1
|
Pan Y, Li H, Wang J, Sun X, Liang E, Guo J, Wang J, Zhang K, Li B, Zan M, Yang W, Zan L. Gender and age-related variations in rumen fermentation and microbiota of Qinchuan cattle. Anim Biosci 2025; 38:941-954. [PMID: 39483029 PMCID: PMC12062828 DOI: 10.5713/ab.24.0328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/11/2024] [Accepted: 09/06/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE Our study aimed to investigate the gender and age-related variations in rumen fermentation, serum metabolites, and microbiota in Qinchuan cattle. METHODS A total of 38 Qinchuan beef cattle were selected and maintained on a uniform diet for three months. Rumen fluid and blood samples were collected to determine rumen fermentation, serum metabolites, and microbial 16S rRNA sequencing. RESULTS The results revealed that the concentration of rumen butyrate in female Qinchuan cattle was significantly higher than in males (p<0.05). Isobutyrate, butyrate, and isovalerate exhibited significant age-related differences. Females exhibited lower serum glucose (GLU) and higher triglycerides (TG), nonesterifiedfatty acid (NEFA) levels compared to males (p<0.05). Serum albumin (ALB) and urea (UA) levels increased with age (p<0.05). Furthermore, the alpha diversity of rumen bacteria improved with age (p<0.05), with no gender differences observed. Males had higher relative abundances of Bacteroidota, Verrucomicrobiota, and Cyanobacteria, while females had higher Firmicutes and Desulfobacterota (p<0.05). The cellulose-degrading genus Ruminococcus and propionateproducing genus Succiniclasticum were more abundant in females, whereas the antiinflammatory genus Lachnospiraceae_NK4A136_group and the hemicellulose-degrading genus Prevotella were more abundant in males (p<0.05). Age-related differences in bacteria were found in Pseudobutyrivibrio and several members of the Lachnospiraceae. Functional prediction indicated that "Amino acid metabolism" and "Lipid metabolism" were mainly enriched in females, whereas "Carbohydrate metabolism" and "Glycan biosynthesis and metabolism" were enriched in males (p<0.05). RDA analysis highlighted butyrate as a key factor influencing the rumen bacterial community. NK4A214_group and Ruminococcus were positively correlated with butyrate, while Prevotella and Pseudobutyrivibrio were negatively correlated with butyrate (p<0.05). CONCLUSION We observed a significant improvement in the diversity and stability of rumen microbiota as age increased. Ruminococcus, NK4A214_group, and Prevotella were likely contributors to variations in energy utilization and fat deposition between male and female Qinchuan cattle.
Collapse
Affiliation(s)
- Yueting Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling,
China
| | - Huaxuan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling,
China
| | - Juze Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling,
China
| | - Xiaolei Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling,
China
| | - Entang Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling,
China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling,
China
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling,
China
| | - Ke Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling,
China
| | - Bingzhi Li
- Key Laboratory for Efficient Ruminant Breeding Technology of Higher Education Institutions in Shaanxi Province, Yangling Vocational & Technical College, Yangling,
China
| | - Mengqi Zan
- National Beef Cattle Improvement Center, Yangling,
China
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling,
China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling,
China
- National Beef Cattle Improvement Center, Yangling,
China
| |
Collapse
|
2
|
Liu M, Ma N, Li S, Kang Z, Wang M, Wang D, Zhao J, Jiao H, Zhou Y, Wang X, Li H, Lin H. Prevotella-Produced Succinate Alleviates Hepatic Steatosis by Enhancing Mitochondrial Function in Layer-Type Chickens. J Nutr 2025:S0022-3166(25)00228-7. [PMID: 40274237 DOI: 10.1016/j.tjnut.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/17/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND A higher abundance of Prevotella species in the gut microbiota is associated with the consumption of high-fiber diets and can be reproduced by dietary supplementation with L-arabinose. The effect of Prevotella and its metabolite succinate on hepatic lipid metabolism remains unclear. OBJECTIVES This study aimed to elucidate the effects of Prevotella and its metabolite succinate on hepatic steatosis in layer-type pullets. METHODS In experiment 1, 4-wk-old female layer-type chickens (Isa Brown) were randomly divided into 4 dietary groups and fed a basal diet supplemented with 0%, 2%, 4%, or 6% L-arabinose for 11 wk. In experiments 2 and 3, 10-wk-old chickens were orally administered Prevotella (106 CFU) or fed a diet supplemented with 0.2% sodium succinate for 4 wk. The growth performance, plasma lipid metabolites, hepatic lipid accumulation and gene expression, and cecal microbiota were determined. In in vitro experiment, chicken embryo hepatocytes were treated with Prevotella's metabolites or 0.1 mM succinate in the absence or presence of 4c, a succinate receptor 1 (SUCNR1) inhibitor, or shRNA-PGC1β. Lipid deposition and mitochondrial function were measured. Data were analyzed with a 1-way analysis of variance followed by Tukey's test. RESULTS L-arabinose decreased (-68%) hepatic and plasma TG (-52%) and enhanced the abundance of cecal Prevotella (+45-fold) (P < 0.001). Oral administration of Prevotella melaninogenica reduced plasma TG (-22%, P < 0.05) and increased succinate (+66%, P < 0.01). Succinate feeding reduced hepatic (-51%, P < 0.001) and plasma TG (-40%, P < 0.05). Both Prevotella and succinate administration reduced fatty acid synthase (FAS) activity with the induction of mitochondrial function-associated proteins. In vitro experiments showed that Prevotella and succinate alter mitochondrial function and lipid metabolism via SUCNR1, wherein PGC1β plays a critical role. CONCLUSIONS Succinate produced by Prevotella is a likely metabolite that reduces hepatic lipid deposition by suppressing FAS activity and activating mitochondrial function.
Collapse
Affiliation(s)
- Min Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Ning Ma
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Sheng Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Zeyue Kang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Minghui Wang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Dan Wang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Jingpeng Zhao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Hongchao Jiao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, China
| | - Xiaojuan Wang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.
| | - Haifang Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Hai Lin
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
3
|
Adawiah A, Meryandini A, Ridwan R, Fidriyanto R, Sarwono KA, Wiryawan KG. The rumen microbiome and metabolome profile of Ongole crossbreed cattle fed probiotics and protected amino acids. Trop Anim Health Prod 2025; 57:148. [PMID: 40164860 DOI: 10.1007/s11250-025-04400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
This study aimed to investigate the microbial population dynamics and metabolite profiles of Ongole crossbreed cattle (OCC) fed a combination of feed additives using metagenomic and metabolomic analyses. A crossover design was employed, involving four 3-year-old fistulated OCC bulls, each receiving four distinct dietary treatments per experimental period, followed by a washout phase with a basal diet. The treatments consisted of a basal diet (G1) as control, and the addition of feed additives as follows: G2: probiotics (Lactiplantibacillus plantarum); G3: premix; G4: G2 + G3 + amino acids lysine and methionine; and G5: G2 + G3 + amino acids protected with tannin. Rumen fluid was collected for the analysis of microbiome dynamics and metabolite profiles. The bacterial communities in diets G1, G2, G3, and G5 exhibited similar compositions, dominated by Bacteroidota, particularly the genus Prevotella. The G5 diet successfully suppressed the population of archaea, notably Methanosarcinales and Methanobacteriales, which are associated with methane production. A total of 28 significant metabolites (VIP > 1) was identified in rumen fluid, including lipid prenols, phenolic compounds, indoles and derivatives, saturated and unsaturated hydrocarbons, fatty acyls, benzene derivatives, and organooxygen compounds. The volatile compounds profile of rumen fluid showed a marked increase in prenol lipid compounds, especially in the G5 diet. Additionally, Methanosarcinales and Methanobacteriales were negatively correlated with prenol lipid levels. The inclusion of probiotics and protected amino acids alters the microbiome community structure and metabolites, positively affecting ruminant productivity.
Collapse
Affiliation(s)
- Adilah Adawiah
- Study Program of Microbiology, Graduate School of IPB University, Bogor, 16680, Indonesia
| | - Anja Meryandini
- Departemen of Biology, Faculty of Mathematics and Natural Science, IPB University, Bogor, 16680, Indonesia
- Biotechnology Research Centre, IPB University, Bogor, 16680, Indonesia
| | - Roni Ridwan
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia.
| | - Rusli Fidriyanto
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Ki Ageng Sarwono
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Komang Gede Wiryawan
- Departemen of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor, 16680, Indonesia
- Biotechnology Research Centre, IPB University, Bogor, 16680, Indonesia
| |
Collapse
|
4
|
Lu W, Yi X, Ge Y, Zhang X, Shen K, Zhuang H, Deng Z, Liu D, Cao J, Ma C. Effects of dietary fiber on the composition, function, and symbiotic interactions of intestinal microbiota in pre-weaned calves. Front Microbiol 2025; 16:1554484. [PMID: 40201438 PMCID: PMC11975667 DOI: 10.3389/fmicb.2025.1554484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
Introduction Dietary fiber plays a crucial role in maintaining gastrointestinal health. However, its protective effects on the intestinal health of calves remain to be fully elucidated. This study aimed to investigate the impact of dietary fiber supplementation on the intestinal microbiota of pre-weaned calves and its potential role in modulating microbial metabolic pathways. Methods A randomized controlled trial was conducted, enrolling 135 calves that were randomly assigned into three groups: (1) inulin supplementation, (2) psyllium husk powder (PHP) supplementation, and (3) a control group receiving no dietary fiber. Fecal microbiota samples were collected from calves without diarrhea at five time points (0, 7, 14, 28, and 56 days of age). Metagenomic sequencing was performed to analyze microbial composition and functional pathways. Additionally, a differential analysis of carbohydrate-active enzymes (CAZymes) was performed to evaluate the effect of dietary fiber on carbohydrate metabolism enzyme activity within the intestinal microbiota. Results Calves supplemented with dietary fiber exhibited a significant increase in the abundance of Bifidobacterium and Prevotella compared to the control group. These bacterial genera contributed to intestinal protection by modulating secondary bile acid metabolism and flavonoid metabolism pathways. CAZymes differential analysis revealed an increased abundance of carbohydrate metabolism enzymes in response to dietary fiber supplementation, with distinct microbial community compositions observed among different fiber treatments. Notably, at 56 days of age, calves fed PHP harbored intergeneric symbiotic clusters comprising Clostridium, Prevotella, and Bacteroides, suggesting a cooperative microbial network that may contribute to intestinal homeostasis. Discussion The findings of this study highlight the beneficial effects of dietary fiber on calf intestinal microbiota, particularly in enhancing microbial diversity and enzymatic activity related to carbohydrate metabolism. The observed microbial symbiosis in PHP-fed calves suggests a potential role in maintaining intestinal homeostasis. These insights provide a theoretical foundation for optimizing dietary interventions to promote gut health in calves during the transition period. Further research is warranted to explore the mechanistic interactions between dietary fiber, gut microbiota, and host health outcomes.
Collapse
Affiliation(s)
- Wentao Lu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xia Yi
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Yuhan Ge
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinyue Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kaidi Shen
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haohua Zhuang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhaoju Deng
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dengke Liu
- Hebei Shounong Modern Agricultural Technology Co., LTD., Dingzhou, China
| | - Jie Cao
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chong Ma
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Panwar D, Briggs J, Fraser ASC, Stewart WA, Brumer H. Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol 2025; 91:e0175924. [PMID: 39636128 PMCID: PMC11784079 DOI: 10.1128/aem.01759-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024] Open
Abstract
There is growing interest in members of the genus Segatella (family Prevotellaceae) as members of a well-balanced human gut microbiota (HGM). Segatella are particularly associated with the consumption of a diet rich in plant polysaccharides comprising dietary fiber. However, understanding of the molecular basis of complex carbohydrate utilization in Segatella species is currently incomplete. Here, we used RNA sequencing (RNA-seq) of the type strain Segatella copri DSM 18205 (previously Prevotella copri CB7) to define precisely individual polysaccharide utilization loci (PULs) and associated carbohydrate-active enzymes (CAZymes) that are implicated in the catabolism of common fruit, vegetable, and grain polysaccharides (viz. mixed-linkage β-glucans, xyloglucans, xylans, pectins, and inulin). Although many commonalities were observed, several of these systems exhibited significant compositional and organizational differences vis-à-vis homologs in the better-studied Bacteroides (sister family Bacteroidaceae), which predominate in post-industrial HGM. Growth on β-mannans, β(1, 3)-galactans, and microbial β(1, 3)-glucans was not observed, due to an apparent lack of cognate PULs. Most notably, S. copri is unable to grow on starch, due to an incomplete starch utilization system (Sus). Subsequent transcriptional profiling of bellwether Ton-B-dependent transporter-encoding genes revealed that PUL upregulation is rapid and general upon transfer from glucose to plant polysaccharides, reflective of de-repression enabling substrate sensing. Distinct from previous observations of Bacteroides species, we were unable to observe clearly delineated substrate prioritization on a polysaccharide mixture designed to mimic in vitro diverse plant cell wall digesta. Finally, co-culture experiments generally indicated stable co-existence and lack of exclusive competition between S. copri and representative HGM Bacteroides species (Bacteroides thetaiotaomicron and Bacteroides ovatus) on individual polysaccharides, except in cases where corresponding PULs were obviously lacking. IMPORTANCE There is currently a great level of interest in improving the composition and function of the human gut microbiota (HGM) to improve health. The bacterium Segatella copri is prevalent in people who eat plant-rich diets and is therefore associated with a healthy lifestyle. On one hand, our study reveals the specific molecular systems that enable S. copri to proliferate on individual plant polysaccharides. On the other, a growing body of data suggests that the inability of S. copri to grow on starch and animal glycans, which dominate in post-industrial diets, as well as host mucin, contributes strongly to its displacement from the HGM by Bacteroides species, in the absence of direct antagonism.
