1
|
Muchova M, Kuehne SA, Grant MM, Smith PP, Nagi M, Chapple ILC, Hirschfeld J. Fusobacterium nucleatum elicits subspecies-specific responses in human neutrophils. Front Cell Infect Microbiol 2024; 14:1449539. [PMID: 39450334 PMCID: PMC11499235 DOI: 10.3389/fcimb.2024.1449539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/06/2024] [Indexed: 10/26/2024] Open
Abstract
Fusobacterium nucleatum as a Gram-negative anaerobe plays a key bridging role in oral biofilms. It is involved in periodontal and extraoral diseases, the most prominent being colorectal cancer. Five subspecies are recognised: animalis, fusiforme, nucleatum, polymorphum and vincentii. Subspecies interact with neutrophils constantly patrolling tissues to remove microbial intruders. Neutrophil antimicrobial activities include generation of reactive oxygen species (ROS), formation of neutrophil extracellular traps (NETs) and release of cytokines and neutrophil enzymes. Subspecies-specific differences in immunogenicity have previously been observed in a neutrophil-like cell line but were not investigated in human neutrophils. Additionally, neutrophil responses to planktonic and biofilm-grown F. nucleatum have not been studied to date. The aims of this study were to compare the immunogenicity of planktonic and biofilm-grown F. nucleatum and to investigate potential differences in human neutrophil responses when stimulated with individual F. nucleatum subspecies. Human neutrophils isolated from peripheral blood were stimulated with planktonic and biofilm-grown F. nucleatum subspecies. Generation of ROS and NET formation were quantified by luminescence and fluorescence assays, respectively. Secretion of cytokines (IL-1β, TNF-α, IL-6, IL-8), neutrophil elastase and matrix metalloproteinase-9 was quantified by enzyme-linked immunosorbent assay (ELISA). Neutrophil responses showed biofilm-grown bacteria induced a significantly higher total and intracellular ROS response, as well as shorter time to total ROS release. Biofilm-grown F. nucleatum led to significantly lower IL-1β release. We found significant differences among individual subspecies in terms of total, intracellular ROS and extracellular superoxide. Subspecies polymorphum stimulated the highest mean amount of NET release. Amounts of cytokines released differed significantly among subspecies, while no differences were found in lysosomal enzyme release. Immunogenicity of F. nucleatum in human neutrophils is highly subspecies-specific in vitro with regard to ROS release and cytokine production. Understanding subspecies-specific immunogenicity of F. nucleatum may facilitate the discovery of novel therapeutic targets in F. nucleatum-mediated diseases.
Collapse
Affiliation(s)
- Maria Muchova
- Periodontal Research Group, Birmingham School of Dentistry, Institute of Clinical Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Sarah A. Kuehne
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Melissa M. Grant
- Periodontal Research Group, Birmingham School of Dentistry, Institute of Clinical Sciences, The University of Birmingham, Birmingham, United Kingdom
- Birmingham Dental Hospital, Birmingham Community Health National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- Birmingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre (BRC) in Inflammation, Birmingham University, Birmingham, United Kingdom
| | - Peter P. Smith
- Periodontal Research Group, Birmingham School of Dentistry, Institute of Clinical Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Malee Nagi
- Periodontal Research Group, Birmingham School of Dentistry, Institute of Clinical Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Iain L. C. Chapple
- Periodontal Research Group, Birmingham School of Dentistry, Institute of Clinical Sciences, The University of Birmingham, Birmingham, United Kingdom
- Birmingham Dental Hospital, Birmingham Community Health National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- Birmingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre (BRC) in Inflammation, Birmingham University, Birmingham, United Kingdom
| | - Josefine Hirschfeld
- Periodontal Research Group, Birmingham School of Dentistry, Institute of Clinical Sciences, The University of Birmingham, Birmingham, United Kingdom
- Birmingham Dental Hospital, Birmingham Community Health National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- Birmingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre (BRC) in Inflammation, Birmingham University, Birmingham, United Kingdom
| |
Collapse
|
2
|
Krieger M, Guo M, Merritt J. Reexamining the role of Fusobacterium nucleatum subspecies in clinical and experimental studies. Gut Microbes 2024; 16:2415490. [PMID: 39394990 PMCID: PMC11486156 DOI: 10.1080/19490976.2024.2415490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
The Gram-negative anaerobic species Fusobacterium nucleatum was originally described as a commensal organism from the human oral microbiome. However, it is now widely recognized as a key inflammophilic pathobiont associated with a wide variety of oral and extraoral diseases. Historically, F. nucleatum has been classified into four subspecies that have been generally considered as functionally interchangeable in their pathogenic potential. Recent studies have challenged this notion, as clinical data reveal a highly biased distribution of F. nucleatum subspecies within disease sites of both inflammatory oral diseases and various malignancies. This review details the historical basis for the F. nucleatum subspecies designations and summarizes our current understanding of the similarities and distinctions between these organisms to provide important context for future clinical and laboratory studies of F. nucleatum.
