1
|
Pamanji R, Ragothaman P, Koigoora S, Sivan G, Selvin J. Network analysis of toxic endpoints of fungicides in zebrafish. Toxicol Res (Camb) 2024; 13:tfae087. [PMID: 38845614 PMCID: PMC11150978 DOI: 10.1093/toxres/tfae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Zebrafish being the best animal model to study, every attempt has been made to decipher the toxic mechanism of every fungicide of usage and interest. It is important to understand the multiple targets of a toxicant to estimate the toxic potential in its totality. A total of 22 fungicides of different classes like amisulbrom, azoxystrobin, carbendazim, carboxin, chlorothalonil, difenoconazole, etridiazole, flusilazole, fluxapyroxad, hexaconazole, kresoxim methyl, mancozeb, myclobutanil, prochloraz, propiconazole, propineb, pyraclostrobin, tebuconazole, thiophanate-methyl, thiram, trifloxystrobin and ziram were reviewed and analyzed for their multiple explored targets in zebrafish. Toxic end points in zebrafish are highly informative when it comes to network analysis. They provide a window into the molecular and cellular pathways that are affected by a certain toxin. This can then be used to gain insights into the underlying mechanisms of toxicity and to draw conclusions on the potential of a particular compound to induce toxicity. This knowledge can then be used to inform decisions about drug development, environmental regulation, and other areas of research. In addition, the use of zebrafish toxic end points can also be used to better understand the effects of environmental pollutants on ecosystems. By understanding the pathways affected by a given toxin, researchers can determine how pollutants may interact with the environment and how this could lead to health or environmental impacts.
Collapse
Affiliation(s)
- Rajesh Pamanji
- Department of Microbiology, Pondicherry University, R.V. Nagar, Kalapet, Puducherry 605014, India
| | - Prathiviraj Ragothaman
- Department of Microbiology, Pondicherry University, R.V. Nagar, Kalapet, Puducherry 605014, India
| | - Srikanth Koigoora
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Guntur -Tenali Rd, Vadlamudi 522213, AP, India
| | - Gisha Sivan
- Division of Medical Research, SRM SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Potheri, SRM Nagar, Kattankulathur, Chennai 603203, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, R.V. Nagar, Kalapet, Puducherry 605014, India
| |
Collapse
|
2
|
Dong G, Wang N, Xu T, Liang J, Qiao R, Yin D, Lin S. Deep Learning-Enabled Morphometric Analysis for Toxicity Screening Using Zebrafish Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18127-18138. [PMID: 36971266 DOI: 10.1021/acs.est.3c00593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Toxicology studies heavily rely on morphometric analysis to detect abnormalities and diagnose disease processes. The emergence of ever-increasing varieties of environmental pollutants makes it difficult to perform timely assessments, especially using in vivo models. Herein, we propose a deep learning-based morphometric analysis (DLMA) to quantitatively identify eight abnormal phenotypes (head hemorrhage, jaw malformation, uninflated swim bladder, pericardial edema, yolk edema, bent spine, dead, unhatched) and eight vital organ features (eye, head, jaw, heart, yolk, swim bladder, body length, and curvature) of zebrafish larvae. A data set composed of 2532 bright-field micrographs of zebrafish larvae at 120 h post fertilization was generated from toxicity screening of three categories of chemicals, i.e., endocrine disruptors (perfluorooctanesulfonate and bisphenol A), heavy metals (CdCl2 and PbI2), and emerging organic pollutants (acetaminophen, 2,7-dibromocarbazole, 3-monobromocarbazo, 3,6-dibromocarbazole, and 1,3,6,8-tetrabromocarbazo). Two typical deep learning models, one-stage and two-stage models (TensorMask, Mask R-CNN), were trained to implement phenotypic feature classification and segmentation. The accuracy was statistically validated with a mean average precision >0.93 in unlabeled data sets and a mean accuracy >0.86 in previously published data sets. Such a method effectively enables subjective morphometric analysis of zebrafish larvae to achieve efficient hazard identification of both chemicals and environmental pollutants.
Collapse
Affiliation(s)
- Gongqing Dong
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Nan Wang
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Ting Xu
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Jingyu Liang
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Ruxia Qiao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Daqiang Yin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Sijie Lin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
3
|
Paganotto Leandro L, Vitória Takemura Mariano M, Kich Gomes K, Beatriz Dos Santos A, Sousa Dos Anjos J, Rodrigues de Carvalho N, Eugênio Medina Nunes M, Farina M, Posser T, Luis Franco J. Permissible concentration of mancozeb in Brazilian drinking water elicits oxidative stress and bioenergetic impairments in embryonic zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122013. [PMID: 37369298 DOI: 10.1016/j.envpol.2023.122013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Mancozeb (MZ) is widely used as a fungicide in Brazil due to its effectiveness in combating fungal infections in plantations. However, its toxicity to non-target organisms, including aquatic organisms, has been reported in the literature. Recently, Brazilian legislation was updated to allow a concentration of 8 μg/L of MZ in drinking water (Ordinance GM/MS nº 888, of May 4, 2021). However, the safety of this concentration for aquatic organisms has not yet been put to the test. To address this gap, we conducted a study using zebrafish (Danio rerio) embryos at 4 hpf exposed to MZ at the concentration allowed by law, as well as slightly higher sublethal concentrations (24, 72, and 180 μg/L), alongside a control group. We evaluated various morphophysiological markers of toxicity, including survival, spontaneous movements, heart rate, hatching rate, body axis distortion, total body length, total yolk sac area, and total eye area. Additionally, we measured biochemical biomarkers such as reactive oxygen species (ROS) levels, lipid peroxidation, non-protein thiols (NPSH), and mitochondrial bioenergetic parameters. Our results showed that the concentration of 8 μg/L, currently permitted in drinking water according to Brazilian legislation, increased ROS production levels and caused alterations in mitochondrial physiology. Among the markers assessed, mitochondrial bioenergetic function appeared to be the most sensitive indicator of MZ embryotoxicity, as a decrease in complex I activity was observed at concentrations of 8 and 180 μg/L. Furthermore, concentrations higher than 8 μg/L impaired morphophysiological markers. Based on these findings, we can infer that the concentration of MZ allowed in drinking water by Brazilian environmental legislation is not safe for aquatic organisms. Our study provides evidence that this fungicide is a potent embryotoxic agent, highlighting the potential risks associated with its exposure.
Collapse
Affiliation(s)
- Luana Paganotto Leandro
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil; Department of Molecular Biology and Biochemistry. Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Maria Vitória Takemura Mariano
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Karen Kich Gomes
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Ana Beatriz Dos Santos
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Jaciana Sousa Dos Anjos
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | | | - Mauro Eugênio Medina Nunes
- Department of Genetics and Exercise Metabolism. Graduate Program in Molecular Biology, Federal University of Sao Paulo, 1500 Sena Madureira St, São Paulo, SP, 04021-001, Brazil
| | - Marcelo Farina
- Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Thais Posser
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Jeferson Luis Franco
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil.
| |
Collapse
|
4
|
Mitovic N, Maksimovic S, Puflovic D, Kovacevic S, Lopicic S, Todorovic J, Spasic S, Dincic M, Ostojic JN. Cadmium significantly changes major morphometrical points and cardiovascular functional parameters during early development of zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103723. [PMID: 34391906 DOI: 10.1016/j.etap.2021.103723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/15/2021] [Accepted: 08/09/2021] [Indexed: 05/14/2023]
Abstract
Living organisms are commonly exposed to cadmium and other toxic metals. A vast body of research has shown the significant effects of these toxic metals on developmental processes. In order to study the role of toxic metals on early developmental stages of eukaryotes, we explored the effect of cadmium (Cd2+) contaminant on zebrafish. Thus, zebrafish embryos were exposed to 3 mg/L (16.7 μM) Cd2+ for 96 h and imaged every 24 h from the exposure onwards. Hatching rates of the eggs were determined at 72 h, followed by analyses at 96 h for: survival rate, morphometrical factors, and functional parameters of the cardiovascular system. Interestingly enough, significant hatching delays along with smaller cephalic region and some morphological abnormalities were observed in the treatment group. Moreover, substantial changes were noticed in the length of notochord and embryo, absorption of yolk sac with shorter extension, area of swimming bladder, as well as pericardium sac after Cd2+ treatment. Cadmium also caused significant abnormalities in heart physiology which could be the leading cause of mentioned morphological deformities. Herein, our results shine light on systematic acute embryological effects of cadmium in the early development of zebrafish for the first time.
