1
|
Coppola L, Lori G, Tait S, Sogorb MA, Estevan C. Evaluation of developmental toxicity of chlorpyrifos through new approach methodologies: a systematic review. Arch Toxicol 2025; 99:935-981. [PMID: 39869190 PMCID: PMC11821739 DOI: 10.1007/s00204-024-03945-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025]
Abstract
Chlorpyrifos (CPF) is an organophosphorus pesticide of concern because many in vivo animal studies have demonstrated developmental toxicity exerted by this substance; however, despite its widespread use, evidence from epidemiological studies is still limited. In this study, we have collected all the information generated in the twenty-first century on the developmental toxicity of CPF using new approach methodologies. We have critically evaluated and integrated information coming from 70 papers considering human, rodent, avian and fish models. The comparison of the collected evidence with available adverse outcome pathways allows us to conclude that adverse outcomes observed in animals, such as memory and learning impairments as well as reduction in cognitive function, could involve several mechanisms of action including inhibition of acetylcholinesterase, overactivation of glutamate receptors and activation of mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2, followed by both disruption of neurotransmitter release and increase in oxidative stress and apoptosis.
Collapse
Affiliation(s)
- L Coppola
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - G Lori
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - S Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - M A Sogorb
- Bioengineering Institute, Miguel Hernández de Elche University, Elche, Spain
| | - C Estevan
- Applied Biology Department, Miguel Hernández de Elche University, Elche, Spain.
| |
Collapse
|
2
|
Dimitrov LV, Kaminski JW, Holbrook JR, Bitsko RH, Yeh M, Courtney JG, O'Masta B, Maher B, Cerles A, McGowan K, Rush M. A Systematic Review and Meta-analysis of Chemical Exposures and Attention-Deficit/Hyperactivity Disorder in Children. PREVENTION SCIENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR PREVENTION RESEARCH 2024; 25:225-248. [PMID: 38108946 PMCID: PMC11132938 DOI: 10.1007/s11121-023-01601-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/19/2023]
Abstract
Exposure to certain chemicals prenatally and in childhood can impact development and may increase risk for attention-deficit/hyperactivity disorder (ADHD). Leveraging a larger set of literature searches conducted to synthesize results from longitudinal studies of potentially modifiable risk factors for childhood ADHD, we present meta-analytic results from 66 studies that examined the associations between early chemical exposures and later ADHD diagnosis or symptoms. Studies were eligible for inclusion if the chemical exposure occurred at least 6 months prior to measurement of ADHD diagnosis or symptomatology. Included papers were published between 1975 and 2019 on exposure to anesthetics (n = 5), cadmium (n = 3), hexachlorobenzene (n = 4), lead (n = 22), mercury (n = 12), organophosphates (n = 7), and polychlorinated biphenyls (n = 13). Analyses are presented for each chemical exposure by type of ADHD outcome reported (categorical vs. continuous), type of ADHD measurement (overall measures of ADHD, ADHD symptoms only, ADHD diagnosis only, inattention only, hyperactivity/impulsivity only), and timing of exposure (prenatal vs. childhood vs. cumulative), whenever at least 3 relevant effect sizes were available. Childhood lead exposure was positively associated with ADHD diagnosis and symptoms in all analyses except for the prenatal analyses (odds ratios (ORs) ranging from 1.60 to 2.62, correlation coefficients (CCs) ranging from 0.14 to 0.16). Other statistically significant associations were limited to organophosphates (CC = 0.11, 95% confidence interval (CI): 0.03-0.19 for continuous measures of ADHD outcomes overall), polychlorinated biphenyls (CC = 0.08, 95% CI: 0.02-0.14 for continuous measures of inattention as the outcome), and both prenatal and childhood mercury exposure (CC = 0.02, 95% CI: 0.00-0.04 for continuous measures of ADHD outcomes overall for either exposure window). Our findings provide further support for negative impacts of prenatal and/or childhood exposure to certain chemicals and raise the possibility that primary prevention and targeted screening could prevent or mitigate ADHD symptomatology. Furthermore, these findings support the need for regular review of regulations as our scientific understanding of the risks posed by these chemicals evolves.
Collapse
Affiliation(s)
- Lina V Dimitrov
- Division of Human Development and Disability, National Center On Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA.
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.
| | - Jennifer W Kaminski
- Division of Human Development and Disability, National Center On Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joseph R Holbrook
- Division of Human Development and Disability, National Center On Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Rebecca H Bitsko
- Division of Human Development and Disability, National Center On Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michael Yeh
- Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joseph G Courtney
- Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Brion Maher
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | | |
Collapse
|
3
|
Mostafalou S, Abdollahi M. The susceptibility of humans to neurodegenerative and neurodevelopmental toxicities caused by organophosphorus pesticides. Arch Toxicol 2023; 97:3037-3060. [PMID: 37787774 DOI: 10.1007/s00204-023-03604-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
The toxicology field is concerned with the impact of organophosphorus (OP) compounds on human health. These compounds have been linked to an increased risk of neurological disorders, including neurodegenerative and neurodevelopmental diseases. This article aims to review studies on the role of OP compounds in developing these neurological disorders and explore how genetic variations can affect susceptibility to the neurotoxicity of these pesticides. Studies have shown that exposure to OP compounds can lead to the development of various neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD), autism, intellectual disability, and other developmental neurotoxicities. Apart from inhibiting the cholinesterase enzyme, OP compounds are believed to cause other pathological mechanisms at both the extracellular level (cholinergic, serotonergic, dopaminergic, glutamatergic, and GABAergic synapses) and the intracellular level (oxidative stress, mitochondrial dysfunction, inflammation, autophagy, and apoptosis) that contribute to these disorders. Specific genetic polymorphisms, including PON1, ABCB1, NOS, DRD4, GST, CYP, and APOE, have increased the risk of developing OP-related neurological disorders.
Collapse
Affiliation(s)
- Sara Mostafalou
- Department of Pharmacology & Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Abdollahi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Fabbri L, Garlantézec R, Audouze K, Bustamante M, Carracedo Á, Chatzi L, Ramón González J, Gražulevičienė R, Keun H, Lau CHE, Sabidó E, Siskos AP, Slama R, Thomsen C, Wright J, Lun Yuan W, Casas M, Vrijheid M, Maitre L. Childhood exposure to non-persistent endocrine disrupting chemicals and multi-omic profiles: A panel study. ENVIRONMENT INTERNATIONAL 2023; 173:107856. [PMID: 36867994 DOI: 10.1016/j.envint.2023.107856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Individuals are exposed to environmental pollutants with endocrine disrupting activity (endocrine disruptors, EDCs) and the early stages of life are particularly susceptible to these exposures. Previous studies have focused on identifying molecular signatures associated with EDCs, but none have used repeated sampling strategy and integrated multiple omics. We aimed to identify multi-omic signatures associated with childhood exposure to non-persistent EDCs. METHODS We used data from the HELIX Child Panel Study, which included 156 children aged 6 to 11. Children were followed for one week, in two time periods. Twenty-two non-persistent EDCs (10 phthalate, 7 phenol, and 5 organophosphate pesticide metabolites) were measured in two weekly pools of 15 urine samples each. Multi-omic profiles (methylome, serum and urinary metabolome, proteome) were measured in blood and in a pool urine samples. We developed visit-specific Gaussian Graphical Models based on pairwise partial correlations. The visit-specific networks were then merged to identify reproducible associations. Independent biological evidence was systematically sought to confirm some of these associations and assess their potential health implications. RESULTS 950 reproducible associations were found among which 23 were direct associations between EDCs and omics. For 9 of them, we were able to find corroborating evidence from previous literature: DEP - serotonin, OXBE - cg27466129, OXBE - dimethylamine, triclosan - leptin, triclosan - serotonin, MBzP - Neu5AC, MEHP - cg20080548, oh-MiNP - kynurenine, oxo-MiNP - 5-oxoproline. We used these associations to explore possible mechanisms between EDCs and health outcomes, and found links to health outcomes for 3 analytes: serotonin and kynurenine in relation to neuro-behavioural development, and leptin in relation to obesity and insulin resistance. CONCLUSIONS This multi-omics network analysis at two time points identified biologically relevant molecular signatures related to non-persistent EDC exposure in childhood, suggesting pathways related to neurological and metabolic outcomes.
Collapse
Affiliation(s)
- Lorenzo Fabbri
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Ronan Garlantézec
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail), UMR_S 1085, Rennes, France
| | - Karine Audouze
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain
| | - Ángel Carracedo
- Medicine Genomics Group, Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), University of Santiago de Compostela, CEGEN-PRB3, Santiago de Compostela, Spain; Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Juan Ramón González
- ISGlobal, Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain; Department of Mathematics, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Hector Keun
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer & Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Chung-Ho E Lau
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College, South Kensington, London, UK
| | - Eduard Sabidó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain; Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Alexandros P Siskos
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer & Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Rémy Slama
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Inserm, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Cathrine Thomsen
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Wen Lun Yuan
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Paris, France; Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain
| | - Léa Maitre
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
5
|
Wang B, Steinberg GR. Environmental toxicants, brown adipose tissue, and potential links to obesity and metabolic disease. Curr Opin Pharmacol 2022; 67:102314. [PMID: 36334331 DOI: 10.1016/j.coph.2022.102314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/12/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022]
Abstract
Rates of human obesity, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD) have risen faster than anticipated and cannot solely be explained by excessive caloric intake or physical inactivity. Importantly, this effect is also observed in many other domesticated and non-domesticated mammals, which has led to the hypothesis that synthetic environmental pollutants may be contributing to disease development. While the impact of these chemicals on appetite and adipogenesis has been extensively studied, their potential role in reducing energy expenditure is less studied. An important component of whole-body energy expenditure is adaptive and diet-induced thermogenesis in human brown adipose tissue (BAT). This review summarizes recent evidence that environmental pollutants such as the pesticide chlorpyrifos inhibit BAT function, diet-induced thermogenesis and the potential signaling pathways mediating these effects. Lastly, we discuss the importance of housing experimental mice at thermoneutrality, rather than room temperature, to maximize the translation of findings to humans.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Canada; Division of Endocrinology and Metabolism, Department of Medicine, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Canada
| |
Collapse
|
6
|
Ireland D, Zhang S, Bochenek V, Hsieh JH, Rabeler C, Meyer Z, Collins EMS. Differences in neurotoxic outcomes of organophosphorus pesticides revealed via multi-dimensional screening in adult and regenerating planarians. FRONTIERS IN TOXICOLOGY 2022; 4:948455. [PMID: 36267428 PMCID: PMC9578561 DOI: 10.3389/ftox.2022.948455] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/25/2022] [Indexed: 11/07/2022] Open
Abstract
Organophosphorus pesticides (OPs) are a chemically diverse class of commonly used insecticides. Epidemiological studies suggest that low dose chronic prenatal and infant exposures can lead to life-long neurological damage and behavioral disorders. While inhibition of acetylcholinesterase (AChE) is the shared mechanism of acute OP neurotoxicity, OP-induced developmental neurotoxicity (DNT) can occur independently and/or in the absence of significant AChE inhibition, implying that OPs affect alternative targets. Moreover, different OPs can cause different adverse outcomes, suggesting that different OPs act through different mechanisms. These findings emphasize the importance of comparative studies of OP toxicity. Freshwater planarians are an invertebrate system that uniquely allows for automated, rapid and inexpensive testing of adult and developing organisms in parallel to differentiate neurotoxicity from DNT. Effects found only in regenerating planarians would be indicative of DNT, whereas shared effects may represent neurotoxicity. We leverage this unique feature of planarians to investigate potential differential effects of OPs on the adult and developing brain by performing a comparative screen to test 7 OPs (acephate, chlorpyrifos, dichlorvos, diazinon, malathion, parathion and profenofos) across 10 concentrations in quarter-log steps. Neurotoxicity was evaluated using a wide range of quantitative morphological and behavioral readouts. AChE activity was measured using an Ellman assay. The toxicological profiles of the 7 OPs differed across the OPs and between adult and regenerating planarians. Toxicological profiles were not correlated with levels of AChE inhibition. Twenty-two "mechanistic control compounds" known to target pathways suggested in the literature to be affected by OPs (cholinergic neurotransmission, serotonin neurotransmission, endocannabinoid system, cytoskeleton, adenyl cyclase and oxidative stress) and 2 negative controls were also screened. When compared with the mechanistic control compounds, the phenotypic profiles of the different OPs separated into distinct clusters. The phenotypic profiles of adult vs. regenerating planarians exposed to the OPs clustered differently, suggesting some developmental-specific mechanisms. These results further support findings in other systems that OPs cause different adverse outcomes in the (developing) brain and build the foundation for future comparative studies focused on delineating the mechanisms of OP neurotoxicity in planarians.