Collapse
Affiliation(s)
- Madeline Krieger
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Mingzhe Guo
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Justin Merritt
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| |
Collapse
|
3
|
Muchova M, Balacco DL, Grant MM, Chapple ILC, Kuehne SA, Hirschfeld J. Fusobacterium nucleatum Subspecies Differ in Biofilm Forming Ability in vitro. FRONTIERS IN ORAL HEALTH 2022; 3:853618. [PMID: 35368312 PMCID: PMC8967363 DOI: 10.3389/froh.2022.853618] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Development of dysbiosis in complex multispecies bacterial biofilms forming on teeth, known as dental plaque, is one of the factors causing periodontitis. Fusobacterium nucleatum (F. nucleatum) is recognised as a key microorganism in subgingival dental plaque, and is linked to periodontitis as well as colorectal cancer and systemic diseases. Five subspecies of F. nucleatum have been identified: animalis, fusiforme, nucleatum, polymorphum, and vincentii. Differential integration of subspecies into multispecies biofilm models has been reported, however, biofilm forming ability of individual F. nucleatum subspecies is largely unknown. The aim of this study was to determine the single-subspecies biofilm forming abilities of F. nucleatum ATCC type strains. Static single subspecies F. nucleatum biofilms were grown anaerobically for 3 days on untreated or surface-modified (sandblasting, artificial saliva, fibronectin, gelatin, or poly-L-lysine coating) plastic and glass coverslips. Biofilm mass was quantified using crystal violet (CV) staining. Biofilm architecture and thickness were analysed by scanning electron microscopy and confocal laser scanning microscopy. Bioinformatic analysis was performed to identify orthologues of known adhesion proteins in F. nucleatum subspecies. Surface type and treatment significantly influenced single-subspecies biofilm formation. Biofilm formation was overall highest on poly-L-lysine coated surfaces and sandblasted glass surfaces. Biofilm thickness and stability, as well as architecture, varied amongst the subspecies. Interestingly, F. nucleatum ssp. polymorphum did not form a detectable, continuous layer of biofilm on any of the tested substrates. Consistent with limited biofilm forming ability in vitro, F. nucleatum ssp. polymorphum showed the least conservation of the adhesion proteins CmpA and Fap2 in silico. Here, we show that biofilm formation by F. nucleatum in vitro is subspecies- and substrate-specific. Additionally, F. nucleatum ssp. polymorphum does not appear to form stable single-subspecies continuous layers of biofilm in vitro. Understanding the differences in F. nucleatum single-subspecies biofilm formation may shed light on multi-species biofilm formation mechanisms and may reveal new virulence factors as novel therapeutic targets for prevention and treatment of F. nucleatum-mediated infections and diseases.
Collapse
|
4
|
Liu T, Yang R, Zhou J, Lu X, Yuan Z, Wei X, Guo L. Interactions Between Streptococcus gordonii and Fusobacterium nucleatum Altered Bacterial Transcriptional Profiling and Attenuated the Immune Responses of Macrophages. Front Cell Infect Microbiol 2022; 11:783323. [PMID: 35071038 PMCID: PMC8776643 DOI: 10.3389/fcimb.2021.783323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022] Open
Abstract
Interspecies coaggregation promotes transcriptional changes in oral bacteria, affecting bacterial pathogenicity. Streptococcus gordonii (S. gordonii) and Fusobacterium nucleatum (F. nucleatum) are common oral inhabitants. The present study investigated the transcriptional profiling of S. gordonii and F. nucleatum subsp. polymorphum in response to the dual-species coaggregation using RNA-seq. Macrophages were infected with both species to explore the influence of bacterial coaggregation on both species' abilities to survive within macrophages and induce inflammatory responses. Results indicated that, after the 30-min dual-species coaggregation, 116 genes were significantly up-regulated, and 151 genes were significantly down-regulated in S. gordonii; 97 genes were significantly down-regulated, and 114 genes were significantly up-regulated in F. nucleatum subsp. polymorphum. Multiple S. gordonii genes were involved in the biosynthesis and export of cell-wall proteins and carbohydrate metabolism. F. nucleatum subsp. polymorphum genes were mostly associated with translation and protein export. The coaggregation led to decreased expression levels of genes associated with lipopolysaccharide and peptidoglycan biosynthesis. Coaggregation between S. gordonii and F. nucleatum subsp. polymorphum significantly promoted both species' intracellular survival within macrophages and attenuated the production of pro-inflammatory cytokines IL-6 and IL-1β. Physical interactions between these two species promoted a symbiotic lifestyle and repressed macrophage's killing and pro-inflammatory responses.
Collapse
Affiliation(s)
- Tingjun Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ruiqi Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jiani Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xianjun Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zijian Yuan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Lihong Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
5
|
Gerhard N, Thurnheer T, Kreutzer S, Gmür RD, Attin T, Russo G, Karygianni L. Necrotizing Gingivitis: Microbial Diversity and Quantification of Protein Secretion in Necrotizing Gingivitis. Antibiotics (Basel) 2021; 10:antibiotics10101197. [PMID: 34680779 PMCID: PMC8532655 DOI: 10.3390/antibiotics10101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/18/2022] Open
Abstract
Necrotizing gingivitis (NG) is a necrotizing periodontal disease that differs from chronic gingivitis (CG). To date, both the microbiological causes and the involved host cytokine response of NG still remain unclear. Here, we investigated corresponding interdental plaque and serum samples from two groups of Chinese patients with CG (n = 21) or NG (n = 21). The microbiota were studied by 16S rRNA Illumina MiSeq sequencing of the microbial metagenome and by assessing quantitatively the abundance of the phylum Bacteroidetes, the genus Prevotella and the species T. forsythia, P. endodontalis, and P. gingivalis using fluorescence in situ hybridization (FISH). With respect to the associated host response, the levels of 30 inflammatory mediators were quantified by multiplex immunoassay analysis. Differential microbial abundance analysis of the two disease groups revealed at the phylum level that Proteobacteria accounted for 67% of the differentially abundant organisms, followed by organisms of Firmicutes (21%) and Actinobacteria (9%). At the species level, significant differences in abundance were seen for 75 species of which 58 species were significantly more abundant in CG patients. Notably, the FISH analysis revealed that Bacteroidetes was the most prevalent phylum in NG. The multiplex cytokine assay showed significant quantitative differences between the disease groups for eight analytes (GM–CSF, G–CSF, IFN–α, IL–4, IL–13, TNF–α, MIG, and HGF). The G–CSF was found to be the most significantly increased inflammatory protein marker in NG. The next-generation sequencing (NGS) data supported the understanding of NG as a multi-microbial infection with distinct differences to CG in regard to the microbial composition.
Collapse
Affiliation(s)
- Nicolas Gerhard
- Clinic for Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (N.G.); (T.T.); (R.D.G.); (T.A.)
| | - Thomas Thurnheer
- Clinic for Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (N.G.); (T.T.); (R.D.G.); (T.A.)
| | - Susanne Kreutzer
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, 8057 Zurich, Switzerland; (S.K.); (G.R.)
| | - Rudolf Dominik Gmür
- Clinic for Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (N.G.); (T.T.); (R.D.G.); (T.A.)
| | - Thomas Attin
- Clinic for Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (N.G.); (T.T.); (R.D.G.); (T.A.)
| | - Giancarlo Russo
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, 8057 Zurich, Switzerland; (S.K.); (G.R.)
| | - Lamprini Karygianni
- Clinic for Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (N.G.); (T.T.); (R.D.G.); (T.A.)