Collapse
Affiliation(s)
- Nikola Mitovic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, Belgrade, Serbia.
| | - Stefan Maksimovic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Darko Puflovic
- Faculty of Electronic Engineering, University of Nis, Nis, Serbia
| | - Sanjin Kovacevic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Srdjan Lopicic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Jasna Todorovic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Svetolik Spasic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Marko Dincic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Jelena Nesovic Ostojic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
5
|
Ré A, Campos I, Puga J, Keizer JJ, Gonçalves FJM, Pereira JL, Abrantes N. Feeding inhibition following in-situ and laboratory exposure as an indicator of ecotoxic impacts of wildfires in affected waterbodies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 227:105587. [PMID: 32841885 DOI: 10.1016/j.aquatox.2020.105587] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Among the various environmental disturbances caused by wildfires, their impacts within burnt areas and on the downhill aquatic ecosystems has been receiving increased attention. Post-fire rainfalls and subsequent runoffs play an important role in transporting ash and soil to aquatic systems within the burnt areas. These runoffs can be a diffuse source of toxic substances such as metals. The present work aims at assessing the effects of ash-loaded runoff on feeding rates of three representative aquatic invertebrates (Daphnia magna, Corbicula fluminea and Atyaephyra desmarestii) and the mosquitofish, Gambusia holbrooki, through post-exposure feeding inhibition bioassays carried out in-situ and in the laboratory using water collected from the experimental field sites. Four sites were selected in a partially burnt basin for bioassay deployment and sample collection: one site upstream of the burnt area (RUS); three sites receiving runoff directly from the burnt area, one immediately downstream of the burnt area (RDS) and two in permanent tributary streams within the burnt area (BS1 and BS2). The in-situ exposure lasted four days and began following the first post-fire major rain events. At sites affected by the wildfire, post-exposure feeding rates for D. magna, A. desmarestii and G. holbrooki were lower, which is consistent with the highest levels of metals found at these sites compared to the unaffected site, although the individual concentrations of each metal were generally below corresponding ecological safety benchmarks. Thus, interactions between metals and/or between metals and other environmental parameters certainly played a role in modulating the ecotoxic effects of the runoffs; this was further supported by a Toxic Units Summation exercise. Even if direct causal links between the ecotoxicological effects observed in D. magna, A. desmarestii and G. holbrooki and the physicochemical parameters of the water samples could not be established, the results suggest an important role of major and trace elements in explaining post-exposure feeding rate variation.
Collapse
Affiliation(s)
- Ana Ré
- Department of Biology and CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal
| | - Isabel Campos
- Department of Environment and CESAM, University of Aveiro, Aveiro, Portugal
| | - João Puga
- Department of Environment and CESAM, University of Aveiro, Aveiro, Portugal
| | - Jan Jacob Keizer
- Department of Environment and CESAM, University of Aveiro, Aveiro, Portugal
| | - Fernando J M Gonçalves
- Department of Biology and CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal
| | - Joana Luísa Pereira
- Department of Biology and CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal.
| | - Nelson Abrantes
- Department of Environment and CESAM, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
6
|
Lee JY, Park S, Lim W, Song G. Orbencarb induces lethality and organ malformation in zebrafish embryos during development. Comp Biochem Physiol C Toxicol Pharmacol 2020; 233:108771. [PMID: 32335232 DOI: 10.1016/j.cbpc.2020.108771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/12/2020] [Accepted: 04/18/2020] [Indexed: 01/13/2023]
Abstract
Thiocarbamates are one of the components of pesticides that target weeds by inhibiting adenosine triphosphate (ATP) synthesis. Orbencarb, one of the isomeric thiocarbamates applied to wheat, maize, and soybean, has been found to have toxic effects on mammals and marine ecosystems. Although the toxicity ranges of orbencarb in different organisms are known, specific studies on the environmental contamination and harmful effects of orbencarb on non-target organisms are scarce. In this study, we observed that orbencarb induced embryotoxicity during zebrafish development as well as apoptosis and reactive oxygen species (ROS) production in the intestine. It was further observed that orbencarb decreased the viability of the embryos and simultaneously affected the heart rate and vessel formation. Orbencarb decreased the mRNA levels of ccnd1, ccne1, cdk2, and cdk6 and induced abnormal development of the eyes, brain, yolk sac, and spinal cord in zebrafish embryos. Orbencarb also hampered vasculogenesis in the zebrafish embryos by inhibiting the mRNA expression of flt1, flt4, kdr, and vegfc. Collectively, these results suggested that orbencarb is embryotoxic and disrupts the normal growth of zebrafish embryos by inducing the generation of ROS and hampering vasculogenesis.
Collapse
Affiliation(s)
- Jin-Young Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sunwoo Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
7
|
Garcês A, Pires I, Rodrigues P. Teratological effects of pesticides in vertebrates: a review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 55:75-89. [PMID: 31516070 DOI: 10.1080/03601234.2019.1660562] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the last decades, the use and misuse of pesticides in the agriculture have increased, having a severe impact on ecosystems and their fauna. Although the various effects of pesticides on biodiversity have been already documented in several studies, to our knowledge no consistent overview of the impact of pesticides in vertebrates, both terrestrial and aquatic, is available. In this review, we try to present a concise compilation of the teratogenic effects of pesticides on the different classes of vertebrates - mammals, birds, reptiles, amphibians and fish.
Collapse
Affiliation(s)
- Andreia Garcês
- CITAB - University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Isabel Pires
- Department of Veterinary Science, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- CECAV - University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Paula Rodrigues
- CECAV - University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
8
|
Cao F, Souders CL, Li P, Pang S, Liang X, Qiu L, Martyniuk CJ. Developmental neurotoxicity of maneb: Notochord defects, mitochondrial dysfunction and hypoactivity in zebrafish (Danio rerio) embryos and larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:227-237. [PMID: 30529917 DOI: 10.1016/j.ecoenv.2018.11.110] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/14/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Broad applications and exposure to the fungicide maneb can lead to toxicity in non-target organisms. Maneb is also associated with neurogenerative diseases such as Parkinson's disease (PD). The objectives of this study were to determine the acute toxicity of maneb to zebrafish by measuring mitochondrial bioenergetics, locomotor activity, and the expression of genes related to the oxidative damage response, as well as those related to dopamine signaling due to its association with PD. Zebrafish embryos at 6 h post-fertilization (hpf) were exposed to either solvent control (0.1% DMSO, v/v), or one dose of 0.1, 0.5, 1.0 and 10.0 µM maneb for 96 h. Maneb was moderately toxic to zebrafish embryos, and had a 96-h LC50 value of 4.29 μM (~ 1.14 mg/L). Maneb induced a dose-dependent increase in mortality, decreased hatching rate, and increased notochord deformity rate at both 1.0 and 10.0 µM after 72 and 96 h. Total body length was also significantly reduced with 1.0 µM maneb. A 50-60% decrease in mean basal oxygen consumption rate was also observed in embryos following a 24 hpf exposure to 10.0 µM maneb but oligomycin-induced ATP production and FCCP-induced maximum respiration remained unaffected. No change was detected in the expression levels of genes associated with oxidative stress (sod1 and sod2), nor those related to dopamine synthesis (th1), dopamine transporter (dat), dopamine receptors (drd1, drd2a, drd3, and drd4b). Thus, modifying the expression of these transcripts may not be a mechanism for maneb-induced developmental toxicity in zebrafish. To assess the potential for neurotoxicity, a dark photokinesis assay was conducted in larvae following 7 d exposure to 0.1, 0.5 and 1.0 μM maneb. Larvae exposed to 0.5 and 1.0 μM maneb showed signs related to hypoactivity, and this reduced activity is hypothesized to be associated with notochord defects as this deformity was prevalent at higher concentrations of maneb. Overall, these data demonstrate that maneb negatively affects embryonic development (i.e. notochord development), affects basal oxygen consumption rates of embryos, and induces hypoactivity in larval fish. This study improves understanding regarding the developmental neurotoxicity of the fungicide maneb to zebrafish.