Collapse
Affiliation(s)
- Danielle Ireland
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
| | - Siqi Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Veronica Bochenek
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
| | - Jui-Hua Hsieh
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Christina Rabeler
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
| | - Zane Meyer
- Department of Engineering, Swarthmore College, Swarthmore, PA, United States
- Department of Computer Science, Swarthmore College, Swarthmore, PA, United States
| | - Eva-Maria S. Collins
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA, United States
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, United States
- Department of Physics, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
7
|
Sarailoo M, Afshari S, Asghariazar V, Safarzadeh E, Dadkhah M. Cognitive Impairment and Neurodegenerative Diseases Development Associated with Organophosphate Pesticides Exposure: a Review Study. Neurotox Res 2022; 40:1624-1643. [PMID: 36066747 DOI: 10.1007/s12640-022-00552-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/22/2022] [Accepted: 07/27/2022] [Indexed: 10/14/2022]
Abstract
A significant body of literature emphasizes the role of insecticide, particularly organophosphates (OPs), as the major environmental factor in the etiology of neurodegenerative diseases. This review aims to study the relationship between OP insecticide exposure, cognitive impairment, and neurodegenerative disease development. Human populations, especially in developing countries, are frequently exposed to OPs due to their extensive applications. The involvement of various signaling pathways in OP neurotoxicity are reported, but the OP-induced cognitive impairment and link between OP exposure and the pathophysiology of neurodegenerative diseases are not clearly understood. In the present review, we have therefore aimed to come to new conclusions which may help to find protective and preventive strategies against OP neurotoxicity and may establish a possible link between organophosphate exposure, cognitive impairment, and OP-induced neurotoxicity. Moreover, we discuss the findings obtained from animal and human research providing some support for OP-induced cognitive impairment and neurodegenerative disorders.
Collapse
Affiliation(s)
- Mehdi Sarailoo
- Students Research Committee, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Salva Afshari
- Students Research Committee, Pharmacy School, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Deputy of Research & Technology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Masoomeh Dadkhah
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
8
|
Barra NG, Kwon YH, Morrison KM, Steinberg GR, Wade MG, Khan WI, Vijayan MM, Schertzer JD, Holloway AC. Increased gut serotonin production in response to bisphenol A structural analogs may contribute to their obesogenic effects. Am J Physiol Endocrinol Metab 2022; 323:E80-E091. [PMID: 35575233 DOI: 10.1152/ajpendo.00049.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesogens are synthetic, environmental chemicals that can disrupt endocrine control of metabolism and contribute to the risk of obesity and metabolic disease. Bisphenol A (BPA) is one of the most studied obesogens. There is considerable evidence that BPA exposure is associated with weight gain, increased adiposity, poor blood glucose control, and nonalcoholic fatty liver disease in animal models and human populations. Increased usage of structural analogs of BPA has occurred in response to legislation banning their use in some commercial products. However, BPA analogs may also cause some of the same metabolic impairments because of common mechanisms of action. One key effector that is altered by BPA and its analogs is serotonin, however, it is unknown if BPA-induced changes in peripheral serotonin pathways underlie metabolic perturbations seen with BPA exposure. Upon ingestion, BPA and its analogs act as endocrine-disrupting chemicals in the gastrointestinal tract to influence serotonin production by the gut, where over 95% of serotonin is produced. The purpose of this review is to evaluate how BPA and its analogs alter gut serotonin regulation and then discuss how disruption of serotonergic networks influences host metabolism. We also provide evidence that BPA and its analogs enhance serotonin production in gut enterochromaffin cells. Taken together, we propose that BPA and many BPA analogs represent endocrine-disrupting chemicals that can influence host metabolism through the endogenous production of gut-derived factors, such as serotonin.
Collapse
Affiliation(s)
- Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Yun Han Kwon
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katherine M Morrison
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael G Wade
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Alison C Holloway
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Reversal of prenatal heroin-induced alterations in hippocampal gene expression via transplantation of mesenchymal stem cells during adulthood. Neurotoxicol Teratol 2022; 90:107063. [PMID: 34999215 DOI: 10.1016/j.ntt.2022.107063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 01/03/2022] [Accepted: 01/03/2022] [Indexed: 11/22/2022]
Abstract
Neurobehavioral teratology is the study of typically subtle neurobehavioral birth defects. Our previously described mouse model demonstrated septohippocampal cholinergic innervation-related molecular and behavioral deficits after prenatal exposure to heroin. Since the alterations are below malformation level, they are likely to represent consequences of regulatory processes, feasibly gene expression. Consequently, in the present study pregnant mice were injected with heroin on gestation days 9-18 and were transplanted with mesenchymal stem cells (MSC) on postnatal day (PD) 105. The hippocampi of the offspring were analyzed on PD120 for the expression of the pertinent genes. Heroin induced global gender-dependent statistically significant changes in the expression of several genes. Significant Treatment X Sex interaction occurred in D1 and SOX2 genes (p < 0.01). Transplantation of MSC reversed the prenatal heroin-induced alterations in approximately 80% of the genes. The reversal index (RI), shifting the score of the heroin-exposed offspring by transplantation back toward the control level, was 0.61 ± 0.10 for the difference from RI = 0 (p < 0.001), confirming the validity of the effect of the neuroteratogens across variations among different genes. The present study suggests that neurobehavioral defects induced by prenatal heroin exposure are likely to be a consequence of regulatory changes. This study on prenatal exposure to insults with subsequent MSC therapy provides a model for elucidating the mechanisms of both the neuroteratogenicity and the therapy, steps that are critical for progress toward therapeutic applications.
Collapse
|
10
|
Sarrouilhe D, Defamie N, Mesnil M. Is the Exposome Involved in Brain Disorders through the Serotoninergic System? Biomedicines 2021; 9:1351. [PMID: 34680468 PMCID: PMC8533279 DOI: 10.3390/biomedicines9101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 11/24/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a biogenic monoamine acting as a neurotransmitter in the central nervous system (CNS), local mediator in the gut, and vasoactive agent in the blood. It has been linked to a variety of CNS functions and is implicated in many CNS and psychiatric disorders. The high comorbidity between some neuropathies can be partially understood by the fact that these diseases share a common etiology involving the serotoninergic system. In addition to its well-known functions, serotonin has been shown to be a mitogenic factor for a wide range of normal and tumor cells, including glioma cells, in vitro. The developing CNS of fetus and newborn is particularly susceptible to the deleterious effects of neurotoxic substances in our environment, and perinatal exposure could result in the later development of diseases, a hypothesis known as the developmental origin of health and disease. Some of these substances affect the serotoninergic system and could therefore be the source of a silent pandemic of neurodevelopmental toxicity. This review presents the available data that are contributing to the appreciation of the effects of the exposome on the serotoninergic system and their potential link with brain pathologies (neurodevelopmental, neurodegenerative, neurobehavioral disorders, and glioblastoma).
Collapse
Affiliation(s)
- Denis Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculté de Médecine et Pharmacie, 6 Rue de la Milétrie, Bât D1, TSA 51115, CEDEX 09, 86073 Poitiers, France
| | - Norah Defamie
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 Rue G. Bonnet–TSA 51106, CEDEX 09, 86073 Poitiers, France; (N.D.); (M.M.)
| | - Marc Mesnil
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 Rue G. Bonnet–TSA 51106, CEDEX 09, 86073 Poitiers, France; (N.D.); (M.M.)
| |
Collapse
|
11
|
Associations between pesticide mixtures applied near home during pregnancy and early childhood with adolescent behavioral and emotional problems in the CHAMACOS study. Environ Epidemiol 2021; 5:e150. [PMID: 34131613 PMCID: PMC8196094 DOI: 10.1097/ee9.0000000000000150] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/15/2021] [Indexed: 11/26/2022] Open
Abstract
Supplemental Digital Content is available in the text. Studies suggest that exposure to pesticides during pregnancy and early childhood is associated with adverse child neurodevelopment. Research to date has focused primarily on exposure to single pesticides or pesticide classes in isolation; there are little data on the effect of exposure to pesticide mixtures on child and adolescent neurodevelopment.
