1
|
Marzinelli EM, Thomas T, Vadillo Gonzalez S, Egan S, Steinberg PD. Seaweeds as holobionts: Current state, challenges, and potential applications. JOURNAL OF PHYCOLOGY 2024; 60:785-796. [PMID: 39047050 DOI: 10.1111/jpy.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
Seaweeds play a strong ecological and economical role along the world's coastlines, where they support industries (e.g., aquaculture, bioproducts) and essential ecosystem services (e.g., biodiversity, fisheries, carbon capture). Evidence from wild and cultured seaweeds suggests that microorganisms play crucial roles in their health and functioning, prompting the need for considering seaweeds and their microbiome as a coherent entity or "holobiont." Here we show that the number of studies investigating seaweed hosts and their microbiome have increased in the last two decades. This likely reflects the increase in the appreciation of the importance of microbiomes for eukaryotic hosts, improved molecular approaches used to characterize their interactions, and increasing interest in commercial use of seaweeds. However, although increasing, most studies of seaweed holobionts have focused on (i) a few seaweed species of ecological or commercial significance, (ii) interactions involving only bacteria, and (iii) descriptive rather than experimental approaches. The relatively few experimental studies have mostly focused on manipulating abiotic factors to examine responses of seaweeds and their microbiome. Of the few studies that directly manipulated microorganisms to investigate their effects on seaweeds, most were done in laboratory or aquaria. We emphasize the need to move beyond the descriptions of patterns to experimental approaches for understanding causation and mechanisms. We argue that such experimental approaches are necessary for a better understanding of seaweed holobionts, for management actions for wild and cultivated seaweeds, and to better integrate studies of seaweed holobionts with the broader fields of seaweed ecology and biology, which are strongly experimental.
Collapse
Affiliation(s)
- Ezequiel M Marzinelli
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sebastian Vadillo Gonzalez
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter D Steinberg
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Brunet M, Le Duff N, Rigaut-Jalabert F, Romac S, Barbeyron T, Thomas F. Seasonal dynamics of a glycan-degrading flavobacterial genus in a tidally mixed coastal temperate habitat. Environ Microbiol 2023; 25:3192-3206. [PMID: 37722696 DOI: 10.1111/1462-2920.16505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/03/2023] [Indexed: 09/20/2023]
Abstract
Coastal marine habitats constitute hotspots of primary productivity. In temperate regions, this is due both to massive phytoplankton blooms and dense colonisation by macroalgae that mostly store carbon as glycans, contributing substantially to local and global carbon sequestration. Because they control carbon and energy fluxes, algae-degrading microorganisms are crucial for coastal ecosystem functions. Environmental surveys revealed consistent seasonal dynamics of alga-associated bacterial assemblages, yet resolving what factors regulate the in situ abundance, growth rate and ecological functions of individual taxa remains a challenge. Here, we specifically investigated the seasonal dynamics of abundance and activity for a well-known alga-degrading marine flavobacterial genus in a tidally mixed coastal habitat of the Western English Channel. We show that members of the genus Zobellia are a stable, low-abundance component of healthy macroalgal microbiota and can also colonise particles in the water column. This genus undergoes recurring seasonal variations with higher abundances in winter, significantly associated to biotic and abiotic variables. Zobellia can become a dominant part of bacterial communities on decaying macroalgae, showing a strong activity and high estimated in situ growth rates. These results provide insights into the seasonal dynamics and environmental constraints driving natural populations of alga-degrading bacteria that influence coastal carbon cycling.
Collapse
Affiliation(s)
- Maéva Brunet
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Nolwen Le Duff
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | | | - Sarah Romac
- Sorbonne Université, CNRS, Adaptation et Diversité en Milieu Marin (AD2M)-UMR7144, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Tristan Barbeyron
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - François Thomas
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| |
Collapse
|
3
|
Barbeyron T, Le Duff N, Duchaud E, Thomas F. Zobellia alginiliquefaciens sp. nov., a novel member of the flavobacteria isolated from the epibiota of the brown alga Ericaria zosteroides (C. Agardh) Molinari & Guiry 2020. Int J Syst Evol Microbiol 2023; 73. [PMID: 37266991 DOI: 10.1099/ijsem.0.005924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
Strain LLG6346-3.1T, isolated from the thallus of the brown alga Ericaria zosteroides collected from the Mediterranean Sea near Bastia in Corsica, France, was characterised using a polyphasic method. Cells were Gram-stain-negative, strictly aerobic, non-flagellated, motile by gliding, rod-shaped and grew optimally at 30-33 °C, at pH 8-8.5 and with 4-5 % NaCl. LLG6346-3.1T used the seaweed polysaccharide alginic acid as a sole carbon source which was vigorously liquefied. The results of phylogenetic analyses indicated that the bacterium is affiliated to the genus Zobellia (family Flavobacteriaceae, class Flavobacteriia). LLG6346-3.1T exhibited 16S rRNA gene sequence similarity values of 98.6 and 98.3 % to the type strains of Zobellia russellii and Zobellia roscoffensis, respectively, and of 97.4-98.5 % to members of other species of the genus Zobellia. The DNA G+C content of LLG6346-3.1T was determined to be 38.3 mol%. Digital DNA-DNA hybridisation predictions by the average nucleotide identity (ANI) and genome to genome distance calculator (GGDC) methods between LLG6346-3.1T and other members of the genus Zobellia showed values of 76-88 % and below 37 %, respectively. The results of phenotypic, phylogenetic and genomic analyses indicate that LLG6346-3.1T is distinct from species of the genus Zobellia with validly published names and that it represents a novel species of the genus Zobellia, for which the name Zobellia alginiliquefaciens sp. nov. is proposed. The type strain is LLG6346-3.1T (= RCC7657T = LMG 32918T).