Collapse
Affiliation(s)
- Deepesh Panwar
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathon Briggs
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander S. C. Fraser
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - William A. Stewart
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Harry Brumer
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Kou X, Liu Y, Xiang F, Zhang X, Khan MZ, Wu B, Wang H, Gong Y, Wang C, Ma Q, Li Y. Insights into the Donkey Hindgut Microbiome Using Metagenome-Assembled Genomes. Animals (Basel) 2024; 14:3625. [PMID: 39765529 PMCID: PMC11672655 DOI: 10.3390/ani14243625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
The gut microbiota plays an important role in the digestion, absorption, and metabolism of nutrients, as well as in the immunity, health, and behavior of donkeys. While reference genomes and gut microbial gene catalogs have been helpful in understanding the composition of the donkey, there is still a significant gap in sequencing and understanding the functional aspects of donkey gut microbial genomes. In this study, we analyzed metagenomic sequencing data from 26 donkeys' gut samples and successfully assembled 844 microbial metagenome-assembled genomes (MAGs). Surprisingly, 678 (80.33%) of these MAGs appear to belong to previously unidentified species. Our analysis further revealed a total of 292,980 predicted carbohydrate-active enzymes (CAZymes) and 257,893 polysaccharide utilization loci (PULs). Interestingly, these enzymes and loci displayed relatively low similarity matches in public databases. We found that the higher abundances of 36 MAGs in the cecum (such as Prevotella, Desulfovibrio, Alistipes, and Treponema_D) and 9 MAGs in the dorsal colon (such as Limimorpha, Saccharofermentans, and Lactobacillus) were associated with a diverse array of carbohydrate-degrading pathways. Network analysis identified Prevotella and Dysosmobacter as connectors, while Saccharofermentans and Akkermansia were shown as provincial hubs. This suggests their crucial roles in complex carbohydrate degradation and hindgut metabolism in donkeys. These findings underscore the complexity of hindgut metabolism in donkeys and expand our understanding of their gut microbiome. Overall, this study provides a comprehensive catalog of donkey gut microbial genes, revealing novel carbohydrate-degrading enzymes and offering new insights for future research on the donkey gut microbiome.
Collapse
Affiliation(s)
- Xiyan Kou
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yihong Liu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Fokun Xiang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Xinyue Zhang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Muhammad Zahoor Khan
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Boxian Wu
- Shandong Dong’e Black Donkey Husbandry Technology Co., Ltd., Liaocheng 252000, China
| | - Hua Wang
- Shandong Dong’e Black Donkey Husbandry Technology Co., Ltd., Liaocheng 252000, China
| | - Yanlin Gong
- Shandong Dong’e Black Donkey Husbandry Technology Co., Ltd., Liaocheng 252000, China
| | - Changfa Wang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Qingshan Ma
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yan Li
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
7
|
Zhu J, Sun Y, Ma L, Chen Q, Hu C, Yang H, Hong Q, Xiao Y. Comparative analysis of fecal microbiota between diarrhea and non-diarrhea piglets reveals biomarkers of gut microbiota associated with diarrhea. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:401-410. [PMID: 39640543 PMCID: PMC11617881 DOI: 10.1016/j.aninu.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/05/2024] [Accepted: 05/21/2024] [Indexed: 12/07/2024]
Abstract
Diarrhea poses a significant threat to the health and well-being of weaned piglets, leading to substantial morbidity and mortality and economic loss in the pig industry. However, the structural characteristics of the gut microbiota and the key genera associated with early diarrhea in piglets within large-scale production systems are poorly understood. This study aimed to investigate the differences in the microbial community structure and the specific genera alteration between the healthy piglets and diarrhea piglets, and to identify the biomarkers of gut microbiota associated with diarrhea in piglets. A total of 250 fecal samples, including 130 healthy piglets (Duroc × Landrace × Large Yorkshire) in the Control group and 120 from diarrhea piglets in Diarrhea group, were collected from three large-scale farms as discovery cohorts and were used for 16S rRNA gene sequencing. Additionally, 150 fecal samples from another large-scale pig farm were collected for the validation trail. The Chao1 and ACE indices were obviously lower (P < 0.01) in the diarrhea piglets compared to the healthy ones. Principal coordinate analysis showed significant differences in the distance matrix of gut microbiota between the healthy and diarrhea piglets (Bray-Curtis: P = 0.001, Jaccard: P = 0.001). Eighty-five genera were differentially enriched (P < 0.001) between healthy and diarrhea piglets. Notably, Treponema, Sphaerochaeta, Escherichia-Shigella, Slackia, and Staphylococcus were identified as potential biomarkers of diarrhea susceptibility; Clostridium sensu stricto 1, Prevotella_9, Olsenella, Dorea, and Lachnospiraceae NK4A136 group were found to be beneficial for maintaining intestinal homeostasis. These differentially enriched genera of healthy and diarrhea piglets were further confirmed in the validation cohort. In conclusion, this study identified the diarrhea-associated and beneficial genera in the faces of piglet, providing a theoretical basis for the diagnosis and intervention of diarrhea in weaned piglets.
Collapse
Affiliation(s)
- Jiang Zhu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou 310058, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro -products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yue Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro -products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lingyan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro -products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro -products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Caihong Hu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou 310058, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro -products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qihua Hong
- College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou 310058, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro -products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
8
|
Tom WA, Judy JV, Kononoff PJ, Fernando SC. Influence of empirically derived filtering parameters, amplicon sequence variant, and operational taxonomic unit pipelines on assessing rumen microbial diversity. J Dairy Sci 2024; 107:9209-9234. [PMID: 38945268 DOI: 10.3168/jds.2023-24479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/17/2024] [Indexed: 07/02/2024]
Abstract
Microbes play an important role in human and animal health, as well as animal productivity. The host microbial interactions within ruminants play a critical role in animal health and productivity and provide up to 70% of the animal's energy needs in the form of fermentation products. As such, many studies have investigated microbial community composition to understand the microbial community changes and factors that affect microbial colonization and persistence. Advances in next-generation sequencing technologies and the low cost of sequencing have led many studies to use 16S rDNA-based analysis tools for interrogation of microbiomes at a much finer scale than traditional culturing. However, methods that rely on single base pair differences for bacterial taxa clustering may inflate or underestimate diversity, leading to inaccurate identification of bacterial diversity. Therefore, in this study, we sequenced mock communities of known membership and abundance to establish filtration parameters to reduce the inflation of microbial diversity due to PCR and sequencing errors. Additionally, we evaluated the effect of the resulting filtering parameters proposed using established bioinformatic pipelines on a study consisting of Holstein and Jersey cattle to identify breed and treatment effects on the bacterial community composition and the impact of filtering on global microbial community structure analysis and results. Filtration resulted in a sharp reduction in bacterial taxa identified, yet retain most sequencing data (retaining >79% of sequencing reads) when analyzed using 3 different microbial analysis pipelines (DADA2, Mothur, USEARCH). After filtration, conclusions from α-diversity and β-diversity tests showed very similar results across all analysis methods. The mock community-based filtering parameters proposed in this study help provide a more realistic estimation of bacterial diversity. Additionally, filtration reduced the variation between microbiome analysis methods and helped to identify microbial community differences that could have been missed due to the large animal-to-animal variation observed in the unfiltered data. As such, we believe the new filtering parameters described in this study will help to obtain diversity estimates that are closer to realistic values, improve the ability to detecting microbial community differences, and help to better understand microbial community changes in 16S rDNA-based studies.
Collapse
Affiliation(s)
- W A Tom
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583; Department of Animal Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - J V Judy
- Intermountain Farmers Association, Logan, UT 84321
| | - P J Kononoff
- Department of Animal Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - S C Fernando
- Department of Animal Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583.
| |
Collapse
|
9
|
Ahmed HS. The Impact of Prevotella on Neurobiology in Aging: Deciphering Dendritic Cell Activity and Inflammatory Dynamics. Mol Neurobiol 2024; 61:9240-9251. [PMID: 38613648 DOI: 10.1007/s12035-024-04156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
Prevotella species, notably Prevotella copri, significantly populate the human gut. In particular, P. copri is prevalent among non-Western populations with diets high in fiber. These species show complex relationships with diverse health aspects, associating with beneficial outcomes, including reduced visceral fat and improved glucose tolerance. Studies implicate various Prevotella species in specific diseases. Prevotella nigrescens and Porphyromonas gingivalis were linked to periodontal disease, promoting immune responses and influencing T helper type 17 (Th17) cells. Prevotella bivia was associated with bacterial vaginosis and a specific increase in activated cells in the vaginal mucosa. In contrast, they have shown substantial potential for inducing connective tissue degradation and alveolar bone resorption. Prevotella's role in neuroinflammatory disorders and autoinflammatory conditions such as Alzheimer's disease and Parkinson's disease has also been noted. The complex relationship between Prevotella and age-related conditions further extends to neurobiological changes in aging, with varying associations with Alzheimer's, Parkinson's, and other inflammatory conditions. Studies have also identified Prevotella to be implicated in cognitive decline in middle aged and the elderly. Future directions in this research area are anticipated to explore Prevotella-associated inflammatory mechanisms and therapeutic interventions. Investigating specific drug targets and immunomodulatory measures could lead to novel therapeutic strategies. Understanding how Prevotella-induced inflammation interacts with aging diseases would offer promising insights for treatments and interventions. This review urges ongoing research to discover therapeutic targets and mechanisms for moderating Prevotella-associated inflammation to further enhance our understanding and improve health outcomes.
Collapse
Affiliation(s)
- H Shafeeq Ahmed
- Bangalore Medical College and Research Institute, K.R Road, Bangalore, 560002, Karnataka, India.
| |
Collapse
|
10
|
Dai H, Shan Z, Shi L, Duan Y, An Y, He C, Lyu Y, Zhao Y, Wang M, Du Y, Xie J, Yang Y, Zhao B. Mulberry leaf polysaccharides ameliorate glucose and lipid metabolism disorders via the gut microbiota-bile acids metabolic pathway. Int J Biol Macromol 2024; 282:136876. [PMID: 39490871 DOI: 10.1016/j.ijbiomac.2024.136876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Mulberry leaf polysaccharides (MLP) are integral components of Mulberry leaves that confer hypoglycemic and hypolipidemic properties. This study investigated the efficacy of MLP in treating Type 2 Diabetes Mellitus (T2DM) and the underlying mechanisms related to gut microbiota-bile acids metabolism in T2DM rats. The findings revealed that MLP apparently reduced fasting blood glucose and lipid levels, ameliorated disorders in glucose and lipid metabolism, and mitigated insulin resistance. MLP enhanced the abundance of Prevotella, Ruminococcus, and Lactobacillus, thereby rectifying the gut microbiota dysbiosis in rats, which effectively restored gut microbiota homeostasis and composition. Furthermore, the data demonstrated that MLP modulated bile acid metabolism, as evidenced by reduced serum cholesterol levels, enhanced mRNA expression of hepatic cholesterol 7α- hydroxylase (Cyp7a1) and cholesterol 12α- hydroxylase (Cyp8b1), and ileal G protein-coupled bile acid receptor (Tgr5), while suppressing hepatic and ileal farnesoid X receptor (Fxr) mRNA expression in T2DM rats. Additionally, MLP upregulated the protein expression of hepatic CYP7A1 and CYP8B1, and ileal TGR5, while inhibiting FXR protein levels in the liver and ileum of T2DM rats. These results suggest that MLP can rectify disorders in glucose and lipid metabolism via the gut microbiota-bile acids metabolic pathway.
Collapse
Affiliation(s)
- Hongyu Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Operations and Management Department, Ya'an People's Hospital, Ya'an 625099, China
| | - Ziyi Shan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lu Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Central Laboratories, Qingdao Municipal Hospital, Qingdao 266011, China
| | - Yuhui Duan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yongcheng An
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Changhao He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yinglan Lyu
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yige Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Menglu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuhang Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiamei Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
11
|
Li J, Wei Z, Lou F, Zhang X, Duan J, Luo C, Hu X, Tu P, Liu L, Zhong R, Chen L, Du X, Zhang H. Disrupted Microbiota of Colon Results in Worse Immunity and Metabolism in Low-Birth-Weight Jinhua Newborn Piglets. Microorganisms 2024; 12:1371. [PMID: 39065139 PMCID: PMC11278573 DOI: 10.3390/microorganisms12071371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
The Jinhua pig is well known in China due to its delicious meat. However, because of large litter size, low birth weight always happens. This experiment used this breed as a model to research bacterial evidence leading to growth restriction and provide a possible solution linked to probiotics. In this experiment, the differences in organs indexes, colonic morphology, short chain fatty acid (SCFA) concentrations, microbiome, and transcriptome were detected between piglets in the standard-birth-weight group (SG) and low-birth-weight group (LG) to find potential evidence leading to low birth weight. We found that LG piglets had a lower liver index (p < 0.05), deeper colonic crypt depth (p < 0.05), fewer goblet cells (p < 0.05), and more inflammatory factor infiltration. In addition, differentially expressed genes (DEGs) were mainly enriched in B-cell immunity and glucose metabolism, and LG piglets had lower concentrations of SCFAs, especially butyrate and isobutyrate (p < 0.05). Finally, most of the significantly differentially abundant microbes were fewer in LG piglets, which affected DEG expressions and SCFA concentrations further resulting in worse energy metabolism and immunity. In conclusion, colonic disrupted microbiota may cause worse glucose metabolism, immunity, and SCFA production in LG piglets, and beneficial microbes colonized in SG piglets may benefit these harmful changes.
Collapse
Affiliation(s)
- Jiaheng Li
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (J.L.); (F.L.); (X.Z.); (X.H.); (P.T.); (X.D.)
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Zeou Wei
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
- School of Agriculture and Food Science, University College Dublin, Belfeld, D04 V1W8 Dublin, Ireland
| | - Fangfang Lou
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (J.L.); (F.L.); (X.Z.); (X.H.); (P.T.); (X.D.)
| | - Xiaojun Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (J.L.); (F.L.); (X.Z.); (X.H.); (P.T.); (X.D.)
| | - Jiujun Duan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
| | - Chengzeng Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
| | - Xujin Hu
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (J.L.); (F.L.); (X.Z.); (X.H.); (P.T.); (X.D.)
| | - Pingguang Tu
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (J.L.); (F.L.); (X.Z.); (X.H.); (P.T.); (X.D.)
| | - Lei Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
| | - Xizhong Du
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (J.L.); (F.L.); (X.Z.); (X.H.); (P.T.); (X.D.)