- Correspondence: ; Tel.: +0041-44-634-3275
| |
Collapse
|
6
|
Thurnheer T, Karygianni L, Flury M, Belibasakis GN. Fusobacterium Species and Subspecies Differentially Affect the Composition and Architecture of Supra- and Subgingival Biofilms Models. Front Microbiol 2019; 10:1716. [PMID: 31417514 PMCID: PMC6683768 DOI: 10.3389/fmicb.2019.01716] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
Fusobacteria are common obligately anaerobic Gram-negative bacteria of the oral cavity that may act as a bridge between early and late colonizing bacteria in dental plaque and have a role in oral and extra-oral infections. Fusobacterium nucleatum has a crucial role in oral biofilm structure and ecology, as revealed in experimental and clinical biofilm models. The aim of this study was to investigate the impact of various Fusobacterium species on in vitro biofilm formation and structure in three different oral biofilm models namely a supragingival, a supragingival “feeding”, and a subgingival biofilm model. The standard six-species supragingival and “feeding” biofilm models employed contained Actinomyces oris, Candida albicans, Streptococcus mutans, Streptococcus oralis, Veillonella dispar, and Fusobacterium sp. The subgingival biofilm model contained 10 species (A. oris, Campylobacter rectus, F. nucleatum ssp. nucleatum, Porphyromonas gingivalis, Prevotella intermedia, Streptococcus anginosus, S. oralis, Tannerella forsythia, Treponema denticola, and V. dispar). Six different Fusobacterium species or subspecies, respectively, were tested namely F. nucleatum ssp. fusiforme, F. nucleatum ssp. nucleatum, F. nucleatum ssp. polymorphum, F. nucleatum ssp. vincentii, F. naviforme, and F. periodonticum). Biofilms were grown anaerobically on hydroxyapatite disks in 24-well culture dishes. After 64 h, biofilms were either harvested and quantified by culture analysis or proceeded to fluorescent in situ hybridization (FISH) and confocal laser scanning microscopy (CLSM). All Fusobacterium species tested established well in the biofilms, with CFUs ranging from 1.4E+04 (F. nucleatum ssp. fusiforme) to 5.6E+06 (F. nucleatum ssp. nucleatum). The presence of specific Fusobacterium sp./ssp. induced a significant decrease in C. albicans levels in the supragingival model and in V. dispar levels in the “feeding” supragingival model. In the subgingival model, the counts of A. oris, S. oralis, P. intermedia, P. gingivalis, and C. rectus significantly decreased in the presence of specific Fusobacterium sp./ssp. Collectively, this study showed variations in the growing capacities of different fusobacteria within biofilms, affecting the growth of surrounding species and potentially the biofilm architecture. Hence, clinical or experimental studies need to differentiate between Fusobacterium sp./ssp., as their biological properties may well vary.
Collapse
Affiliation(s)
- Thomas Thurnheer
- Division of Oral Microbiology and Immunology, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Lamprini Karygianni
- Division of Oral Microbiology and Immunology, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Manuela Flury
- Division of Oral Microbiology and Immunology, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
7
|
Wang Y, Gong L, Wu YP, Cui ZW, Wang YQ, Huang Y, Zhang XP, Li WF. Oral administration of Lactobacillus rhamnosus GG to newborn piglets augments gut barrier function in pre-weaning piglets. J Zhejiang Univ Sci B 2019; 20:180-192. [PMID: 30666850 DOI: 10.1631/jzus.b1800022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To understand the effects of Lactobacillus rhamnosus GG (ATCC 53103) on intestinal barrier function in pre-weaning piglets under normal conditions, twenty-four newborn littermate piglets were randomly divided into two groups. Piglets in the control group were orally administered with 2 mL 0.1 g/mL sterilized skim milk while the treatment group was administered the same volume of sterilized skim milk with the addition of viable L. rhamnosus at the 1st, 3rd, and 5th days after birth. The feeding trial was conducted for 25 d. Results showed that piglets in the L. rhamnosus group exhibited increased weaning weight and average daily weight gain, whereas diarrhea incidence was decreased. The bacterial abundance and composition of cecal contents, especially Firmicutes, Bacteroidetes, and Fusobacteria, were altered by probiotic treatment. In addition, L. rhamnosus increased the jejunal permeability and promoted the immunologic barrier through regulating antimicrobial peptides, cytokines, and chemokines via Toll-like receptors. Our findings indicate that oral administration of L. rhamnosus GG to newborn piglets is beneficial for intestinal health of pre-weaning piglets by improving the biological, physical, and immunologic barriers of intestinal mucosa.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Molecular Animal Nutrition and Feed Science, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Li Gong
- Key Laboratory of Molecular Animal Nutrition and Feed Science, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Yan-Ping Wu
- Key Laboratory of Molecular Animal Nutrition and Feed Science, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Zhi-Wen Cui
- Key Laboratory of Molecular Animal Nutrition and Feed Science, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Yong-Qiang Wang
- Department of Animal Sciences, Oregon State University, Corvallis, OR 97330, USA
| | - Yi Huang
- Key Laboratory of Molecular Animal Nutrition and Feed Science, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310058, China.,College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Xiao-Ping Zhang
- China National Bamboo Research Center, Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, Hangzhou 310012, China
| | - Wei-Fen Li
- Key Laboratory of Molecular Animal Nutrition and Feed Science, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Gut microbiome of Moroccan colorectal cancer patients. Med Microbiol Immunol 2018; 207:211-225. [PMID: 29687353 PMCID: PMC6096775 DOI: 10.1007/s00430-018-0542-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 03/24/2018] [Indexed: 12/18/2022]
Abstract
Although colorectal cancer is the third leading cause of death in Morocco, there are no studies of the microbiome changes associated with the disease in the Moroccan population. The aim of our study was to compare the stool microbiome of Moroccan cancer patients with healthy individuals. We analyzed the microbiome composition of samples from 11 CRC patients and 12 healthy individuals by 16S rRNA amplicon sequencing. Principal coordinate analysis of samples revealed defined cancer versus healthy clusters. Our findings showed that cancer samples had higher proportions of Firmicutes (T = 50.5%; N = 28.4%; p = 0.04), specifically of Clostridia (T = 48.3%; N = 19.0%; p = 0.002), and Fusobacteria (T = 0.1%; N = 0.0%; p = 0.02), especially of Fusobacteriia (T = 0.1%; N = 0.0%; p = 0.02), while Bacteroidetes were enriched in healthy samples (T = 35.1%; N = 62.8%; p = 0.06), particularly the class Bacteroidia (T = 35.1%; N = 62.6%; p = 0.06). Porphyromonas, Clostridium, Ruminococcus, Selenomonas, and Fusobacterium were significantly overrepresented in diseased patients, similarly to other studies. Predicted functional information showed that bacterial motility proteins, flagellar assembly, and fatty acid biosynthesis metabolism were significantly overrepresented in cancer patients, while amino acid metabolism and glycan biosynthesis were overrepresented in controls. This suggests that involvement of these functional metagenomes is similar and relevant in the carcinogenesis process, independent of the origin of the samples. Results from this study allowed identification of bacterial taxa relevant to the Moroccan population and encourages larger studies to facilitate population-directed therapeutic approaches.