Collapse
|
12
|
Ntantu Nkinsa P, Muckle G, Ayotte P, Lanphear BP, Arbuckle TE, Fraser WD, Bouchard MF. Organophosphate pesticides exposure during fetal development and IQ scores in 3 and 4-year old Canadian children. ENVIRONMENTAL RESEARCH 2020; 190:110023. [PMID: 32777276 DOI: 10.1016/j.envres.2020.110023] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Organophosphate pesticides are widely used in agriculture and for other purposes, leading to ubiquitous exposure in human populations. Some studies reported cognitive deficits in children exposed prenatally to organophosphate pesticides, but findings from recent studies were inconsistent. Furthermore, recent biomonitoring studies suggest exposure levels have decreased. Hence, the risks from current prenatal exposure to organophosphate pesticides for child neurodevelopment are uncertain. Furthermore, sex-differences also remain to be better documented in relation to potential neurodevelopmental effects. OBJECTIVE To examine the association between prenatal exposure to organophosphate pesticides and IQ scores among boys and girls living in several major Canadian cities. METHODS We used data from the MIREC cohort (Maternal-Infant Research on Environmental Chemicals). Women were recruited in 2008-2011 from 10 Canadian cities during their first trimester of pregnancy, and urine spot samples were collected for measurement of three dimethyl alkyl phosphate (DMAP) and three diethyl alkyl phosphate (DEAP) metabolites. When children were 3-4 years of age, we used the Wechsler Preschool and Primary Scales of Intelligence-III (WPPSI-III) to assess cognitive ability of children from 6 out of the 10 cities (Halifax, Hamilton, Kingston, Montreal, Toronto, and Vancouver). We analysed the association between maternal exposure to organophosphate pesticides (DMAP and DEAP urinary metabolites) and children's IQ scores with generalized estimating equations (GEEs) to take into account the clustered-data resulting from the six study sites. All analyses were sex-stratified (n = 296 boys and 311 girls). RESULTS The participants were predominantly well-educated, white women, with a relatively high household income. Children had a mean age of 3.4 years at the moment of IQ assessment (range, 3.0-4.1 years). In girls, there was no association between IQ scores and DEAPs or DMAPs. Higher concentrations of DEAPs were significantly associated with poorer Verbal IQ scores (for a 10-fold increase in concentrations, -6.28; 95% CIs, -12.13, -0.43) in boys. The association for Performance IQ in boys also indicated poorer scores with higher DEAP concentrations, but the confidence intervals included the null value (-4.05; 95% CIs, -10.19, 2.10). The relation between DMAPs and IQ scores in boys was also negative, but association estimates were small and not significant. CONCLUSION Urinary metabolites of organophosphate pesticides were not associated with IQ in girls, but we observed that higher maternal urinary DEAPs were associated with poorer Verbal IQ in boys. However, exposure misclassification may be an issue as only one urine sample per woman was analysed. The present study contributes to the accumulating evidence linking exposure to organophosphate pesticides during fetal development with poorer cognitive function in children, bringing data on the risks in a context of low exposure levels encountered in primarily urban populations from Canada.
Collapse
Affiliation(s)
- Patrick Ntantu Nkinsa
- Department of Environmental and Occupational Health, School of Public Health, Université de Montreal, Montréal, Québec, Canada.
| | - Gina Muckle
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, École de Psychologie, Université Laval, Quebec, Québec, Canada.
| | - Pierre Ayotte
- Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada.
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada.
| | - Tye E Arbuckle
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada.
| | - William D Fraser
- Department of Obstetrics and Gynecology, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Québec, Canada.
| | - Maryse F Bouchard
- Department of Environmental and Occupational Health, School of Public Health, Université de Montreal; CHU Sainte-Justine Research Centre Mother and Child University Hospital Center, Montréal, Quebec, Canada.
| |
Collapse
|
13
|
Gestational exposures to organophosphorus insecticides: From acute poisoning to developmental neurotoxicity. Neuropharmacology 2020; 180:108271. [PMID: 32814088 DOI: 10.1016/j.neuropharm.2020.108271] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/03/2020] [Accepted: 08/10/2020] [Indexed: 11/22/2022]
Abstract
For over three-quarters of a century, organophosphorus (OP) insecticides have been ubiquitously used in agricultural, residential, and commercial settings and in public health programs to mitigate insect-borne diseases. Their broad-spectrum insecticidal effectiveness is accounted for by the irreversible inhibition of acetylcholinesterase (AChE), the enzyme that catalyzes acetylcholine (ACh) hydrolysis, in the nervous system of insects. However, because AChE is evolutionarily conserved, OP insecticides are also toxic to mammals, including humans, and acute OP intoxication remains a major public health concern in countries where OP insecticide usage is poorly regulated. Environmental exposures to OP levels that are generally too low to cause marked inhibition of AChE and to trigger acute signs of intoxication, on the other hand, represent an insidious public health issue worldwide. Gestational exposures to OP insecticides are particularly concerning because of the exquisite sensitivity of the developing brain to these insecticides. The present article overviews and discusses: (i) the health effects and therapeutic management of acute OP poisoning during pregnancy, (ii) epidemiological studies examining associations between environmental OP exposures during gestation and health outcomes of offspring, (iii) preclinical evidence that OP insecticides are developmental neurotoxicants, and (iv) potential mechanisms underlying the developmental neurotoxicity of OP insecticides. Understanding how gestational exposures to different levels of OP insecticides affect pregnancy and childhood development is critical to guiding implementation of preventive measures and direct research aimed at identifying effective therapeutic interventions that can limit the negative impact of these exposures on public health.
Collapse
|
14
|
Bharatiya R, Chagraoui A, De Deurwaerdere S, Argiolas A, Melis MR, Sanna F, De Deurwaerdere P. Chronic Administration of Fipronil Heterogeneously Alters the Neurochemistry of Monoaminergic Systems in the Rat Brain. Int J Mol Sci 2020; 21:ijms21165711. [PMID: 32784929 PMCID: PMC7461054 DOI: 10.3390/ijms21165711] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
Fipronil (FPN), a widely used pesticide for agricultural and non-agricultural pest control, is possibly neurotoxic for mammals. Brain monoaminergic systems, involved in virtually all brain functions, have been shown to be sensitive to numerous pesticides. Here, we addressed the hypothesis that chronic exposure to FPN could modify brain monoamine neurochemistry. FPN (10 mg/kg) was chronically administered for 21 days through oral gavage in rats. Thereafter, the tissue concentrations of dopamine (DA) and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid; serotonin (5-HT) and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA); and noradrenaline (NA) were measured in 30 distinct brain regions. FPN significantly decreased DA and its metabolite levels in most striatal territories, including the nucleus accumbens and the substantia nigra (SN). FPN also diminished 5-HT levels in some striatal regions and the SN. The indirect index of the turnovers, DOPAC/DA and 5-HIAA/5-HT ratios, was increased in numerous brain regions. FPN reduced the NA content only in the nucleus accumbens core. Using the Bravais–Pearson test to study the neurochemical organization of monoamines through multiple correlative analyses across the brain, we found fewer correlations for NA, DOPAC/DA, and 5-HIAA/5-HT ratios, and an altered pattern of correlations within and between monoamine systems. We therefore conclude that the chronic administration of FPN in rats induces massive and inhomogeneous changes in the DA and 5-HT systems in the brain.
Collapse
Affiliation(s)
- Rahul Bharatiya
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09100 Cagliari, Italy; (R.B.); (A.A.); (M.R.M.)
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 rue Léo Saignat, B.P.281, F-33000 Bordeaux CEDEX, France;
| | - Abdeslam Chagraoui
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie Univ, UNIROUEN, INSERM, U1239, CHU Rouen, 76000 Rouen, France;
- Department of Medical Biochemistry, Rouen University Hospital, 76000 Rouen, France
| | - Salomé De Deurwaerdere
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 rue Léo Saignat, B.P.281, F-33000 Bordeaux CEDEX, France;
| | - Antonio Argiolas
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09100 Cagliari, Italy; (R.B.); (A.A.); (M.R.M.)
- Centre of Excellence for the Neurobiology of Addictions, University of Cagliari, 09100 Cagliari, Italy
- Institute of Neuroscience, National Research Council, Cagliari Section, University of Cagliari, 09100 Cagliari, Italy
| | - Maria Rosaria Melis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09100 Cagliari, Italy; (R.B.); (A.A.); (M.R.M.)
- Centre of Excellence for the Neurobiology of Addictions, University of Cagliari, 09100 Cagliari, Italy
| | - Fabrizio Sanna
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09100 Cagliari, Italy; (R.B.); (A.A.); (M.R.M.)
- Correspondence: (F.S.); (P.D.D.); Tel.: +39-070-675-4330 (F.S.); +33-557-571-290 (P.D.D.)
| | - Philippe De Deurwaerdere
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 rue Léo Saignat, B.P.281, F-33000 Bordeaux CEDEX, France;
- Correspondence: (F.S.); (P.D.D.); Tel.: +39-070-675-4330 (F.S.); +33-557-571-290 (P.D.D.)
| |
Collapse
|
15
|
Rock KD, St Armour G, Horman B, Phillips A, Ruis M, Stewart AK, Jima D, Muddiman DC, Stapleton HM, Patisaul HB. Effects of Prenatal Exposure to a Mixture of Organophosphate Flame Retardants on Placental Gene Expression and Serotonergic Innervation in the Fetal Rat Brain. Toxicol Sci 2020; 176:203-223. [PMID: 32243540 PMCID: PMC7357193 DOI: 10.1093/toxsci/kfaa046] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There is a growing need to understand the potential neurotoxicity of organophosphate flame retardants (OPFRs) and plasticizers because use and, consequently, human exposure, is rapidly expanding. We have previously shown in rats that developmental exposure to the commercial flame retardant mixture Firemaster 550 (FM 550), which contains OPFRs, results in sex-specific behavioral effects, and identified the placenta as a potential target of toxicity. The placenta is a critical coordinator of fetal growth and neurodevelopment, and a source of neurotransmitters for the developing brain. We have shown in rats and humans that flame retardants accumulate in placental tissue, and induce functional changes, including altered neurotransmitter production. Here, we sought to establish if OPFRs (triphenyl phosphate and a mixture of isopropylated triarylphosphate isomers) alter placental function and fetal forebrain development, with disruption of tryptophan metabolism as a primary pathway of interest. Wistar rat dams were orally exposed to OPFRs (0, 500, 1000, or 2000 μg/day) or a serotonin (5-HT) agonist 5-methoxytryptamine for 14 days during gestation and placenta and fetal forebrain tissues collected for analysis by transcriptomics and metabolomics. Relative abundance of genes responsible for the transport and synthesis of placental 5-HT were disrupted, and multiple neuroactive metabolites in the 5-HT and kynurenine metabolic pathways were upregulated. In addition, 5-HTergic projections were significantly longer in the fetal forebrains of exposed males. These findings suggest that OPFRs have the potential to impact the 5-HTergic system in the fetal forebrain by disrupting placental tryptophan metabolism.