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
| |
Collapse
|
12
|
Shinkai T, Takizawa S, Enishi O, Higuchi K, Ohmori H, Mitsumori M. Characteristics of rumen microbiota and Prevotella isolates found in high propionate and low methane-producing dairy cows. Front Microbiol 2024; 15:1404991. [PMID: 38887715 PMCID: PMC11180796 DOI: 10.3389/fmicb.2024.1404991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Ruminal methane production is the main sink for metabolic hydrogen generated during rumen fermentation, and is a major contributor to greenhouse gas (GHG) emission. Individual ruminants exhibit varying methane production efficiency; therefore, understanding the microbial characteristics of low-methane-emitting animals could offer opportunities for mitigating enteric methane. Here, we investigated the association between rumen fermentation and rumen microbiota, focusing on methane production, and elucidated the physiological characteristics of bacteria found in low methane-producing cows. Thirteen Holstein cows in the late lactation stage were fed a corn silage-based total mixed ration (TMR), and feed digestion, milk production, rumen fermentation products, methane production, and rumen microbial composition were examined. Cows were classified into two ruminal fermentation groups using Principal component analysis: low and high methane-producing cows (36.9 vs. 43.2 L/DMI digested) with different ruminal short chain fatty acid ratio [(C2+C4)/C3] (3.54 vs. 5.03) and dry matter (DM) digestibility (67.7% vs. 65.3%). However, there were no significant differences in dry matter intake (DMI) and milk production between both groups. Additionally, there were differences in the abundance of OTUs assigned to uncultured Prevotella sp., Succinivibrio, and other 12 bacterial phylotypes between both groups. Specifically, a previously uncultured novel Prevotella sp. with lactate-producing phenotype was detected, with higher abundance in low methane-producing cows. These findings provide evidence that Prevotella may be associated with low methane and high propionate production. However, further research is required to improve the understanding of microbial relationships and metabolic processes involved in the mitigation of enteric methane.
Collapse
Affiliation(s)
- Takumi Shinkai
- Division of Dairy Cattle Feeding and Breeding Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Ran T, Xu Z, Yang W, Liu D, Wu D. Partially substituting alfalfa hay with hemp forage in the diet of goats improved feed efficiency, ruminal fermentation pattern and microbial profiles. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:49-60. [PMID: 38558755 PMCID: PMC10980998 DOI: 10.1016/j.aninu.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 04/04/2024]
Abstract
The use of hemp as a forage source in livestock diets has been less studied because bioactive residues in animal tissues may pose a risk to consumers. This study investigated the effects of partial substitution of alfalfa hay (AH) with hemp forage (HF) in growing goat diets on growth performance, carcass traits, ruminal fermentation characteristics, rumen microbial communities, blood biochemistry, and antioxidant indices. Forty Xiangdong black goats with body weight (BW) 7.82 ± 0.57 kg (mean ± SD) were grouped by BW and randomly assigned into one of the four treatment diets (n = 10/treatment) in a completely randomized design. The goats were fed ad libitum total mixed rations containing 60% forage and 40% concentrate (DM basis). The diets included control (CON; 60% AH and 40% concentrate), 55% AH and 5% HF (HF5), 50% AH and 10% HF (HF10), and 40% AH and 20% HF (HF20). Increasing the substitution of HF for AH linearly decreased (P < 0.01) DM intake and improved feed conversion efficiency. However, final BW, average daily gain, carcass traits, meat quality, and most blood biochemistry indices did not differ among treatments. The ruminal NH3-N concentration and blood urine nitrogen linearly increased (P < 0.01) with increasing substitution rate of HF, whereas the total volatile fatty acids concentration quadratically changed (P < 0.01). Substitution of AH with HF had no effect on the diversity and richness of ruminal microbes, though it linearly decreased (P = 0.040) Prevotella_1 and linearly increased (P = 0.017) Rikenellaceae_RC9_gut_group. The cannabinoids and/or their metabolites were detected in both ruminal filtrates (8) and plasma (4), however, no detectable cannabinoid-related residues were observed in meat. These results indicate that the HF could be used to partially substitute AH in goat diets, whereas the effects vary between substitution rates of HF for AH. Although no cannabinoid-related residues were detected in meat, the presence of cannabinoids residues in blood warrants further study of HF feeding to confirm the cannabinoids residues are not present in the animal products.
Collapse
Affiliation(s)
- Tao Ran
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, Gansu, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou, 730020, Gansu, China
| | - Zhipeng Xu
- Changshu Center for Animal Disease Prevention and Control, Changshu, 215500, Jiangsu, China
| | - Wenzhu Yang
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| | - Dalin Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Duanqin Wu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| |
Collapse
|
14
|
Murovec U, Accetto T. Transcriptomic analysis of polysaccharide utilization loci reveals substrate preferences in ruminal generalists Segatella bryantii TF1-3 and Xylanibacter ruminicola KHP1. BMC Genomics 2024; 25:495. [PMID: 38769483 PMCID: PMC11107044 DOI: 10.1186/s12864-024-10421-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/15/2024] [Indexed: 05/22/2024] Open
Abstract
Bacteria of the genera Xylanibacter and Segatella are among the most dominant groups in the rumen microbiota. They are characterized by the ability to utilize different hemicelluloses and pectin of plant cell-wall as well as plant energy storage polysaccharides. The degradation is possible with the use of cell envelope bound multiprotein apparatuses coded in polysaccharide utilization loci (PULs), which have been shown to be substrate specific. The knowledge of PUL presence in rumen Xylanibacter and Segatella based on bioinformatic analyses is already established and transcriptomic and genetic approaches confirmed predicted PULs for a limited number of substrates. In this study, we transcriptomically identified additional different PULs in Xylanibacter ruminicola KHP1 and Segatella bryantii TF1-3. We also identified substrate preferences and found that specific growth rate and extent of growth impacted the choice of substrates preferentially used for degradation. These preferred substrates were used by both strains simultaneously as judged by their PUL upregulation. Lastly, β-glucan and xyloglucan were used by these strains in the absence of bioinformatically and transcriptomically identifiable PUL systems.
Collapse
Affiliation(s)
- Urška Murovec
- Department of microbiology, Biotechnical faculty, University of Ljubljana, Groblje 3, 1230, Domžale, Slovenia
| | - Tomaž Accetto
- Department of microbiology, Biotechnical faculty, University of Ljubljana, Groblje 3, 1230, Domžale, Slovenia.
| |
Collapse
|
15
|
Jenkins TP, Ács N, Arendrup EW, Swift A, Duzs Á, Chatzigiannidou I, Pichler M, Kittilä T, Peachey L, Gram L, Canibe N, Laustsen AH, Brix S, Thrane SW. Protecting the piglet gut microbiota against ETEC-mediated post-weaning diarrhoea using specific binding proteins. NPJ Biofilms Microbiomes 2024; 10:42. [PMID: 38697985 PMCID: PMC11066037 DOI: 10.1038/s41522-024-00514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Post-weaning diarrhoea (PWD) in piglets presents a widespread problem in industrial pig production and is often caused by enterotoxigenic E. coli (ETEC) strains. Current solutions, such as antibiotics and medicinal zinc oxide, are unsustainable and are increasingly being prohibited, resulting in a dire need for novel solutions. Thus, in this study, we propose and evaluate a protein-based feed additive, comprising two bivalent heavy chain variable domain (VHH) constructs (VHH-(GGGGS)3-VHH, BL1.2 and BL2.2) as an alternative solution to manage PWD. We demonstrate in vitro that these constructs bind to ETEC toxins and fimbriae, whilst they do no affect bacterial growth rate. Furthermore, in a pig study, we show that oral administration of these constructs after ETEC challenge reduced ETEC proliferation when compared to challenged control piglets (1-2 log10 units difference in gene copies and bacterial count/g faeces across day 2-7) and resulted in week 1 enrichment of three bacterial families (Prevotellaceae (estimate: 1.12 ± 0.25, q = 0.0054), Lactobacillaceae (estimate: 2.86 ± 0.52, q = 0.0012), and Ruminococcaceae (estimate: 0.66 ± 0.18, q = 0.049)) within the gut microbiota that appeared later in challenged control piglets, thus pointing to an earlier transition towards a more mature gut microbiota. These data suggest that such VHH constructs may find utility in industrial pig production as a feed additive for tackling ETEC and reducing the risk of PWD in piglet populations.
Collapse
Affiliation(s)
- Timothy Patrick Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Norbert Ács
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Abbie Swift
- Veterinary Sciences, University of Bristol, Bristol, UK
| | - Ágnes Duzs
- Bactolife A/S, Rønnegade 8, Copenhagen, Denmark
| | - Ioanna Chatzigiannidou
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Michael Pichler
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Tiia Kittilä
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Laura Peachey
- Veterinary Sciences, University of Bristol, Bristol, UK
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nuria Canibe
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
- Bactolife A/S, Rønnegade 8, Copenhagen, Denmark.
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| | | |
Collapse
|
16
|
El Jeni R, Villot C, Koyun OY, Osorio-Doblado A, Baloyi JJ, Lourenco JM, Steele M, Callaway TR. Invited review: "Probiotic" approaches to improving dairy production: Reassessing "magic foo-foo dust". J Dairy Sci 2024; 107:1832-1856. [PMID: 37949397 DOI: 10.3168/jds.2023-23831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
The gastrointestinal microbial consortium in dairy cattle is critical to determining the energetic status of the dairy cow from birth through her final lactation. The ruminant's microbial community can degrade a wide variety of feedstuffs, which can affect growth, as well as production rate and efficiency on the farm, but can also affect food safety, animal health, and environmental impacts of dairy production. Gut microbial diversity and density are powerful tools that can be harnessed to benefit both producers and consumers. The incentives in the United States to develop Alternatives to Antibiotics for use in food-animal production have been largely driven by the Veterinary Feed Directive and have led to an increased use of probiotic approaches to alter the gastrointestinal microbial community composition, resulting in improved heifer growth, milk production and efficiency, and animal health. However, the efficacy of direct-fed microbials or probiotics in dairy cattle has been highly variable due to specific microbial ecological factors within the host gut and its native microflora. Interactions (both synergistic and antagonistic) between the microbial ecosystem and the host animal physiology (including epithelial cells, immune system, hormones, enzyme activities, and epigenetics) are critical to understanding why some probiotics work but others do not. Increasing availability of next-generation sequencing approaches provides novel insights into how probiotic approaches change the microbial community composition in the gut that can potentially affect animal health (e.g., diarrhea or scours, gut integrity, foodborne pathogens), as well as animal performance (e.g., growth, reproduction, productivity) and fermentation parameters (e.g., pH, short-chain fatty acids, methane production, and microbial profiles) of cattle. However, it remains clear that all direct-fed microbials are not created equal and their efficacy remains highly variable and dependent on stage of production and farm environment. Collectively, data have demonstrated that probiotic effects are not limited to the simple mechanisms that have been traditionally hypothesized, but instead are part of a complex cascade of microbial ecological and host animal physiological effects that ultimately impact dairy production and profitability.
Collapse
Affiliation(s)
- R El Jeni
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - C Villot
- Lallemand SAS, Blagnac, France, 31069
| | - O Y Koyun
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - A Osorio-Doblado
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J J Baloyi
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J M Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - M Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - T R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602.
| |
Collapse
|
17
|
Gomaa W, Saleem A, McGeough E, Ominski K, Chen L, Yang W. Effect of red osier dogwood extract on in vitro gas production, dry matter digestibility, and fermentation characteristics of forage-based diet or grain-based diet. Heliyon 2024; 10:e27991. [PMID: 38524609 PMCID: PMC10957426 DOI: 10.1016/j.heliyon.2024.e27991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/12/2023] [Accepted: 03/10/2024] [Indexed: 03/26/2024] Open
Abstract
This in vitro batch culture study investigated the effects of red osier dogwood (ROD) extract supplementation on gas production (GP), dry matter disappearance (DMD), and fermentation characteristics in high forage (HF) and high grain (HG) diets with varying media pH level. The experiment was a factorial arrangement of treatments in a completely randomized design with 2 media pH (5.8 and 6.5) × 4 dose rates of ROD extract (0, 1, 3, and 5% of DM substrate). An additional treatment of monensin was added as a positive control for each pH level. The HF substrate consisted of 400 and 600 g/kg DM barley-based concentrate and barley silage, respectively, while the HG substrate contained 100 and 900 g/kg DM barley silage and barley-based concentrate, respectively. Treatments were incubated for 24 h with GP, DMD and fermentation parameters determined. No interaction was detected between the media pH level and ROD extract dose rate on GP, DMD and most of the fermentation parameters. The GP, DMD, and total volatile fatty acid (VFA) concentration were greater (P = 0.01) with media pH of 6.5 in both HF and HG diets. The GP were not affected by increasing ROD dose rate, except that GP linearly decreased in the HF (P = 0.04) and HG (P = 0.01) diets at 24 h; the DMD tended to linearly decrease at pH 6.5 (P = 0.06) for both HF and HG diets and at pH 5.8 (P = 0.02) for the HG diet. Adding ROD extract to the HF and HG diets linearly (P = 0.01) increased the acetate molar proportion at high or low media pH and consequently, the acetate to propionate (A:P) ratio linearly (P ≤ 0.04) increased. Supplementation of ROD extract to the HF diet linearly (P = 0.04) decreased the molar proportion of propionate at pH 6.5 (interaction between pH and ROD extract; P = 0.05), but had no effect on propionate proportion when added to the HG diet. Moreover, the proportion of branched-chain fatty acids linearly (P = 0.03) decreased with ROD extract supplementation at low pH (interaction, P < 0.05) for HF diet and linearly decreased (P = 0.05) at pH 6.5 for HG diet (interaction, P < 0.05). The NH3-N concentration was not affected by ROD supplementation in the HF diet but it linearly (P = 0.01) decreased with increasing dose rate in the HG diet. Methane concentration tended to linearly (P = 0.06) increase with ROD extract supplementation at high pH for HF diet and linearly increased at pH 5.8 (P = 0.06) and pH 6.5 (P = 0.02) for HG diet. These results indicate that the decreased DMD and increased A:P ratio observed with addition of ROD extract may be beneficial to HG-fed cattle to reduce the risk of rumen acidosis without negatively impacting fiber digestion.