Collapse
|
9
|
Sex-specific differences in the occurrence of Fusobacterium nucleatum subspecies and Fusobacterium periodonticum in the oral cavity. Oncotarget 2018; 9:20631-20639. [PMID: 29755677 PMCID: PMC5945502 DOI: 10.18632/oncotarget.25042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/22/2018] [Indexed: 01/01/2023] Open
Abstract
The periodontitis-associated species Fusobacterium nucleatum (FN) has been implicated in several extra-oral diseases, including preterm birth and colorectal cancer. Due to its genetic and phenotypic heterogeneity, FN is classified in four subspecies which may differ in their disease potential. Here we compared the prevalence of FN subspecies and the close relative F. periodonticum (FP) via 16S rRNA gene analysis in saliva from 100 healthy individuals (60 females, and 40 males) from eleven countries spanning five continents. By focusing on the most abundant sequence types (i.e. analysis of approximately ten clone sequences each) the average number of FN/FP subspecies per individual differed significantly between females and males, i.e. 2.93 versus 2.5, respectively (P = 0.043). FN subsp. fusiforme/vincentii was significantly more prevalent in females vs males, with 2.85 vs. 1.68 sequence reads per individual, respectively (P = 0.012). A significant age-related difference was observed in females but not in males, i.e. 2.6 subspecies on average in females ≤ 30 years vs. 3.2 in females > 30 (P = 0.0076). Given the link between FN and systemic disorders our findings highlight the need for microbial studies at the subspecies level to further characterize the role of periodontal pathogens in diseases that affect females and males differently, e.g. colorectal cancer.
Collapse
|
10
|
Ye X, Wang R, Bhattacharya R, Boulbes DR, Fan F, Xia L, Adoni H, Ajami NJ, Wong MC, Smith DP, Petrosino JF, Venable S, Qiao W, Baladandayuthapani V, Maru D, Ellis LM. Fusobacterium Nucleatum Subspecies Animalis Influences Proinflammatory Cytokine Expression and Monocyte Activation in Human Colorectal Tumors. Cancer Prev Res (Phila) 2017; 10:398-409. [PMID: 28483840 DOI: 10.1158/1940-6207.capr-16-0178] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/02/2016] [Accepted: 05/03/2017] [Indexed: 12/16/2022]
Abstract
Chronic infection and associated inflammation have long been suspected to promote human carcinogenesis. Recently, certain gut bacteria, including some in the Fusobacterium genus, have been implicated in playing a role in human colorectal cancer development. However, the Fusobacterium species and subspecies involved and their oncogenic mechanisms remain to be determined. We sought to identify the specific Fusobacterium spp. and ssp. in clinical colorectal cancer specimens by targeted sequencing of Fusobacterium 16S ribosomal RNA gene. Five Fusobacterium spp. were identified in clinical colorectal cancer specimens. Additional analyses confirmed that Fusobacterium nucleatum ssp. animalis was the most prevalent F. nucleatum subspecies in human colorectal cancers. We also assessed inflammatory cytokines in colorectal cancer specimens using immunoassays and found that expression of the cytokines IL17A and TNFα was markedly increased but IL21 decreased in the colorectal tumors. Furthermore, the chemokine (C-C motif) ligand 20 was differentially expressed in colorectal tumors at all stages. In in vitro co-culture assays, F. nucleatum ssp. animalis induced CCL20 protein expression in colorectal cancer cells and monocytes. It also stimulated the monocyte/macrophage activation and migration. Our observations suggested that infection with F. nucleatum ssp. animalis in colorectal tissue could induce inflammatory response and promote colorectal cancer development. Further studies are warranted to determine if F. nucleatum ssp. animalis could be a novel target for colorectal cancer prevention and treatment. Cancer Prev Res; 10(7); 398-409. ©2017 AACR.