Collapse
Affiliation(s)
- Kylie D Rock
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27619
| | - Genevieve St Armour
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27619
| | - Brian Horman
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27619
| | - Allison Phillips
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708
| | - Matthew Ruis
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708
| | - Allison K Stewart
- Molecular Education, Technology, and Research Innovation Center, North Carolina State University, Raleigh, North Carolina 27695
| | - Dereje Jima
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695
| | - David C Muddiman
- Molecular Education, Technology, and Research Innovation Center, North Carolina State University, Raleigh, North Carolina 27695
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27619
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
16
|
Martínez-Martínez MI, Muñoz-Fambuena I, Cauli O. Neurotransmitters and Behavioral Alterations Induced by Nickel Exposure. Endocr Metab Immune Disord Drug Targets 2019; 20:985-991. [PMID: 31789138 DOI: 10.2174/1871530319666191202141209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/06/2019] [Accepted: 03/29/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nickel ions (Ni2+) are a heavy metal with wide industrial uses. Environmental and occupational exposures to Ni are potential risk factors for brain dysfunction and behavioral and neurological symptoms in humans. METHODS We reviewed the current evidence about neurochemical and behavioral alterations associated with Ni exposure in laboratory animals and humans. RESULTS Ni2+ exposure can alter (both inhibition and stimulation) dopamine release and inhibit glutamate NMDA receptors. Few reports claim an effect of Ni2+ at the level of GBA and serotonin neurotransmission. At behavioral levels, exposure to Ni2+ in rodents alters motor activity, learning and memory as well as anxiety and depressive-like symptoms. However, no analysis of the dose-dependent relationship has been carried out regarding these effects and the levels of the Ni2+ in the brain, in blood or urine. CONCLUSION Further research is needed to correlate the concentration of Ni2+ in biological fluids with specific symptoms/deficits. Future studies addressing the impact of Ni2+ under environmental or occupational exposure should consider the administration protocols to find Ni2+ levels similar in the general population or occupationally exposed workers.
Collapse
Affiliation(s)
| | | | - Omar Cauli
- Department of Nursing, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
17
|
Slotkin TA, Skavicus S, Ko A, Levin ED, Seidler FJ. Perinatal diazinon exposure compromises the development of acetylcholine and serotonin systems. Toxicology 2019; 424:152240. [PMID: 31251962 DOI: 10.1016/j.tox.2019.152240] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 10/26/2022]
Abstract
Organophosphate pesticides are developmental neurotoxicants. We gave diazinon via osmotic minipumps implanted into dams prior to conception, with exposure continued into the second postnatal week, at doses (0.5 or 1 mg/kg/day) that did not produce detectable brain cholinesterase inhibition. We evaluated the impact on acetylcholine (ACh) and serotonin (5-hydroxytryptamine, 5HT) systems in brain regions from adolescence through full adulthood. Diazinon produced deficits in presynaptic ACh activity with regional and sex selectivity: cerebrocortical regions and the hippocampus were affected to a greater extent than were the striatum, midbrain or brainstem, and females were more sensitive than males. Diazinon also reduced nicotinic ACh receptors and 5HT1A receptors, with the same regional and sex preferences. These patterns were similar to those of diazinon given in a much more restricted period (postnatal day 1-4) but were of greater magnitude and consistency; this suggests that the brain is vulnerable to diazinon over a wide developmental window. Diazinon's effects differed from those of the related organophosphate, chlorpyrifos, with regard to regional and sex selectivity, and more importantly, to the effects on receptors: chlorpyrifos upregulates nicotinic ACh receptors and 5HT receptors, effects that compensate for the presynaptic ACh deficits. Diazinon can thus be expected to have worse neurodevelopmental outcomes than chlorpyrifos. Further, the disparities between diazinon and chlorpyrifos indicate the problems of predicting the developmental neurotoxicity of organophosphates based on a single compound, and emphasize the inadequacy of cholinesterase inhibition as an index of safety.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Samantha Skavicus
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ashley Ko
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Edward D Levin
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Frederic J Seidler
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
18
|
Shaffo FC, Grodzki AC, Fryer AD, Lein PJ. Mechanisms of organophosphorus pesticide toxicity in the context of airway hyperreactivity and asthma. Am J Physiol Lung Cell Mol Physiol 2018; 315:L485-L501. [PMID: 29952220 PMCID: PMC6230874 DOI: 10.1152/ajplung.00211.2018] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Numerous epidemiologic studies have identified an association between occupational exposures to organophosphorus pesticides (OPs) and asthma or asthmatic symptoms in adults. Emerging epidemiologic data suggest that environmentally relevant levels of OPs may also be linked to respiratory dysfunction in the general population and that in utero and/or early life exposures to environmental OPs may increase risk for childhood asthma. In support of a causal link between OPs and asthma, experimental evidence demonstrates that occupationally and environmentally relevant OP exposures induce bronchospasm and airway hyperreactivity in preclinical models. Mechanistic studies have identified blockade of autoinhibitory M2 muscarinic receptors on parasympathetic nerves that innervate airway smooth muscle as one mechanism by which OPs induce airway hyperreactivity, but significant questions remain regarding the mechanism(s) by which OPs cause neuronal M2 receptor dysfunction and, more generally, how OPs cause persistent asthma, especially after developmental exposures. The goals of this review are to 1) summarize current understanding of OPs in asthma; 2) discuss mechanisms of OP neurotoxicity and immunotoxicity that warrant consideration in the context of OP-induced airway hyperreactivity and asthma, specifically, inflammatory responses, oxidative stress, neural plasticity, and neurogenic inflammation; and 3) identify critical data gaps that need to be addressed in order to better protect adults and children against the harmful respiratory effects of low-level OP exposures.
Collapse
Affiliation(s)
- Frances C Shaffo
- Department of Molecular Biosciences, University of California , Davis, California
| | - Ana Cristina Grodzki
- Department of Molecular Biosciences, University of California , Davis, California
| | - Allison D Fryer
- Pulmonary Critical Care Medicine, Department of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California , Davis, California
| |
Collapse
|
19
|
Lamtai M, Chaibat J, Ouakki S, Zghari O, Mesfioui A, El Hessni A, Rifi EH, Marmouzi I, Essamri A, Ouichou A. Effect of Chronic Administration of Nickel on Affective and Cognitive Behavior in Male and Female Rats: Possible Implication of Oxidative Stress Pathway. Brain Sci 2018; 8:brainsci8080141. [PMID: 30065183 PMCID: PMC6119950 DOI: 10.3390/brainsci8080141] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/22/2018] [Accepted: 07/02/2018] [Indexed: 01/24/2023] Open
Abstract
Nickel (Ni) toxicity has been reported to produce biochemical and behavioral dysfunction. The present study was undertaken to examine whether Ni chronic administration can induce alterations of affective and cognitive behavior and oxidative stress in male and female rats. Twenty-four rats, for each gender, divided into control and three test groups (n = 6), were injected intraperitoneally with saline (0.9% NaCl) or NiCl2 (0.25 mg/kg, 0.5 mg/kg and 1 mg/kg) for 8 weeks. After treatment period, animals were tested in the open-field, elevated plus maze tests for anxiety-like behavior, and forced swimming test for depression-like behavior. The Morris Water Maze was used to evaluate the spatial learning and memory. The hippocampus of each animal was taken for biochemical examination. The results showed that Ni administration dose dependently increased anxiety-like behavior in both tests. A significant increase in depression-like symptoms was also exhibited by Ni treated rats. In the Morris Water Maze test, the spatial learning and memory were significantly impaired just in males treated with 1 mg/kg of Ni. With regard to biochemical analysis, activity of catalase (CAT) and superoxide dismutase (SOD) were significantly decreased, while the levels of nitric oxide (NO) and lipid peroxidation (LPO) in the hippocampus were significantly increased in the Ni-treated groups. Consequently, chronic Ni administration induced behavioral and biochemical dysfunctions.
Collapse
Affiliation(s)
- Mouloud Lamtai
- Unit of Nervous and Endocrine Physiology, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - Jihane Chaibat
- Unit of Nervous and Endocrine Physiology, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - Sihame Ouakki
- Unit of Nervous and Endocrine Physiology, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - Oussama Zghari
- Unit of Nervous and Endocrine Physiology, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - Abdelhalem Mesfioui
- Unit of Nervous and Endocrine Physiology, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - Aboubaker El Hessni
- Unit of Nervous and Endocrine Physiology, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - El-Housseine Rifi
- Laboratory of Synthesis Organic and Extraction Processes, Department of Chemistry, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - Ilias Marmouzi
- Laboratoire de Pharmacologie et Toxicologie, équipe de Pharmacocinétique, Faculté de Médecine et de Pharmacie, University Mohammed V in Rabat, BP 6203, Rabat Instituts, Rabat 10100, Morocco.
| | - Azzouz Essamri
- Laboratory of Agro-Resources and Process Engineering, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - Ali Ouichou
- Unit of Nervous and Endocrine Physiology, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| |
Collapse
|
20
|
Akhundov AG, Mustafaev NJ, Mekhtiev AA. Role of the brain in adaptation of the common and golden carps to adverse factors of chemical origin. J EVOL BIOCHEM PHYS+ 2018. [DOI: 10.1134/s0022093017060035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Paul KC, Sinsheimer JS, Cockburn M, Bronstein JM, Bordelon Y, Ritz B. Organophosphate pesticides and PON1 L55M in Parkinson's disease progression. ENVIRONMENT INTERNATIONAL 2017; 107:75-81. [PMID: 28689109 PMCID: PMC5600289 DOI: 10.1016/j.envint.2017.06.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/08/2017] [Accepted: 06/22/2017] [Indexed: 05/13/2023]
Abstract
BACKGROUND Parkinson's disease (PD) has motor and non-motor features that contribute to its phenotype and functional decline. Organophosphate (OP) pesticides and PON1 L55M, which influences OP metabolism, have been implicated in multiple mechanisms related to neuronal cell death and may influence PD symptom progression. OBJECTIVE To investigate whether ambient agricultural OP exposure and PON1 L55M influence the rate of motor, cognitive, and mood-related symptom progression in PD. METHODS We followed a longitudinal cohort of 246 incident PD patients on average over 5years (7.5years after diagnosis), repeatedly measuring symptom progression with the Mini-Mental State Exam (MMSE), Unified Parkinson's Disease Rating Scale (UPDRS), and Geriatric Depressive Scale (GDS). OP exposures were generated with a geographic information system (GIS) based exposure assessment tool. We employed repeated-measures regression to assess associations between OP exposure and/or PON1 L55M genotype and progression. RESULTS High OP exposures were associated with faster progression of motor (UPDRS β=0.24, 95% CI=-0.01, 0.49) and cognitive scores (MMSE β=-0.06, 95% CI=-0.11, -0.01). PON1 55MM was associated with faster progression of motor (UPDRS β=0.28, 95% CI=0.08, 0.48) and depressive symptoms (GDS β=0.07; 95% CI=0.01, 0.13). We also found the PON1 L55M variant to interact with OP exposures in influencing MMSE cognitive scores (β=-1.26, 95% CI=-2.43, -0.09). CONCLUSION Our study provides preliminary support for the involvement of OP pesticides and PON1 in PD-related motor, cognitive, or depressive symptom progression. Future studies are needed to replicate findings and examine whether elderly populations generally are similarly impacted by pesticides or PON1 55M genotypes.