Collapse
Affiliation(s)
- W.M.S. Gomaa
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
- Department of Animal Nutrition and Clinical Nutrition, Assiut University, Assiut, Egypt
| | - A.M. Saleem
- Department of Animal and Poultry Production, South Valley University, Qena, 83523, Egypt
| | - E.J. McGeough
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - K. Ominski
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - L.Y. Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - W.Z. Yang
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| |
Collapse
|
18
|
Liang J, Zhang R, Chang J, Chen L, Nabi M, Zhang H, Zhang G, Zhang P. Rumen microbes, enzymes, metabolisms, and application in lignocellulosic waste conversion - A comprehensive review. Biotechnol Adv 2024; 71:108308. [PMID: 38211664 DOI: 10.1016/j.biotechadv.2024.108308] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
The rumen of ruminants is a natural anaerobic fermentation system that efficiently degrades lignocellulosic biomass and mainly depends on synergistic interactions between multiple microbes and their secreted enzymes. Ruminal microbes have been employed as biomass waste converters and are receiving increasing attention because of their degradation performance. To explore the application of ruminal microbes and their secreted enzymes in biomass waste, a comprehensive understanding of these processes is required. Based on the degradation capacity and mechanism of ruminal microbes and their secreted lignocellulose enzymes, this review concentrates on elucidating the main enzymatic strategies that ruminal microbes use for lignocellulose degradation, focusing mainly on polysaccharide metabolism-related gene loci and cellulosomes. Hydrolysis, acidification, methanogenesis, interspecific H2 transfer, and urea cycling in ruminal metabolism are also discussed. Finally, we review the research progress on the conversion of biomass waste into biofuels (bioethanol, biohydrogen, and biomethane) and value-added chemicals (organic acids) by ruminal microbes. This review aims to provide new ideas and methods for ruminal microbe and enzyme applications, biomass waste conversion, and global energy shortage alleviation.
Collapse
Affiliation(s)
- Jinsong Liang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Ru Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Le Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Mohammad Nabi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Haibo Zhang
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
19
|
Shinkai T, Takizawa S, Fujimori M, Mitsumori M. - Invited Review - The role of rumen microbiota in enteric methane mitigation for sustainable ruminant production. Anim Biosci 2024; 37:360-369. [PMID: 37946422 PMCID: PMC10838666 DOI: 10.5713/ab.23.0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/13/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
Ruminal methane production functions as the main sink for metabolic hydrogen generated through rumen fermentation and is recognized as a considerable source of greenhouse gas emissions. Methane production is a complex trait affected by dry matter intake, feed composition, rumen microbiota and their fermentation, lactation stage, host genetics, and environmental factors. Various mitigation approaches have been proposed. Because individual ruminants exhibit different methane conversion efficiencies, the microbial characteristics of low-methane-emitting animals can be essential for successful rumen manipulation and environment-friendly methane mitigation. Several bacterial species, including Sharpea, uncharacterized Succinivibrionaceae, and certain Prevotella phylotypes have been listed as key players in low-methane-emitting sheep and cows. The functional characteristics of the unclassified bacteria remain unclear, as they are yet to be cultured. Here, we review ruminal methane production and mitigation strategies, focusing on rumen fermentation and the functional role of rumen microbiota, and describe the phylogenetic and physiological characteristics of a novel Prevotella species recently isolated from low methane-emitting and high propionate-producing cows. This review may help to provide a better understanding of the ruminal digestion process and rumen function to identify holistic and environmentally friendly methane mitigation approaches for sustainable ruminant production.
Collapse
Affiliation(s)
- Takumi Shinkai
- NARO Institute of Livestock and Grassland Science, Ibaraki 305-0901,
Japan
| | - Shuhei Takizawa
- NARO Institute of Livestock and Grassland Science, Ibaraki 305-0901,
Japan
| | - Miho Fujimori
- NARO Institute of Livestock and Grassland Science, Ibaraki 305-0901,
Japan
| | - Makoto Mitsumori
- NARO Institute of Livestock and Grassland Science, Ibaraki 305-0901,
Japan
| |
Collapse
|
20
|
Zheng G, Wang D, Mao K, Wang M, Wang J, Xun W, Huang S. Exploring the Rumen Microbiota and Serum Metabolite Profile of Hainan Black Goats with Different Body Weights before Weaning. Animals (Basel) 2024; 14:425. [PMID: 38338068 PMCID: PMC10854652 DOI: 10.3390/ani14030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The critical role of the rumen microbiota in the growth performance of livestock is recognized, yet its significance in determining the body weight of goat kids before weaning remains less understood. To bridge this gap, our study delved into the rumen microbiota, serum metabolome, rumen fermentation, and rumen development in goat kids with contrasting body weights before weaning. We selected 10 goat kids from a cohort of 100, categorized into low body weight (LBW, 5.56 ± 0.98 kg) and high body weight (HBW, 9.51 ± 1.01 kg) groups. The study involved sampling rumen contents, tissues, and serum from these animals. Our findings showed that the HBW goat kids showed significant enrichment of VFA-producing bacteria, particularly microbiota taxa within the Prevotellaceae genera (UCG-001, UCG-003, and UCG-004) and the Prevotella genus. This enrichment correlated with elevated acetate and butyrate levels, positively influencing rumen papillae development. Additionally, it was associated with elevated serum levels of glucose, total cholesterol, and triglycerides. The serum metabonomic analysis revealed marked differences in fatty acid metabolism between the LBW and HBW groups, particularly in encompassing oleic acid and both long-chain saturated and polyunsaturated fatty acids. Further correlational analysis underscored a significant positive association between Prevotellaceae_UCG-001 and specific lipids, such as phosphatidylcholine (PC) (22:5/18:3) and PC (20:3/20:1) (r > 0.60, p < 0.05). In summary, this study underscores the pivotal role of the rumen microbiota in goat kids' weight and its correlation with specific serum metabolites. These insights could pave the way for innovative strategies aimed at improving animal body weight through targeted modulation of the rumen microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuai Huang
- Forage Processing and Ruminant Nutrition Laboratory, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (G.Z.)
| |
Collapse
|
21
|
Wang D, Tang G, Wang Y, Yu J, Chen L, Chen J, Wu Y, Zhang Y, Cao Y, Yao J. Rumen bacterial cluster identification and its influence on rumen metabolites and growth performance of young goats. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:34-44. [PMID: 37771855 PMCID: PMC10522951 DOI: 10.1016/j.aninu.2023.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/07/2023] [Accepted: 05/15/2023] [Indexed: 09/30/2023]
Abstract
Enterotypes, which are defined as bacterial clusters in the gut microbiome, have been found to have a close relationship to host metabolism and health. However, this concept has never been used in the rumen, and little is known about the complex biological relationships between ruminants and their rumen bacterial clusters. In this study, we used young goats (n = 99) as a model, fed them the same diet, and analyzed their rumen microbiome and corresponding bacterial clusters. The relationships between the bacterial clusters and rumen fermentation and growth performance in the goats were further investigated. Two bacterial clusters were identified in all goats: the P-cluster (dominated by genus Prevotella, n = 38) and R-cluster (dominated by Ruminococcus, n = 61). Compared with P-cluster goats, R-cluster goats had greater growth rates, concentrations of propionate, butyrate, and 18 free amino acids¸ and proportion of unsaturated fatty acids, but lower acetate molar percentage, acetate to propionate ratio, and several odd and branched chain and saturated fatty acids in rumen fluid (P < 0.05). Several members of Firmicutes, including Ruminococcus, Oscillospiraceae NK4A214 group, and Christensenellaceae R-7 group were significantly higher in the R-cluster, whereas Prevotellaceae members, such as Prevotella and Prevotellaceae UCG-003, were significantly higher in P-cluster (P < 0.01). Co-occurrence networks showed that R-cluster enriched bacteria had significant negative correlations with P-cluster enriched bacteria (P < 0.05). Moreover, we found the concentrations of propionate, butyrate and free amino acids, and the proportions of unsaturated fatty acids were positively correlated with R-cluster enriched bacteria (P < 0.05). The concentrations of acetate, acetate to propionate ratio, and the proportion of odd and branched chain and saturated fatty acids were positively correlated with P-cluster enriched bacteria (P < 0.05). Overall, our results indicated that rumen bacterial clusters can influence rumen fermentation and growth performance of young goats, which may shed light on modulating the rumen microbiome in early life to improve the growth performance of ruminant animals.
Collapse
Affiliation(s)
- Dangdang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guangfu Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yannan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Junjian Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Luyu Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jie Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanbo Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuanjie Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
22
|
Luo Y, Zhou Y, Huang P, Zhang Q, Luan F, Peng Y, Wei J, Li N, Wang C, Wang X, Zhang J, Yu K, Zhao M, Wang C. Causal relationship between gut Prevotellaceae and risk of sepsis: a two-sample Mendelian randomization and clinical retrospective study in the framework of predictive, preventive, and personalized medicine. EPMA J 2023; 14:697-711. [PMID: 38094582 PMCID: PMC10713913 DOI: 10.1007/s13167-023-00340-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/28/2023] [Indexed: 10/25/2024]
Abstract
Objective Gut microbiota is closely related to sepsis. Recent studies have suggested that Prevotellaceae could be associated with intestinal inflammation; however, the causal relationship between Prevotellaceae and sepsis remains uncertain. From the perspective of predictive, preventive, and personalized medicine (PPPM), exploring the causal relationship between gut Prevotellaceae and sepsis could provide opportunity for targeted prevention and personalized treatment. Methods The genome-wide association study (GWAS) summary-level data of Prevotellaceae (N = 7738) and sepsis were obtained from the Dutch Microbiome Project and the UK Biobank (sepsis, 1380 cases; 429,985 controls). MR analysis was conducted to estimate the associations between Prevotellaceae and sepsis risk. The 16S rRNA sequencing analysis was conducted to calculate the relative abundance of Prevotellaceae in sepsis patients to explore the relationship between Prevotellaceae relative abundance and the 28-day mortality. Results Genetic liability to f__Prevotellaceae (OR, 1.91; CI, 1.35-2.71; p = 0.0003) was associated with a high risk of sepsis with inverse-variance weighted (IVW). The median Prevotellaceae relative abundance in non-survivors was significantly higher than in survivors (2.34% vs 0.17%, p < 0.001). Multivariate analysis confirmed that Prevotellaceae relative abundance (OR, 1.10; CI, 1.03-1.22; p = 0.027) was an independent factor of 28-day mortality in sepsis patients. ROC curve analysis indicated that Prevotellaceae relative abundance (AUC: 0.787, 95% CI: 0.671-0.902, p = 0.0003) could predict the prognosis of sepsis patients. Conclusion Our results revealed that Prevotellaceae was causally associated with sepsis and affected the prognosis of sepsis patients. These findings may provide insights to clinicians on developing improved sepsis PPPM strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-023-00340-6.
Collapse
Affiliation(s)
- Yinghao Luo
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Yang Zhou
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Pengfei Huang
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Qianqian Zhang
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Feiyu Luan
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Yahui Peng
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Jieling Wei
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Nana Li
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Chunying Wang
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Xibo Wang
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Jiannan Zhang
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Kaijiang Yu
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Mingyan Zhao
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Changsong Wang
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001 Heilongjiang China
| |
Collapse
|
23
|
Tian S, Chu Q, Ma S, Ma H, Song H. Dietary Fiber and Its Potential Role in Obesity: A Focus on Modulating the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14853-14869. [PMID: 37815013 DOI: 10.1021/acs.jafc.3c03923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Dietary fiber is a carbohydrate polymer with ten or more monomeric units that are resistant to digestion by human digestive enzymes, and it has gained widespread attention due to its significant role in health improvement through regulating gut microbiota. In this review, we summarized the interaction between dietary fiber, gut microbiota, and obesity, and the beneficial effects of dietary fiber on obesity through the modulation of microbiota, such as modifying selective microbial composition, producing starch-degrading enzymes, improving gut barrier function, reducing the inflammatory response, reducing trimethylamine N-oxide, and promoting the production of gut microbial metabolites (e.g., short chain fatty acids, bile acids, ferulic acid, and succinate). In addition, factors affecting the gut microbiota composition and metabolites by dietary fiber (length of the chain, monosaccharide composition, glycosidic bonds) were also concluded. Moreover, strategies for enhancing the biological activity of dietary fiber (fermentation technology, ultrasonic modification, nanotechnology, and microfluidization) were subsequently discussed. This review may provide clues for deeply exploring the structure-activity relationship between dietary fiber and antiobesity properties by targeting specific gut microbiota.
Collapse
Affiliation(s)
- Shuhua Tian
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Shaotong Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Huan Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| |
Collapse
|
24
|
Wang DD, Tang GF, Li YY, Yu JJ, Lei XJ, Cao YC, Yao JH. Differences in serum metabolome profile explain individual variation in growth performance of young goats. J Proteomics 2023; 288:104982. [PMID: 37532014 DOI: 10.1016/j.jprot.2023.104982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/14/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
High growth rates and body weight are important traits of young dairy goats that can shorten generation intervals, improve animal performance, and increase economic benefits. In the present study, ninety-nine, 6-month-old, female goats were fed with the same diet and kept under the same management condition. The ten goats with highest average daily gain (ADG, HADG, 135.27 ± 4.59 g/d) and ten goats with lowest ADG (LADG, 87.74 ± 3.13 g/d) were selected to identify the key serum metabolites associated with ADG, and to investigate the relationships of serum metabolome profiles with digestive tract microbiota. The results showed that a total of 125 serum metabolites were significantly different between HADG and LADG. Of these, 43 serum metabolites were significantly higher levels in HADG, including D-ornithine, l-glutamine, L-histidine, carnosine, LysoPC (16:1(9Z)/0:0), DCTP and hydroxylysine, while, 82 serum metabolites were significantly higher levels in LADG, including P-salicylic acid and deoxycholic acid 3-glucuronide. Pathway analysis indicated that these different metabolites were mainly involved in amino acid and lipid metabolism. Furthermore, Spearman's rank correlation analysis revealed that these differential serum metabolites were correlated with ADG and ADG-related bacteria. Notably, serum hydroxylysine and L-histidine could be used as biomarkers for distinguishing HADG and LADG goats, with an accuracy of >92.0%. SIGNIFICANCE: Our study confirms that individual microbiota and metabolic differences contribute to the variations of growth rate in young goats. Some serum metabolites may be useful in improving the growth performance of young goats, which provides directions for developing further nutritional regulation in the goat industry to achieve healthy feeding and efficiency enhancement.