Collapse
Affiliation(s)
- Xiangcang Ye
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Rui Wang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rajat Bhattacharya
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Delphine R Boulbes
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fan Fan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ling Xia
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Harish Adoni
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nadim J Ajami
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Matthew C Wong
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Daniel P Smith
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Susan Venable
- Texas Children's Microbiome Center, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Wei Qiao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Dipen Maru
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lee M Ellis
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
11
|
Gonzales-Marin C, Spratt DA, Allaker RP. Maternal oral origin of Fusobacterium nucleatum in adverse pregnancy outcomes as determined using the 16S-23S rRNA gene intergenic transcribed spacer region. J Med Microbiol 2012; 62:133-144. [PMID: 23002071 DOI: 10.1099/jmm.0.049452-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Fusobacterium nucleatum, a common Gram-negative anaerobe prevalent in the oral cavity, possesses the ability to colonize the amniotic cavity and the fetus. However, F. nucleatum may also be part of the vaginal microbiota from where it could reach the amniotic tissues. Due to the heterogeneity of F. nucleatum, consisting of five subspecies, analysis at the subspecies/strain level is desirable to determine its precise origin. The aims of this study were: (i) to evaluate the use of the 16S-23S rRNA gene intergenic transcribed spacer (ITS) region as a tool to differentiate subspecies of F. nucleatum, and (ii) to design a simplified technique based on the ITS to determine the origin of F. nucleatum strains associated with adverse pregnancy outcomes. Amplified fragments of the 16S-23S rRNA gene ITS region corresponding to the five subspecies of F. nucleatum were subjected to cloning and sequencing to characterize the different ribosomal operons of the subspecies. Distinctive length and sequence patterns with potential to be used for identification of the subspecies/strain were identified. These were used to evaluate the origin of F. nucleatum identified in neonatal gastric aspirates (swallowed amniotic fluid) by sequence comparisons with the respective oral and vaginal maternal samples. A simplified technique using a strain-specific primer in a more sensitive nested PCR was subsequently developed to analyse ten paired neonatal-maternal samples. Analysing the variable fragment of the ITS region allowed the identification of F. nucleatum subsp. polymorphum from an oral origin as potentially being involved in neonatal infections. Using a strain-specific primer, the F. nucleatum subsp. polymorphum strain was detected in both neonatal gastric aspirates and maternal oral samples in cases of preterm birth from mothers presenting with localized periodontal pockets. Interestingly, the same strain was not present in the vaginal sample of any case investigated. The 16S-23S rRNA gene ITS can be a useful tool to determine the origin of F. nucleatum. The results of this study strongly indicate that F. nucleatum subsp. polymorphum of oral origin could be involved with pregnancy complications.
Collapse
Affiliation(s)
- Cecilia Gonzales-Marin
- Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - David A Spratt
- Division of Microbial Diseases, Eastman Dental Institute, University College London, 256 Gray's Inn Road, London WC1X 8LD, UK
| | - Robert P Allaker
- Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| |
Collapse
|
12
|
Baumgartner A, Thurnheer T, Lüthi-Schaller H, Gmür R, Belibasakis GN. The phylum Synergistetes in gingivitis and necrotizing ulcerative gingivitis. J Med Microbiol 2012; 61:1600-1609. [PMID: 22878253 DOI: 10.1099/jmm.0.047456-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The clinical manifestation of necrotizing ulcerative gingivitis (NUG) is distinct from that of common gingivitis in that it is characterized by local necrosis of the gingival tissues, rapid onset, pain and extensive bleeding. The phylum Synergistetes is a novel bacterial phylum consisting of Gram-negative anaerobes, with evidence of presence in biofilms associated with periodontal and endodontic infections. To date, the involvement of members of this phylum in NUG has not been investigated. This study aimed to evaluate the presence and levels of known human oral Synergistetes bacterial clusters in dental plaque from patients with NUG and compare them with those found in gingivitis. Marginal dental plaque samples from 21 NUG and 21 gingivitis patients were analysed quantitatively by fluorescent in situ hybridization and microscopy for members of two oral Synergistetes clusters (A and B) and for Jonquetella anthropi. Synergistetes cluster A bacteria were detected in all samples but at higher levels (9.4-fold) and proportions (2.5-fold) in NUG patients than in gingivitis patients. However, with regard to Synergistetes cluster B bacteria, there were no differences between NUG and gingivitis patients. J. anthropi was detected in only half of the samples and at lower levels than the other taxa. In conclusion, these data demonstrate that Synergistetes cluster A bacteria, but not cluster B bacteria or J. anthropi, are more strongly associated with NUG than with gingivitis.
Collapse
Affiliation(s)
- Angelica Baumgartner
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | - Thomas Thurnheer
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | - Helga Lüthi-Schaller
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | - Rudolf Gmür
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | - Georgios N Belibasakis
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| |
Collapse
|
13
|
Strauss J, Kaplan GG, Beck PL, Rioux K, Panaccione R, Devinney R, Lynch T, Allen-Vercoe E. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm Bowel Dis 2011; 17:1971-8. [PMID: 21830275 DOI: 10.1002/ibd.21606] [Citation(s) in RCA: 422] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 11/09/2010] [Indexed: 12/12/2022]
Abstract
BACKGROUND Fusobacterium nucleatum is a heterogeneous oral pathogen that is also a common resident of the human gut mucosa. Given that some strains of F. nucleatum are known to be invasive and proinflammatory in the oral mucosa, we compared strains isolated from patients with inflammatory bowel disease (IBD) with strains isolated from healthy controls to determine 1) whether this species was more commonly associated with IBD patients; and 2) whether gut-derived F. nucleatum strains from IBD patients showed an increased capacity for invasion. METHODS Biopsy material was obtained from 56 adult patients undergoing colonoscopy for colon cancer screening purposes or assessment of irritable bowel syndrome status (34 patients), or to assess for presence of gastrointestinal disease (i.e., IBD or indeterminate colitis, 22 patients). We enumerated Fusobacterium spp. strains isolated from human gut biopsy material in a blinded fashion, and then compared the virulence potential of a subset of F. nucleatum strains using an invasion assay in a Caco-2 model system. RESULTS Fusobacterium spp. were isolated from 63.6% of patients with gastrointestinal disease compared to 26.5% of healthy controls (P = 0.01). In total, 69% of all Fusobacterium spp. recovered from patients were identified as F. nucleatum. F. nucleatum strains originating from inflamed biopsy tissue from IBD patients were significantly more invasive in a Caco-2 cell invasion assay than strains that were isolated from healthy tissue from either IBD patients or control patients (P < 0.05 to 0.001). CONCLUSIONS This study indicates that colonization of the intestinal mucosa by highly invasive strains of F. nucleatum may be a useful biomarker for gastrointestinal disease.