Collapse
Affiliation(s)
- Kimberly C Paul
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| | - Janet S Sinsheimer
- Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, California, USA; Departments of Human Genetics and Biomathematics, David Geffen School of Medicine, Los Angeles, California, USA
| | - Myles Cockburn
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, CA, USA
| | - Jeff M Bronstein
- Department of Neurology, David Geffen School of Medicine, Los Angeles, California, USA
| | - Yvette Bordelon
- Department of Neurology, David Geffen School of Medicine, Los Angeles, California, USA
| | - Beate Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA; Department of Neurology, David Geffen School of Medicine, Los Angeles, California, USA.
| |
Collapse
|
22
|
Furlong MA, Herring A, Buckley JP, Goldman BD, Daniels JL, Engel LS, Wolff MS, Chen J, Wetmur J, Barr DB, Engel SM. Prenatal exposure to organophosphorus pesticides and childhood neurodevelopmental phenotypes. ENVIRONMENTAL RESEARCH 2017; 158:737-747. [PMID: 28743040 PMCID: PMC5577985 DOI: 10.1016/j.envres.2017.07.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/15/2017] [Accepted: 07/10/2017] [Indexed: 05/07/2023]
Abstract
Prenatal exposure to organophosphorus pesticides (OPs) has been associated with different neurodevelopmental outcomes across different cohorts. A phenotypic approach may address some of these differences by incorporating information across scales and accounting for the complex correlational structure of neurodevelopmental outcomes. Additionally, Bayesian hierarchical modeling can account for confounding by collinear co-exposures. We use this framework to examine associations between prenatal exposure to OPs and behavior, executive functioning, and IQ assessed at age 6-9 years in a cohort of 404 mother/infant pairs recruited during pregnancy. We derived phenotypes of neurodevelopment with a factor analysis, and estimated associations between OP metabolites and these phenotypes in Bayesian hierarchical models for exposure mixtures. We report seven factors: 1) Impulsivity and Externalizing, 2) Executive Functioning, 3) Internalizing, 4) Perceptual Reasoning, 5) Adaptability, 6) Processing Speed, and 7) Verbal Intelligence. These, along with the Working Memory Index, were standardized and scaled so that positive values reflected positive attributes and negative values represented adverse outcomes. Standardized dimethylphosphate metabolites were negatively associated with Internalizing factor scores (β^ - 0.13, 95% CI - 0.26, 0.00) but positively associated with Executive Functioning factor scores (β^ 0.18, 95% CI 0.04, 0.31). Standardized diethylphosphate metabolites were negatively associated with the Working Memory Index (β^ - 0.17, 95% CI - 0.33, - 0.03). Associations with factor scores were generally stronger and more precise than associations with individual instrument-specific items. Factor analysis of outcomes may provide some advantages in etiological studies of childhood neurodevelopment by incorporating information across scales to reduce dimensionality and improve precision.
Collapse
Affiliation(s)
- Melissa A Furlong
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, United States.
| | - Amy Herring
- Department of Statistical Science and Global Health Institute, Duke University, United States
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, United States
| | - Barbara D Goldman
- Department of Psychology and Neuroscience & FPG Child Development Institute, University of North Carolina at Chapel Hill, United States
| | - Julie L Daniels
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, United States
| | - Lawrence S Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, United States
| | - Mary S Wolff
- Department of Environmental Medicine and Public Health, Mount Sinai School of Medicine, United States
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Mount Sinai School of Medicine, United States
| | - Jim Wetmur
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, United States
| | - Dana Boyd Barr
- Department of Environmental Health, Rollins School of Public Health, Emory University, United States
| | - Stephanie M Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, United States
| |
Collapse
|
23
|
Impact of chlorpyrifos on human villous trophoblasts and chorionic villi. Toxicol Appl Pharmacol 2017; 329:26-39. [DOI: 10.1016/j.taap.2017.05.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/29/2017] [Accepted: 05/22/2017] [Indexed: 01/01/2023]
|
24
|
Two cholinesterase inhibitors trigger dissimilar effects on behavior and body weight in C57BL/6 mice: The case of chlorpyrifos and rivastigmine. Behav Brain Res 2017; 318:1-11. [DOI: 10.1016/j.bbr.2016.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 01/03/2023]
|
25
|
Tryptophan depletion affects compulsive behaviour in rats: strain dependent effects and associated neuromechanisms. Psychopharmacology (Berl) 2017; 234:1223-1236. [PMID: 28280881 PMCID: PMC5362668 DOI: 10.1007/s00213-017-4561-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/02/2017] [Indexed: 02/02/2023]
Abstract
RATIONALE Compulsive behaviour, present in different psychiatric disorders, such as obsessive-compulsive disorder, schizophrenia and drug abuse, is associated with altered levels of monoamines, particularly serotonin (5-hydroxytryptamine) and its receptor system. OBJECTIVES The present study investigated whether 5-HT manipulation, through a tryptophan (TRP) depletion by diet in Wistar and Lister Hooded rats, modulates compulsive drinking in schedule-induced polydipsia (SIP) and locomotor activity in the open-field test. The levels of dopamine, noradrenaline, serotonin and its metabolite were evaluated, as well as the 5-HT2A and 5-HT1A receptor binding, in different brain regions. METHODS Wistar rats were selected as high (HD) or low (LD) drinkers according to their SIP behaviour, while Lister hooded rats did not show SIP acquisition. Both strains were fed for 14 days with either a TRP-free diet (T-) or a TRP-supplemented diet (T+) RESULTS: The TRP depletion diet effectively reduced 5-HT levels in the frontal cortex, amygdala and hippocampus in both strains of rats. The TRP-depleted HD Wistar rats were more sensitive to 5-HT manipulation, exhibiting more licks on SIP than did the non-depleted HD Wistar rats, while the LD Wistar and the Lister Hooded rats did not exhibit differences in SIP. In contrast, the TRP-depleted Lister Hooded rats increased locomotor activity compared to the non-depleted rats, while no differences were found in the Wistar rats. Serotonin 2A receptor binding in the striatum was significantly reduced in the TRP-depleted HD Wistar rats. CONCLUSIONS These results suggest that alterations of the serotonergic system could be involved in compulsive behaviour in vulnerable populations.
Collapse
|
26
|
Chen XP, Wang TT, Wu XZ, Wang DW, Chao YS. An in vivo study in mice: mother's gestational exposure to organophosphorus pesticide retards the division and migration process of neural progenitors in the fetal developing brain. Toxicol Res (Camb) 2016; 5:1359-1370. [PMID: 30090440 PMCID: PMC6062264 DOI: 10.1039/c5tx00282f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 06/11/2016] [Indexed: 12/20/2022] Open
Abstract
Background: Widely utilized pesticides such as chlorpyrifos (CPF) can cause cognitive abnormalities, neurotransmitter disruptions and brain cytoarchitecture deficits in adulthood due to exposure in the prenatal period, but the mechanism underlying the development and maintenance of such neurotoxicity in embryonic neurogenesis remains largely unclear. Using embryonic neocortex slices, we investigated mitosis population constituents and characteristic interkinetic nuclear migration (INM) to evaluate the CPF effects on the proliferation process of neural progenitors. Methods: Gestational days (GD) 14 and GD 7.5-11.5 ICR dams were exposed to 5 mg kg-1 of CPF to investigate immediate toxicity and sustained toxicity. Proliferating nuclei were labeled with 50 mg kg-1 of Brdu at 1, 3, 6 and 9 hours before samples were collected. The mitoses count and Brdu positive nuclei (BPN) location were measured and analyzed in standard sections of the embryonic dorsolateral cortex. Results: CPF reduced the mitoses count in the primary progenitors but not in the secondary progenitors which are time sustained. CPF retarded BPN migration with a 6-9 μm delay of the relative location in the immediate groups and a 3-6 μm delay in the sustained ones. CPF had no or little effects on the global mitoses count and BPN count. Conclusion: Prenatal CPF exposure disrupts the proliferation process of primary progenitors in the embryonic dorsolateral cortex immediately and with sustained effects, which may contribute to explain the toxicity mechanism in early neurogenesis.
Collapse
Affiliation(s)
- Xiao-Ping Chen
- Department of Biotechnology , College of Biological Engineering , Zhejiang University of Technology , Hangzhou , China . ; ; Tel: +86-571-88320823
| | - Ting-Ting Wang
- Department of Biotechnology , College of Biological Engineering , Zhejiang University of Technology , Hangzhou , China . ; ; Tel: +86-571-88320823
| | - Xiu-Zhong Wu
- Department of Biotechnology , College of Biological Engineering , Zhejiang University of Technology , Hangzhou , China . ; ; Tel: +86-571-88320823
| | - Da-Wei Wang
- Department of Biotechnology , College of Biological Engineering , Zhejiang University of Technology , Hangzhou , China . ; ; Tel: +86-571-88320823
| | - Yong-Sheng Chao
- Department of Biotechnology , College of Biological Engineering , Zhejiang University of Technology , Hangzhou , China . ; ; Tel: +86-571-88320823
| |
Collapse
|
27
|
Campos Ÿ, dos Santos Pinto da Silva V, Sarpa Campos de Mello M, Barros Otero U. Exposure to pesticides and mental disorders in a rural population of Southern Brazil. Neurotoxicology 2016; 56:7-16. [DOI: 10.1016/j.neuro.2016.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 05/26/2016] [Accepted: 06/01/2016] [Indexed: 12/29/2022]
|
28
|
Mamczarz J, Pescrille JD, Gavrushenko L, Burke RD, Fawcett WP, DeTolla LJ, Chen H, Pereira EFR, Albuquerque EX. Spatial learning impairment in prepubertal guinea pigs prenatally exposed to the organophosphorus pesticide chlorpyrifos: Toxicological implications. Neurotoxicology 2016; 56:17-28. [PMID: 27296654 DOI: 10.1016/j.neuro.2016.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 11/17/2022]
Abstract
Exposure of the developing brain to chlorpyrifos (CPF), an organophosphorus (OP) pesticide used extensively in agriculture worldwide, has been associated with increased prevalence of cognitive deficits in children, particularly boys. The present study was designed to test the hypothesis that cognitive deficits induced by prenatal exposure to sub-acute doses of CPF can be reproduced in precocial small species. To address this hypothesis, pregnant guinea pigs were injected daily with CPF (25mg/kg,s.c.) or vehicle (peanut oil) for 10days starting on presumed gestation day (GD) 53-55. Offspring were born around GD 65, weaned on postnatal day (PND) 20, and subjected to behavioral tests starting around PND 30. On the day of birth, butyrylcholinesterase (BuChE), an OP bioscavenger used as a biomarker of OP exposures, and acetylcholinesterase (AChE), a major molecular target of OP compounds, were significantly inhibited in the blood of CPF-exposed offspring. In their brains, BuChE, but not AChE, was significantly inhibited. Prenatal CPF exposure had no significant effect on locomotor activity or on locomotor habituation, a form of non-associative memory assessed in open fields. Spatial navigation in the Morris water maze (MWM) was found to be sexually dimorphic among guinea pigs, with males outperforming females. Prenatal CPF exposure impaired spatial learning more significantly among male than female guinea pigs and, consequently, reduced the sexual dimorphism of the task. The results presented here, which strongly support the test hypothesis, reveal that the guinea pig is a valuable animal model for preclinical assessment of the developmental neurotoxicity of OP pesticides. These findings are far reaching as they lay the groundwork for future studies aimed at identifying therapeutic interventions to treat and/or prevent the neurotoxic effects of CPF in the developing brain.