Collapse
Affiliation(s)
- Fangjie Cao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Pengfei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sen Pang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Xuefang Liang
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Lihong Qiu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
9
|
Chen X, Fang M, Chernick M, Wang F, Yang J, Yu Y, Zheng N, Teraoka H, Nanba S, Hiraga T, Hinton DE, Dong W. The case for thyroid disruption in early life stage exposures to thiram in zebrafish (Danio rerio). Gen Comp Endocrinol 2019; 271:73-81. [PMID: 30408483 DOI: 10.1016/j.ygcen.2018.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/07/2018] [Accepted: 11/04/2018] [Indexed: 12/17/2022]
Abstract
Thiram, a pesticide in the dithiocarbamate chemical family, is widely used to prevent fungal disease in seeds and crops. Its off-site movement to surface waters occurs and may place aquatic organisms at potential harm. Zebrafish embryos were used for investigation of acute (1 h) thiram exposure (0.001-10 µM) at various developmental stages. Survival decreased at 1 µM and 10 µM and hatching was delayed at 0.1 µM and 1 µM. Notochord curvatures were seen at 0.1 and 1 μM thiram when exposure was initiated at 2 and at 10 hpf. Similar notochord curvatures followed exposure to the known TPO inhibitor, methimazole (MMI). Changes were absent in embryos exposed at later stages, i.e., 12 hpf. In embryos exposed to 0.1 or 1 μM at 10 hpf, levels of the thyroid enzyme, Deiodinase 3, increased by 12 hpf. Thyroid peroxide (TPO), important in T4 synthesis, decreased by 48 hpf in embryos exposed to 1 µM at 10 hpf. Thiram toxicity was stage-dependent and early life stage exposure may be responsible for adverse effects seen later. These effects may be due to impacts on the thyroid via regulation of specific thyroid genes including TPO and Deiodinase 3.
Collapse
Affiliation(s)
- Xing Chen
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Mingliang Fang
- Nicholas School of the Environment, Duke University, Durham, NC 27705, USA; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham, NC 27705, USA
| | - Feng Wang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Jingfeng Yang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Yongli Yu
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Na Zheng
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin 130012, China
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Satomi Nanba
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Takeo Hiraga
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - David E Hinton
- Nicholas School of the Environment, Duke University, Durham, NC 27705, USA.
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China; Nicholas School of the Environment, Duke University, Durham, NC 27705, USA.
| |
Collapse
|
10
|
Mochida K, Ito K, Ito M, Hano T, Ohkubo N. Toxicity of the biocide polycarbamate, used for aquaculture nets, to some marine fish species. Comp Biochem Physiol C Toxicol Pharmacol 2018; 214:61-67. [PMID: 30201584 DOI: 10.1016/j.cbpc.2018.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 01/05/2023]
Abstract
We investigated toxic effects of the antifouling biocide polycarbamate (PC) on marine fish by conducting acute, early-life stage toxicity (ELS), and embryo toxicity tests. Mummichog (Fundulus heteroclitus) 96-h LC50 values for hatched larvae (body weight about 2.0 mg) and juveniles (660 ± 36 mg) were about 12 and 630 μg/L, respectively. The ELS test using mummichog embryos yielded a lowest-observed-effect concentration of 3.9 μg/L and a no-observed-effect concentration of 2.1 μg/L with growth as the most sensitive endpoint. The embryo toxicity test for spotted halibut (Verasper variegatus) revealed a 10-d EC50 of 8.1 μg/L with abnormality as an endpoint. During the ELS and embryo toxicity tests, morphological abnormalities (notochord undulation) were induced in the embryos. Biochemical and gene-expression analysis suggest that PC-induced morphological abnormalities involve disruption of lysyl oxidase-mediated collagen fiber organization, essential for notochord formation, and inhibition of gene expression related to notochord formation.
Collapse
Affiliation(s)
- Kazuhiko Mochida
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan.
| | - Katsutoshi Ito
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Mana Ito
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Takeshi Hano
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Nobuyuki Ohkubo
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| |
Collapse
|
11
|
Zhang R, Wang X, Zhang X, Zhang J, Zhang X, Shi X, Crump D, Letcher RJ, Giesy JP, Liu C. Down-Regulation of hspb9 and hspb11 Contributes to Wavy Notochord in Zebrafish Embryos Following Exposure to Polychlorinated Diphenylsulfides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12829-12840. [PMID: 30335980 DOI: 10.1021/acs.est.8b04487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It is hypothesized that key genes, other than ahr2, are present and associated with the development of a unique type of notochord malformation known as wavy notochord in early life stages of zebrafish following exposure to polychlorinated diphenylsulfides (PCDPSs). To investigate the potential mechanism(s), time-dependent developmental morphologies of zebrafish embryos following exposure to 2500 nM 2,4,4',5-tetra-CDPS, 2,2',4-tri-CDPS or 4,4'-di-CDPS were observed to determine the developmental time point when notochord twists began to occur (i.e., 21 h-postfertilization (hpf)). Simultaneously, morphometric measurements suggested that PCDPS exposure did not affect notochord growth at 21 or 120 hpf; however, elongation of the body axis was significantly inhibited at 120 hpf. Transcriptome analysis revealed that the retardation of body growth was potentially related with dysregulation of transcripts predominantly associated with the insulin-associated Irs-Akt-FoxO cascade. Moreover, knockdown and gain-of-function experiments in vivo on codifferentially expressed genes demonstrated that reduced expression of hspb9 and hspb11 contributed to the occurrence of wavy notochord. The results of this study strongly support the hypothesis that the notochord kinks and twists are triggered by the down-regulation of hspb9 and hspb11, and intensified by body growth retardation along with normal notochord length in PCDPS-exposed zebrafish embryos.
Collapse
Affiliation(s)
- Rui Zhang
- School of Resources and Environment , University of Jinan , Jinan 250022 , P. R. China
| | - Xiaoxiang Wang
- State Key Laboratory of Pollution Control and Resources Reuse , School of the Environment, Nanjing University , Nanjing 210023 , P. R. China
- Association of Chinese Chemists and Chemical Engineers in Germany , Limburgerhof 67117 , Germany
| | - Xuesheng Zhang
- School of Resources and Environmental Engineering , Anhui University , Hefei 230601 , P. R. China
| | - Junjiang Zhang
- State Key Laboratory of Pollution Control and Resources Reuse , School of the Environment, Nanjing University , Nanjing 210023 , P. R. China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse , School of the Environment, Nanjing University , Nanjing 210023 , P. R. China
| | - Xiao Shi
- Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Nanfang Hospital , Southern Medical University , Guangzhou 510515 , P. R. China
| | - Doug Crump
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre , Carleton University , 1125 Colonel By Drive , Ottawa , K1A 0H3 , Canada
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre , Carleton University , 1125 Colonel By Drive , Ottawa , K1A 0H3 , Canada
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B3 , Canada
| | - Chunsheng Liu
- College of Fisheries , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| |
Collapse
|
12
|
Haggard DE, Noyes PD, Waters KM, Tanguay RL. Transcriptomic and phenotypic profiling in developing zebrafish exposed to thyroid hormone receptor agonists. Reprod Toxicol 2018; 77:80-93. [PMID: 29458080 PMCID: PMC5878140 DOI: 10.1016/j.reprotox.2018.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/15/2018] [Accepted: 02/13/2018] [Indexed: 02/08/2023]
Abstract
There continues to be a need to develop in vivo high-throughput screening (HTS) and computational methods to screen chemicals for interaction with the estrogen, androgen, and thyroid pathways and as complements to in vitro HTS assays. This study explored the utility of an embryonic zebrafish HTS approach to identify and classify endocrine bioactivity using phenotypically-anchored transcriptome profiling. Transcriptome analysis was conducted on zebrafish embryos exposed to 25 estrogen-, androgen-, or thyroid-active chemicals at concentrations that elicited adverse malformations or mortality at 120 h post-fertilization in 80% of animals exposed. Analysis of the top 1000 significant differentially expressed transcripts and developmental toxicity profiles across all treatments identified a unique transcriptional and phenotypic signature for thyroid hormone receptor agonists. This unique signature has the potential to be used as a tiered in vivo HTS and may aid in identifying chemicals that interact with the thyroid hormone receptor.
Collapse
Affiliation(s)
- Derik E Haggard
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Pamela D Noyes
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States; Current: National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, United States
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
13
|
Lin YR, Peng KC, Chan MH, Peng HL, Liu SY. Effect of Pachybasin on General Toxicity and Developmental Toxicity in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10489-10494. [PMID: 29111710 DOI: 10.1021/acs.jafc.7b03879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To document the safety of pachybasin, a secondary metabolite of Trichoderma harzianum, for use as a bioagricultural agent, it was subjected to general toxicological testing in mice and developmental toxicity in zebrafish. With either 5 or 20 mg kg-1 pachybasin i.p. injection, mice behavioral responses such as motor coordination, spontaneous locomotor activity, or nociceptive pain were not influenced. In long-term effect (daily injection for 14 days), the physiological, hematological, liver, and kidney functions were not altered either. Evidence for the developmental toxicity of pachybasin (10-100 μM) in 72-h exposure period was shown in zebrafish larvae, based on developmental retardation, impairment of chorion, and increase of mortality. In summary, there are no significant general toxicities presented in the pachybasin-treated adult male mice. However, the embryo-toxicity in aquatic biota should be taken into consideration during bioagricultural agent application.