Collapse
Affiliation(s)
- Jaclyn Strauss
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The Gram-negative, non-sporulating, obligately anaerobic species, Fusobacterium nucleatum, is rapidly gaining notoriety as a pathogen with a surprising number of associated diseases. Recently, we have found that F. nucleatum is a more common resident of the GI tract than originally thought, and thus, through several studies, we have attempted to determine its gut-relevant potential for virulence. We have found that F. nucleatum possesses a number of pathogenic traits with relevance to gut diseases such as inflammatory bowel disease (IBD), however, we have also documented strain-associated differences in virulence. An intriguing picture emerges that paints F. nucleatum as both conferring beneficial as well as detrimental effects on host cells; and we suggest that the ultimate effects of F. nucleatum infection in the gut are a consequence of the microbes with which this species aggregates.
Collapse
Affiliation(s)
- Emma Allen-Vercoe
- Molecular and Cellular Biology; University of Guelph, Guelph, ON, Canada
| | | | | |
Collapse
|
15
|
Gonzales-Marin C, Spratt D, Millar M, Simmonds M, Kempley S, Allaker R. Levels of periodontal pathogens in neonatal gastric aspirates and possible maternal sites of origin. Mol Oral Microbiol 2011; 26:277-90. [DOI: 10.1111/j.2041-1014.2011.00616.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Fusobacterium nucleatum infection of colonic cells stimulates MUC2 mucin and tumor necrosis factor alpha. Infect Immun 2011; 79:2597-607. [PMID: 21536792 DOI: 10.1128/iai.05118-11] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The etiology of inflammatory bowel disease is not completely known, but it is influenced by the presence of normal gut microflora as well as yet-unrecognized pathogens. The anaerobic, Gram-negative bacterial species Fusobacterium nucleatum is a common resident of the human mouth and gut and varies in its pathogenic potential. In this study, we demonstrate that highly invasive F. nucleatum isolates derived from the inflamed guts of Crohn's disease patients evoked significantly greater MUC2 and tumor necrosis factor alpha (TNF-α) gene expression than minimally invasive strains isolated from the noninflamed gut in human colonic epithelial cells and in a rat ligated colonic loop model of infection. Only live F. nucleatum induced mucin secretion and TNF-α expression in direct contact with and/or during invasion of colonic cells. In rat colons, mucin secretion was augmented in response to a highly invasive F. nucleatum isolate but was unaffected by treatment with a minimally invasive strain. Taken together, these studies reveal that F. nucleatum may represent a challenging pathogen in the etiology of gut inflammatory diseases and highlight the importance of different pathotypes of candidate bacterial species in disease pathogenesis.
Collapse
|
17
|
Quevedo B, Giertsen E, Zijnge V, Lüthi-Schaller H, Guggenheim B, Thurnheer T, Gmür R. Phylogenetic group- and species-specific oligonucleotide probes for single-cell detection of lactic acid bacteria in oral biofilms. BMC Microbiol 2011; 11:14. [PMID: 21247450 PMCID: PMC3032641 DOI: 10.1186/1471-2180-11-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 01/19/2011] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The purpose of this study was to design and evaluate fluorescent in situ hybridization (FISH) probes for the single-cell detection and enumeration of lactic acid bacteria, in particular organisms belonging to the major phylogenetic groups and species of oral lactobacilli and to Abiotrophia/Granulicatella. RESULTS As lactobacilli are known for notorious resistance to probe penetration, probe-specific assay protocols were experimentally developed to provide maximum cell wall permeability, probe accessibility, hybridization stringency, and fluorescence intensity. The new assays were then applied in a pilot study to three biofilm samples harvested from variably demineralized bovine enamel discs that had been carried in situ for 10 days by different volunteers. Best probe penetration and fluorescent labeling of reference strains were obtained after combined lysozyme and achromopeptidase treatment followed by exposure to lipase. Hybridization stringency had to be established strictly for each probe. Thereafter all probes showed the expected specificity with reference strains and labeled the anticipated morphotypes in dental plaques. Applied to in situ grown biofilms the set of probes detected only Lactobacillus fermentum and bacteria of the Lactobacillus casei group. The most cariogenic biofilm contained two orders of magnitude higher L. fermentum cell numbers than the other biofilms. Abiotrophia/Granulicatella and streptococci from the mitis group were found in all samples at high levels, whereas Streptococcus mutans was detected in only one sample in very low numbers. CONCLUSIONS Application of these new group- and species-specific FISH probes to oral biofilm-forming lactic acid bacteria will allow a clearer understanding of the supragingival biome, its spatial architecture and of structure-function relationships implicated during plaque homeostasis and caries development. The probes should prove of value far beyond the field of oral microbiology, as many of them detect non-oral species and phylogenetic groups of importance in a variety of medical conditions and the food industry.