Collapse
Affiliation(s)
- Jacek Mamczarz
- Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Joseph D Pescrille
- Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Lisa Gavrushenko
- Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Richard D Burke
- Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - William P Fawcett
- Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Louis J DeTolla
- Program of Comparative Medicine and Departments of Pathology and Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Hegang Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Edna F R Pereira
- Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Edson X Albuquerque
- Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
29
|
Mahoney S, Najera M, Bai Q, Burton EA, Veser G. The Developmental Toxicity of Complex Silica-Embedded Nickel Nanoparticles Is Determined by Their Physicochemical Properties. PLoS One 2016; 11:e0152010. [PMID: 27031643 PMCID: PMC4816503 DOI: 10.1371/journal.pone.0152010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/07/2016] [Indexed: 12/02/2022] Open
Abstract
Complex engineered nanomaterials (CENs) are a rapidly developing class of structurally and compositionally complex materials that are expected to dominate the next generation of functional nanomaterials. The development of methods enabling rapid assessment of the toxicity risk associated with this type of nanomaterial is therefore critically important. We evaluated the toxicity of three differently structured nickel-silica nanomaterials as prototypical CENs: simple, surface-deposited Ni-SiO2 and hollow and non-hollow core-shell Ni@SiO2 materials (i.e., ~1-2 nm Ni nanoparticles embedded into porous silica shells with and without a central cavity, respectively). Zebrafish embryos were exposed to these CENs, and morphological (survival and malformations) and physiological (larval motility) endpoints were coupled with thorough characterization of physiochemical characteristics (including agglomeration, settling and nickel ion dissolution) to determine how toxicity differed between these CENs and equivalent quantities of Ni2+ salt (based on total Ni). Exposure to Ni2+ ions strongly compromised zebrafish larva viability, and surviving larvae showed severe malformations. In contrast, exposure to the equivalent amount of Ni CEN did not result in these abnormalities. Interestingly, exposure to Ni-SiO2 and hollow Ni@SiO2 provoked abnormalities of zebrafish larval motor function, indicating developmental toxicity, while non-hollow Ni@SiO2 showed no toxicity. Correlating these observations with physicochemical characterization of the CENs suggests that the toxicity of the Ni-SiO2 and hollow Ni@SiO2 material may result partly from an increased effective exposure at the bottom of the well due to rapid settling. Overall, our data suggest that embedding nickel NPs in a porous silica matrix may be a straightforward way to mitigate their toxicity without compromising their functional properties. At the same time, our results also indicate that it is critical to consider modification of the effective exposure when comparing different nanomaterial configurations, because effective exposure might influence NP toxicity more than specific "nano-chemistry" effects.
Collapse
Affiliation(s)
- Sharlee Mahoney
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michelle Najera
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Mascaro Center for Sustainable Innovation, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Qing Bai
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Edward A. Burton
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Götz Veser
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Mascaro Center for Sustainable Innovation, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
30
|
Yuan L, Li J, Zha J, Wang Z. Targeting neurotrophic factors and their receptors, but not cholinesterase or neurotransmitter, in the neurotoxicity of TDCPP in Chinese rare minnow adults (Gobiocypris rarus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 208:670-7. [PMID: 26552522 DOI: 10.1016/j.envpol.2015.10.045] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 05/03/2023]
Abstract
Organophosphate flame retardants (OPFRs) have been detected at high concentrations in various environmental and biotic samples, but little is known about their toxicity. In this study, the potential neurotoxicity of three OPFRs (TCEP, TDCPP, and TPP) and Chlorpyrifos (CPF, an organophosphate pesticide) were compared in Chinese rare minnow using an acute toxicity test and a 21-day fish assay. The acute test demonstrated significant inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) by CPF. Although significant AChE inhibition at high concentration of TPP was also observed, none of the OPFRs had effects similar to CPF on these enzymes, indicating that their acute toxicities to Chinese rare minnow may be unrelated to cholinesterase inhibition. In addition, the 21-day fish assay with TDCPP demonstrated no significant effects on cholinesterase activities or neurotransmitter levels. Nonetheless, this OPFR exhibited widespread effects on the neurotrophic factors and their receptors (e.g., ntf3, ntrk1, ntrk2, ngfr, and fgf2, fgf11, fgf22, fgfr4), indicating that TDCPP or other OPFRs may elicit neurological effects by targeting neurotrophic factors and their receptors in Chinese rare minnow.
Collapse
Affiliation(s)
- Lilai Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiasu Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
31
|
Syed F, Chandravanshi LP, Khanna VK, Soni I. Beta-cyfluthrin induced neurobehavioral impairments in adult rats. Chem Biol Interact 2016; 243:19-28. [DOI: 10.1016/j.cbi.2015.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/22/2015] [Accepted: 11/12/2015] [Indexed: 12/19/2022]
|
32
|
Meijer M, Brandsema JAR, Nieuwenhuis D, Wijnolts FMJ, Dingemans MML, Westerink RHS. Inhibition of Voltage-Gated Calcium Channels After Subchronic and Repeated Exposure of PC12 Cells to Different Classes of Insecticides. Toxicol Sci 2015; 147:607-17. [PMID: 26187449 DOI: 10.1093/toxsci/kfv154] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We previously demonstrated that acute inhibition of voltage-gated calcium channels (VGCCs) is a common mode of action for (sub)micromolar concentrations of chemicals, including insecticides. However, because human exposure to chemicals is usually chronic and repeated, we investigated if selected insecticides from different chemical classes (organochlorines, organophosphates, pyrethroids, carbamates, and neonicotinoids) also disturb calcium homeostasis after subchronic (24 h) exposure and after a subsequent (repeated) acute exposure. Effects on calcium homeostasis were investigated with single-cell fluorescence (Fura-2) imaging of PC12 cells. Cells were depolarized with high-K(+) saline to study effects of subchronic or repeated exposure on VGCC-mediated Ca(2+) influx. The results demonstrate that except for carbaryl and imidacloprid, all selected insecticides inhibited depolarization (K(+))-evoked Ca(2+) influx after subchronic exposure (IC50's: approximately 1-10 µM) in PC12 cells. These inhibitory effects were not or only slowly reversible. Moreover, repeated exposure augmented the inhibition of the K(+)-evoked increase in intracellular calcium concentration induced by subchronic exposure to cypermethrin, chlorpyrifos, chlorpyrifos-oxon, and endosulfan (IC50's: approximately 0.1-4 µM). In rat primary cortical cultures, acute and repeated chlorpyrifos exposure also augmented inhibition of VGCCs compared with subchronic exposure. In conclusion, compared with subchronic exposure, repeated exposure increases the potency of insecticides to inhibit VGCCs. However, the potency of insecticides to inhibit VGCCs upon repeated exposure was comparable with the inhibition previously observed following acute exposure, with the exception of chlorpyrifos. The data suggest that an acute exposure paradigm is sufficient for screening chemicals for effects on VGCCs and that PC12 cells are a sensitive model for detection of effects on VGCCs.
Collapse
Affiliation(s)
- Marieke Meijer
- Neurotoxicology Research Group, Toxicology Division, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences (IRAS), Utrecht University, NL-3508 TD Utrecht, The Netherlands
| | - Joske A R Brandsema
- Neurotoxicology Research Group, Toxicology Division, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences (IRAS), Utrecht University, NL-3508 TD Utrecht, The Netherlands
| | - Desirée Nieuwenhuis
- Neurotoxicology Research Group, Toxicology Division, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences (IRAS), Utrecht University, NL-3508 TD Utrecht, The Netherlands
| | - Fiona M J Wijnolts
- Neurotoxicology Research Group, Toxicology Division, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences (IRAS), Utrecht University, NL-3508 TD Utrecht, The Netherlands
| | - Milou M L Dingemans
- Neurotoxicology Research Group, Toxicology Division, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences (IRAS), Utrecht University, NL-3508 TD Utrecht, The Netherlands
| | - Remco H S Westerink
- Neurotoxicology Research Group, Toxicology Division, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences (IRAS), Utrecht University, NL-3508 TD Utrecht, The Netherlands
| |
Collapse
|
33
|
Pinkas A, Turgeman G, Tayeb S, Yanai J. An avian model for ascertaining the mechanisms of organophosphate neuroteratogenicity and its therapy with mesenchymal stem cell transplantation. Neurotoxicol Teratol 2015; 50:73-81. [DOI: 10.1016/j.ntt.2015.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/16/2015] [Accepted: 06/21/2015] [Indexed: 12/29/2022]
|
34
|
Venerosi A, Tait S, Stecca L, Chiarotti F, De Felice A, Cometa MF, Volpe MT, Calamandrei G, Ricceri L. Effects of maternal chlorpyrifos diet on social investigation and brain neuroendocrine markers in the offspring - a mouse study. Environ Health 2015; 14:32. [PMID: 25889763 PMCID: PMC4448273 DOI: 10.1186/s12940-015-0019-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 03/20/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND Chlorpyrifos (CPF) is one of the most widely used organophosphate pesticides worldwide. Epidemiological studies on pregnant women and their children suggest a link between in utero CPF exposure and delay in psychomotor and cognitive maturation. A large number of studies in animal models have shown adverse effects of CPF on developing brain and more recently on endocrine targets. Our aim was to determine if developmental exposure to CPF affects social responsiveness and associated molecular neuroendocrine markers at adulthood. METHOD Pregnant CD1 outbred mice were fed from gestational day 15 to lactation day 14 with either a CPF-added (equivalent to 6 mg/kg/bw/day during pregnancy) or a standard diet. We then assessed in the offspring the long-term effects of CPF exposure on locomotion, social recognition performances and gene expression levels of selected neurondocrine markers in amygdala and hypothalamus. RESULTS No sign of CPF systemic toxicity was detected. CPF induced behavioral alterations in adult offspring of both sexes: CPF-exposed males displayed enhanced investigative response to unfamiliar social stimuli, whereas CPF-exposed females showed a delayed onset of social investigation and lack of reaction to social novelty. In parallel, molecular effects of CPF were sex dimorphic: in males CPF increased expression of estrogen receptor beta in hypothalamus and decreased oxytocin expression in amygdala; CPF increased vasopressin 1a receptor expression in amygdala in both sexes. CONCLUSIONS These data indicate that developmental CPF affects mouse social behavior and interferes with development of sex-dimorphic neuroendocrine pathways with potential disruptive effects on neuroendocrine axes homeostasis. The route of exposure selected in our study corresponds to relevant human exposure scenarios, our data thus supports the view that neuroendocrine effects, especially in susceptible time windows, should deserve more attention in risk assessment of OP insecticides.
