geoffrey A. Talmon
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Quan P. Ly
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198
| | - Mark A. Carlson
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Surgery, VA Medical Center, Omaha, NE 68105
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| | - Aaron M. Mohs
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
28
|
Nishino H, Turner MA, Amirfakhri S, Hollandsworth HM, Lwin TM, Hosseini M, Framery B, Cailler F, Pèlegrin A, Hoffman RM, Bouvet M. Proof of concept of improved fluorescence-guided surgery of colon cancer liver metastasis using color-coded imaging of a tumor-labeling fluorescent antibody and indocyanine green restricted to the adjacent liver segment. Surgery 2022; 172:1156-1163. [PMID: 35927078 DOI: 10.1016/j.surg.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Indocyanine green has been used for fluorescence-guided surgery of liver metastasis and labeling of liver segments. However, indocyanine green is nonspecific, and indocyanine green labeling does not always clearly outline tumor margins. In addition, it is difficult to distinguish between a tumor and its adjacent liver segment colored with indocyanine green alone. In the present study, we performed fluorescence-guided surgery in an orthotopic colon-cancer liver metastasis mouse model by labeling the metastatic liver tumor with an anti-carcinoembryonic antigen fluorescent antibody and with indocyanine green restricted to the adjacent liver segment. METHODS A liver metastasis model was established with human LS174T colon cancer tumor fragments. To label the tumor, mice received SGM-101, an anti-carcinoembryonic antigen antibody conjugated to a near-infrared fluorophore (700 nm), currently in clinical trials, 3 days before surgery. Indocyanine green (800 nm) was injected after ligation of the tumor-bearing Glissonean pedicle with fluorescence labeling restricted to the liver segment adjacent to the tumor. Bright-light surgery and fluorescence-guided surgery were performed to resect the liver metastasis. To assess recurrence, mice underwent necropsy 3 weeks after surgery and the tumor was weighed. RESULTS Fluorescence-guided anatomic left lateral lobectomy and fluorescence-guided partial liver resection were both performed with color-coded double labeled imaging. Tumor weight 3 weeks after surgery was significantly lower with fluorescence-guided surgery compared to bright-light surgery (38 ± 57 mg vs 836 ± 668 mg, P = .011) for partial liver resection. CONCLUSION The present study provides a proof-of-concept that color-coded and double labeling of the tumor and adjacent liver segment has the potential to improve liver metastasectomy.
Collapse
Affiliation(s)
- Hiroto Nishino
- Department of Surgery, University of California San Diego, CA; Department of Surgery, VA San Diego Healthcare System, San Diego, CA; Department of Surgery, Graduate School of Medicine, Kyoto University, Japan
| | - Michael A Turner
- Department of Surgery, University of California San Diego, CA; Department of Surgery, VA San Diego Healthcare System, San Diego, CA
| | - Siamak Amirfakhri
- Department of Surgery, University of California San Diego, CA; Department of Surgery, VA San Diego Healthcare System, San Diego, CA
| | - Hannah M Hollandsworth
- Department of Surgery, University of California San Diego, CA; Department of Surgery, VA San Diego Healthcare System, San Diego, CA
| | - Thinzar M Lwin
- Department of Surgery, University of California San Diego, CA; Department of Surgery, VA San Diego Healthcare System, San Diego, CA
| | - Mojgan Hosseini
- Department of Pathology, University of California San Diego, CA
| | | | | | - André Pèlegrin
- Surgimab, Montpellier, France; IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Robert M Hoffman
- Department of Surgery, University of California San Diego, CA; Department of Surgery, VA San Diego Healthcare System, San Diego, CA; AntiCancer, Inc., San Diego, CA
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, CA; Department of Surgery, VA San Diego Healthcare System, San Diego, CA.
| |
Collapse
|
29
|
Pringle TA, Chan CD, Luli S, Blair HJ, Rankin KS, Knight JC. Synthesis and In Vivo Evaluation of a Site-specifically Labeled Radioimmunoconjugate for Dual-Modal (PET/NIRF) Imaging of MT1-MMP in Sarcomas. Bioconjug Chem 2022; 33:1564-1573. [PMID: 35867034 PMCID: PMC9389524 DOI: 10.1021/acs.bioconjchem.2c00306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Bone sarcomas are devastating primary bone cancers that
mostly
affect children, young adults, and the elderly. These aggressive tumors
are associated with poor survival, and surgery remains the mainstay
of treatment. Surgical planning is increasingly informed by positron
emission tomography (PET), and tumor margin identification during
surgery is aided by near-infrared fluorescence (NIRF) imaging, yet
these investigations are confounded by probes that lack specificity
for sarcoma biomarkers. We report the development of a dual-modal
(PET/NIRF) immunoconjugate ([89Zr]Zr-DFO-anti-MT1-MMP-IRDye800CW)
that targets MT1-MMP, a matrix metalloproteinase overexpressed in
high-grade sarcomas. [89Zr]Zr-DFO-anti-MT1-MMP-IRDye800CW
was synthesized via site-specific chemoenzymatic
glycan modification, characterized, and isolated in high specific
activity and radiochemical purity. Saturation binding and immunoreactivity
assays indicated only minor perturbation of binding properties. A
novel mouse model of dedifferentiated chondrosarcoma based on intrafemoral
inoculation of HT1080 WT or KO cells (high and low MT1-MMP expression,
respectively) was used to evaluate target binding and biodistribution.
Fluorescence and Cerenkov luminescence images of [89Zr]Zr-DFO-anti-MT1-MMP-IRDye800CW
showed preferential uptake in HT1080 WT tumors. Ex vivo gamma counting revealed that uptake in MT1-MMP-positive tumors was
significantly higher than that in control groups. Taken together,
[89Zr]Zr-DFO-anti-MT1-MMP-IRDye800CW is a promising dual-modal
sarcoma imaging agent for pre-operative surgical planning and intraoperative
surgical guidance.
