1
|
Wen J, Li A, Wang Z, Guo X, Zhang G, Litzow MR, Liu Q. Hepatotoxicity induced by arsenic trioxide: clinical features, mechanisms, preventive and potential therapeutic strategies. Front Pharmacol 2025; 16:1536388. [PMID: 40051569 PMCID: PMC11882591 DOI: 10.3389/fphar.2025.1536388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/27/2025] [Indexed: 03/09/2025] Open
Abstract
Arsenic trioxide (ATO) has shown substantial efficacy in the treatment of patients with acute promyelocytic leukemia, and the utilization of ATO as a potential treatment for other tumors is currently being investigated; thus, its clinical application is becoming more widespread. However, the toxicity of ATO has prevented many patients from receiving this highly beneficial treatment. The clinical features, mechanisms, and preventive measures for ATO hepatotoxicity, as well as potential curative strategies, are discussed in this review. This review not only discusses existing drugs for the treatment of hepatotoxicity but also focuses on potential future therapeutic agents, providing forward-looking guidance for the clinical use of small molecule extracts, trace elements, antidiabetic drugs, and vitamins.
Collapse
Affiliation(s)
- Jun Wen
- Department of Haematology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Aiwen Li
- Department of Haematology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Ziliang Wang
- Department of Haematology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Xiaoxiao Guo
- Department of Haematology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Gaoling Zhang
- Center of Hematology, Peking University People’s Hospital Qingdao, Qingdao, China
| | - Mark R. Litzow
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Qiuju Liu
- Department of Haematology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
González-Alfonso WL, Petrosyan P, Del Razo LM, Sánchez-Peña LC, Tapia-Rodríguez M, Hernández-Muñoz R, Gonsebatt ME. Chronic Exposure to Arsenic and Fluoride Starting at Gestation Alters Liver Mitochondrial Protein Expression and Induces Early Onset of Liver Fibrosis in Male Mouse Offspring. Biol Trace Elem Res 2025; 203:930-943. [PMID: 38676876 PMCID: PMC11750905 DOI: 10.1007/s12011-024-04198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
The presence of arsenic (As) and fluoride (F-) in drinking water is of concern due to the enormous number of individuals exposed to this condition worldwide. Studies in cultured cells and animal models have shown that As- or F-induced hepatotoxicity is primarily associated with redox disturbance and altered mitochondrial homeostasis. To explore the hepatotoxic effects of chronic combined exposure to As and F- in drinking water, pregnant CD-1 mice were exposed to 2 mg/L As (sodium arsenite) and/or 25 mg/L F- (sodium fluoride). The male offspring continued the exposure treatment up to 30 (P30) or 90 (P90) postnatal days. GSH levels, cysteine synthesis enzyme activities, and cysteine transporter levels were investigated in liver homogenates, as well as the expression of biomarkers of ferroptosis and mitochondrial biogenesis-related proteins. Serum transaminase levels and Hematoxylin-Eosin and Masson trichrome-stained liver tissue slices were examined. Combined exposure at P30 significantly reduced GSH levels and the mitochondrial transcription factor A (TFAM) expression while increasing lipid peroxidation, free Fe 2+, p53 expression, and serum ALT activity. At P90, the upregulation of cysteine uptake and synthesis was associated with a recovery of GSH levels. Nevertheless, the downregulation of TFAM continued and was now associated with a downstream inhibition of the expression of MT-CO2 and reduced levels of mtDNA and fibrotic liver damage. Our experimental approach using human-relevant doses gives evidence of the increased risk for early liver damage associated with elevated levels of As and F- in the diet during intrauterine and postnatal period.
Collapse
Affiliation(s)
- Wendy L González-Alfonso
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, México
| | - Pavel Petrosyan
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, México
| | - Luz M Del Razo
- Departamento de Toxicología, Centro de Investigación y Estudios Avanzados, 07360, Mexico City, Mexico
| | - Luz C Sánchez-Peña
- Departamento de Toxicología, Centro de Investigación y Estudios Avanzados, 07360, Mexico City, Mexico
| | - Miguel Tapia-Rodríguez
- Unidad de Microscopia, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Rolando Hernández-Muñoz
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, 04510, México
| | - María E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, México.