Collapse
Affiliation(s)
- Beatrice Quevedo
- Institute of Oral Biology, Section of Oral Microbiology and General Immunology, University of Zürich Plattenstrasse 11, 8032 Zürich, Switzerland
| | - Elin Giertsen
- Institute of Clinical Dentistry, Department of Cariology and Gerodontology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Vincent Zijnge
- Center for Dentistry and Oral Hygiene and Department of Medical Microbiology, University of Groningen, Groningen, The Netherlands
| | - Helga Lüthi-Schaller
- Institute of Oral Biology, Section of Oral Microbiology and General Immunology, University of Zürich Plattenstrasse 11, 8032 Zürich, Switzerland
| | - Bernhard Guggenheim
- Institute of Oral Biology, Section of Oral Microbiology and General Immunology, University of Zürich Plattenstrasse 11, 8032 Zürich, Switzerland
| | - Thomas Thurnheer
- Institute of Oral Biology, Section of Oral Microbiology and General Immunology, University of Zürich Plattenstrasse 11, 8032 Zürich, Switzerland
| | - Rudolf Gmür
- Institute of Oral Biology, Section of Oral Microbiology and General Immunology, University of Zürich Plattenstrasse 11, 8032 Zürich, Switzerland
| |
Collapse
|
18
|
Rohrer N, Widmer AF, Waltimo T, Kulik EM, Weiger R, Filipuzzi-Jenny E, Walter C. Antimicrobial efficacy of 3 oral antiseptics containing octenidine, polyhexamethylene biguanide, or Citroxx: can chlorhexidine be replaced? Infect Control Hosp Epidemiol 2010; 31:733-9. [PMID: 20518635 DOI: 10.1086/653822] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Use of oral antiseptics decreases the bacterial load in the oral cavity. OBJECTIVE To compare the antimicrobial activity of 3 novel oral antiseptics with that of chlorhexidine, which is considered the "gold standard" of oral hygiene. DESIGN Comparative in vitro study. METHODS Four common oral microorganisms (Streptococcus sanguinis, Streptococcus mutans, Candida albicans, and Fusobacterium nucleatum) were tested under standard conditions and at different concentrations, by use of a broth dilution assay and an agar diffusion assay and by calculating the log10 reduction factor (RF). The antimicrobial activity of each antiseptic was assessed by counting the difference in bacterial densities (ie, the log10 number of colony-forming units of bacteria) before and after the disinfection process. RESULTS The oral antiseptics containing octenidine (with an RF in the range of 7.1-8.24 CFU/mL) and polyhexamethylene biguanide (with an RF in the range of 7.1-8.24 CFU/mL) demonstrated antimicrobial activity comparable to that of chlorhexidine (with an RF in the range of 1.03-8.24 CFU/mL), whereas the mouth rinse containing Citroxx (Citroxx Biosciences; with an RF in the range of 0.22-1.36 CFU/mL) showed significantly weaker antimicrobial efficacy. Overall, octenidine and polyhexamethylene biguanide were more active at lower concentrations.conclusion. Oral antiseptics containing the antimicrobial agent octenidine or polyhexamethylene biguanide may be considered as potent alternatives to chlorhexidine-based preparations.
Collapse
Affiliation(s)
- Nadine Rohrer
- School of Dentistry, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
19
|
Zilm PS, Mira A, Bagley CJ, Rogers AH. Effect of alkaline growth pH on the expression of cell envelope proteins in Fusobacterium nucleatum. MICROBIOLOGY-SGM 2010; 156:1783-1794. [PMID: 20299401 DOI: 10.1099/mic.0.035881-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fusobacterium nucleatum is a Gram-negative anaerobic organism that plays a central role in the development of periodontal diseases. The progression of periodontitis is associated with a rise in pH of the gingival sulcus which promotes the growth and expression of virulence factors by periodontopathic bacteria. We have previously reported that the expression of specific cytoplasmic proteins is altered by a shift in growth pH. In the present study we have compared cell envelope protein expression of F. nucleatum during chemostat growth at pH 7.2 and 7.8. From a total of 176 proteins resolved from the cell envelope, 15 were found to have altered expression in response to an increase in growth pH and were identified by MS. Upregulated proteins included an outer membrane porin which has been identified as playing a role in virulence, a periplasmic chaperone which assists in the folding of outer membrane proteins, and a transporter thought to be involved with iron uptake. Proteins downregulated at pH 7.8 were consistent with our previous findings that the bacterium reduces its catabolism of energy-yielding substrates in favour of energy-storage pathways. Among the downregulated proteins, two transporters which are involved in the uptake of C4 dicarboxylates and phosphate were identified. A putative protease and an enzyme associated with the metabolism of glutamate were also identified. A high proportion of the cell envelope proteins suggested by these data to play a role in the organism's response to alkaline growth pH may have arisen by lateral gene transfer. This would support the hypothesis that genes that provide an ability to adapt to the changing conditions of the oral environment may be readily shared between oral bacteria.
Collapse
Affiliation(s)
- Peter S Zilm
- Oral Microbiology Laboratory, School of Dentistry, The University of Adelaide, Adelaide 5005, Australia
| | - Alex Mira
- Department of Genomics and Health, Center for Advanced Research in Public Health (CSISP), Valencia, Spain
| | - Christopher J Bagley
- Adelaide Proteomics Centre, Hanson Institute and affiliate of the School of Medicine, The University of Adelaide, Adelaide, Australia
| | - Anthony H Rogers
- Oral Microbiology Laboratory, School of Dentistry, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
20
|
Application of rpoB and zinc protease gene for use in molecular discrimination of Fusobacterium nucleatum subspecies. J Clin Microbiol 2009; 48:545-53. [PMID: 19955278 DOI: 10.1128/jcm.01631-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fusobacterium nucleatum is classified into five subspecies that inhabit the human oral cavity (F. nucleatum subsp. nucleatum, F. nucleatum subsp. polymorphum, F. nucleatum subsp. fusiforme, F. nucleatum subsp. vincentii, and F. nucleatum subsp. animalis) based on several phenotypic characteristics and DNA-DNA hybridization patterns. However, the methods for detecting or discriminating the clinical isolates of F. nucleatum at the subspecies levels are laborious, expensive, and time-consuming. Therefore, in this study, the nucleotide sequences of the RNA polymerase beta-subunit gene (rpoB) and zinc protease gene were analyzed to discriminate the subspecies of F. nucleatum. The partial sequences of rpoB (approximately 2,419 bp), the zinc protease gene (878 bp), and 16S rRNA genes (approximately 1,500 bp) of the type strains of five subspecies, 28 clinical isolates of F. nucleatum, and 10 strains of F. periodonticum (as a control group) were determined and analyzed. The phylogenetic data showed that the rpoB and zinc protease gene sequences clearly delineated the subspecies of F. nucleatum and provided higher resolution than the 16S rRNA gene sequences in this respect. According to the phylogenetic analysis of rpoB and the zinc protease gene, F. nucleatum subsp. vincentii and F. nucleatum subsp. fusiforme might be classified into a single subspecies. Five clinical isolates could be delineated as a new subspecies of F. nucleatum. The results suggest that rpoB and the zinc protease gene are efficient targets for the discrimination and taxonomic analysis of the subspecies of F. nucleatum.