Collapse
Affiliation(s)
- Toni A Pringle
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
| | - Corey D Chan
- North of England Bone and Soft Tissue Tumour Service, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Freeman Road, Newcastle Upon Tyne NE7 7DN, U.K.,Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
| | - Saimir Luli
- Preclinical In Vivo Imaging, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Helen J Blair
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K.,Wolfson Childhood Cancer Research Centre, Newcastle Upon Tyne NE1 7RY, U.K
| | - Kenneth S Rankin
- North of England Bone and Soft Tissue Tumour Service, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Freeman Road, Newcastle Upon Tyne NE7 7DN, U.K.,Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
| | - James C Knight
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K.,Newcastle Centre for Cancer, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
| |
Collapse
|
30
|
Sorbara M, Cordelier P, Bery N. Antibody-Based Approaches to Target Pancreatic Tumours. Antibodies (Basel) 2022; 11:antib11030047. [PMID: 35892707 PMCID: PMC9326758 DOI: 10.3390/antib11030047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
Pancreatic cancer is an aggressive cancer with a dismal prognosis. This is due to the difficulty to detect the disease at an early and curable stage. In addition, only limited treatment options are available, and they are confronted by mechanisms of resistance. Monoclonal antibody (mAb) molecules are highly specific biologics that can be directly used as a blocking agent or modified to deliver a drug payload depending on the desired outcome. They are widely used to target extracellular proteins, but they can also be employed to inhibit intracellular proteins, such as oncoproteins. While mAbs are a class of therapeutics that have been successfully employed to treat many cancers, they have shown only limited efficacy in pancreatic cancer as a monotherapy so far. In this review, we will discuss the challenges, opportunities and hopes to use mAbs for pancreatic cancer treatment, diagnostics and imagery.
Collapse
|
31
|
Fluorescence Molecular Targeting of Colon Cancer to Visualize the Invisible. Cells 2022; 11:cells11020249. [PMID: 35053365 PMCID: PMC8773892 DOI: 10.3390/cells11020249] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) is a common cause of cancer and cancer-related death. Surgery is the only curative modality. Fluorescence-enhanced visualization of CRC with targeted fluorescent probes that can delineate boundaries and target tumor-specific biomarkers can increase rates of curative resection. Approaches to enhancing visualization of the tumor-to-normal tissue interface are active areas of investigation. Nonspecific dyes are the most-used approach, but tumor-specific targeting agents are progressing in clinical trials. The present narrative review describes the principles of fluorescence targeting of CRC for diagnosis and fluorescence-guided surgery with molecular biomarkers for preclinical or clinical evaluation.
Collapse
|
32
|
Buckle T, van Willigen DM, Welling MM, van Leeuwen FW. Pre-clinical development of fluorescent tracers and translation towards clinical application. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
33
|
Abstract
The translation of laboratory science into effective clinical cancer therapy is gaining momentum more rapidly than any other time in history. Understanding cancer cell-surface receptors, cancer cell growth, and cancer metabolic pathways has led to many promising molecular-targeted therapies and cancer gene therapies. These same targets may also be exploited for optical imaging of cancer. Theoretically, any antibody or small molecule targeting cancer can be labeled with bioluminescent or fluorescent agents. In the laboratory setting, fluorescence imaging (FI) and bioluminescence imaging (BLI) have long been used in preclinical research for quantification of tumor bulk, assessment of targeting of tumors by experimental agents, and discrimination between primary and secondary effects of cancer treatments. Many of these laboratory techniques are now moving to clinical trials. Imageable engineered fluorescent probes that are highly specific for cancer are being advanced. This will allow for the identification of tumors for staging, tracking novel therapeutic agents, assisting in adequate surgical resection, and allowing image-guided biopsies. The critical components of FI include (1) a fluorescent protein that is biologically safe, stable, and distinctly visible with a high target to background ratio and (2) highly sensitive optical detectors. This review will summarize the most promising optical imaging agents and detection devices for cancer clinical research and clinical care.
Collapse
|
34
|
Turner MA, Lwin TM, Amirfakhri S, Nishino H, Hoffman RM, Yazaki PJ, Bouvet M. The Use of Fluorescent Anti-CEA Antibodies to Label, Resect and Treat Cancers: A Review. Biomolecules 2021; 11:1819. [PMID: 34944463 PMCID: PMC8699160 DOI: 10.3390/biom11121819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023] Open
Abstract
A major barrier to the diagnosis and effective treatment of solid-tumor cancers is the difficulty in detection and visualization of tumor margins in primary and metastatic disease. The use of fluorescence can augment the surgeon's ability to detect cancer and aid in its resection. Several cancer types express carcinoembryonic antigen (CEA) including colorectal, pancreatic and gastric cancer. Antibodies to CEA have been developed and tagged with near-infrared fluorescent dyes. This review article surveyed the use of CEA antibodies conjugated to fluorescent probes for in vivo studies since 1990. PubMed and Google Scholar databases were queried, and 900 titles and abstracts were screened. Fifty-nine entries were identified as possibly meeting inclusion/exclusion criteria and were reviewed in full. Forty articles were included in the review and their citations were screened for additional entries. A total of 44 articles were included in the final review. The use of fluorescent anti-CEA antibodies has been shown to improve detection and resection of tumors in both murine models and clinically. The cumulative results indicate that fluorescent-conjugated anti-CEA antibodies have important potential to improve cancer diagnosis and surgery. In an emerging technology, anti-CEA fluorescent antibodies have also been successfully used for photoimmunotherapy treatment for cancer.
Collapse
Affiliation(s)
- Michael A. Turner
- VA San Diego Healthcare System, La Jolla, CA 92161, USA; (M.A.T.); (S.A.); (H.N.); (R.M.H.)