Collapse
Affiliation(s)
- Yi-Ruu Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University , Hualien 97401, Taiwan
| | - Kou-Cheng Peng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University , Hualien 97401, Taiwan
- Faculty of Sciences and Humanities, SUNY Korea , Incheon 21985, Korea
| | - Ming-Huan Chan
- Institute of Neuroscience, National Chengchi University , Taipei 11605, Taiwan
| | - Huan-Lin Peng
- Department of Molecular Biotechnology, Da-Yeh University , Changhua 51591, Taiwan
| | - Shu-Ying Liu
- Department of Molecular Biotechnology, Da-Yeh University , Changhua 51591, Taiwan
| |
Collapse
|
14
|
Hano T, Ohkubo N, Mochida K. A hepatic metabolomics-based diagnostic approach to assess lethal toxicity of dithiocarbamate fungicide polycarbamate in three marine fish species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 138:64-70. [PMID: 28011422 DOI: 10.1016/j.ecoenv.2016.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/05/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023]
Abstract
The present study was performed to evaluate the toxic effect of the dithiocarbamate fungicide polycarbamate (PC) on the hepatic metabolic profiles of three marine fish species, red sea bream (Pagrus major), spotted halibut (Verasper variegatus), and marbled flounder (Pleuronectes yokohamae). First, juvenile fish were exposed to graded concentrations of PC for 96h; the 96-h LC50 values obtained were 22-29, 239-553, and 301-364µgL-1 for red sea bream, spotted halibut, and marbled flounder, respectively, indicating that red sea bream possessed higher sensitivity to PC than the two benthic species. Second, the fish were exposed to lethal-equivalent concentration (H group) or sub-lethal (one-tenth of the H group concentrations; L group) for 24 and 96h and gas-chromatography based metabolomics approach was employed to explore the crucial biomarker metabolite associated with lethal toxicity. Of the 53 metabolites identified, only reduced glutathione (GSH) was consistently elevated in the H group for the three fish species at 96h. The calculated cut-off value of GSH (mM) based on receiver operating curve analysis between H group and the other treatment groups (control, solvent control, and L group) was obtained at 0.56mM, which allowed to distinguish between the groups with high confidence for the three fish species. These results are the first to demonstrate the potential of using GSH as a possible biomarker metabolite and its usefulness of threshold cut-off value for diagnosing life-threatening health conditions of fish.
Collapse
Affiliation(s)
- Takeshi Hano
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan.
| | - Nobuyuki Ohkubo
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan.
| | - Kazuhiko Mochida
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan.
| |
Collapse
|
15
|
Lulla A, Barnhill L, Bitan G, Ivanova MI, Nguyen B, O’Donnell K, Stahl MC, Yamashiro C, Klärner FG, Schrader T, Sagasti A, Bronstein JM. Neurotoxicity of the Parkinson Disease-Associated Pesticide Ziram Is Synuclein-Dependent in Zebrafish Embryos. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1766-1775. [PMID: 27301718 PMCID: PMC5089875 DOI: 10.1289/ehp141] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 02/21/2016] [Accepted: 05/12/2016] [Indexed: 05/29/2023]
Abstract
BACKGROUND Exposure to the commonly used dithiocarbamate (DTC) pesticides is associated with an increased risk of developing Parkinson disease (PD), although the mechanisms by which they exert their toxicity are not completely understood. OBJECTIVE We studied the mechanisms of ziram's (a DTC fungicide) neurotoxicity in vivo. METHODS Zebrafish (ZF) embryos were utilized to determine ziram's effects on behavior, neuronal toxicity, and the role of synuclein in its toxicity. RESULTS Nanomolar-range concentrations of ziram caused selective loss of dopaminergic (DA) neurons and impaired swimming behavior. Because ziram increases α-synuclein (α-syn) concentrations in rat primary neuronal cultures, we investigated the effect of ziram on ZF γ-synuclein 1 (γ1). ZF express 3 synuclein isoforms, and ZF γ1 appears to be the closest functional homologue to α-syn. We found that recombinant ZF γ1 formed fibrils in vitro, and overexpression of ZF γ1 in ZF embryos led to the formation of neuronal aggregates and neurotoxicity in a manner similar to that of α-syn. Importantly, knockdown of ZF γ1 with morpholinos and disruption of oligomers with the molecular tweezer CLR01 prevented ziram's DA toxicity. CONCLUSIONS These data show that ziram is selectively toxic to DA neurons in vivo, and this toxicity is synuclein-dependent. These findings have important implications for understanding the mechanisms by which pesticides may cause PD. Citation: Lulla A, Barnhill L, Bitan G, Ivanova MI, Nguyen B, O'Donnell K, Stahl MC, Yamashiro C, Klärner FG, Schrader T, Sagasti A, Bronstein JM. 2016. Neurotoxicity of the Parkinson disease-associated pesticide ziram is synuclein-dependent in zebrafish embryos. Environ Health Perspect 124:1766-1775; http://dx.doi.org/10.1289/EHP141.
Collapse
Affiliation(s)
- Aaron Lulla
- Department of Neurology, University of Los Angeles (UCLA), Los Angeles, California, USA
| | - Lisa Barnhill
- Department of Neurology, University of Los Angeles (UCLA), Los Angeles, California, USA
| | - Gal Bitan
- Department of Neurology, University of Los Angeles (UCLA), Los Angeles, California, USA
- Brain Research Institute, and
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Magdalena I. Ivanova
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California, USA
- UCLA-DOE Institute, UCLA, Los Angeles, California, USA
| | - Binh Nguyen
- Department of Neurology, University of Los Angeles (UCLA), Los Angeles, California, USA
| | - Kelley O’Donnell
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, California, USA
| | - Mark C. Stahl
- Department of Neurology, University of Los Angeles (UCLA), Los Angeles, California, USA
| | - Chase Yamashiro
- Department of Neurology, University of Los Angeles (UCLA), Los Angeles, California, USA
| | | | - Thomas Schrader
- Institute of Organic Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Alvaro Sagasti
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, California, USA
| | - Jeff M. Bronstein
- Department of Neurology, University of Los Angeles (UCLA), Los Angeles, California, USA
- Brain Research Institute, and
- Parkinson’s Disease Research, Education, and Clinical Center, Greater Los Angeles Veterans Affairs Medical Center, Los Angeles, California, USA
| |
Collapse
|
16
|
Kinch CD, Kurrasch DM, Habibi HR. Adverse morphological development in embryonic zebrafish exposed to environmental concentrations of contaminants individually and in mixture. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:286-98. [PMID: 27107150 DOI: 10.1016/j.aquatox.2016.03.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 05/07/2023]
Abstract
Exposure to environmental contaminants has been linked to developmental and reproductive abnormalities leading to infertility, spontaneous abortion, reduced number of offspring, and metabolic disorders. In addition, there is evidence linking environmental contaminants and endocrine disruption to abnormal developmental rate, defects in heart and eye morphology, and alterations in behavior. Notably, these effects could not be explained by interaction with a single hormone receptor. Here, using a whole-organism approach, we investigated morphological changes to developing zebrafish caused by exposure to a number of environmental contaminants, including bisphenol A (BPA), di(2-ethylhexyl)phthalate (DEHP), nonylphenol, and fucosterol at concentrations measured in a local water body (Oldman River, AB), individually and in mixture. Exposure to nanomolar contaminant concentrations resulted in abnormal morphological development, including changes to body length, pericardia (heart), and the head. We also characterize the spatiotemporal expression profiles of estrogen, androgen, and thyroid hormone receptors to demonstrate that localization of these receptors might be mediating contaminant effects on development. Finally, we examined the effects of contaminants singly and in mixture. Combined, our results support the hypothesis that adverse effects of contaminants are not mediated by single hormone receptor signaling, and adversity of contaminants in mixture could not be predicted by simple additive effect of contaminants. The findings provide a framework for better understanding of developmental toxicity of environmental contaminants in zebrafish and other vertebrate species.
Collapse
Affiliation(s)
- Cassandra D Kinch
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada; Department of Medical Genetics, Cummings School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Heritage Medical Research Building, 3330 Hospital Dr. NW, Calgary, Alberta, T2N 4N1, Canada.
| | - Deborah M Kurrasch
- Department of Medical Genetics, Cummings School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Heritage Medical Research Building, 3330 Hospital Dr. NW, Calgary, Alberta, T2N 4N1, Canada.