Collapse
|
21
|
Dabija-Wolter G, Cimpan MR, Costea DE, Johannessen AC, Sørnes S, Neppelberg E, Al-Haroni M, Skaug N, Bakken V. Fusobacterium nucleatumEnters Normal Human Oral Fibroblasts In Vitro. J Periodontol 2009; 80:1174-83. [DOI: 10.1902/jop.2009.090051] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Phenotypic and genotypic analyses of clinical Fusobacterium nucleatum and Fusobacterium periodonticum isolates from the human gut. Anaerobe 2008; 14:301-9. [PMID: 19114111 DOI: 10.1016/j.anaerobe.2008.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 12/02/2008] [Accepted: 12/04/2008] [Indexed: 12/14/2022]
Abstract
Fusobacterium nucleatum is a Gram-negative anaerobic rod that is part of the normal human microflora, and has also been associated with various infections. Bacterial strains belonging to the species are typically heterogeneous in both phenotype and genotype, which can hinder their identification in a clinical setting. The majority of F. nucleatum isolates originate from oral sites, however the species is also a resident of the human gastrointestinal tract. The aim of this study was to compare F. nucleatum isolates from human intestinal biopsy samples to try and determine whether isolates from this site are divergent from oral isolates. We used a variety of phenotypic and genotypic markers to compare 21 F. nucleatum and Fusobacterium periodonticum isolates from the GI tract to oral isolates and recognized type strains in order to study heterogeneity within this set. 16S rDNA and rpoB gene sequence analysis allowed us to build phylogenetic trees that consistently placed isolates into distinct clusters. 16S rDNA copy number analyses using Denaturing Gradient Gel Electrophoresis (DGGE) demonstrated potential for use as a method to examine clonality amongst species. Phenotypic analyses gave variable results that were generally unhelpful in distinguishing between phylogenetic clusters. Our results suggest that a) F. periodonticum isolates are not restricted to the oral niche; b) phenotypic classification is not sufficient to subspeciate isolates; c) heterogeneity within the species is extensive but constrained; and d) F. nucleatum isolates from the gut tend to identify with the animalis subspecies.
Collapse
|
23
|
Rajilić-Stojanović M, Smidt H, de Vos WM. Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 2007; 9:2125-36. [PMID: 17686012 DOI: 10.1111/j.1462-2920.2007.01369.x] [Citation(s) in RCA: 380] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the early days of microbiology, more than a century ago, representatives of over 400 different microbial species have been isolated and fully characterized from human gastrointestinal samples. However, during the past decade molecular ecological studies based on ribosomal RNA (rRNA) sequences have revealed that cultivation has been able only to access a small fraction of the microbial diversity within the gastrointestinal tract. The increasing number of deposited rRNA sequences calls for the setting up a curated database that allows handling of the excessive degree of redundancy that threatens the usability of public databases. The integration of data from cultivation-based studies and molecular inventories of small subunit (SSU) rRNA diversity, presented here for the first time, provides a systematic framework of the microbial diversity in the human gastrointestinal tract of more than 1000 different species-level phylogenetic types (phylotypes). Such knowledge is essential for the design of high-throughput approaches such as phylogenetic DNA microarrays for the comprehensive analysis of gastrointestinal tract microbiota at multiple levels of taxonomic resolution. Development of such approaches is likely to be pivotal to generating novel insights in microbiota functionality in health and disease.
Collapse
Affiliation(s)
- Mirjana Rajilić-Stojanović
- Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, 6703 CT Wageningen, The Netherlands.
| | | | | |
Collapse
|
24
|
Karpathy SE, Qin X, Gioia J, Jiang H, Liu Y, Petrosino JF, Yerrapragada S, Fox GE, Haake SK, Weinstock GM, Highlander SK. Genome sequence of Fusobacterium nucleatum subspecies polymorphum - a genetically tractable fusobacterium. PLoS One 2007; 2:e659. [PMID: 17668047 PMCID: PMC1924603 DOI: 10.1371/journal.pone.0000659] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 06/26/2007] [Indexed: 11/19/2022] Open
Abstract
Fusobacterium nucleatum is a prominent member of the oral microbiota and is a common cause of human infection. F. nucleatum includes five subspecies: polymorphum, nucleatum, vincentii, fusiforme, and animalis. F. nucleatum subsp. polymorphum ATCC 10953 has been well characterized phenotypically and, in contrast to previously sequenced strains, is amenable to gene transfer. We sequenced and annotated the 2,429,698 bp genome of F. nucleatum subsp. polymorphum ATCC 10953. Plasmid pFN3 from the strain was also sequenced and analyzed. When compared to the other two available fusobacterial genomes (F. nucleatum subsp. nucleatum, and F. nucleatum subsp. vincentii) 627 open reading frames unique to F. nucleatum subsp. polymorphum ATCC 10953 were identified. A large percentage of these mapped within one of 28 regions or islands containing five or more genes. Seventeen percent of the clustered proteins that demonstrated similarity were most similar to proteins from the clostridia, with others being most similar to proteins from other gram-positive organisms such as Bacillus and Streptococcus. A ten kilobase region homologous to the Salmonella typhimurium propanediol utilization locus was identified, as was a prophage and integrated conjugal plasmid. The genome contains five composite ribozyme/transposons, similar to the CdISt IStrons described in Clostridium difficile. IStrons are not present in the other fusobacterial genomes. These findings indicate that F. nucleatum subsp. polymorphum is proficient at horizontal gene transfer and that exchange with the Firmicutes, particularly the Clostridia, is common.
Collapse
Affiliation(s)
- Sandor E. Karpathy
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas, United States of America
| | - Xiang Qin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jason Gioia
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Huaiyang Jiang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yamei Liu
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Joseph F. Petrosino
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shailaja Yerrapragada
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - George E. Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Susan Kinder Haake
- Associated Clinical Specialties, University of California at Los Angeles School of Dentistry, Los Angeles, California, United States of America
| | - George M. Weinstock
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sarah K. Highlander
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|