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
| | | | - Siamak Amirfakhri
- VA San Diego Healthcare System, La Jolla, CA 92161, USA; (M.A.T.); (S.A.); (H.N.); (R.M.H.)
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
| | - Hiroto Nishino
- VA San Diego Healthcare System, La Jolla, CA 92161, USA; (M.A.T.); (S.A.); (H.N.); (R.M.H.)
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
| | - Robert M. Hoffman
- VA San Diego Healthcare System, La Jolla, CA 92161, USA; (M.A.T.); (S.A.); (H.N.); (R.M.H.)
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
- AntiCancer Inc., San Diego, CA 92111, USA
| | - Paul J. Yazaki
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Michael Bouvet
- VA San Diego Healthcare System, La Jolla, CA 92161, USA; (M.A.T.); (S.A.); (H.N.); (R.M.H.)
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
35
|
Galema HA, Meijer RPJ, Lauwerends LJ, Verhoef C, Burggraaf J, Vahrmeijer AL, Hutteman M, Keereweer S, Hilling DE. Fluorescence-guided surgery in colorectal cancer; A review on clinical results and future perspectives. Eur J Surg Oncol 2021; 48:810-821. [PMID: 34657780 DOI: 10.1016/j.ejso.2021.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/07/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Colorectal cancer is the fourth most diagnosed malignancy worldwide and surgery is one of the cornerstones of the treatment strategy. Near-infrared (NIR) fluorescence imaging is a new and upcoming technique, which uses an NIR fluorescent agent combined with a specialised camera that can detect light in the NIR range. It aims for more precise surgery with improved oncological outcomes and a reduction in complications by improving discrimination between different structures. METHODS A systematic search was conducted in the Embase, Medline and Cochrane databases with search terms corresponding to 'fluorescence-guided surgery', 'colorectal surgery', and 'colorectal cancer' to identify all relevant trials. RESULTS The following clinical applications of fluorescence guided surgery for colorectal cancer were identified and discussed: (1) tumour imaging, (2) sentinel lymph node imaging, (3) imaging of distant metastases, (4) imaging of vital structures, (5) imaging of perfusion. Both experimental and FDA/EMA approved fluorescent agents are debated. Furthermore, promising future modalities are discussed. CONCLUSION Fluorescence-guided surgery for colorectal cancer is a rapidly evolving field. The first studies show additional value of this technique regarding change in surgical management. Future trials should focus on patient related outcomes such as complication rates, disease free survival, and overall survival.
Collapse
Affiliation(s)
- Hidde A Galema
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands; Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Ruben P J Meijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, the Netherlands; Centre for Human Drug Research, Zernikedreef 8, 2333, CL, Leiden, the Netherlands
| | - Lorraine J Lauwerends
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Cornelis Verhoef
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Jacobus Burggraaf
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, the Netherlands; Centre for Human Drug Research, Zernikedreef 8, 2333, CL, Leiden, the Netherlands
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, the Netherlands
| | - Merlijn Hutteman
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, the Netherlands
| | - Stijn Keereweer
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Denise E Hilling
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands; Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, the Netherlands.
| |
Collapse
|
36
|
Shi XF, Ji B, Kong Y, Guan Y, Ni R. Multimodal Contrast Agents for Optoacoustic Brain Imaging in Small Animals. Front Bioeng Biotechnol 2021; 9:746815. [PMID: 34650961 PMCID: PMC8505530 DOI: 10.3389/fbioe.2021.746815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
Optoacoustic (photoacoustic) imaging has demonstrated versatile applications in biomedical research, visualizing the disease pathophysiology and monitoring the treatment effect in an animal model, as well as toward applications in the clinical setting. Given the complex disease mechanism, multimodal imaging provides important etiological insights with different molecular, structural, and functional readouts in vivo. Various multimodal optoacoustic molecular imaging approaches have been applied in preclinical brain imaging studies, including optoacoustic/fluorescence imaging, optoacoustic imaging/magnetic resonance imaging (MRI), optoacoustic imaging/MRI/Raman, optoacoustic imaging/positron emission tomography, and optoacoustic/computed tomography. There is a rapid development in molecular imaging contrast agents employing a multimodal imaging strategy for pathological targets involved in brain diseases. Many chemical dyes for optoacoustic imaging have fluorescence properties and have been applied in hybrid optoacoustic/fluorescence imaging. Nanoparticles are widely used as hybrid contrast agents for their capability to incorporate different imaging components, tunable spectrum, and photostability. In this review, we summarize contrast agents including chemical dyes and nanoparticles applied in multimodal optoacoustic brain imaging integrated with other modalities in small animals, and provide outlook for further research.
Collapse
Affiliation(s)
- Xue-feng Shi
- Department of Respiratory Medicine, Qinghai Provincial People’s Hospital, Xining, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Liang BJ, Lusvarghi S, Ambudkar SV, Huang HC. Use of photoimmunoconjugates to characterize ABCB1 in cancer cells. NANOPHOTONICS 2021; 10:3049-3061. [PMID: 35070633 PMCID: PMC8773461 DOI: 10.1515/nanoph-2021-0252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Accurate detection of ATP-binding cassette drug transporter ABCB1 expression is imperative for precise identification of drug-resistant tumors. Existing detection methods fail to provide the necessary molecular details regarding the functional state of the transporter. Photo-immunoconjugates are a unique class of antibody-dye conjugates for molecular diagnosis and therapeutic treatment. However, conjugating hydrophobic photosensitizers to hydrophilic antibodies is quite challenging. Here, we devise a photoimmunoconjugate that combines a clinically approved benzoporphyrin derivative (BPD) photosensitizer and the conformational-sensitive UIC2 monoclonal antibody to target functionally active human ABCB1 (i.e., ABCB1 in the inward-open conformation). We show that PEGylation of UIC2 enhances the BPD conjugation efficiency and reduces the amount of non-covalently conjugated BPD molecules by 17%. Size exclusion chromatography effectively separates the different molecular weight species found in the UIC2-BPD sample. The binding of UIC2-BPD to ABCB1 was demonstrated in lipidic nanodiscs and ABCB1-overexpressing triple negative breast cancer (TNBC) cells. UIC2-BPD was found to retain the conformation sensitivity of UIC2, as the addition of ABCB1 modulators increases the antibody reactivity in vitro. Thus, the inherent fluorescence capability of BPD can be used to label ABCB1-overexpressing TNBC cells using UIC2-BPD. Our findings provide insight into conjugation of hydrophobic photosensitizers to conformation-sensitive antibodies to target proteins expressed on the surface of cancer cells.