Collapse
Affiliation(s)
- Dang Dang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guang Fu Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan Yuan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Jian Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Jian Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Chun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Hu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
25
|
Cheng X, Du X, Liang Y, Degen AA, Wu X, Ji K, Gao Q, Xin G, Cong H, Yang G. Effect of grape pomace supplement on growth performance, gastrointestinal microbiota, and methane production in Tan lambs. Front Microbiol 2023; 14:1264840. [PMID: 37840727 PMCID: PMC10569316 DOI: 10.3389/fmicb.2023.1264840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Grape pomace (GP), a by-product in wine production, is nutritious and can be used as a feed ingredient for ruminants; however, its role in shaping sheep gastrointestinal tract (GIT) microbiota is unclear. We conducted a controlled trial using a randomized block design with 10 Tan lambs fed a control diet (CD) and 10 Tan lambs fed a pelleted diet containing 8% GP (dry matter basis) for 46 days. Rumen, jejunum, cecum, and colon bacterial and archaeal composition were identified by 16S rRNA gene sequencing. Dry matter intake (DMI) was greater (p < 0.05) in the GP than CD group; however, there was no difference in average daily gain (ADG, p < 0.05) and feed conversion ratio (FCR, p < 0.05) between the two groups. The GP group had a greater abundance of Prevotella 1 and Prevotella 7 in the rumen; of Sharpe, Ruminococcaceae 2, and [Ruminococcus] gauvreauii group in the jejunum; of Ruminococcaceae UCG-014 and Romboutsia in the cecum, and Prevotella UCG-001 in the colon; but lesser Rikenellaceae RC9 gut group in the rumen and cecum, and Ruminococcaceae UCG-005 and Ruminococcaceae UCG-010 in the colon than the CD group. The pathways of carbohydrate metabolism, such as L-rhamnose degradation in the rumen, starch and glycogen degradation in the jejunum, galactose degradation in the cecum, and mixed acid fermentation and mannan degradation in the colon were up-graded; whereas, the pathways of tricarboxylic acid (TCA) cycle VIII, and pyruvate fermentation to acetone in the rumen and colon were down-graded with GP. The archaeal incomplete reductive TCA cycle was enriched in the rumen, jejunum, and colon; whereas, the methanogenesis from H2 and CO2, the cofactors of methanogenesis, including coenzyme M, coenzyme B, and factor 420 biosynthesis were decreased in the colon. The study concluded that a diet including GP at 8% DM did not affect ADG or FCR in Tan lambs. However, there were some potential benefits, such as enhancing propionate production by microbiota and pathways in the GIT, promoting B-vitamin production in the rumen, facilitating starch degradation and amino acid biosynthesis in the jejunum, and reducing methanogenesis in the colon.
Collapse
Affiliation(s)
- Xindong Cheng
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Du
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanping Liang
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Abraham Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Xiukun Wu
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
| | - Kaixi Ji
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiaoxian Gao
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
| | - Guosheng Xin
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
| | - Haitao Cong
- Shandong Huakun Rural Revitalization Institute Co., Ltd., Jinan, China
| | - Guo Yang
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Yellow River Estuary Tan Sheep Institute of Industrial Technology, Dongying, China
| |
Collapse
|
26
|
Grabner E, Stare E, Fanedl L, Zorec M, Jones DS, Johnston CD, Avguštin G, Accetto T. Expanding the rumen Prevotella collection: The description of Prevotella communis, sp. nov. of ovine origin. Syst Appl Microbiol 2023; 46:126437. [PMID: 37295348 PMCID: PMC11198866 DOI: 10.1016/j.syapm.2023.126437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
27 strains representing eight new Prevotella species were isolated from rumen of a single sheep in eight weeks interval. One of the putative species encompassing the highest number of isolated strains which also exhibited some genetic variability in preliminary data, was then selected for description of a novel species. We examined six strains in genomic and phenotypic detail, two of which may actually be the same strain isolated nearly three weeks apart. Other strains formed clearly diverged intraspecies lineages as evidenced by core genome phylogeny and phenotypic differences. Strains of the proposed new Prevotella species are strictly saccharolytic as is usual for rumen Prevotella, and use plant cell-wall xylans and pectins for growth. However, the range of cell-wall polysaccharides utilised for growth is rather limited compared to rumen generalists such as Prevotella bryantii or Prevotella ruminicola and this extends also to the inability to utilise starch, which is unexpected for the members of the genus Prevotella. Based on the data obtained, we propose Prevotella communis sp. nov. to accommodate strain E1-9T as well as other strains with the similar properties. The proposed species is widespread: two other strains were previously isolated from sheep in Japan and is also common in metagenomic data of cattle and sheep rumen samples from Scotland and New Zealand. It was also found in a collection of metagenome-assembled genomes originating from cattle in Scotland. Thus, it is a ubiquitous bacterium of domesticated ruminants specialising in degradation of a somewhat restricted set of plant cell wall components.
Collapse
Affiliation(s)
- Eva Grabner
- University of Ljubljana, Biotechnical Faculty, Department of Microbiology, Groblje 3, 1230 Domžale, Slovenia
| | - Eva Stare
- University of Ljubljana, Biotechnical Faculty, Department of Microbiology, Groblje 3, 1230 Domžale, Slovenia
| | - Lijana Fanedl
- University of Ljubljana, Biotechnical Faculty, Department of Microbiology, Groblje 3, 1230 Domžale, Slovenia
| | - Maša Zorec
- University of Ljubljana, Biotechnical Faculty, Department of Microbiology, Groblje 3, 1230 Domžale, Slovenia
| | - Dakota S Jones
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Office E4-159, Eastlake building, 1100 Fairview Ave N., Seattle, WA 98109-4433, USA
| | - Christopher D Johnston
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Office E4-159, Eastlake building, 1100 Fairview Ave N., Seattle, WA 98109-4433, USA
| | - Gorazd Avguštin
- University of Ljubljana, Biotechnical Faculty, Department of Microbiology, Groblje 3, 1230 Domžale, Slovenia
| | - Tomaž Accetto
- University of Ljubljana, Biotechnical Faculty, Department of Microbiology, Groblje 3, 1230 Domžale, Slovenia.
| |
Collapse
|
27
|
Xiong Y, Wang X, Li X, Guo L, Yang F, Ni K. Exploring the rumen microbiota of Hu lambs in response to diet with paper mulberry. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12614-0. [PMID: 37306709 DOI: 10.1007/s00253-023-12614-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
Paper mulberry (Broussonetia papyrifera), as a new woody forage with high-protein characteristic, is being widely used in ruminant feeding. However, little is known about the comprehensive microbiota picture of whole ruminal niches (liquid, solid, and epithelium) under paper mulberry diet. To gain a better understanding of feeding paper mulberry on the rumen microbiota, the effects of fresh paper mulberry, paper mulberry silage, or a conventional high-protein alfalfa silage on rumen fermentation products and microbiota in rumen niches of Hu lambs were studied. Forty-five Hu lambs were randomly divided into 3 treatments with 15 replicates in each treatment. No significant difference was observed among treatments in the average daily gain (ADG). The fresh paper mulberry treatment had lower (P < 0.05) pH and higher (P < 0.05) total volatile fatty acids (TVFA) compared with silage treatments, but the fermentation parameters did not show significant differences between paper mulberry silage and alfalfa silage treatments. The Shannon index did not show a significant difference (P < 0.05) among treatments except between fresh paper mulberry and alfalfa silage treatment in rumen epithelial niches. Butyrivibrio and Treponema were the predominant genera in the rumen epithelial fraction, while Prevotella and Rikenellaceae_RC9 dominated in both rumen liquid and solid fractions. These results indicated the paper mulberry supplement did not have distinct impact on the microbial diversity and growth performance compared with alfalfa silage, especially for paper mulberry silage, which might help us develop an alternative animal feeding strategy of replacing alfalfa with paper mulberry. KEY POINTS: • Feeding paper mulberry silage did not show significant impact on the growth performance compared with alfalfa silage treatment. • Feeding fresh paper mulberry reduced rumen pH value and increased total volatile fatty acid. • The microbial diversity did not show significant difference among treatments.
Collapse
Affiliation(s)
- Yi Xiong
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xin Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaomei Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Linna Guo
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
- College of Animal Science, Guizhou University, Guiyang, 550525, China.
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
28
|
Wang D, Tang G, Yu J, Li Y, Feng L, Liu H, Li J, Chen L, Cao Y, Yao J. Microbial Enterotypes Shape the Divergence in Gut Fermentation, Host Metabolism, and Growth Rate of Young Goats. Microbiol Spectr 2023; 11:e0481822. [PMID: 36625605 PMCID: PMC9927581 DOI: 10.1128/spectrum.04818-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Enterotypes can be useful tools for studying the gut microbial community landscape, which is thought to play a crucial role in animal performance. However, few studies have been carried out to identify enterotypes and their associations with growth performance in young goats. In this study, two enterotypes were categorized in 76 goats: cluster 1 (n = 39) and cluster 2 (n = 37). Compared to cluster 2, cluster 1 had greater growth rates, the concentrations of acetate, propionate, valerate, and total volatile fatty acids (VFA) in the gut. Several serum glycolipid metabolism parameters, including glucose, total cholesterol, high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), were also increased in cluster 1, while serum IgG was decreased in cluster 1. Using α-diversity analysis, we found a microbiome with lower richness and diversity in cluster 1. Some gut bacteria, including Succinivibrio and several members of the Prevotellaceae family, were enriched in cluster 1, while Christensenellaceae R-7 group, Romboutsia, and Clostridium sensu stricto 1 were enriched in cluster 2. A co-occurrence network analysis revealed that the differential interaction patterns existed in two enterotypes, and microbial function prediction suggested that some nutrient metabolism-related pathways, including amino acid biosynthesis and starch and sucrose metabolism, were enriched in cluster 1. Furthermore, a correlation analysis showed that enterotype-related bacteria were closely correlated with gut fermentation, serum biochemistry, and growth rate. Overall, our data provide a new perspective for understanding enterotype characteristics in goats, offering insights into important microbial interaction mechanisms for improving the growth performance of ruminant animals. IMPORTANCE The intricate relationships between a host animal and its resident gut microbiomes provide opportunities for dealing with energy efficiency and production challenges in the livestock industry. Here, we applied the enterotype concept to the gut microbiome in young goats and found that it can be classified into two enterotypes which are apparently associated with divergences in gut fermentation, blood biochemistry, and goat growth rates. The microbial co-occurrence networks and function predictions differed between the two enterotypes, suggesting that the formation of host phenotype may be modified by different bacterial features and complex bacterial interactions. The characteristics of enterotypes related to growth performance in young goats may enable us to improve long-term production performance in goat industry by modulating the gut microbiome during early life.
Collapse
Affiliation(s)
- Dangdang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guangfu Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Junjian Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanyuan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Leiyu Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Huifeng Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiaxiao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Luyu Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
29
|
Betancur-Murillo CL, Aguilar-Marín SB, Jovel J. Prevotella: A Key Player in Ruminal Metabolism. Microorganisms 2022; 11:microorganisms11010001. [PMID: 36677293 PMCID: PMC9866204 DOI: 10.3390/microorganisms11010001] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Ruminants are foregut fermenters that have the remarkable ability of converting plant polymers that are indigestible to humans into assimilable comestibles like meat and milk, which are cornerstones of human nutrition. Ruminants establish a symbiotic relationship with their microbiome, and the latter is the workhorse of carbohydrate fermentation. On the other hand, during carbohydrate fermentation, synthesis of propionate sequesters H, thus reducing its availability for the ultimate production of methane (CH4) by methanogenic archaea. Biochemically, methane is the simplest alkane and represents a downturn in energetic efficiency in ruminants; environmentally, it constitutes a potent greenhouse gas that negatively affects climate change. Prevotella is a very versatile microbe capable of processing a wide range of proteins and polysaccharides, and one of its fermentation products is propionate, a trait that appears conspicuous in P. ruminicola strain 23. Since propionate, but not acetate or butyrate, constitutes an H sink, propionate-producing microbes have the potential to reduce methane production. Accordingly, numerous studies suggest that members of the genus Prevotella have the ability to divert the hydrogen flow in glycolysis away from methanogenesis and in favor of propionic acid production. Intended for a broad audience in microbiology, our review summarizes the biochemistry of carbohydrate fermentation and subsequently discusses the evidence supporting the essential role of Prevotella in lignocellulose processing and its association with reduced methane emissions. We hope this article will serve as an introduction to novice Prevotella researchers and as an update to others more conversant with the topic.
Collapse
Affiliation(s)
- Claudia Lorena Betancur-Murillo
- Escuela de Ciencias Básicas, Tecnología e Ingeniería, Universidad Nacional Abierta y a Distancia, UNAD, Bogotá 111511, Colombia
| | | | - Juan Jovel
- Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6, Canada
- Correspondence:
| |
Collapse
|
30
|
Yang C, Deng X, Lund P, Liu H, Ding X, Fu Z, Zhang N, Li J, Dong L. Rumen microbiota-host transcriptome interaction mediates the protective effects of trans-10, cis-12 CLA on facilitating weaning transition of lambs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:345-359. [PMID: 36788929 PMCID: PMC9898626 DOI: 10.1016/j.aninu.2022.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Developing alternatives to antibiotics for prevention of gastrointestinal dysbiosis in early-weaning farmed animals is urgently needed. This study was to explore the potential effects of trans-10, cis-12 conjugated linoleic acid (CLA) on maintaining ruminal homeostasis of young ruminants during the weaning transition period. Thirty neonatal lambs were selected (6 lambs per group) and euthanized for rumen microbial and epithelial analysis. The lambs were weaned at 28 d and experienced the following 5 treatments: euthanized on d 28 as the pre-weaning control (CON0), fed starter feed for 5 (CON5) or 21 (CON21) d, fed starter feed with 1% of CLA supplemented for 5 (CLA5) or 21 (CLA21) d. Results showed that the average daily weight gain and dry matter intake were significantly higher in CLA5 than CON5 group. As compared with the CON5 and CON21 group, the relative abundances of volatile fatty acid (VFA) producing bacteria including Bacteroides, Treponema, Parabacteroides and Anaerovibrio, as well as the concentrations of acetate, butyrate and total VFA were significantly increased in CLA5 and CLA21 group, respectively. Integrating microbial profiling and epithelial transcriptome results showed that 7 downregulated inflammatory signaling-related host genes IL2RA, CXCL9, CD4, CCR4, LTB, SPP1, and BCL2A1 with CLA supplementation were significantly negatively correlated with both VFA concentration and VFA producing bacteria, while 3 (GPX2, SLC27A2 and ALDH3A1) and 2 (GSTM3 and GSTA1) upregulated metabolism-related genes, significantly positively correlated with either VFA concentration or VFA producing bacteria, respectively. To confirm the effects of CLA on epithelial signal transduction, in vitro experiment was further conducted by treating rumen epithelial cells without or with IL-17A + TNF-α for 12 h after pretreatment of 100 μM CLA or not (6 replicates per treatment). The results demonstrated the anti-inflammatory effect of CLA via suppressing the protein expression of NF-кB p-p65/p65 with the activation of peroxisome proliferator-activated receptor gamma (PPARγ). In conclusion, CLA supplementation enhanced the ruminal microbiota-driven transcriptional regulation in healthy rumen epithelial development via rumen VFA production, and CLA may therefore serve as an alternative way to alleviate early-weaning stress and improve physiological and metabolic conditions of young ruminants.