Collapse
Affiliation(s)
- Aldina Venerosi
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| | - Sabrina Tait
- Department Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy.
| | - Laura Stecca
- Department Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy.
| | - Flavia Chiarotti
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| | - Alessia De Felice
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| | | | - Maria Teresa Volpe
- Department Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy.
| | - Gemma Calamandrei
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| | - Laura Ricceri
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
35
|
Effet de l’exposition chronique au nickel sur les fonctions neurocomportementales chez les rats Wistar pendant la période de développement. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2014. [DOI: 10.1016/j.toxac.2014.09.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
36
|
Estevan C, Fuster E, Del Río E, Pamies D, Vilanova E, Sogorb MA. Organophosphorus pesticide chlorpyrifos and its metabolites alter the expression of biomarker genes of differentiation in D3 mouse embryonic stem cells in a comparable way to other model neurodevelopmental toxicants. Chem Res Toxicol 2014; 27:1487-95. [PMID: 25137620 DOI: 10.1021/tx500051k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There are discrepancies about whether chlorpyrifos is able to induce neurodevelopmental toxicity or not. We previously reported alterations in the pattern of expression of biomarker genes of differentiation in D3 mouse embryonic stem cells caused by chlorpyrifos and its metabolites chlorpyrifos-oxon and 3,5,6-trichloro-2-pyridinol. Now, we reanalyze these data comparing the effects on these genes with those caused in the same genes by retinoic acid, valproic acid, and penicillin-G (model compounds considered as strong, weak, and non-neurodevelopmental toxicants, respectively). We also compare the effects of chlorpyrifos and its metabolites on the cell viability of D3 cells and 3T3 mouse fibroblasts with the effects caused in the same cells by the three model compounds. We conclude that chlorpyrifos and its metabolites act, regarding these end-points, as the weak neurodevelopmental toxicant valproic acid, and consequently, a principle of caution should be applied avoiding occupational exposures in pregnant women. A second independent experiment run with different cellular batches coming from the same clone obtained the same result as the first one.
Collapse
Affiliation(s)
- Carmen Estevan
- Unidad de Toxicología y Seguridad Química, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche , Avenida de la Universidad s/n, 03202-Elche, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Effects of Repeated Low-Dose Exposure of the Nerve Agent VX on Monoamine Levels in Different Brain Structures in Mice. Neurochem Res 2014; 39:911-21. [DOI: 10.1007/s11064-014-1286-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/11/2014] [Accepted: 03/14/2014] [Indexed: 11/27/2022]
|
38
|
Özel RE, Wallace KN, Andreescu S. Alterations of intestinal serotonin following nanoparticle exposure in embryonic zebrafish. ENVIRONMENTAL SCIENCE. NANO 2014; 2014:27-36. [PMID: 24639893 PMCID: PMC3951830 DOI: 10.1039/c3en00001j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The increased use of engineered nanoparticles (NPs) in manufacturing and consumer products raises concerns about the potential environmental and health implications on the ecosystem and living organisms. Organs initially and more heavily affected by environmental NPs exposure in whole organisms are the skin and digestive system. We investigate the toxic effect of two types of NPs, nickel (Ni) and copper oxide (CuO), on the physiology of the intestine of a living aquatic system, zebrafish embryos. Embryos were exposed to a range of Ni and CuO NP concentrations at different stages of embryonic development. We use changes in the physiological serotonin (5HT) concentrations, determined electrochemically with carbon fiber microelectrodes inserted in the live embryo, to assess this organ dysfunction due to NP exposure. We find that exposure to both Ni and CuO NPs induces changes in the physiological 5HT concentration that varies with the type, exposure period and concentration of NPs, as well as with the developmental stage during which the embryo is exposed. These data suggest that exposure to NPs might alter development and physiological processes in living organisms and provide evidence of the effect of NPs on the physiology of the intestine.
Collapse
Affiliation(s)
- Rıfat Emrah Özel
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave. Potsdam, NY, 13699-5810, USA
| | - Kenneth N. Wallace
- Department of Biology, Clarkson University, 8 Clarkson Ave. Potsdam, NY, 13699-5805, USA
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave. Potsdam, NY, 13699-5810, USA
| |
Collapse
|
39
|
Bahrami F, Hashemi M, Khalili F, Hashemi J, Asgari A. Stimulation of CB1 Cannabinoid and NMDA Receptors Increases Neuroprotective Effect against Diazinon-Induced Neurotoxicity. NEUROPHYSIOLOGY+ 2013. [DOI: 10.1007/s11062-013-9390-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
40
|
Slotkin TA, Card J, Seidler FJ. Prenatal dexamethasone, as used in preterm labor, worsens the impact of postnatal chlorpyrifos exposure on serotonergic pathways. Brain Res Bull 2013; 100:44-54. [PMID: 24280657 DOI: 10.1016/j.brainresbull.2013.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/21/2013] [Accepted: 10/28/2013] [Indexed: 11/29/2022]
Abstract
This study explores how glucocorticoids sensitize the developing brain to the organophosphate pesticide, chlorpyrifos. Pregnant rats received a standard therapeutic dose (0.2mg/kg) of dexamethasone on gestational days 17-19; pups were given subtoxic doses of chlorpyrifos on postnatal days 1-4 (1mg/kg, <10% cholinesterase inhibition). We evaluated serotonin (5HT) synaptic function from postnatal day 30 to day 150, assessing the expression of 5HT receptors and the 5HT transporter, along with 5HT turnover (index of presynaptic impulse activity) in brain regions encompassing all the 5HT projections and cell bodies. These parameters are known targets for neurodevelopmental effects of dexamethasone and chlorpyrifos individually. In males, chlorpyrifos evoked overall elevations in the expression of 5HT synaptic proteins, with a progressive increase from adolescence to adulthood; this effect was attenuated by prenatal dexamethasone treatment. The chlorpyrifos-induced upregulation was preceded by deficits in 5HT turnover, indicating that the receptor upregulation was an adaptive response to deficient presynaptic activity. Turnover deficiencies were magnified by dexamethasone pretreatment, worsening the functional impairment caused by chlorpyrifos. In females, chlorpyrifos-induced receptor changes reflected relative sparing of adverse effects compared to males. Nevertheless, prenatal dexamethasone still worsened the 5HT turnover deficits and reduced 5HT receptor expression in females, demonstrating the same adverse interaction. Glucocorticoids are used in 10% of U.S. pregnancies, and are also elevated in maternal stress; accordingly, our results indicate that this group represents a large subpopulation that may have heightened vulnerability to developmental neurotoxicants such as the organophosphates.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA.
| | - Jennifer Card
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Frederic J Seidler
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
41
|
Pesticides, depression and suicide: A systematic review of the epidemiological evidence. Int J Hyg Environ Health 2013; 216:445-60. [DOI: 10.1016/j.ijheh.2012.12.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 12/13/2012] [Accepted: 12/18/2012] [Indexed: 11/22/2022]
|
42
|
Lima CS, Dutra-Tavares AC, Nunes F, Nunes-Freitas AL, Ribeiro-Carvalho A, Filgueiras CC, Manhães AC, Meyer A, Abreu-Villaça Y. Methamidophos exposure during the early postnatal period of mice: immediate and late-emergent effects on the cholinergic and serotonergic systems and behavior. Toxicol Sci 2013; 134:125-39. [PMID: 23596261 DOI: 10.1093/toxsci/kft095] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Organophosphates (OPs) are among the most used pesticides. Although some OPs have had their use progressively more restricted, other OPs are being used without sufficient investigation of their effects. Here, we investigated the immediate neurochemical and delayed neurochemical and behavioral actions of the OP methamidophos to verify whether there are concerns regarding exposure during early postnatal development. From the third to the nineth postnatal day (PN), Swiss mice were sc injected with methamidophos (1mg/kg). At PN10, we assessed cholinergic and serotonergic biomarkers in the cerebral cortex and brainstem. From PN60 to PN63, mice were submitted to a battery of behavioral tests and subsequently to biochemical analyses. At PN10, the effects were restricted to females and to the cholinergic system: Methamidophos promoted increased choline transporter binding in the brainstem. At PN63, in the brainstem, there was a decrease in choline transporter, a female-only decrease in 5HT1A and a male-only increase in 5HT2 receptor binding. In the cortex, choline acetyltransferase activity was decreased and 5HT2 receptor binding was increased both in males and females. Methamidophos elicited behavioral alterations, suggestive of increased depressive-like behavior and impaired decision making. There were no significant alterations on anxiety-related measures and on memory/learning. Methamidophos elicited cholinergic and serotonergic alterations that depended on brain region, sex, and age of the animals. These outcomes, together with the behavioral effects, indicate that this OP is deleterious to the developing brain and that alterations are indeed identified long after the end of exposure.