Collapse
Affiliation(s)
- Barry J. Liang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Room 2120, Bldg 37, 37 Convent Drive, Bethesda, MD 20892-4256, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742-5031, USA; and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201-1595, USA
| |
Collapse
|
38
|
Stewart HL, Birch DJS. Fluorescence Guided Surgery. Methods Appl Fluoresc 2021; 9. [PMID: 34399409 DOI: 10.1088/2050-6120/ac1dbb] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/16/2021] [Indexed: 01/22/2023]
Abstract
Fluorescence guided surgery (FGS) is an imaging technique that allows the surgeon to visualise different structures and types of tissue during a surgical procedure that may not be as visible under white light conditions. Due to the many potential advantages of fluorescence guided surgery compared to more traditional clinical imaging techniques such as its higher contrast and sensitivity, less subjective use, and ease of instrument operation, the research interest in fluorescence guided surgery continues to grow over various key aspects such as fluorescent probe development and surgical system development as well as its potential clinical applications. This review looks to summarise some of the emerging opportunities and developments that have already been made in fluorescence guided surgery in recent years while highlighting its advantages as well as limitations that need to be overcome in order to utilise the full potential of fluorescence within the surgical environment.
Collapse
Affiliation(s)
- Hazel L Stewart
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - David J S Birch
- Department of Physics, The Photophysics Research Group, University of Strathclyde, SUPA, John Anderson Building, 107 Rottenrow East, Glasgow G4 0NG, United Kingdom
| |
Collapse
|
39
|
Luciano MP, Dingle I, Nourian S, Schnermann MJ. Preferential Light-Chain Labeling of Native Monoclonal Antibodies Improves the Properties of Fluorophore Conjugates. Tetrahedron Lett 2021; 75. [PMID: 34321699 DOI: 10.1016/j.tetlet.2021.153211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Site specific labeling methods have significant potential to enhance the properties of antibody conjugates. While studied extensively in the context of antibody-drug conjugates (ADCs), few studies have examined the impact of homogenous labeling on the properties of antibody-fluorophore conjugates (AFCs). We report the application of pentafluorophenyl (PFP) esters, which had previously been shown to be reasonably selective for K188 of the kappa light chain of human IGG antibodies, toward producing AFCs. We show that simple replacement of N-hydroxy succinimide (NHS) with PFP dramatically increases the light-chain specificity of near-infrared (NIR) AFCs. Comparing the properties of AFCs labeled using NHS and PFP-activated esters reveals that the latter exhibits reduced aggregation and improved brightness, both in vitro and in vivo. Overall, the use of PFP esters provides a remarkably simple approach to provide selectively labeled antibodies with improved properties.
Collapse
Affiliation(s)
- Michael P Luciano
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Ivan Dingle
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Saghar Nourian
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| |
Collapse
|
40
|
Azari F, Kennedy G, Bernstein E, Hadjipanayis C, Vahrmeijer AL, Smith BL, Rosenthal E, Sumer B, Tian J, Henderson ER, Lee A, Nguyen Q, Gibbs SL, Pogue BW, Orringer DA, Charalampaki P, Martin LW, Tanyi JL, Kenneth Lee M, Lee JYK, Singhal S. Intraoperative molecular imaging clinical trials: a review of 2020 conference proceedings. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210050VR. [PMID: 34002555 PMCID: PMC8126806 DOI: 10.1117/1.jbo.26.5.050901] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/28/2021] [Indexed: 05/15/2023]
Abstract
SIGNIFICANCE Surgery is often paramount in the management of many solid organ malignancies because optimal resection is a major factor in disease-specific survival. Cancer surgery has multiple challenges including localizing small lesions, ensuring negative surgical margins around a tumor, adequately staging patients by discriminating positive lymph nodes, and identifying potential synchronous cancers. Intraoperative molecular imaging (IMI) is an emerging potential tool proposed to address these issues. IMI is the process of injecting patients with fluorescent-targeted contrast agents that highlight cancer cells prior to surgery. Over the last 5 to 7 years, enormous progress has been achieved in tracer development, near-infrared camera approvals, and clinical trials. Therefore, a second biennial conference was organized at the University of Pennsylvania to gather surgical oncologists, scientists, and experts to discuss new investigative findings in the field. Our review summarizes the discussions from the conference and highlights findings in various clinical and scientific trials. AIM Recent advances in IMI were presented, and the importance of each clinical trial for surgical oncology was critically assessed. A major focus was to elaborate on the clinical endpoints that were being utilized in IMI trials to advance the respective surgical subspecialties. APPROACH Principal investigators presenting at the Perelman School of Medicine Abramson Cancer Center's second clinical trials update on IMI were selected to discuss their clinical trials and endpoints. RESULTS Multiple phase III, II, and I trials were discussed during the conference. Since the approval of 5-ALA for commercial use in neurosurgical malignancies, multiple tracers and devices have been developed to address common challenges faced by cancer surgeons across numerous specialties. Discussants also presented tracers that are being developed for delineation of normal anatomic structures that can serve as an adjunct during surgical procedures. CONCLUSIONS IMI is increasingly being recognized as an improvement to standard oncologic surgical resections and will likely advance the art of cancer surgery in the coming years. The endpoints in each individual surgical subspecialty are varied depending on how IMI helps each specialty solve their clinical challenges.