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
17
|
Almond KM, Trombetta LD. The effects of copper pyrithione, an antifouling agent, on developing zebrafish embryos. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:389-398. [PMID: 26686506 DOI: 10.1007/s10646-015-1597-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
A substitute for the organotins has been the use of metal pyrithiones, principally zinc and copper (CuPT) as antifouling agents. Zebrafish, Danio rerio, embryos were exposed after fertilization to increasing concentrations of CuPT (2, 4, 8, 12, 16, 32 and 64 μg/L) for 24 h. Morphological abnormalities at 30, 96 and 120 hours post fertilization (hpf) were recorded. Abnormalities at concentrations of 12 μg/L and higher were observed. Notochords became severely twisted as concentrations increased. These distortions of the notochord originated in the tail at the lower concentrations and proceeded rostrally with increasing dose. Edema was observed in the cardiac and yolk sac regions at the 12 and 16 μg/L CuPT concentrations. Light microscopy showed disorganization of muscle fibers, disruption and distortion of the transverse myoseptum and vacuolization of the myocyte. Hatching was measured every 12 h for 5 days following the 24 h exposure. Hatching decreased in a dose dependent manner. At 120 hpf, 47 % of the 64 μg/L CuPT treated embryos hatched. Inductively coupled plasma atomic absorbance spectrophotometry (ICPAAS) revealed copper bioaccumulation in whole embryo tissue and was significantly elevated in 32 and 64 μg/L CuPT treatment groups as compared to controls. Lipid peroxidation end products were significantly increased in animals exposed to 32 and 64 μg/L of CuPT. These data demonstrate that oxidative stress may play a role in the toxicity. The abnormalities and deformities observed in fish larvae would significantly decrease survival in polluted aqua-systems and question the use of this product as an antifouling agent.
Collapse
|
18
|
Hano T, Ito K, Mochida K, Ohkubo N, Kono K, Onduka T, Ito M, Ichihashi H, Fujii K, Tanaka H. Primary risk assessment of dimethyldithiocarbamate, a dithiocarbamate fungicide metabolite, based on their probabilistic concentrations in a coastal environment. CHEMOSPHERE 2015; 131:225-231. [PMID: 25563163 DOI: 10.1016/j.chemosphere.2014.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 11/28/2014] [Accepted: 12/02/2014] [Indexed: 06/04/2023]
Abstract
The primary ecological risk of dimethyldithiocarbamate (DMDC), a dithiocarbamate fungicide (DTC) metabolite, was evaluated based on their probabilistic environmental concentration distributions (ECDs) in the coastal environment, Hiroshima Bay, Japan. And their behavior and temporal trends was further considered. This is the first report of the identification of DMDC from environmental seawater and sediment samples. DMDC concentrations in bottom seawater were substantially higher than those in surface seawater, which are associated with the leachability from sediments in bottom seawaters, and with photodegradation in surface seawaters. Furthermore, seasonal risks are dominated by higher concentrations from April to June, indicating temporal variation in the risk to exposed species. Hierarchical Bayesian analysis offered DMDC ECD medians and range (5th to 95th percentiles) of 0.85 ng L(-1) (0.029, 22), 12 ng L(-1) (3.2, 48) and 110 ng kg dry(-1) (9.5, 1200) in surface seawater, bottom seawater and sediment, respectively. Considering that DMDC and DTCs have similar toxicological potential to aquatic organisms, the occurrence of the compound in water is likely to be of biological relevance. In summary, this work provides the first demonstration that the ecological risk of DMDC and its derived DTCs in Hiroshima Bay is relatively high, and that DTCs should be a high priority for future research on marine contamination, especially in bottom seawaters.
Collapse
Affiliation(s)
- Takeshi Hano
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan.
| | - Katsutoshi Ito
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Kazuhiko Mochida
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Nobuyuki Ohkubo
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Kumiko Kono
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Toshimitsu Onduka
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Mana Ito
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Hideki Ichihashi
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Kazunori Fujii
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Hiroyuki Tanaka
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| |
Collapse
|
19
|
Truong L, Reif DM, St Mary L, Geier MC, Truong HD, Tanguay RL. Multidimensional in vivo hazard assessment using zebrafish. Toxicol Sci 2013; 137:212-33. [PMID: 24136191 DOI: 10.1093/toxsci/kft235] [Citation(s) in RCA: 247] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There are tens of thousands of man-made chemicals in the environment; the inherent safety of most of these chemicals is not known. Relevant biological platforms and new computational tools are needed to prioritize testing of chemicals with limited human health hazard information. We describe an experimental design for high-throughput characterization of multidimensional in vivo effects with the power to evaluate trends relating to commonly cited chemical predictors. We evaluated all 1060 unique U.S. EPA ToxCast phase 1 and 2 compounds using the embryonic zebrafish and found that 487 induced significant adverse biological responses. The utilization of 18 simultaneously measured endpoints means that the entire system serves as a robust biological sensor for chemical hazard. The experimental design enabled us to describe global patterns of variation across tested compounds, evaluate the concordance of the available in vitro and in vivo phase 1 data with this study, highlight specific mechanisms/value-added/novel biology related to notochord development, and demonstrate that the developmental zebrafish detects adverse responses that would be missed by less comprehensive testing strategies.
Collapse
Affiliation(s)
- Lisa Truong
- * Department of Environmental and Molecular Toxicology, the Sinnhuber Aquatic Research Laboratory and the Environmental Health Sciences Center at Oregon State University, Corvallis, Oregon 97333
| | | | | | | | | | | |
Collapse
|
20
|
Abramsson A, Kettunen P, Banote RK, Lott E, Li M, Arner A, Zetterberg H. The zebrafish amyloid precursor protein-b is required for motor neuron guidance and synapse formation. Dev Biol 2013; 381:377-88. [PMID: 23850871 DOI: 10.1016/j.ydbio.2013.06.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 11/26/2022]
Abstract
The amyloid precursor protein (APP) is a transmembrane protein mostly recognized for its association with Alzheimer's disease. The physiological function of APP is still not completely understood much because of the redundancy between genes in the APP family. In this study we have used zebrafish to study the physiological function of the zebrafish APP homologue, appb, during development. We show that appb is expressed in post-mitotic neurons in the spinal cord. Knockdown of appb by 50-60% results in a behavioral phenotype with increased spontaneous coiling and prolonged touch-induced activity. The spinal cord motor neurons in these embryos show defective formation and axonal outgrowth patterning. Reduction in Appb also results in patterning defects and changed density of pre- and post-synapses in the neuromuscular junctions. Together, our data show that development of functional locomotion in zebrafish depends on a critical role of Appb in the patterning of motor neurons and neuromuscular junctions.
Collapse
Affiliation(s)
- Alexandra Abramsson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, S-41345 Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
21
|
Cartilage and bone malformations in the head of zebrafish (Danio rerio) embryos following exposure to disulfiram and acetic acid hydrazide. Toxicol Appl Pharmacol 2013; 268:221-31. [DOI: 10.1016/j.taap.2013.01.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 01/18/2013] [Accepted: 01/20/2013] [Indexed: 11/17/2022]
|
22
|
Meyer A, Strajhar P, Murer C, Da Cunha T, Odermatt A. Species-specific differences in the inhibition of human and zebrafish 11β-hydroxysteroid dehydrogenase 2 by thiram and organotins. Toxicology 2012; 301:72-8. [PMID: 22796344 DOI: 10.1016/j.tox.2012.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/30/2012] [Accepted: 07/04/2012] [Indexed: 11/26/2022]
Abstract
Dithiocarbamates and organotins can inhibit enzymes by interacting with functionally essential sulfhydryl groups. Both classes of chemicals were shown to inhibit human 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2), which converts active cortisol into inactive cortisone and has a role in renal and intestinal electrolyte regulation and in the feto-placental barrier to maternal glucocorticoids. In fish, 11β-HSD2 has a dual role by inactivating glucocorticoids and generating the major androgen 11-ketotestosterone. Inhibition of this enzyme may enhance glucocorticoid and diminish androgen effects in fish. Here, we characterized 11β-HSD2 activity of the model species zebrafish. A comparison with human and mouse 11β-HSD2 revealed species-specific substrate preference. Unexpectedly, assessment of the effects of thiram and several organotins on the activity of zebrafish 11β-HSD2 showed weak inhibition by thiram and no inhibition by any of the organotins tested. Sequence comparison revealed the presence of an alanine at position 253 on zebrafish 11β-HSD2, corresponding to cysteine-264 in the substrate-binding pocket of the human enzyme. Substitution of alanine-253 by cysteine resulted in a more than 10-fold increased sensitivity of zebrafish 11β-HSD2 to thiram. Mutating cysteine-264 on human 11β-HSD2 to serine resulted in 100-fold lower inhibitory activity. Our results demonstrate significant species differences in the sensitivity of human and zebrafish 11β-HSD2 to inhibition by thiram and organotins. Site-directed mutagenesis revealed a key role of cysteine-264 in the substrate-binding pocket of human 11β-HSD2 for sensitivity to sulfhydryl modifying agents.