Collapse
Affiliation(s)
- Chunlei Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiangfei Deng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Peter Lund
- Department of Animal Science, Aarhus University, AU Foulum, DK-8830, Tjele, Denmark
| | - Haixia Liu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Xingwang Ding
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Naifeng Zhang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences/Sino-US Joint Lab on Nutrition and Metabolism of Ruminant, Beijing, 100081, China
| | - Jinjun Li
- Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China,Corresponding authors.
| | - Lifeng Dong
- Institute of Feed Research, Chinese Academy of Agricultural Sciences/Sino-US Joint Lab on Nutrition and Metabolism of Ruminant, Beijing, 100081, China,Corresponding authors.
| |
Collapse
|
31
|
Li B, Jia G, Wen D, Zhao X, Zhang J, Xu Q, Zhao X, Jiang N, Liu Z, Wang Y. Rumen microbiota of indigenous and introduced ruminants and their adaptation to the Qinghai-Tibetan plateau. Front Microbiol 2022; 13:1027138. [PMID: 36299720 PMCID: PMC9589358 DOI: 10.3389/fmicb.2022.1027138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022] Open
Abstract
The grassland in the Qinghai-Tibetan plateau provide habitat for many indigenous and introduced ruminants which perform important ecological functions that impact the whole Qinghai-Tibetan plateau ecosystem. These indigenous Tibetan ruminants have evolved several adaptive traits to withstand the severe environmental conditions, especially cold, low oxygen partial pressure, high altitude, strong UV radiation, and poor forage availability on the alpine rangelands. Despite the challenges to husbandry associated with the need for enhanced adaptation, several domesticated ruminants have also been successfully introduced to the alpine pasture regions to survive in the harsh environment. For ruminants, these challenging conditions affect not only the host, but also their commensal microbiota, especially the diversity and composition of the rumen microbiota; multiple studies have described tripartite interactions among host-environment-rumen microbiota. Thus, there are significant benefits to understanding the role of rumen microbiota in the indigenous and introduced ruminants of the Qinghai-Tibetan plateau, which has co-evolved with the host to ensure the availability of specific metabolic functions required for host survival, health, growth, and development. In this report, we systemically reviewed the dynamics of rumen microbiota in both indigenous and introduced ruminants (including gut microbiota of wild ruminants) as well as their structure, functions, and interactions with changing environmental conditions, especially low food availability, that enable survival at high altitudes. We summarized that three predominant driving factors including increased VFA production, enhanced fiber degradation, and lower methane production as indicators of higher efficiency energy harvest and nutrient utilization by microbiota that can sustain the host during nutrient deficit. These cumulative studies suggested alteration of rumen microbiota structure and functional taxa with genes that encode cellulolytic enzymes to potentially enhance nutrient and energy harvesting in response to low quality and quantity forage and cold environment. Future progress toward understanding ruminant adaptation to high altitudes will require the integration of phenotypic data with multi-omics analyses to identify host-microbiota co-evolutionary adaptations enabling survival on the Qinghai-Tibetan plateau.
Collapse
Affiliation(s)
- Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- Agricultural College, Ningxia University, Yinchuan, China
| | - Gaobin Jia
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- Colleges of Life Science and Technology, Dalian University, Dalian Economic Technological Development Zone, Dalian, China
| | - Dongxu Wen
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Xiuxin Zhao
- Agricultural College, Ningxia University, Yinchuan, China
| | - Junxing Zhang
- Agricultural College, Ningxia University, Yinchuan, China
| | - Qing Xu
- Institute of Life Sciences and Bio-Engineering, Beijing Jiaotong University, Beijing, China
| | - Xialing Zhao
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Nan Jiang
- Colleges of Life Science and Technology, Dalian University, Dalian Economic Technological Development Zone, Dalian, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yachun Wang
- Agricultural College, Ningxia University, Yinchuan, China
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
32
|
Wang Y, Nan X, Zhao Y, Jiang L, Wang H, Zhang F, Hua D, Liu J, Yang L, Yao J, Xiong B. Discrepancies among healthy, subclinical mastitic, and clinical mastitic cows in fecal microbiome and metabolome and serum metabolome. J Dairy Sci 2022; 105:7668-7688. [PMID: 35931488 DOI: 10.3168/jds.2021-21654] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/06/2022] [Indexed: 11/19/2022]
Abstract
Mastitis is generally considered a local inflammatory disease caused by the invasion of exogenous pathogens and resulting in the dysbiosis of microbiota and metabolites in milk. However, the entero-mammary pathway theory may establish a possible link between some endogenous gut bacteria and the occurrence and development of mastitis. In the current study, we attempted to investigate differences in the gut microbiota profile and metabolite composition in gut and serum from healthy cows and those with subclinical mastitis and clinical mastitis. Compared with those of healthy cows, the microbial community diversities in the feces of cows with subclinical mastitis (SM) and clinical mastitis (CM) were lower. Lower abundance of Bifidobacterium, Romboutsia, Lachnospiraceae_NK3A20_group, Coprococcus, Prevotellaceae_UCG-003, Ruminococcus, and Alistipes, and higher abundance of the phylum Proteobacteria and the genera Escherichia-Shigella and Streptococcus were observed in CM cows. Klebsiella and Paeniclostridium were significantly enriched in the feces of SM cows. Several similarities were observed in feces and serum metabolites in mastitic cows. Higher levels of proinflammatory lipid products (20-trihydroxy-leukotriene-B4, 13,14-dihydro-15-keto-PGE2, and 9,10-dihydroxylinoleic acids) and lower levels of metabolites involved in secondary bile acids (deoxycholic acid, 12-ketolithocholic acid), energy (citric acid and 3-hydroxyisovalerylcarnitine), and purine metabolism (uric acid and inosine) were identified in both SM and CM cows. In addition, elevated concentrations of IL-1β, IL-6, tumor necrosis factor-α and decreased concentrations of glutathione peroxidase and superoxide dismutase were detected in the serum of SM and CM cows. Higher serum concentrations of triglyceride and total cholesterol and lower concentrations of high-density lipoproteins in mastitic cows might be related to changes in the gut microbiota and metabolites. These findings suggested a significant difference in the profile of feces microbiota and metabolites in cows with different udder health status, which might increase our understanding of bovine mastitis.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, 102206, China
| | - Hui Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dengke Hua
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jun Liu
- Langfang Academy of Agriculture and Forestry, Langfang, 065000, China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
33
|
Prevotella species in the human gut is primarily comprised of Prevotella copri, Prevotella stercorea and related lineages. Sci Rep 2022; 12:9055. [PMID: 35641510 PMCID: PMC9156738 DOI: 10.1038/s41598-022-12721-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/15/2022] [Indexed: 11/25/2022] Open
Abstract
Prevotella species in the human gut microbiome are primarily comprised of Prevotella copri, and its diversity and function were recently investigated in detail. Much less is known about other Prevotella species in the human gut. Here, we examined the composition of Prevotella species in human guts by mapping publicly available gut metagenomes to a dereplicated set of metagenome-assembled genomes (MAGs) representing Prevotella lineages found in human guts. In most human cohorts, P. copri is the most relatively abundant species (e.g. up to 14.3% relative abundance in Tangshan, China). However, more than half of the metagenome reads in several cohorts mapped to Prevotella MAGs representing P. stercorea and several other species sister to P. stercorea and P. copri. Analyses of genes encoded in these genomes indicated that P. stercorea and related lineages lacked many hemicellulose degrading enzymes and were thus less likely to metabolise hemicelluloses compared with P. copri and copri-related lineages. Instead, P. stercorea genomes possess several carbohydrate esterases that may be involved in releasing ester modifications from carbohydrates to facilitate their degradation. These findings reveal unexplored Prevotella diversity in the human gut and indicate possible niche partitions among these related species.
Collapse
|
34
|
Cristobal-Carballo O, McCoard SA, Cookson AL, Laven RA, Ganesh S, Lewis SJ, Muetzel S. Effect of Divergent Feeding Regimes During Early Life on the Rumen Microbiota in Calves. Front Microbiol 2021; 12:711040. [PMID: 34745024 PMCID: PMC8565576 DOI: 10.3389/fmicb.2021.711040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to determine whether divergent feeding regimes during the first 41 weeks of the life of a calf are associated with long-term changes in the rumen microbiota and the associated fermentation end-products. Twenty-four calves (9 ± 5 days of age) were arranged in a 2 × 2 factorial design with two divergent treatments across three dietary phases. In phase 1 (P01), calves were offered a low-milk volume/concentrate starter diet with early weaning (CO) or high-milk volume/pasture diet and late weaning (FO). In phase 2 (P02), calves from both groups were randomly allocated to either high-quality (HQ) or low-quality (LQ) pasture grazing groups. In phase 3 (P03), calves were randomly allocated to one of two grazing groups and offered the same pasture-only diet. During each dietary phase, methane (CH4) and hydrogen (H2) emissions and dry matter intake (DMI) were measured in respiration chambers, and rumen samples for the evaluation of microbiota and short-chain fatty acid (SCFA) characterizations were collected. In P01, CO calves had a higher solid feed intake but a lower CH4 yield (yCH4) and acetate:propionate ratio (A:P) compared with FO calves. The ruminal bacterial community had lower proportions of cellulolytic bacteria in CO than FO calves. The archaeal community was dominated by Methanobrevibacter boviskoreani in CO calves and by Mbb. gottschalkii in FO calves. These differences, however, did not persist into P02. Calves offered HQ pastures had greater DMI and lower A:P ratio than calves offered LQ pastures, but yCH4 was similar between groups. The cellulolytic bacteria had lower proportions in HQ than LQ calves. In all groups, the archaeal community was dominated by Mbb. gottschalkii. No treatment interactions were observed in P02. In P03, all calves had similar DMI, CH4 and H2 emissions, SCFA proportions, and microbial compositions, and no interactions with previous treatments were observed. These results indicate that the rumen microbiota and associated fermentation end-products are driven by the diet consumed at the time of sampling and that previous dietary interventions do not lead to a detectable long-term microbial imprint or changes in rumen function.
Collapse
Affiliation(s)
- Omar Cristobal-Carballo
- Ruminant Nutrition and Physiology Team, AgResearch Grasslands, Palmerston North, New Zealand.,School of Veterinary Medicine, Massey University, Palmerston North, New Zealand
| | - Sue A McCoard
- Ruminant Nutrition and Physiology Team, AgResearch Grasslands, Palmerston North, New Zealand
| | - Adrian L Cookson
- Food System Integrity Team, AgResearch Grasslands, Palmerston North, New Zealand.,School of Veterinary Medicine, Massey University, Palmerston North, New Zealand
| | - Richard A Laven
- School of Veterinary Medicine, Massey University, Palmerston North, New Zealand
| | - Siva Ganesh
- Biostatistics Team, AgResearch Grasslands, Palmerston North, New Zealand
| | - Sarah J Lewis
- Ruminant Nutrition and Physiology Team, AgResearch Grasslands, Palmerston North, New Zealand
| | - Stefan Muetzel
- Ruminant Nutrition and Physiology Team, AgResearch Grasslands, Palmerston North, New Zealand
| |
Collapse
|
35
|
Prasoodanan P K V, Sharma AK, Mahajan S, Dhakan DB, Maji A, Scaria J, Sharma VK. Western and non-western gut microbiomes reveal new roles of Prevotella in carbohydrate metabolism and mouth-gut axis. NPJ Biofilms Microbiomes 2021; 7:77. [PMID: 34620880 PMCID: PMC8497558 DOI: 10.1038/s41522-021-00248-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/09/2021] [Indexed: 01/22/2023] Open
Abstract
The abundance and diversity of host-associated Prevotella species have a profound impact on human health. To investigate the composition, diversity, and functional roles of Prevotella in the human gut, a population-wide analysis was carried out on 586 healthy samples from western and non-western populations including the largest Indian cohort comprising of 200 samples, and 189 Inflammatory Bowel Disease samples from western populations. A higher abundance and diversity of Prevotella copri species enriched in complex plant polysaccharides metabolizing enzymes, particularly pullulanase containing polysaccharide-utilization-loci (PUL), were found in Indian and non-western populations. A higher diversity of oral inflammations-associated Prevotella species and an enrichment of virulence factors and antibiotic resistance genes in the gut microbiome of western populations speculates an existence of a mouth-gut axis. The study revealed the landscape of Prevotella composition in the human gut microbiome and its impact on health in western and non-western populations.