Collapse
Affiliation(s)
- Feredun Azari
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Gregory Kennedy
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Elizabeth Bernstein
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | | | | | - Barbara L. Smith
- Harvard University, School of Medicine, Boston, Massachusetts, United States
| | - Eben Rosenthal
- Stanford University, School of Medicine, Stanford, California, United States
| | - Baran Sumer
- University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Jie Tian
- Chinese Academy of Sciences/Institute of Automation, Beijing, China
| | - Eric R. Henderson
- Dartmouth College, Geisel School of Medicine, Hanover, New Hampshire, United States
| | - Amy Lee
- University of Washington, School of Medicine, Seattle, Washington, United States
| | - Quyen Nguyen
- University of California San Diego, School of Medicine, San Diego, California, United States
| | - Summer L. Gibbs
- Oregon Health & Science University, Knight Cancer Institute, School of Medicine, Portland, Oregon, United States
| | - Brian W. Pogue
- Dartmouth College, Geisel School of Medicine, Hanover, New Hampshire, United States
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
| | | | | | - Linda W. Martin
- University of Virginia, School of Medicine, Charlottesville, Virginia, United States
| | - Janos L. Tanyi
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Major Kenneth Lee
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - John Y. K. Lee
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Sunil Singhal
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States
- Address all correspondence to Sunil Singhal,
| |
Collapse
|
41
|
Hollandsworth HM, Turner MA, Hoffman RM, Bouvet M. A review of tumor-specific fluorescence-guided surgery for colorectal cancer. Surg Oncol 2021; 36:84-90. [PMID: 33316684 PMCID: PMC7855598 DOI: 10.1016/j.suronc.2020.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 01/08/2023]
Abstract
The present study reviews the use of tumor-specific antibodies conjugated to fluorescent dyes in preclinical and clinical studies to enhance visualization of primary tumors and metastases for fluorescence-guided surgery (FGS) in colorectal cancer (CRC). A search strategy was developed using the peer-reviewed National Center for Biotechnology Information (NCBI) database on PubMed. Studies using tumor-specific fluorescence imaging and FGS techniques on murine models of colorectal cell lines or patient-derived orthotopic xenograft (PDOX) colorectal cancer are reviewed. A total of 24 articles were identified that met the inclusion criteria, 21 preclinical and 3 clinical trials. The most widely used target antigen in preclinical and clinical trials was carcinoembryonic antigen (CEA). Mouse studies and clinical studies have demonstrated that the use of FGS in CRC can aid in decreased residual tumor and decreased rates of recurrence. As the mainstay of colorectal cancer treatment is surgery, the addition of intraoperative fluorescence imaging can help locate tumor margins, visualize occult micro-metastases, drive surgical decision making and improve patient outcomes.
Collapse
Affiliation(s)
- Hannah M Hollandsworth
- Department of Surgery, University of California San Diego, San Diego, CA, USA; Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Michael A Turner
- Department of Surgery, University of California San Diego, San Diego, CA, USA; Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Robert M Hoffman
- Department of Surgery, University of California San Diego, San Diego, CA, USA; Moores Cancer Center, University of California San Diego, San Diego, CA, USA; AntiCancer Inc., San Diego, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, San Diego, CA, USA; Moores Cancer Center, University of California San Diego, San Diego, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
42
|
Liang M, Yang M, Wang F, Wang X, He B, Mei C, He J, Lin Y, Cao Q, Li D, Shan H. Near-infrared fluorescence-guided resection of micrometastases derived from esophageal squamous cell carcinoma using a c-Met-targeted probe in a preclinical xenograft model. J Control Release 2021; 332:171-183. [PMID: 33636245 DOI: 10.1016/j.jconrel.2021.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 12/24/2022]
Abstract
The postoperative survival of esophageal squamous cell carcinoma (eSCC) is notably hindered by cancer recurrence due to difficulty in identifying occult metastases. Cellular mesenchymal-epithelial transition factor (c-Met), which is highly expressed in different cancers, including eSCC, has become a target for the development of imaging probes and therapeutic antibodies. In this study, we synthesized an optical probe (SHRmAb-IR800) containing a near-infrared fluorescence (NIRF) dye and c-Met antibody, which may help in NIRF-guided resection of micrometastases derived from eSCC. Cellular uptake of SHRmAb-IR800 was assessed by flow cytometry and confocal microscopy. In vivo accumulation of SHRmAb-IR800 and the potential application of NIRF-guided surgery were evaluated in eSCC xenograft tumor models. c-Met expression in human eSCC samples and lymph node metastases (LNMs) was analyzed via immunohistochemistry (IHC). Cellular accumulation of SHRmAb-IR800 was higher in c-Met-positive EC109 eSCC cells than in c-Met-negative A2780 cells. Infusion of SHRmAb-IR800 produced higher fluorescence intensity and a higher tumor-to-background ratio (TBR) than the control probe in EC109 subcutaneous tumors (P < 0.05). The TBRs of orthotopic EC109 tumors and LNMs were 3.01 ± 0.17 and 2.77 ± 0.56, respectively. The sensitivity and specificity of NIRF-guided resection of metastases derived from orthotopic cancers were 92.00% and 89.74%, respectively. IHC results demonstrated positive staining in 97.64% (124/127) of eSCC samples and 91.67% (55/60) of LNMs. Notably, increased c-Met expression was observed in LNMs compared to normal lymph nodes (P < 0.0001). Taken together, the results of this study indicated that SHRmAb-IR800 facilitated the resection of micrometastases of eSCC in the xenograft tumor model. This c-Met-targeted probe possesses translational potential in NIRF-guided surgery due to the high positive rate of c-Met protein in human eSCCs.