Collapse
Affiliation(s)
- Arne Meyer
- Swiss Center for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
23
|
Chandrasekar G, Arner A, Kitambi SS, Dahlman-Wright K, Lendahl MA. Developmental toxicity of the environmental pollutant 4-nonylphenol in zebrafish. Neurotoxicol Teratol 2011; 33:752-64. [PMID: 22002180 DOI: 10.1016/j.ntt.2011.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 09/23/2011] [Accepted: 09/29/2011] [Indexed: 10/17/2022]
Abstract
4-Nonylphenol (4-NP), an estrogen mimicking compound is produced by biodegradation of alkylethoxylates. It is well established that 4-NP can affect the development of aquatic animals by disrupting the endocrine signals. Here we show for the first time in zebrafish that 4-NP does not only target the neuroendocrine system but also the notochord and the muscle. The notochord malformation was first evident as distortions at 24hourspostfertilization (hpf) which within 24h appeared as kinks and herniations. The notochord phenotype was accompanied by reduced motility and impaired swimming behavior. Whole-mount in situ hybridization using chordamesoderm markers and electron microscopic analysis showed failure in the notochord differentiation and disruption of the perinotochordal basement membrane. Late larval stages of 4-NP treated embryos displayed abnormal mineralization, vertebral curvature, fusion of vertebral bodies and abnormal extension of haemal arches. The muscle structure and the maximal active force in isolated muscle preparations were similar between 4-NP exposed and of control embryos, suggesting that 4-NP did not induce major changes in striated muscle function. However, repeated electrical stimulation (>40Hz) of the 4-NP exposed larvae revealed an impaired relaxation between stimuli, possibly reflecting an alteration in the relaxant mechanisms (e.g. in cellular Ca(2+) removal) which could explain the abnormal swimming pattern exhibited by 4-NP exposed larvae. Additionally, we demonstrate that the expression levels of the stress hormone, corticotropin releasing hormonewere elevated in the brain following 4-NP treatment. We also observed a significant decrease in the transcript levels of luteinizing hormone b at early larval stages. Collectively, our results show that 4-NP is able to disrupt the notochord morphogenesis, muscle function and the neuroendocrine system. These data suggest that 4-NP enduringly affects the embryonic development in zebrafish and that this compound might exert these deleterious effects through diverse signaling pathways.
Collapse
Affiliation(s)
- Gayathri Chandrasekar
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge, Sweden
| | | | | | | | | |
Collapse
|
24
|
McCollum CW, Ducharme NA, Bondesson M, Gustafsson JA. Developmental toxicity screening in zebrafish. ACTA ACUST UNITED AC 2011; 93:67-114. [DOI: 10.1002/bdrc.20210] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Pašková V, Hilscherová K, Bláha L. Teratogenicity and embryotoxicity in aquatic organisms after pesticide exposure and the role of oxidative stress. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011; 211:25-61. [PMID: 21287390 DOI: 10.1007/978-1-4419-8011-3_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Many pesticides have been documented to induce embryotoxicity and teratogenicity in non-target aquatic biota such a fish, amphibians and invertebrates. Our review of the existing literature shows that a broad range of pesticides, representing several different chemical classes, induce variable toxic effects in aquatic species. The effects observed include diverse morphological malformations as well as physiological and behavioral effects. When development malformations occur, the myoskeletal system is among the most highly sensitive of targets. Myoskeletal effects that have been documented to result from pesticides were also known to interfere with the development of organ systems including the eyes or the heart and are also known to often cause lethal or sublethal edema in exposed organisms. The Physiological, behavioral, and population endpoints affected by pesticides include low or delayed hatching, growth suppression, as well as embryonal or larval mortality. The risks associated with pesticide exposure increase particularly during the spring. This is the period of time in which major pepticide applications take place, and this period unfortunately also coincides with many sensitive reproductive events such as spawning, egg laying, and early development of many aquatic organisms. Only few experimental studies with pesticides have directly linked developmental toxicity with key oxidative stress endpoints, such as lipid peroxidation, oxidative DNA damage, or modulation of antioxidant mechanisms. On the other hand, it has been documented in many reports that pesticide-related oxidative damage occurs in exposed adult fish, amphibians, and invertebrates. Moreover, the contribution of oxidative stress to the toxicity of pesticides has been emphasized in several recent review papers that have treated this topic. In conclusion, the available experimental data, augmented by several indirect lines of evidence, provide support to the concept that oxidative stress is a highly important mechanism in pesticide-induce reproductive or developmental toxicity. Other stressors may also act by oxidative mechanisms. This notwithstanding, there is much yet to learn about the details of this phenomenon and further research is needed to more fully elucidate the effects that pesticides have and the environmental risks they pose in the early development of aquatic organisms.
Collapse
Affiliation(s)
- Veronika Pašková
- Faculty of Science, Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice, Brno, Czech Republic.
| | | | | |
Collapse
|
26
|
van Boxtel AL, Pieterse B, Cenijn P, Kamstra JH, Brouwer A, van Wieringen W, de Boer J, Legler J. Dithiocarbamates induce craniofacial abnormalities and downregulate sox9a during zebrafish development. Toxicol Sci 2010; 117:209-17. [PMID: 20530235 DOI: 10.1093/toxsci/kfq169] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dithiocarbamates (DTCs) have a wide variety of applications in diverse fields ranging from agriculture to medicine. DTCs are teratogenic to vertebrates but the mechanisms by which they exert these effects are poorly understood. Here, we show that low nanomolar exposure to three DTCs, tetraethylthiuram (thiram), tetramethylthiuram (disulfiram), and sodium metam (metam), leads to craniofacial abnormalities in developing zebrafish embryos that are reminiscent of DTC-induced abnormalities found in higher vertebrates. In order to better understand the molecular events underlying DTC teratogenesis, we exposed embryonic zebrafish (PAC2) cells to thiram and disulfiram and measured changes in gene expression with microarrays. We found differential expression of 166 genes that were specific for exposure to DTCs and identified a network of genes related to connective tissue development and function. Additionally, we found eight downregulated genes related to transforming growth factor beta-1 (TGF-beta1) signaling, including an essential transcription factor for zebrafish craniofacial development, SRY-box-containing gene 9a (sox9a). Finally, we show that sox9a expression is perturbed in the ceratobranchial arches of DTC-exposed zebrafish, suggesting that this is an important event in the development of DTC-induced craniofacial abnormalities. Together, we provide evidence for a novel teratogenic endpoint and a molecular basis for a better understanding of DTC-induced teratogenesis in vertebrates.
Collapse
|
27
|
van Boxtel AL, Kamstra JH, Fluitsma DM, Legler J. Dithiocarbamates are teratogenic to developing zebrafish through inhibition of lysyl oxidase activity. Toxicol Appl Pharmacol 2010; 244:156-61. [DOI: 10.1016/j.taap.2009.12.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 12/08/2009] [Accepted: 12/17/2009] [Indexed: 01/14/2023]
|
28
|
Edeling MA, Sanker S, Shima T, Umasankar PK, Höning S, Kim HY, Davidson LA, Watkins SC, Tsang M, Owen DJ, Traub LM. Structural requirements for PACSIN/Syndapin operation during zebrafish embryonic notochord development. PLoS One 2009; 4:e8150. [PMID: 19997509 PMCID: PMC2780292 DOI: 10.1371/journal.pone.0008150] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 11/05/2009] [Indexed: 11/18/2022] Open
Abstract
PACSIN/Syndapin proteins are membrane-active scaffolds that participate in endocytosis. The structure of the Drosophila Syndapin N-terminal EFC domain reveals a crescent shaped antiparallel dimer with a high affinity for phosphoinositides and a unique membrane-inserting prong upon the concave surface. Combined structural, biochemical and reverse genetic approaches in zebrafish define an important role for Syndapin orthologue, Pacsin3, in the early formation of the notochord during embryonic development. In pacsin3-morphant embryos, midline convergence of notochord precursors is defective as axial mesodermal cells fail to polarize, migrate and differentiate properly. The pacsin3 morphant phenotype of a stunted body axis and contorted trunk is rescued by ectopic expression of Drosophila Syndapin, and depends critically on both the prong that protrudes from the surface of the bowed Syndapin EFC domain and the ability of the antiparallel dimer to bind tightly to phosphoinositides. Our data confirm linkage between directional migration, endocytosis and cell specification during embryonic morphogenesis and highlight a key role for Pacsin3 in this coupling in the notochord.