Collapse
Affiliation(s)
- Tristan Barbeyron
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, Brittany, France
| | - Nolwen Le Duff
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, Brittany, France
| | - Eric Duchaud
- INRAE VIM-UR0892 Molecular Immunology and Virology, research group of Infection and Immunity of Fish, Research Center of Jouy-en-Josas, F-78352 Jouy-en-Josas, Ile-de-France, France
| | - François Thomas
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, Brittany, France
| |
Collapse
|
4
|
Lima A, França A, Muzny CA, Taylor CM, Cerca N. DNA extraction leads to bias in bacterial quantification by qPCR. Appl Microbiol Biotechnol 2022; 106:7993-8006. [PMID: 36374332 PMCID: PMC10493044 DOI: 10.1007/s00253-022-12276-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022]
Abstract
Quantitative PCR (qPCR) has become a widely used technique for bacterial quantification. The affordability, ease of experimental design, reproducibility, and robustness of qPCR experiments contribute to its success. The establishment of guidelines for minimum information for publication of qPCR experiments, now more than 10 years ago, aimed to mitigate the publication of contradictory data. Unfortunately, there are still a significant number of recent research articles that do not consider the main pitfalls of qPCR for quantification of biological samples, which undoubtedly leads to biased experimental conclusions. qPCR experiments have two main issues that need to be properly tackled: those related to the extraction and purification of genomic DNA and those related to the thermal amplification process. This mini-review provides an updated literature survey that critically analyzes the following key aspects of bacterial quantification by qPCR: (i) the normalization of qPCR results by using exogenous controls, (ii) the construction of adequate calibration curves, and (iii) the determination of qPCR reaction efficiency. It is primarily focused on original papers published last year, where qPCR was applied to quantify bacterial species in different types of biological samples, including multi-species biofilms, human fluids, and water and soil samples. KEY POINTS: • qPCR is a widely used technique used for absolute bacterial quantification. • Recently published papers lack proper qPCR methodologies. • Not including proper qPCR controls significantly affect experimental conclusions.
Collapse
Affiliation(s)
- Angela Lima
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal
| | - Angela França
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal
| | - Christina A Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology, and Parasitology & Microbial Genomics Resource Group, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Nuno Cerca
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal.
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
5
|
Consuming fresh macroalgae induces specific catabolic pathways, stress reactions and Type IX secretion in marine flavobacterial pioneer degraders. THE ISME JOURNAL 2022; 16:2027-2039. [PMID: 35589967 PMCID: PMC9296495 DOI: 10.1038/s41396-022-01251-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 12/20/2022]
Abstract
Macroalgae represent huge amounts of biomass worldwide, largely recycled by marine heterotrophic bacteria. We investigated the strategies of bacteria within the flavobacterial genus Zobellia to initiate the degradation of whole algal tissues, which has received little attention compared to the degradation of isolated polysaccharides. Zobellia galactanivorans DsijT has the capacity to use fresh brown macroalgae as a sole carbon source and extensively degrades algal tissues via the secretion of extracellular enzymes, even in the absence of physical contact with the algae. Co-cultures experiments with the non-degrading strain Tenacibaculum aestuarii SMK-4T showed that Z. galactanivorans can act as a pioneer that initiates algal breakdown and shares public goods with other bacteria. A comparison of eight Zobellia strains, and strong transcriptomic shifts in Z. galactanivorans cells using fresh macroalgae vs. isolated polysaccharides, revealed potential overlooked traits of pioneer bacteria. Besides brown algal polysaccharide degradation, they notably include oxidative stress resistance proteins, type IX secretion system proteins and novel uncharacterized polysaccharide utilization loci. Overall, this work highlights the relevance of studying fresh macroalga degradation to fully understand the metabolic and ecological strategies of pioneer microbial degraders, key players in macroalgal biomass remineralization.
Collapse
|