Collapse
Affiliation(s)
- Vishnu Prasoodanan P K
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Ashok K Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
- Department of Animal Science, Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, 55455, USA
| | - Shruti Mahajan
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Darshan B Dhakan
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
- Behaviour and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Lisboa, Portugal
| | - Abhijit Maji
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
- Animal Disease Research & Diagnostic Laboratory, South Dakota State University, Brookings, SD, 57007, USA
| | - Joy Scaria
- Animal Disease Research & Diagnostic Laboratory, South Dakota State University, Brookings, SD, 57007, USA
| | - Vineet K Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India.
| |
Collapse
|
36
|
Kodithuwakku KAHT, Owada H, Miura H, Maruyama D, Hirano K, Suzuki Y, Kobayashi Y, Koike S. Effects of oral administration of timothy hay and psyllium on the growth performance and fecal microbiota of preweaning calves. J Dairy Sci 2021; 104:12472-12485. [PMID: 34538491 DOI: 10.3168/jds.2021-20259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022]
Abstract
The objective of this study was to evaluate the effects of oral administration of fiber from the first week of life on the growth and hindgut environment of preweaning calves. Twenty newborn female Holstein calves were divided into 2 groups as control and treatment. Calves in both groups were reared under the same feeding program except for oral fiber administration. Timothy hay and psyllium were mixed at a 50-to-6 ratio as a treatment diet for oral fiber administration. Calves in the treatment group were orally administered 50 g of fiber daily from 3 to 7 d of age and 100 g of fiber from 8 d of age until weaning. Feed intake and occurrence of diarrhea were recorded daily, and body weight (BW) was recorded weekly for the individual calf. Fresh feces were collected from calves at 7, 21, 35, 49, and 56 d of age to analyze fermentation parameters and microbiota to characterize the hindgut environment. Higher fiber intake in the treatment group due to oral administration of timothy and psyllium did not affect the starter intake and achieved higher BW at 21 d of age. The fecal pH, total volatile fatty acid, lactate, and ammonia nitrogen concentrations were not affected by oral fiber administration; meanwhile, the molar proportion of propionate was higher in the treatment group at 7 d of age. The difference in fecal microbiota in the calves subjected to the oral administration of fiber was observed within 21 d of life; Lactobacillus spp. and Prevotella spp. showed higher abundance, whereas that of Clostridium perfringens was decreased. These higher abundances of beneficial bacteria and lower abundance of pathogenic bacteria during early life may partly explain the higher BW of calves in the treatment group at 21 d of age. Furthermore, no adverse effect was observed for the BW and health status in the treatment group throughout the preweaning period. Therefore, early fiber feeding via oral administration potentially contributes to improving the hindgut environment in newborn calves, which leads to better growth of calves during the early stage of life.
Collapse
Affiliation(s)
| | - H Owada
- Central Research Institute for Feed and Livestock, ZEN-NOH, Kasama 319-0205, Japan
| | - H Miura
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - D Maruyama
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - K Hirano
- Central Research Institute for Feed and Livestock, ZEN-NOH, Kasama 319-0205, Japan
| | - Y Suzuki
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Y Kobayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - S Koike
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| |
Collapse
|
37
|
Tett A, Pasolli E, Masetti G, Ercolini D, Segata N. Prevotella diversity, niches and interactions with the human host. Nat Rev Microbiol 2021; 19:585-599. [PMID: 34050328 PMCID: PMC11290707 DOI: 10.1038/s41579-021-00559-y] [Citation(s) in RCA: 361] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
The genus Prevotella includes more than 50 characterized species that occur in varied natural habitats, although most Prevotella spp. are associated with humans. In the human microbiome, Prevotella spp. are highly abundant in various body sites, where they are key players in the balance between health and disease. Host factors related to diet, lifestyle and geography are fundamental in affecting the diversity and prevalence of Prevotella species and strains in the human microbiome. These factors, along with the ecological relationship of Prevotella with other members of the microbiome, likely determine the extent of the contribution of Prevotella to human metabolism and health. Here we review the diversity, prevalence and potential connection of Prevotella spp. in the human host, highlighting how genomic methods and analysis have improved and should further help in framing their ecological role. We also provide suggestions for future research to improve understanding of the possible functions of Prevotella spp. and the effects of the Western lifestyle and diet on the host-Prevotella symbiotic relationship in the context of maintaining human health.
Collapse
Affiliation(s)
- Adrian Tett
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | | | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy.
- European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
38
|
Ran T, Tang SX, Yu X, Hou ZP, Hou FJ, Beauchemin KA, Yang WZ, Wu DQ. Diets varying in ratio of sweet sorghum silage to corn silage for lactating dairy cows: Feed intake, milk production, blood biochemistry, ruminal fermentation, and ruminal microbial community. J Dairy Sci 2021; 104:12600-12615. [PMID: 34419272 DOI: 10.3168/jds.2021-20408] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022]
Abstract
The objective of this study was to investigate the effects of partial substitution of corn silage (CS) with sweet sorghum silage (SS) in the diets of lactating dairy cows on dry matter (DM) intake, milk yield and composition, blood biochemistry, and ruminal fermentation and microbial community. Thirty mid-lactation Holstein dairy cows [mean ± standard deviation; 639 ± 42.0 kg of body weight; 112 ± 24.0 d in milk (DIM)] were assigned to 3 groups (n = 10/treatment) by considering parity, milk yield, and DIM. The cows were fed ad libitum total mixed rations containing 55% forage and 45% concentrate, with only the proportion of CS and SS varying in 3 treatments (DM basis): SS0 (0% substitution of CS), 40% CS and 0% SS; SS25 (25% substitution of CS), 30% CS and 10% SS; and SS50 (50% substitution of CS), 20% CS and 20% SS. Dry matter intake and milk protein concentration tended to linearly decrease with increasing proportion of SS in the diet. Yields of milk (mean ± standard deviation, 30.9 ± 1.12 kg/d), 4% fat-corrected milk (30.0 ± 0.81 kg/d), energy-corrected milk, milk protein, lactose, and total solids, concentrations of milk fat, lactose, somatic cell counts, and milk efficiency did not differ among diets. The concentrations in blood of urea nitrogen, phosphorus, aspartate aminotransferase, and malondialdehyde linearly increased with increasing SS proportion. Blood IgA decreased with increasing SS substitution rate, but blood IgG and IgM were not different among diets. Ruminal pH did not differ among diets, whereas ruminal NH3-N concentration quadratically changed such that it was greater for SS50 than for SS0 and SS25. Molar proportions of propionate and acetate to propionate ratio were less for SS25 than for SS0. Although the diversity and general ruminal microbial community structure were not altered by partially replacing CS with SS, the relative abundances of predominant bacteria were affected by diets at the phylum and genus levels. Firmicutes and Bacteroidetes were dominant phyla in the ruminal bacterial community for all diets, and their relative abundance linearly decreased and increased, respectively, with increasing SS substitution rate. Prevotella_1 and Ruminococcaceae_NK4A214_group were detected as the most and the second most abundant genera, with their relative abundance linearly increased and decreased, respectively, with increasing SS substitution rate. The relative abundance of Fibrobacter linearly increased with increasing dietary SS proportion, with greater abundance observed for SS25 and SS50 than for SS0. These results suggest that substitution of CS with SS altered the relative abundances of some predominant bacteria; however, these changes had little effect on ruminal fermentation and milk yield. Under the current experimental conditions, substituting up to 50% of CS with SS had no negative effects on milk yield, indicating that SS can partially replace CS in the diets of high-producing lactating dairy cows without adding extra grain, when diets are fed for a short time. As the effects of substituting CS with SS depend upon the chemical composition and digestibility of these silages and the nutrient requirements of the cows, additional grain may be required in some cases to compensate for the lower starch content of SS.
Collapse
Affiliation(s)
- T Ran
- College of Pastoral Science and Technology, University of Lanzhou, Lanzhou, 730020, China
| | - S X Tang
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - X Yu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Z P Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - F J Hou
- College of Pastoral Science and Technology, University of Lanzhou, Lanzhou, 730020, China
| | - K A Beauchemin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada T1J 4B1
| | - W Z Yang
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada T1J 4B1
| | - D Q Wu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China.
| |
Collapse
|
39
|
Venardou B, O'Doherty JV, McDonnell MJ, Mukhopadhya A, Kiely C, Ryan MT, Sweeney T. Evaluation of the in vitro effects of the increasing inclusion levels of yeast β-glucan, a casein hydrolysate and its 5 kDa retentate on selected bacterial populations and strains commonly found in the gastrointestinal tract of pigs. Food Funct 2021; 12:2189-2200. [PMID: 33589892 DOI: 10.1039/d0fo02269a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Previously, the 5 kDa retentate (5kDaR) of a casein hydrolysate (CH) and yeast β-glucan (YBG) were identified as promising anti-inflammatory dietary supplements for supporting intestinal health in pigs post-weaning. However, their direct effects on intestinal bacterial populations are less well-known. The main objectives of this study were to determine if the increasing concentrations of the CH, 5kDaR and YBG individually, can: (1) alter the bacterial and short-chain fatty acid profiles in a weaned pig faecal batch fermentation assay, and (2) directly influence the growth of selected beneficial (Lactobacillus plantarum, L. reuteri, Bifidobacterium thermophilum) and pathogenic (Enterotoxigenic Escherichia coli, Salmonella Typhimurium) bacterial strains in individual pure culture growth assays. The potential of CH as a comparable 5kDaR substitute was also evaluated. The 5kDaR increased lactobacilli counts and butyrate concentration in the batch fermentation assay (P < 0.05) and increased L. plantarum (linear, P < 0.05), L. reuteri (quadratic, P < 0.05) and B. thermophilum (linear, P < 0.05) counts and reduced S. typhimurium (quadratic, P = 0.058) counts in the pure culture growth assays. CH increased butyrate concentration (P < 0.05) in the batch fermentation assay. YBG reduced Prevotella spp. counts (P < 0.05) and butyrate concentration (P < 0.05) in the batch fermentation assay. Both CH and YBG had no major effects in the pure culture growth assays. In conclusion, the 5kDaR had the most beneficial effects associated with increased counts of Lactobacillus and Bifidobacterium genera and butyrate production and reduced S. typhimurium counts in vitro indicating its potential to promote gastrointestinal health.
Collapse
Affiliation(s)
- Brigkita Venardou
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - John V O'Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Mary J McDonnell
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Anindya Mukhopadhya
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland. and Food for Health Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Claire Kiely
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Marion T Ryan
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland. and Food for Health Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
40
|
Gomaa WMS, Saleem AM, Ran T, Jin L, Samir M, McGeough EJ, Ominski K, Chen L, Yang W. Effect of Dried Distillers Grains With Solubles and Red Osier Dogwood Extract on Fermentation Pattern and Microbial Profiles of a High-Grain Diet in an Artificial Rumen System. Front Vet Sci 2021; 8:644738. [PMID: 33898543 PMCID: PMC8062754 DOI: 10.3389/fvets.2021.644738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/15/2021] [Indexed: 11/30/2022] Open
Abstract
The objective of this study was to evaluate the effect of dried distillers grains with solubles (DDGS) and red-osier dogwood (ROD) extract on in vitro fermentation characteristics, nutrient disappearance, and microbial profiles using the rumen simulation technique. The experiment was a completely randomized design with a 2 × 2 factorial arrangement of treatments and four replicates per treatment. A basal diet [10% barley silage, 87% dry-rolled barley grain, and 3% vitamin and mineral supplement, dry matter (DM) basis] and a DDGS diet (as per basal diet with 25% of wheat DDGS replacing an equal portion of barley grain) were supplemented with ROD extract at 0 and 1% (DM basis), respectively. The experimental period was 17 d, consisting 10 days of adaptation and 7 days of data and sample collection. The substitution of wheat DDGS for barley grain did not affect gas production; disappearances of DM, organic matter, and crude protein; total volatile fatty acid (VFA) production; and microbial protein production. However, replacing barley grain with wheat DDGS increased (P = 0.01) fermenter pH and molar proportion of branched-chain VFA, switched (P = 0.06) the fermentation pattern to higher acetate production due to increased (P = 0.01) disappearance of neutral detergent fiber (NDF), and decreased (P = 0.08) methane (CH4) production. In the basal barley diet, the ROD extract increased the acetate to propionate (A:P) ratio (P = 0.08) and reduced the disappearance of starch (P = 0.06) with no effect on any other variables. No effects of ROD in the DDGS diet were observed. The number of operational taxonomic unit (OTUs) and the Shannon diversity index of the microbial community had little variation among treatments. Taxonomic analysis revealed no effect of adding the ROD extract on the relative abundance of bacteria at the phylum level with either the basal diet or DDGS diet, while at the genus level, the microbial community was affected by the addition of both DDGS and the ROD extract. Prevotella and Fibrobacter were the most abundant genera in the basal diet; however, Treponema became the most abundant genus with the addition of the ROD extract. These results indicated that the substitution of wheat DDGS for barley grain may mitigate enteric CH4 emissions. The trend of reduced starch fermentability and increased NDF disappearance with the addition of ROD extract suggests a reduced risk of rumen acidosis and an improvement in the utilization of fiber for cattle-fed high-grain diet.
Collapse
Affiliation(s)
- Walaa Mohamed Sayed Gomaa
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Animal Nutrition and Clinical Nutrition, Assiut University, Assiut, Egypt
| | - Atef Mohamed Saleem
- Department of Animal and Poultry Production, South Valley University, Qena, Egypt
| | - Tao Ran
- College of Pastoral Science and Technology, University of Lanzhou, Lanzhou, China
| | - Long Jin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Mohamed Samir
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Emma J. McGeough
- Department of Animal Science and National Centre for Livestock and the Environment, University of Manitoba, Winnipeg, MB, Canada
| | - Kim Ominski
- Department of Animal Science and National Centre for Livestock and the Environment, University of Manitoba, Winnipeg, MB, Canada
| | - Lingyun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Wenzhu Yang
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
41
|
Non-oral Prevotella stepping into the spotlight. Anaerobe 2021; 68:102321. [PMID: 33482304 DOI: 10.1016/j.anaerobe.2021.102321] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
Species now affiliated to genus Prevotella have been known for decades as an integral part of human oral cavity microbiota. They were frequently isolated from patients with periodontitis or from dental root canals but also from healthy subjects. With the exception of Prevotella intermedia, they were considered opportunistic pathogens, as they were isolated also from various bacterial abscesses from the head, neck, breast, skin and various other body sites. Consequently, Prevotella were not in the focus of research activities. On the other hand, the four species found in the rumen never caused any disease and seemed early on to be numerous and important part of the rumen ecosystem indicating this genus harbored bacteria with enormously diverse habitats and lifestyles. The purpose of this review is to illustrate the main research themes performed in Prevotella on a path from less noted oral bacteria and from hard to cultivate and study rumen organisms to important mutualistic bacteria in guts of various mammals warranting major research efforts.