Collapse
Affiliation(s)
- Melissa A. Edeling
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Subramaniam Sanker
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Takaki Shima
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - P. K. Umasankar
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Stefan Höning
- Institute of Biochemistry I and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Hye Y. Kim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Lance A. Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Simon C. Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Michael Tsang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - David J. Owen
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Linton M. Traub
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
29
|
Uncoupling nicotine mediated motoneuron axonal pathfinding errors and muscle degeneration in zebrafish. Toxicol Appl Pharmacol 2008; 237:29-40. [PMID: 18694773 DOI: 10.1016/j.taap.2008.06.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 06/16/2008] [Accepted: 06/16/2008] [Indexed: 11/23/2022]
Abstract
Zebrafish embryos offer a unique opportunity to investigate the mechanisms by which nicotine exposure impacts early vertebrate development. Embryos exposed to nicotine become functionally paralyzed by 42 hpf suggesting that the neuromuscular system is compromised in exposed embryos. We previously demonstrated that secondary spinal motoneurons in nicotine-exposed embryos were delayed in development and that their axons made pathfinding errors (Svoboda, K.R., Vijayaraghaven, S., Tanguay, R.L., 2002. Nicotinic receptors mediate changes in spinal motoneuron development and axonal pathfinding in embryonic zebrafish exposed to nicotine. J. Neurosci. 22, 10731-10741). In that study, we did not consider the potential role that altered skeletal muscle development caused by nicotine exposure could play in contributing to the errors in spinal motoneuron axon pathfinding. In this study, we show that an alteration in skeletal muscle development occurs in tandem with alterations in spinal motoneuron development upon exposure to nicotine. The alteration in the muscle involves the binding of nicotine to the muscle-specific AChRs. The nicotine-induced alteration in muscle development does not occur in the zebrafish mutant (sofa potato, [sop]), which lacks muscle-specific AChRs. Even though muscle development is unaffected by nicotine exposure in sop mutants, motoneuron axonal pathfinding errors still occur in these mutants, indicating a direct effect of nicotine exposure on nervous system development.
Collapse
|
30
|
Tilton F, Tanguay RL. Exposure to sodium metam during zebrafish somitogenesis results in early transcriptional indicators of the ensuing neuronal and muscular dysfunction. Toxicol Sci 2008; 106:103-12. [PMID: 18648088 DOI: 10.1093/toxsci/kfn145] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Exposures to sodium metam (NaM) within the developmental period of somitogenesis (10- to 18-h postfertilization [hpf]) results in easily detectable distortions of the notochord by 24 hpf in the developing zebrafish. We hypothesized that NaM-induced transcriptional changes during somitogenesis would reveal the major molecular targets in the zebrafish embryo. Embryos were exposed to NaM beginning at 4 hpf (1000 cells) and total RNA was isolated from embryos at the 3 somite (11 hpf), 10 somite (14 hpf), 18 somite (18 hpf), and larval (24 hpf) stages of development. Using the Affymetrix zebrafish gene array we observed relatively few mRNAs differentially regulated at least twofold at each time point (11 hpf, 101 genes; 14 hpf, 151; 18 hpf, 154; 24 hpf, 33). The transcriptional profiles reveal neurodevelopment and myogenesis as the two primary targets of NaM developmental exposure. Quantitative PCR of several muscle and neuronal genes confirmed the array response. We also followed the structural development of the peripheral nervous system under NaM exposure using antibodies against neuronal structural proteins. Although there was no change in the onset of antibody staining, profound alterations became apparent during the period in which the notochord becomes distorted (> 18 hpf). Motor neuron development observed with the Tg(NBT:MAPT-GFP)zc1 transgenic zebrafish and a primary motor neuron specific antibody showed similar timing in the structural alterations observed in these cell types. Further study of the interactions of dithiocarbamates with the regulatory elements of fast muscle development and neurodevelopment is warranted.
Collapse
Affiliation(s)
- Fred Tilton
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
31
|
Bacchetta R, Mantecca P, Andrioletti M, Vismara C, Vailati G. Axial-skeletal defects caused by Carbaryl in Xenopus laevis embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 392:110-118. [PMID: 18166217 DOI: 10.1016/j.scitotenv.2007.11.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 11/23/2007] [Accepted: 11/27/2007] [Indexed: 05/25/2023]
Abstract
Embryotoxic effects of Carbaryl (CB), a widely used carbamate insecticide, was evaluated by modified Frog Embryo Teratogenesis Assay-Xenopus (FETAX), coupled with a histopathological screening of the survived larvae. X. laevis embryos were exposed to 1, 2, 4, 8, 16 and 24 mg/L CB from stage 8 to stage 47. From an estimated LC50 of 20.28 mg/L and TC50 of 8.43 mg/L a TI of 2.41 was derived, indicating that CB is to be considered teratogenic for X. laevis embryos. The most characteristic terata, classified as abnormal tail flexure, involved a significant percentage of larvae from 1 mg/L CB onward, reaching 100% at 24 mg/L CB. Histopathological screening revealed tail musculature and notochord as the main targets for CB. Skeletal muscle lesions consisted of myotomes reduced in size, showing myocytes with disorganized contractile systems and irregular myosepta, coupled with disarranged myocyte apexes. Notochords from CB exposed larvae appeared wavy or bent, with irregular connective sheaths and histologically characterized by protrusions of fibrous matrix and inclusions of ectopic cell masses. This axial-skeletal damage was hypothesized to be related both to the inhibition of acetylcholinesterase, with consequent muscular tetanic spasms, and to disorders in the organization of the connective tissue matrix surrounding the notochord.
Collapse
Affiliation(s)
- Renato Bacchetta
- Dipartimento di Biologia, Università degli Studi di Milano, Via Celoria 26, Milan, Italy.
| | | | | | | | | |
Collapse
|
32
|
Rombough PJ. Ontogenetic changes in the toxicity and efficacy of the anaesthetic MS222 (tricaine methanesulfonate) in zebrafish (Danio rerio) larvae. Comp Biochem Physiol A Mol Integr Physiol 2007; 148:463-9. [PMID: 17643329 DOI: 10.1016/j.cbpa.2007.06.415] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 06/16/2007] [Accepted: 06/22/2007] [Indexed: 11/18/2022]
Abstract
Median lethal (LC(50)) and effective (EC(50)) concentrations for 1-h and 24-h exposures to the anaesthetic MS222 (tricaine methanesulfonate) were determined for zebrafish Danio rerio larvae ranging in age from 3 days postfertilization (dpf) to 9 dpf. Cessation of heart beat was used as the indicator of death (LC(50)) while failure to respond to direct mechanical stimulation of the head region was taken as an indication of deep anaesthesia (EC(50)). 1-h LC(50)s, 1-h EC(50)s and 24-h EC(50)s all decreased gradually but significantly (all P<0.01) with age. Mean values for 1-h LC(50)s were 1633 mg L(-1) and 730 mg L(-1), respectively, for 3 dpf and 9 dpf larvae. Mean value for 1-h and 24-h EC(50)s were 106 mg L(-1) and 100 mg L(-1), respectively, at 3 dpf and 65 mg L(-1) and 31 mg L(-1), respectively, at 9 dpf. The gradual increase with age in sensitivity to the anaesthetic implied by these indicators is probably a reflection of ontogenetic changes in the activity of detoxification pathways. Mean values for the 24-h LC(50) also decreased significantly (P<0.001) with age, from 566 mg L(-1) at 3 dpf to 64 mg L(-1) at 9 dpf. However, unlike the other indicators, the decrease was not gradual but occurred in a step-like fashion with virtually all of the change occurring between 4 dpf and 7 dpf. This sharp increase in sensitivity coincides with the shift in the major site of systemic ionoregulatory activity from the skin to the gills. The implications of these ontogenetic changes in lethal and effective levels for researchers or others intending to use the anaesthetic with fish larvae are discussed.