Collapse
Affiliation(s)
- Mingzhu Liang
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Meilin Yang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Fen Wang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Xiaojin Wang
- Department of Cardiothoracic Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Bailiang He
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Chaoming Mei
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Jianzhong He
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Yujing Lin
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Qingdong Cao
- Department of Cardiothoracic Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| | - Dan Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| | - Hong Shan
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| |
Collapse
|
43
|
Achterberg FB, Deken MM, Meijer RPJ, Mieog JSD, Burggraaf J, van de Velde CJH, Swijnenburg RJ, Vahrmeijer AL. Clinical translation and implementation of optical imaging agents for precision image-guided cancer surgery. Eur J Nucl Med Mol Imaging 2021; 48:332-339. [PMID: 32783112 PMCID: PMC7835299 DOI: 10.1007/s00259-020-04970-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The field of tumor-specific fluorescence-guided surgery has seen a significant increase in the development of novel tumor-targeted imaging agents. Studying patient benefit using intraoperative fluorescence-guided imaging for cancer surgery is the final step needed for implementation in standard treatment protocols. Translation into phase III clinical trials can be challenging and time consuming. Recent studies have helped to identify certain waypoints in this transition phase between studying imaging agent efficacy (phase I-II) and proving patient benefit (phase III). TRIAL INITIATION Performing these trials outside centers of expertise, thus involving motivated clinicians, training them, and providing feedback on data quality, increases the translatability of imaging agents and the surgical technique. Furthermore, timely formation of a trial team which oversees the translational process is vital. They are responsible for establishing an imaging framework (camera system, imaging protocol, surgical workflow) and clinical framework (disease stage, procedure type, clinical research question) in which the trial is executed. Providing participating clinicians with well-defined protocols with the aim to answer clinically relevant research questions within the context of care is the pinnacle in gathering reliable trial data. OUTLOOK If all these aspects are taken into consideration, tumor-specific fluorescence-guided surgery is expected be of significant value when integrated into the diagnostic work-up, surgical procedure, and follow-up of cancer patients. It is only by involving and collaborating with all stakeholders involved in this process that successful clinical translation can occur. AIM Here, we discuss the challenges faced during this important translational phase and present potential solutions to enable final clinical translation and implementation of imaging agents for image-guided cancer surgery.
Collapse
Affiliation(s)
- F B Achterberg
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - M M Deken
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - R P J Meijer
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - J S D Mieog
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - J Burggraaf
- Centre for Human Drug Research (CHDR), Leiden, The Netherlands
| | - C J H van de Velde
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - R J Swijnenburg
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - A L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
44
|
Ottobrini L, Martelli C, Lucignani G. Optical Imaging Agents. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00035-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
45
|
Meijer RPJ, de Valk KS, Deken MM, Boogerd LSF, Hoogstins CES, Bhairosingh SS, Swijnenburg RJ, Bonsing BA, Framery B, Fariña Sarasqueta A, Putter H, Hilling DE, Burggraaf J, Cailler F, Mieog JSD, Vahrmeijer AL. Intraoperative detection of colorectal and pancreatic liver metastases using SGM-101, a fluorescent antibody targeting CEA. Eur J Surg Oncol 2020; 47:667-673. [PMID: 33158638 DOI: 10.1016/j.ejso.2020.10.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Fluorescence-guided surgery can provide surgeons with an imaging tool for real-time intraoperative tumor detection. SGM-101, an anti-CEA antibody labelled with a fluorescent dye, is a tumor-specific imaging agent that can aid in improving detection and complete resection for CEA-positive tumors. In this study, the performance of SGM-101 for the detection of colorectal and pancreatic liver metastases was investigated. METHODS In this open-label, non-randomized, single-arm pilot study, patients were included with liver metastases from colorectal origin and intraoperatively detected liver metastases from pancreatic origin (during planned pancreatic surgery). SGM-101 was administered two to four days before the scheduled surgery as a single intravenous injection. Intraoperative fluorescence imaging was performed using the Quest Spectrum® imaging system. The performance of SGM-101 was assessed by measuring the intraoperative fluorescence signal and comparing this to histopathology. RESULTS A total of 19 lesions were found in 11 patients, which were all suspected as malignant in white light and subsequent fluorescence inspection. Seventeen lesions were malignant with a mean tumor-to-background ratio of 1.7. The remaining two lesions were false-positives as proven by histology. CONCLUSION CEA-targeted fluorescence-guided intraoperative tumor detection with SGM-101 is feasible for the detection of colorectal and pancreatic liver metastases.