Collapse
|
42
|
Modulation of inflammatory responses by gastrointestinal Prevotella spp. - From associations to functional studies. Int J Med Microbiol 2021; 311:151472. [PMID: 33461110 DOI: 10.1016/j.ijmm.2021.151472] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/07/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Numerous studies have associated alterations in the gut microbiota composition with almost every known inflammatory disease. However, proving the biological relevance of distinct microbial signatures and linking specific microorganisms to host phenotypes, remains a considerable challenge. Correspondingly, increased abundance of members of Prevotella genus within microbial communities colonizing distinct mucosal surfaces has been found in individuals diagnosed with rheumatoid arthritis, periodontitis, metabolic disorders, and intestinal and vaginal dysbiosis. Still, the role of Prevotella spp. in the incidence of these diseases continues to be debated. For many years, poor understanding of Prevotella biology could be in large part attributed to the lack of experimental tools. However, in the recent years significant advances have been made towards overcoming these limitations, including increased number of isolates and improved understanding of genetic diversity. Besides discussing the most relevant associations between Prevotella spp. and inflammatory disorders, in the present review we examine the recent efforts to expand the Prevotella experimental "toolbox" and we highlight remaining experimental challenges that should advance future research and our understanding of Prevotella-host interplay.
Collapse
|
43
|
Ran T, Jin L, Abeynayake R, Saleem AM, Zhang X, Niu D, Chen L, Yang W. Effects of brewers' spent grain protein hydrolysates on gas production, ruminal fermentation characteristics, microbial protein synthesis and microbial community in an artificial rumen fed a high grain diet. J Anim Sci Biotechnol 2021; 12:1. [PMID: 33397465 PMCID: PMC7780661 DOI: 10.1186/s40104-020-00531-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/20/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Brewers' spent grain (BSG) typically contains 20% - 29% crude protein (CP) with high concentrations of glutamine, proline and hydrophobic and non-polar amino acid, making it an ideal material for producing value-added products like bioactive peptides which have antioxidant properties. For this study, protein was extracted from BSG, hydrolyzed with 1% alcalase and flavourzyme, with the generated protein hydrolysates (AlcH and FlaH) showing antioxidant activities. This study evaluated the effects of AlcH and FlaH on gas production, ruminal fermentation characteristics, nutrient disappearance, microbial protein synthesis and microbial community using an artificial rumen system (RUSITEC) fed a high-grain diet. RESULTS As compared to the control of grain only, supplementation of FlaH decreased (P < 0.01) disappearances of dry matter (DM), organic matter (OM), CP and starch, without affecting fibre disappearances; while AlcH had no effect on nutrient disappearance. Neither AlcH nor FlaH affected gas production or VFA profiles, however they increased (P < 0.01) NH3-N and decreased (P < 0.01) H2 production. Supplementation of FlaH decreased (P < 0.01) the percentage of CH4 in total gas and dissolved-CH4 (dCH4) in dissolved gas. Addition of monensin reduced (P < 0.01) disappearance of nutrients, improved fermentation efficiency and reduced CH4 and H2 emissions. Total microbial nitrogen production was decreased (P < 0.05) but the proportion of feed particle associated (FPA) bacteria was increased with FlaH and monensin supplementation. Numbers of OTUs and Shannon diversity indices of FPA microbial community were unaffected by AlcH and FlaH; whereas both indices were reduced (P < 0.05) by monensin. Taxonomic analysis revealed no effect of AlcH and FlaH on the relative abundance (RA) of bacteria at phylum level, whereas monensin reduced (P < 0.05) the RA of Firmicutes and Bacteroidetes and enhanced Proteobacteria. Supplementation of FlaH enhanced (P < 0.05) the RA of genus Prevotella, reduced Selenomonas, Shuttleworthia, Bifidobacterium and Dialister as compared to control; monensin reduced (P < 0.05) RA of genus Prevotella but enhaced Succinivibrio. CONCLUSIONS The supplementation of FlaH in high-grain diets may potentially protect CP and starch from ruminal degradation, without adversely affecting fibre degradation and VFA profiles. It also showed promising effects on reducing CH4 production by suppressing H2 production. Protein enzymatic hydrolysates from BSG using flavourzyme showed potential application to high value-added bio-products.
Collapse
Affiliation(s)
- Tao Ran
- Agriculture and Agri-Food of Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- College of Veterinary Medicine, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Long Jin
- Agriculture and Agri-Food of Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada
| | - Ranithri Abeynayake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| | - Atef Mohamed Saleem
- Agriculture and Agri-Food of Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada
- Department of Animal and Poultry Production, Faculty of Agriculture, South Valley University, Qena, 83523, Egypt
| | - Xiumin Zhang
- Agriculture and Agri-Food of Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Dongyan Niu
- College of Veterinary Medicine, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Lingyun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| | - Wenzhu Yang
- Agriculture and Agri-Food of Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada.
| |
Collapse
|
44
|
A carbohydrate-active enzyme (CAZy) profile links successful metabolic specialization of Prevotella to its abundance in gut microbiota. Sci Rep 2020; 10:12411. [PMID: 32709972 PMCID: PMC7381632 DOI: 10.1038/s41598-020-69241-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/08/2020] [Indexed: 01/09/2023] Open
Abstract
Gut microbiota participates in diverse metabolic and homeostatic functions related to health and well-being. Its composition varies between individuals, and depends on factors related to host and microbial communities, which need to adapt to utilize various nutrients present in gut environment. We profiled fecal microbiota in 63 healthy adult individuals using metaproteomics, and focused on microbial CAZy (carbohydrate-active) enzymes involved in glycan foraging. We identified two distinct CAZy profiles, one with many Bacteroides-derived CAZy in more than one-third of subjects (n = 25), and it associated with high abundance of Bacteroides in most subjects. In a smaller subset of donors (n = 8) with dietary parameters similar to others, microbiota showed intense expression of Prevotella-derived CAZy including exo-beta-(1,4)-xylanase, xylan-1,4-beta-xylosidase, alpha-l-arabinofuranosidase and several other CAZy belonging to glycosyl hydrolase families involved in digestion of complex plant-derived polysaccharides. This associated invariably with high abundance of Prevotella in gut microbiota, while in subjects with lower abundance of Prevotella, microbiota showed no Prevotella-derived CAZy. Identification of Bacteroides- and Prevotella-derived CAZy in microbiota proteome and their association with differences in microbiota composition are in evidence of individual variation in metabolic specialization of gut microbes affecting their colonizing competence.
Collapse
|
45
|
Holman DB, Gzyl KE. A meta-analysis of the bovine gastrointestinal tract microbiota. FEMS Microbiol Ecol 2020; 95:5497297. [PMID: 31116403 DOI: 10.1093/femsec/fiz072] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/21/2019] [Indexed: 01/04/2023] Open
Abstract
The bovine gastrointestinal (GI) tract microbiota has important influences on animal health and production. Presently, a large number of studies have used high-throughput sequencing of the archaeal and bacteria 16S rRNA gene to characterize these microbiota under various experimental parameters. By aggregating publically available archaeal and bacterial 16S rRNA gene datasets from 52 studies we were able to determine taxa that are common to nearly all microbiota samples from the bovine GI tract as well as taxa that are strongly linked to either the rumen or feces. The methanogenic genera Methanobrevibacter and Methanosphaera were identified in nearly all fecal and rumen samples (> 99.1%), as were the bacterial genera Prevotella and Ruminococcus (≥ 92.9%). Bacterial genera such as Alistipes, Bacteroides, Clostridium, Faecalibacterium and Escherichia/Shigella were associated with feces and Fibrobacter, Prevotella, Ruminococcus and Succiniclasticum with the rumen. As expected, individual study strongly affected the bacterial community structure, however, fecal and rumen samples did appear separated from each other. This meta-analysis provides the first comparison of high-throughput sequencing 16S rRNA gene datasets generated from the bovine GI tract by multiple studies and may serve as a foundation for improving future microbial community research with cattle.
Collapse
Affiliation(s)
- Devin B Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C & E Trail, Lacombe, AB, Canada, T4L 1W1
| | - Katherine E Gzyl
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C & E Trail, Lacombe, AB, Canada, T4L 1W1
| |
Collapse
|
46
|
Ran T, Jiao P, AlZahal O, Xie X, Beauchemin KA, Niu D, Yang W. Fecal bacterial community of finishing beef steers fed ruminally protected and non-protected active dried yeast. J Anim Sci 2020; 98:skaa058. [PMID: 32068850 PMCID: PMC7105065 DOI: 10.1093/jas/skaa058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 02/17/2020] [Indexed: 12/11/2022] Open
Abstract
Our previous study suggested that supplementation of high-grain diets with ruminally protected and non-protected active dried yeast (ADY) may potentially reduce manure pathogen excretion by feedlot cattle. We hypothesized that feeding ruminally protected ADY might change the fecal bacterial community of finishing cattle. The objective of this study was to investigate the effects of feeding ruminally protected and non-protected ADY to finishing beef steers on their fecal bacterial community. Fresh fecal samples were collected on day 56 from 50 steers fed one of five treatments: 1) control (no monensin, tylosin, or ADY), 2) antibiotics (ANT, 330 mg monensin + 110 mg tylosin·steer-1d-1), 3) ADY (1.5 g·steer-1d-1), 4) encapsulated ADY (EDY; 3 g·steer-1d-1), and 5) a mixture of ADY and EDY (MDY; 1.5 g ADY + 3 g EDY·steer-1d-1). Bacterial DNA was extracted from fecal samples and sequenced using a MiSeq high-throughput sequencing platform. A total number of 2,128,772 high-quality V4 16S rRNA sequences from 50 fecal samples were analyzed, and 1,424 operational taxonomic units (OTU) were detected based on 97% nucleotide sequence identity among reads, with 769 OTU shared across the five treatments. Alpha diversity indices, including species observed, Chao estimate, abundance-based coverage estimator, Shannon, Simpson, and coverage, did not differ among treatments, and principal coordinate analysis revealed a high similarity among treatments without independent distribution. Bacteroidetes and Firmicutes were dominant phyla in the fecal bacterial community for all treatments, with a tendency (P < 0.10) for greater relative abundance of Bacteroidetes but lesser Firmicutes with ANT, EDY, and MDY compared with control steers. Prevotella was the dominant genus in all treatments and steers supplemented with ANT, EDY, and MDY had greater (P < 0.05) relative abundance of Prevotella than control steers, but lesser (P < 0.03) relative abundance of Oscillospira. No differences between ADY and control were observed for the aforementioned variables. Fecal starch contents were not different among treatments, but the relative abundance of Bacteroidetes, as well as Prevotella at genera level, tended (P < 0.06) to be positively correlated to fecal starch content. We conclude that supplementing ruminally protected or non-protected ADY or ANT had no effect on diversity and richness of fecal bacteria of finishing beef cattle, whereas feeding protected ADY or ANT to finishing beef steers altered the dominant fecal bacteria at phylum and genus levels. Therefore, supplementation of ruminally protected ADY may potentially improve intestinal health by stimulating the relative abundance of Prevotella.
Collapse
Affiliation(s)
- Tao Ran
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Canada
- Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
- College of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Peixin Jiao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | | | - Xiaolai Xie
- College of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Karen A Beauchemin
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Canada
| | - Dongyan Niu
- College of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Wenzhu Yang
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Canada
| |
Collapse
|
47
|
Distinct Polysaccharide Utilization Profiles of Human Intestinal Prevotella copri Isolates. Cell Host Microbe 2020; 26:680-690.e5. [PMID: 31726030 DOI: 10.1016/j.chom.2019.10.013] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 12/18/2022]
Abstract
Gut-dwelling Prevotella copri (P. copri), the most prevalent Prevotella species in the human gut, have been associated with diet and disease. However, our understanding of their diversity and function remains rudimentary because studies have been limited to 16S and metagenomic surveys and experiments using a single type strain. Here, we describe the genomic diversity of 83 P. copri isolates from 11 human donors. We demonstrate that genomically distinct isolates, which can be categorized into different P. copri complex clades, utilize defined sets of polysaccharides. These differences are exemplified by variations in susC genes involved in polysaccharide transport as well as polysaccharide utilization loci (PULs) that were predicted in part from genomic and metagenomic data. Functional validation of these PULs showed that P. copri isolates utilize distinct sets of polysaccharides from dietary plant, but not animal, sources. These findings reveal both genomic and functional differences in polysaccharide utilization across human intestinal P. copri strains.
Collapse
|
48
|
Fu Z, Han L, Zhang P, Mao H, Zhang H, Wang Y, Gao X, Liu E. Cistanche polysaccharides enhance echinacoside absorption in vivo and affect the gut microbiota. Int J Biol Macromol 2020; 149:732-740. [PMID: 31987946 DOI: 10.1016/j.ijbiomac.2020.01.216] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/30/2019] [Accepted: 01/22/2020] [Indexed: 01/08/2023]
Abstract
The polysaccharides and phenylethanoid glycosides from Cistanche deserticola have been demonstrated with various health benefits, however the interactive effect between these two kinds of compounds in vivo are not in detail known. The objective of this study was to investigate the synergistic actions of cistanche polysaccharides with phenylethanoid glycoside and the effects of polysaccharides on gut microbiota. Sprague-Dawley rats were fed with different kinds of cistanche polysaccharides for 20 days, on the last day, all rats were administered the echinacoside at 100 mg/kg. The results were compared mainly on the difference of pharmacokinetic parameters, gut microbiota composition, and short chain fatty acids contents. The results indicated that all the cistanche polysaccharides, including crude polysaccharide, high molecular weight polysaccharide and low molecular weight polysaccharide, could regulate the gut microbiota diversity, increase beneficial bacteria and particularly enhance the growth of Prevotella spp. as well as improve the production of short chain fatty acids and the absorption of echinacoside. By exploring the synergistic actions of polysaccharides with small molecules, these findings suggest that cistanche polysaccharides, particularly low molecular weight polysaccharides, could be used as a gut microbiota manipulator for health promotion.
Collapse
Affiliation(s)
- Zhifei Fu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Lifeng Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Peng Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Haoping Mao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Han Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Yuefei Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China.
| | - Erwei Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China.
| |
Collapse
|