Collapse
Affiliation(s)
- Peter J Rombough
- Department of Zoology, Brandon University, Brandon, Manitoba, Canada R7A 6A9.
| |
Collapse
|
33
|
Gansner JM, Mendelsohn BA, Hultman KA, Johnson SL, Gitlin JD. Essential role of lysyl oxidases in notochord development. Dev Biol 2007; 307:202-13. [PMID: 17543297 PMCID: PMC2467443 DOI: 10.1016/j.ydbio.2007.04.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Revised: 04/24/2007] [Accepted: 04/24/2007] [Indexed: 11/24/2022]
Abstract
Recent studies reveal a critical role for copper in the development of the zebrafish notochord, suggesting that specific cuproenzymes are required for the structural integrity of the notochord sheath. We now demonstrate that beta-aminopropionitrile, a known inhibitor of the copper-dependent lysyl oxidases, causes notochord distortion in the zebrafish embryo identical to that seen in copper deficiency. Characterization of the zebrafish lysyl oxidase genes reveals eight unique sequences, several of which are expressed in the developing notochord. Specific gene knockdown demonstrates that loss of loxl1 results in notochord distortion, and that loxl1 and loxl5b have overlapping roles in notochord formation. Interestingly, while notochord abnormalities are not observed following partial knockdown of loxl1 or loxl5b alone, in each case this markedly sensitizes developing embryos to notochord distortion if copper availability is diminished. Likewise, partial knockdown of the lysyl oxidase substrate col2a1 results in notochord distortion when combined with reduced copper availability or partial knockdown of loxl1 or loxl5b. These data reveal a complex interplay of gene expression and nutrient availability critical to notochord development. They also provide insight into specific genetic and nutritional factors that may play a role in the pathogenesis of structural birth defects of the axial skeleton.
Collapse
Affiliation(s)
- John M. Gansner
- Department of Pediatrics, Washington University School of Medicine St. Louis, Missouri 63110
| | - Bryce A. Mendelsohn
- Department of Pediatrics, Washington University School of Medicine St. Louis, Missouri 63110
| | - Keith A. Hultman
- Department of Genetics, Washington University School of Medicine St. Louis, Missouri 63110
| | - Stephen L. Johnson
- Department of Genetics, Washington University School of Medicine St. Louis, Missouri 63110
| | - Jonathan D. Gitlin
- Department of Pediatrics, Washington University School of Medicine St. Louis, Missouri 63110
- Department of Genetics, Washington University School of Medicine St. Louis, Missouri 63110
- †Corresponding author: Jonathan D. Gitlin, M.D., Edward Malinckrodt Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, Box 8208, St. Louis, Missouri 63110, Phone: (314) 286-2846; Fax: (314) 286-2784;
| |
Collapse
|
34
|
Richards SM, Cole SE. A toxicity and hazard assessment of fourteen pharmaceuticals to Xenopus laevis larvae. ECOTOXICOLOGY (LONDON, ENGLAND) 2006; 15:647-56. [PMID: 17077997 DOI: 10.1007/s10646-006-0102-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 09/15/2006] [Indexed: 05/12/2023]
Abstract
The toxicity of fourteen widely used human pharmaceuticals was determined using the Frog Embryo Teratogenesis Assay-Xenopus (FETAX). Stage 9 Xenopus blastulae were exposed for 96 h to single concentrations of commonly prescribed selective serotonin reuptake inhibitors (SSRIs), statin blood lipid regulators, non-steroidal anti-inflammatories, antibiotics, a stimulant, and an anti-epileptic. Toxicity, teratogenicity, minimum concentration to inhibit growth, and types and severity of associated malformations were determined. EC(10)s ranged from 3.0 mg/l to >100 mg/l and LC(10)s ranged from 3.6 mg/l to >100 mg/l. Toxicity varied between and within compound class of pharmaceutical. The fluoroquinolones, stimulants, anti-epileptics, and antibiotics tested were determined to be nontoxic and non-teratogenic at singular, water-soluble concentrations. The hazard quotients (HQ) for the pharmaceuticals ranged from 6.10 x 10(-7 )to 1.6 x 10(-4), all of which are orders of magnitude below EPA's levels for concern for harm to aquatic animals. Thus, based on the data from the present study, concentrations of individual pharmaceuticals currently detected in surface water are far below concentrations of effective and lethal concentrations.
Collapse
Affiliation(s)
- Sean M Richards
- Department of Biological and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA.
| | | |
Collapse
|
35
|
Garbrecht MR, Krozowski ZS, Snyder JM, Schmidt TJ. Reduction of glucocorticoid receptor ligand binding by the 11-beta hydroxysteroid dehydrogenase type 2 inhibitor, Thiram. Steroids 2006; 71:895-901. [PMID: 16857225 DOI: 10.1016/j.steroids.2006.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 05/16/2006] [Accepted: 06/02/2006] [Indexed: 11/28/2022]
Abstract
Endogenous and synthetic glucocorticoids (GCs), such as cortisol and dexamethasone (Dex), modulate airway inflammation, regulate the production of surfactant by lung epithelial cells, and influence fetal lung maturation. The 11-beta hydroxysteroid dehydrogenase type 2 (HSD2) enzyme catalyzes the oxidation of bioactive cortisol and Dex to their 11-keto metabolites. Thiram (tetramethylthiuram disulfide) specifically inhibits HSD2 activity by oxidizing cysteine residues located in the cofactor binding domain of the enzyme. During studies performed to define a potential role for HSD2 in modulating GC action in human lung epithelial cells, we observed that exposure of intact human lung epithelial cells (NCI-H441) to 50 microM Thiram significantly attenuated the down-stream effects of Dex (100 nM) on the expression of two GC-sensitive genes, pulmonary surfactant proteins A and B. This observation appeared to be inconsistent with simple inhibition of HSD2 activity. Although Thiram inhibited HSD2 oxidase activity in a dose-dependent manner without affecting HSD2 protein expression, Thiram also reduced specific binding of [3H]-Dex to the glucocorticoid receptor (GR). Pre-treatment of cells with 1 mM dithiothreitol (DTT), a thiol-reducing agent, completely blocked the inhibitory effect of Thiram on ligand binding. These results are suggestive that Thiram may alter the ligand-binding domain of the GR by oxidizing critical thiol-containing amino acid residues. Taken collectively, these data demonstrate that attenuated down-stream GC signaling, via decreased binding of ligand to the GR, is a novel cellular effect of Thiram exposure in human lung epithelial cells.
Collapse
Affiliation(s)
- Mark R Garbrecht
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
36
|
Stehr CM, Linbo TL, Incardona JP, Scholz NL. The Developmental Neurotoxicity of Fipronil: Notochord Degeneration and Locomotor Defects in Zebrafish Embryos and Larvae. Toxicol Sci 2006; 92:270-8. [PMID: 16611622 DOI: 10.1093/toxsci/kfj185] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fipronil is a phenylpyrazole insecticide designed to selectively inhibit insect gamma-aminobutyric acid (GABA) receptors. Although fipronil is often used in or near aquatic environments, few studies have assessed the effects of this neurotoxicant on aquatic vertebrates at sensitive life stages. We explored the toxicological effects of fipronil on embryos and larvae using the zebrafish (Danio rerio) experimental model system. Embryos exposed to fipronil at nominal concentrations at or above 0.7 microM (333 mug/l) displayed notochord degeneration, shortening along the rostral-caudal body axis, and ineffective tail flips and uncoordinated muscle contractions along the body axis in response to touch. This phenotype closely resembles zebrafish locomotor mutants of the accordion class and is consistent with loss of reciprocal inhibitory neurotransmission by glycinergic commissural interneurons in the spinal cord. Consistent with the hypothesis that notochord degeneration may be due to abnormal mechanical stress from muscle tetany, the expression patterns of gene and protein markers specific to notochord development were unaffected by fipronil. Moreover, the degenerative effects of fipronil (1.1 microM) were reversed by coexposure to the sodium channel blocker MS-222 (0.6mM). The notochord effects of fipronil were phenocopied by exposure to 70 microM strychnine, a glycinergic receptor antagonist. In contrast, exposure to gabazine, a potent vertebrate GABA(A) antagonist, resulted in a hyperactive touch response but did not cause notochord degeneration. Although specifically developed to target insect GABA receptors with low vertebrate toxicity, our results suggest that fipronil impairs the development of spinal locomotor pathways in fish by inhibiting a structurally related glycine receptor subtype. This represents an unanticipated and potentially novel mechanism for fipronil toxicity in vertebrates.
Collapse
Affiliation(s)
- Carla M Stehr
- Ecotoxicology and Environmental Fish Health Program, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration Fisheries, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
| | | | | | | |
Collapse
|