Collapse
Affiliation(s)
- Ruben P J Meijer
- Centre for Human Drug Research, Leiden, the Netherlands; Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Kim S de Valk
- Centre for Human Drug Research, Leiden, the Netherlands; Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Marion M Deken
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Leonora S F Boogerd
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Charlotte E S Hoogstins
- Centre for Human Drug Research, Leiden, the Netherlands; Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Bert A Bonsing
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Hein Putter
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Denise E Hilling
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - J Sven D Mieog
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
46
|
Achterberg FB, Sibinga Mulder BG, Meijer RPJ, Bonsing BA, Hartgrink HH, Mieog JSD, Zlitni A, Park SM, Farina Sarasqueta A, Vahrmeijer AL, Swijnenburg RJ. Real-time surgical margin assessment using ICG-fluorescence during laparoscopic and robot-assisted resections of colorectal liver metastases. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1448. [PMID: 33313193 PMCID: PMC7723628 DOI: 10.21037/atm-20-1999] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Almost a third of the resections in patients with colorectal liver metastases (CRLM) undergoing curative surgery, end up being tumor-margin positive (≤1 mm margin). Near-infrared fluorescent (NIRF) imaging using the fluorescent contrast agent indocyanine green (ICG) has been studied for many different applications. When administered in a relatively low dose (10 mg) 24 hours prior to surgery, ICG accumulated in hepatocytes surrounding the CRLM. This results in the formation of a characteristic fluorescent 'rim' surrounding CRLM when located at the periphery of the liver. By resecting the metastasis with the entire surrounding fluorescent rim, in real-time guided by NIRF imaging, the surgeon can effectively acquire margin-negative (>1 mm) resections. This pilot study aims to describe the surgical technique for using near-infrared fluorescence imaging to assess tumor-margins in vivo in patients with CRLM undergoing laparoscopic or robot-assisted resections. Methods Out of our institutional database we selected 16 CRLM based on margin-status (R0; n=8, R1; n=8), which were resected by a minimally-invasive approach using ICG-fluorescence. NIRF images acquired during surgery, from both the resection specimen and the wound bed, were analysed for fluorescent signal. We hypothesized that a protruding fluorescent rim at the parenchymal side of the resection specimen could indicate a too close proximity to the tumor and could be predictive for a tumor-positive surgical margin. NIRF images were correlated to final histopathological assessment of the resection margin. Results All lesions with a NIRF positive resection plane in vivo were reported as having a tumor-positive margin. Lesions that showcased no protruding rim in the wound bed in vivo were diagnosed as having a tumor-negative margin in 88% of cases. A 5-step surgical workflow is described to document the NIRF signal was used assess the resection margin in vivo for future clinical studies. Conclusions The pilot study shows that image-guided surgery using real-time ICG-fluorescence has the potential to aid surgeons in achieving a tumor-negative margin in minimally invasive liver metastasectomies. The national multi-centre MIMIC-Trial will prospectively study the effect of this technique on surgical tumor-margins (Dutch Trial Register number NL7674).
Collapse
Affiliation(s)
- Friso B Achterberg
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.,Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, USA
| | | | - Ruben P J Meijer
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Bert A Bonsing
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk H Hartgrink
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - J Sven D Mieog
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Aimen Zlitni
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, USA
| | - Seung-Min Park
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, USA
| | - Arantza Farina Sarasqueta
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Rutger-Jan Swijnenburg
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
47
|
de Valk KS, Deken MM, Schaap DP, Meijer RP, Boogerd LS, Hoogstins CE, van der Valk MJ, Kamerling IM, Bhairosingh SS, Framery B, Hilling DE, Peeters KC, Holman FA, Kusters M, Rutten HJ, Cailler F, Burggraaf J, Vahrmeijer AL. Dose-Finding Study of a CEA-Targeting Agent, SGM-101, for Intraoperative Fluorescence Imaging of Colorectal Cancer. Ann Surg Oncol 2020; 28:1832-1844. [PMID: 33034788 PMCID: PMC7892528 DOI: 10.1245/s10434-020-09069-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/09/2020] [Indexed: 12/28/2022]
Abstract
Background Carcinoembryonic antigen is overexpressed in colorectal cancer (CRC), making it an optimal target for fluorescence imaging. A phase I/II study was designed to determine the optimal imaging dose of SGM-101 for intraoperative fluorescence imaging of primary and recurrent CRC. Methods Patients were included and received a single dose of SGM-101 at least 24 h before surgery. Patients who received routine anticancer therapy (i.e., radiotherapy or chemotherapy) also were eligible. A dedicated near-infrared imaging system was used for real-time fluorescence imaging during surgery. Safety assessments were performed and SGM-101 efficacy was evaluated per dose level to determine the most optimal imaging dose. Results Thirty-seven patients with CRC were included in the analysis. Fluorescence was visible in all primary and recurrent tumors. In seven patients, no fluorescence was seen; all were confirmed as pathological complete responses after neoadjuvant therapy. Two tumors showed false-positive fluorescence. In the 37 patients, a total of 97 lesions were excised. The highest mean intraoperative tumor-to-background ratio (TBR) of 1.9 (p = 0.019) was seen in the 10-mg dose. This dose showed a sensitivity of 96%, specificity of 63%, and negative predictive value of 94%. Nine patients (24%) had a surgical plan alteration based on fluorescence, with additional malignant lesions detected in six patients. Conclusions The optimal imaging dose was established at 10 mg 4 days before surgery. The results accentuate the potential of SGM-101 and designated a promising base for the multinational phase III study, which enrolled the first patients in June 2019. Electronic supplementary material The online version of this article (10.1245/s10434-020-09069-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kim S de Valk
- Centre for Human Drug Research, Leiden, The Netherlands.,Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Marion M Deken
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Dennis P Schaap
- Department of Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Ruben P Meijer
- Centre for Human Drug Research, Leiden, The Netherlands.,Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Leonora S Boogerd
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Charlotte E Hoogstins
- Centre for Human Drug Research, Leiden, The Netherlands.,Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | - Denise E Hilling
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Koen C Peeters
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Fabian A Holman
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Miranda Kusters
- Department of Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Harm J Rutten
- Department of Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | | | | | | |
Collapse
|
48
|
Lwin TM, Hoffman RM, Bouvet M. Fluorescence-guided hepatobiliary surgery with long and short wavelength fluorophores. Hepatobiliary Surg Nutr 2020; 9:615-639. [PMID: 33163512 DOI: 10.21037/hbsn.2019.09.13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Importance Fluorescence-guided surgery (FGS) is a potentially powerful tool for hepatobiliary (HPB) surgery. The high sensitivity of fluorescence navigation is especially useful in settings where tactile feedback is limited. Objective The present narrative review evaluates literature on the use of FDA-approved fluorophores such as methylene blue (MB), 5-aminolevulinic acid (5-ALA), and indocyanine green (ICG) for clinical intra-operative image-guidance during HPB surgery. Evidence Review Approaches such as dosing, timing, imaging devices and comparative endpoints are summarized. The feasibility and safety of fluorophores in visualizing the biliary tree, identify biliary leaks, outline anatomic hepatic segments, identify tumors, and evaluate perfusion and graft function in liver transplants are discussed. Findings Tumor-specific probes are a promising advancement in FGS with a greater degree of specificity. The current status of tumor-specific probes being evaluated in clinical trials are summarized. Conclusions and Relevance for Reviews Relevant discussion of promising tumor-specific probes in pre-clinical development are discussed. Fluorescence-guidance in HPB surgery is relatively new, but current literature shows that the dyes are reliably able to outline desired structures with a variety of dosing, timing, and imaging devices to provide real-time intra-operative anatomic information to surgeons. Development of tumor-specific probes will further advance the field of HPB surgery especially during oncologic resections.