Collapse
Affiliation(s)
- Carla S Lima
- Departamento de Ciências Fisiológicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Burns CJ, McIntosh LJ, Mink PJ, Jurek AM, Li AA. Pesticide exposure and neurodevelopmental outcomes: review of the epidemiologic and animal studies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2013; 16:127-283. [PMID: 23777200 PMCID: PMC3705499 DOI: 10.1080/10937404.2013.783383] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Assessment of whether pesticide exposure is associated with neurodevelopmental outcomes in children can best be addressed with a systematic review of both the human and animal peer-reviewed literature. This review analyzed epidemiologic studies testing the hypothesis that exposure to pesticides during pregnancy and/or early childhood is associated with neurodevelopmental outcomes in children. Studies that directly queried pesticide exposure (e.g., via questionnaire or interview) or measured pesticide or metabolite levels in biological specimens from study participants (e.g., blood, urine, etc.) or their immediate environment (e.g., personal air monitoring, home dust samples, etc.) were eligible for inclusion. Consistency, strength of association, and dose response were key elements of the framework utilized for evaluating epidemiologic studies. As a whole, the epidemiologic studies did not strongly implicate any particular pesticide as being causally related to adverse neurodevelopmental outcomes in infants and children. A few associations were unique for a health outcome and specific pesticide, and alternative hypotheses could not be ruled out. Our survey of the in vivo peer-reviewed published mammalian literature focused on effects of the specific active ingredient of pesticides on functional neurodevelopmental endpoints (i.e., behavior, neuropharmacology and neuropathology). In most cases, effects were noted at dose levels within the same order of magnitude or higher compared to the point of departure used for chronic risk assessments in the United States. Thus, although the published animal studies may have characterized potential neurodevelopmental outcomes using endpoints not required by guideline studies, the effects were generally observed at or above effect levels measured in repeated-dose toxicology studies submitted to the U.S. Environmental Protection Agency (EPA). Suggestions for improved exposure assessment in epidemiology studies and more effective and tiered approaches in animal testing are discussed.
Collapse
Affiliation(s)
| | | | - Pamela J. Mink
- Allina Health Center for Healthcare Research & Innovation, Minneapolis, Minnesota, USA
| | - Anne M. Jurek
- Allina Health Center for Healthcare Research & Innovation, Minneapolis, Minnesota, USA
| | - Abby A. Li
- Exponent, Inc., Menlo Park, California, USA
- Address correspondence to Abby A. Li, PhD, Attn: Rebecca Edwards, Exponent, Inc., Health Sciences Group, 149 Commonwealth Drive, Menlo Park, CA 94025-1133, USA. E-mail:
| |
Collapse
|
44
|
Chen S, Liu C, Peng C, Liu H, Hu M, Zhong G. Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by a new fungal strain Cladosporium cladosporioides Hu-01. PLoS One 2012; 7:e47205. [PMID: 23056611 PMCID: PMC3466218 DOI: 10.1371/journal.pone.0047205] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 09/10/2012] [Indexed: 12/02/2022] Open
Abstract
Intensive use of chlorpyrifos has resulted in its ubiquitous presence as a contaminant in surface streams and soils. It is thus critically essential to develop bioremediation methods to degrade and eliminate this pollutant from environments. We present here that a new fungal strain Hu-01 with high chlorpyrifos-degradation activity was isolated and identified as Cladosporium cladosporioides based on the morphology and 5.8S rDNA gene analysis. Strain Hu-01 utilized 50 mg·L−1 of chlorpyrifos as the sole carbon of source, and tolerated high concentration of chlorpyrifos up to 500 mg·L−1. The optimum degradation conditions were determined to be 26.8°C and pH 6.5 based on the response surface methodology (RSM). Under these conditions, strain Hu-01 completely metabolized the supplemented chlorpyrifos (50 mg·L−1) within 5 d. During the biodegradation process, transient accumulation of 3,5,6-trichloro-2-pyridinol (TCP) was observed. However, this intermediate product did not accumulate in the medium and disappeared quickly. No persistent accumulative metabolite was detected by gas chromatopraphy-mass spectrometry (GC-MS) analysis at the end of experiment. Furthermore, degradation kinetics of chlorpyrifos and TCP followed the first-order model. Compared to the non-inoculated controls, the half-lives (t1/2) of chlorpyrifos and TCP significantly reduced by 688.0 and 986.9 h with the inoculum, respectively. The isolate harbors the metabolic pathway for the complete detoxification of chlorpyrifos and its hydrolysis product TCP, thus suggesting the fungus may be a promising candidate for bioremediation of chlorpyrifos-contaminated water, soil or crop.
Collapse
Affiliation(s)
- Shaohua Chen
- Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Chenglan Liu
- Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Chuyan Peng
- Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Hongmei Liu
- Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Meiying Hu
- Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Guohua Zhong
- Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou, People’s Republic of China
- * E-mail:
| |
Collapse
|
45
|
Xu L, Tian H, Wang W, Ru S. Effects of monocrotophos pesticide on serotonin metabolism during early development in the sea urchin, Hemicentrotus pulcherrimus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:537-547. [PMID: 22824501 DOI: 10.1016/j.etap.2012.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 06/13/2012] [Accepted: 06/23/2012] [Indexed: 06/01/2023]
Abstract
Organophosphate pesticides can interfere with the serotonergic nervous system and potentially lead to malformations and behavioral abnormalities during early development in sea urchin. To investigate the mechanism by which monocrotophos (MCP) pesticide disrupts the serotonergic nervous system, we evaluated its effects on serotonin metabolism. Fertilized embryos of sea urchin were incubated with 40% MCP pesticide at nominal concentrations of 0.01, 0.10 and 1.00mg/L, and the effects on tryptophan hydroxylase of Hemicentrotus pulcherrimus (HpTPH), serotonin reuptake transporter (SERT), monoamine oxidase (MAO), and serotonin levels were investigated. The results indicated that MCP pesticide disturbed the baseline pattern of HpTPH and SERT mRNA expression and MAO activity during early development in H. pulcherrimus. When serotonin should be quickly metabolized at 36-hpf stage, HpTPH and SERT expression was decreased and MAO activity was induced by MCP pesticide, leading to the impairment of serotonergic synaptic activity. But when serotonin should be metabolized at low levels during the other six stages, MCP pesticide induced HpTPH and SERT expression, resulting in the improvement of serotonergic synaptic activity. We concluded that this metabolic disturbance is one of the major mechanisms by which MCP pesticides affect the serotonergic nervous system and potentially contribute to various developmental abnormalities.
Collapse
Affiliation(s)
- Lei Xu
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, China
| | - Hua Tian
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, China
| | - Wei Wang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, China
| | - Shaoguo Ru
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, China.
| |
Collapse
|
46
|
Chlorpyrifos modifies the expression of genes involved in human placental function. Reprod Toxicol 2012; 33:331-8. [DOI: 10.1016/j.reprotox.2012.01.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 12/20/2011] [Accepted: 01/12/2012] [Indexed: 12/31/2022]
|
47
|
Slotkin TA, Seidler FJ. Does mechanism matter? Unrelated neurotoxicants converge on cell cycle and apoptosis during neurodifferentiation. Neurotoxicol Teratol 2012; 34:395-402. [PMID: 22546817 DOI: 10.1016/j.ntt.2012.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/09/2012] [Accepted: 04/13/2012] [Indexed: 10/28/2022]
Abstract
Mechanistically unrelated developmental neurotoxicants often produce neural cell loss culminating in similar functional and behavioral outcomes. We compared an organophosphate pesticide (diazinon), an organochlorine pesticide (dieldrin) and a metal (Ni(2+)) for effects on the genes regulating cell cycle and apoptosis in differentiating PC12 cells, an in vitro model of neuronal development. Each agent was introduced at 30μM for 24 or 72h, treatments devoid of cytotoxicity. Using microarrays, we examined the mRNAs encoding nearly 400 genes involved in each of the biological processes. All three agents targeted both the cell cycle and apoptosis pathways, evidenced by significant transcriptional changes in 40-45% of the cell cycle-related genes and 30-40% of the apoptosis-related genes. There was also a high degree of overlap as to which specific genes were affected by the diverse agents, with 80 cell cycle genes and 56 apoptosis genes common to all three. Concordance analysis, which assesses stringent matching of the direction, magnitude and timing of the transcriptional changes, showed highly significant correlations for pairwise comparisons of all the agents, for both cell cycle and apoptosis. Our results show that otherwise disparate developmental neurotoxicants converge on common cellular pathways governing the acquisition and programmed death of neural cells, providing a specific link to cell deficits. Our studies suggest that identifying the initial mechanism of action of a developmental neurotoxicant may be strategically less important than focusing on the pathways that converge on common final outcomes such as cell loss.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA.
| | | |
Collapse
|
48
|
Neurodegenerations Induced by Organophosphorous Compounds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 724:189-204. [DOI: 10.1007/978-1-4614-0653-2_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
49
|
Slotkin TA, Seidler FJ. Developmental neurotoxicity of organophosphates targets cell cycle and apoptosis, revealed by transcriptional profiles in vivo and in vitro. Neurotoxicol Teratol 2011; 34:232-41. [PMID: 22222554 DOI: 10.1016/j.ntt.2011.12.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 12/20/2011] [Accepted: 12/20/2011] [Indexed: 11/25/2022]
Abstract
Developmental organophosphate exposure reduces the numbers of neural cells, contributing to neurobehavioral deficits. We administered chlorpyrifos or diazinon to newborn rats on postnatal days 1-4, in doses straddling the threshold for barely-detectable cholinesterase inhibition, and evaluated gene expression in the cell cycle and apoptosis pathways on postnatal day 5. Both organophosphates evoked transcriptional changes in 20-25% of the genes in each category; chlorpyrifos and diazinon targeted the same genes, with similar magnitudes of change, as evidenced by high concordance. Furthermore, the same effects were obtained with doses above or below the threshold for cholinesterase inhibition, indicating a mechanism unrelated to anticholinesterase actions. We then evaluated the effects of chlorpyrifos in undifferentiated and differentiating PC12 cells and found even greater targeting of cell cycle and apoptosis genes, affecting up to 40% of all genes in the pathways. Notably, the genes affected in undifferentiated cells were not concordant with those in differentiating cells, pointing to dissimilar outcomes dependent on developmental stage. The in vitro model successfully identified 60-70% of the genes affected by chlorpyrifos in vivo, indicating that the effects are exerted directly on developing neural cells. Our results show that organophosphates target the genes regulating the cell cycle and apoptosis in the developing brain and in neuronotypic cells in culture, with the pattern of vulnerability dependent on the specific stage of development. Equally important, these effects do not reflect actions on cholinesterase and operate at exposures below the threshold for any detectable inhibition of this enzyme.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
50
|
Lima CS, Nunes-Freitas AL, Ribeiro-Carvalho A, Filgueiras CC, Manhães AC, Meyer A, Abreu-Villaça Y. Exposure to methamidophos at adulthood adversely affects serotonergic biomarkers in the mouse brain. Neurotoxicology 2011; 32:718-24. [DOI: 10.1016/j.neuro.2011.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/02/2011] [Accepted: 08/11/2011] [Indexed: 12/29/2022]
|