Collapse
Affiliation(s)
- Thinzar M Lwin
- Department of Surgery, University of California San Diego, San Diego, CA, USA
| | - Robert M Hoffman
- Department of Surgery, University of California San Diego, San Diego, CA, USA.,AntiCancer, Inc., San Diego, CA, USA.,VA San Diego Healthcare System, San Diego, CA, USA
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, San Diego, CA, USA.,VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
49
|
Morlandt AB, Moore LS, Johnson AO, Smith CM, Stevens TM, Warram JM, MacDougall M, Rosenthal EL, Amm HM. Fluorescently Labeled Cetuximab-IRDye800 for Guided Surgical Excision of Ameloblastoma: A Proof of Principle Study. J Oral Maxillofac Surg 2020; 78:1736-1747. [PMID: 32554066 PMCID: PMC7541684 DOI: 10.1016/j.joms.2020.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE Fluorescently labeled epidermal growth factor receptor (EGFR) antibodies have successfully identified microscopic tumors in multiple in vivo models of human cancers with limited toxicity. The present study sought to demonstrate the ability of fluorescently labeled anti-EGFR, cetuximab-IRDye800, to localize to ameloblastoma (AB) tumor cells in vitro and in vivo. MATERIAL AND METHODS EGFR expression in AB cells was confirmed by quantitative real-time polymerase chain reaction and immunohistochemistry. Primary AB cells were labeled in vitro with cetuximab-IRDye800 or nonspecific IgG-IRDye800. An in vivo patient-derived xenograft (PDX) model of AB was developed. The tumor tissue from 3 patients was implanted subcutaneously into immunocompromised mice. The mice received an intravenous injection of cetuximab-IRDye800 or IgG-IRDye800 and underwent imaging to detect infrared fluorescence using a Pearl imaging system (LI-COR Biosciences, Lincoln, NE). After resection of the overlying skin, the tumor/background ratios (TBRs) were calculated and statistically analyzed using a paired t test. RESULTS EGFR expression was seen in all AB samples. Tumor-specific labeling was achieved, as evidenced by a positive fluorescence signal from cetuximab-IRDye800 binding to AB cells, with little staining seen in the negative controls treated with IgG-IRDye800. In the animal PDX model, imaging revealed that the TBRs produced by cetuximab were significantly greater than those produced by IgG on days 7 to 14 for AB-20 tumors. After skin flap removal to simulate a preresection state, the TBRs increased with cetuximab and were significantly greater than the TBRs with the IgG control for PDX tumors derived from the 3 patients with AB. The excised tissues were embedded in paraffin and examined to confirm the presence of tumor. CONCLUSIONS Fluorescently labeled anti-EGFR demonstrated specificity for AB cells and PDX tumors. The present study is the first report of tumor-specific, antibody-based imaging of odontogenic tumors, of which AB is one of the most clinically aggressive. We expect this technology will ultimately assist surgeons treating AB by helping to accurately assess the tumor margins during surgery, leading to improved long-term local tumor control and less surgical morbidity.
Collapse
Affiliation(s)
- Anthony B Morlandt
- Associate Professor and Section Chief, Division of Oral Oncology, Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Lindsay S Moore
- Resident, Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Aubrey O Johnson
- Student, Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Caris M Smith
- Researcher II, Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Todd M Stevens
- Associate Professor, Department of Anatomic Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Jason M Warram
- Associate Professor, Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Mary MacDougall
- Dean and Professor, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| | - Eben L Rosenthal
- Professor, Division of Otolaryngology - Head and Neck Surgery, and Associate Director, Department of Clinical Care, Stanford Cancer Institute, Stanford University, Stanford, CA
| | - Hope M Amm
- Assistant Professor, Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
50
|
Indocyanine Green-Enhanced Colorectal Surgery-between Being Superfluous and Being a Game-Changer. Diagnostics (Basel) 2020; 10:diagnostics10100742. [PMID: 32987841 PMCID: PMC7600504 DOI: 10.3390/diagnostics10100742] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Nowadays, surgical innovations incorporate new technological conquests and must be validated by evidence-based medicine. The use of augmented reality-assisted indocyanine green (ICG) fluorescence has generated a myriad of intraoperative applications such as demonstration of key anatomical landmarks, sentinel lymph nodes, and real-time assessment of local blood flow. This paper presents a systematic review of the clinical evidence regarding the applications of ICG near-infrared (NIR) fluorescence in colorectal surgery. After we removed duplicate publications and screened for eligibility, a total of 36 articles were evaluated: 23 on perfusion assessment, 10 on lymph node mapping, and 3 on intraoperative identification of ureters. Lack of homogenous studies, low statistical power, and confounding evidence were found to be common amongst publications supporting the use of ICG in colorectal surgery, raising concerns over this seductive technique's cost efficiency and redundancy. The compiled data showed that ICG NIR fluorescence may be a game-changer in particular situations, as proven for low colorectal anastomosis or lateral pelvic lymph node dissection, but it remains controversial for routine use and sentinel lymph node assessment. Further randomized studies are needed to confirm these conclusions. Future research directions include tumor-targeted fluorescence imaging and digital software for quantitative evaluation of fluorescence.
Collapse
|