| |
Collapse
|
3
|
Hadi SH, Al-Atrakji MQYMA. The role of Juniperus Macrocarpa extract as anti-inflammatory and antioxidant on methotrexate-induced acute liver injury in rat model. F1000Res 2025; 14:131. [PMID: 40071103 PMCID: PMC11894369 DOI: 10.12688/f1000research.158839.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2025] [Indexed: 03/14/2025] Open
Abstract
Background Methotrexate (MTX) is an antifolate medication indicated to treat an array of tumors and autoinflammatory maladies. MTX may exhibit harmful impacts on multiple organs, especially liver injury and cirrhosis. Juniperus macrocarpa is a medicinal herb enriched with polyphenols and flavonoids featuring robust anti-inflammatory and antioxidative benefits. Objective To evaluate the hepatoprotective effects of Juniperus macrocarpa aqueous extract on MTX-aggravated liver toxicity. Methods The study involved 20 male middle-aged albino rats, arbitrarily allocated into 4 groups of 5 animals each. Group 1 (control) were given distilled water (DW) once daily for two weeks. Group 2 (MTX) got an intraperitoneal single dose of MTX (20 mg/kg) for two weeks. Rats in groups 3 and 4 were given daily dosages of 100 mg and 200 mg of Juniperus macrocarpa aqueous extract, respectively, for two weeks before receiving a single intraperitoneal MTX injection. Results Juniperus macrocarpa extracts at both low and high doses substantially alleviated the MTX-provoked biochemical alterations, as evidenced by decreased levels of inflammatory parameters including TNF-α and IL-6 and hepatic enzymes including ALT, AST, and ALP. Juniperus macrocarpa also significantly boosted levels of the anti-oxidant enzymes like SOD and GPX. Moreover, Juniperus macrocarpa extract attenuated congestive and degenerative hepatic changes, as indicated by improved histopathological findings. Conclusion The anti-oxidative and anti-inflammatory activities of Juniperus macrocarpa extract are a promising approach for ameliorating MTX-aggravated hepatotoxicity.
Collapse
Affiliation(s)
- Shahad Hassan Hadi
- Msc candidate (Pharmacology), Department of Pharmacology, College of Medicine, University of Baghdad, Baghdad, Baghdad Governorate, Iraq
| | | |
Collapse
|
4
|
Huang Y, Miao Q, Kwong RWM, Zhang D, Fan Y, Zhou M, Yan X, Jia J, Yan B, Li C. Leveraging the One Health concept for arsenic sustainability. ECO-ENVIRONMENT & HEALTH 2024; 3:392-405. [PMID: 39281074 PMCID: PMC11401129 DOI: 10.1016/j.eehl.2024.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/13/2024] [Accepted: 02/03/2024] [Indexed: 09/18/2024]
Abstract
Arsenic (As) is a naturally occurring chemical element widely distributed in the Earth's crust. Human activities have significantly altered As presence in the environment, posing significant threats to the biota as well as human health. The environmental fates and adverse outcomes of As of various species have been extensively studied in the past few decades. It is imperative to summarize these advances as a whole to provide more profound insights into the As cycle for sustainable development. Embracing the One Health concept, we systematically reviewed previous studies in this work and explored the following three fundamental questions, i.e., what the trends and associated changes are in As contamination, how living organisms interact and cope with As contamination, and most importantly what to do to achieve a sustainable future with As. By focusing on one critical question in each section, this review aims to provide a full picture of the complexity of environmental As. To tackle the significant research challenges and gaps in As pollution and mitigation, we further proposed a One Health framework with potential coping strategies, guiding a coordinated agenda on dealing with legacy As in the environment and ensuring a sustainable As future.
Collapse
Affiliation(s)
- Yujie Huang
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China
| | - Qi Miao
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China
| | | | - Dapeng Zhang
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China
| | - Yuchuan Fan
- Department of Soil, Water, and Ecosystem Sciences, University of Florida-IFAS, Gainesville, FL 32603, USA
| | - Ming Zhou
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, QLD 4222, Australia
| | - Xiliang Yan
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
5
|
Hassan HA, Nageeb MM, Mohammed HO, Samy W, Fawzy A, Afifi R, Abbas NAT. Dapagliflozin dampens liver fibrosis induced by common bile duct ligation in rats associated with the augmentation of the hepatic Sirt1/AMPK/PGC1α/FoxO1 axis. Toxicol Appl Pharmacol 2024; 489:116991. [PMID: 38871090 DOI: 10.1016/j.taap.2024.116991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/15/2024]
Abstract
Liver fibrosis is considered an epidemic health problem due to different insults that lead to death. Dapagliflozin (DAPA), a sodium-glucose cotransporter-2 (SGLT2) inhibitor, is one of the newer anti-diabetic drugs used to manage type 2 diabetes mellitus (T2DM). DAPA exerted beneficial effects in many human and rat models due to its antioxidant, anti-inflammatory and antifibrotic activities. AIM Due to previously reported capabilities related to DAPA, we designed this study to clarify the beneficial role of DAPA in liver fibrosis triggered by common bile duct ligation (CBL) in male rats. METHODS For 14 or 28 days after CBL procedures, DAPA was administered to the rats orally at a dose of 10 mg/kg once daily. The effects of DAPA were evaluated by assaying liver enzymes, hepatic oxidant/antioxidant parameters, serum levels of tumor necrotic factor alpha (TNF-α), and AMP-activated protein kinase (AMPK). In addition, we measured the hepatic expression of fibrosis regulator-related genes along with evaluating liver histological changes. KEY FINDINGS DAPA successfully decreased hepatic enzymes and malondialdehyde levels, increased superoxide dismutase activity, elevated catalase levels, decreased serum levels of TNF-α, elevated serum levels of AMPK, decreased liver hydroxyproline content, upregulated Sirt1/PGC1α/FoxO1 liver gene expressions, down-regulated fibronectin-1 (Fn-1), collagen-1 genes in liver tissues, and improved the damaged liver tissues. Deteriorated biochemical parameters and histological liver insults associated with CBL were more pronounced after 28 days, but DAPA administration for 14 and 28 days showed significant improvement in most parameters and reflected positively in the histological structures of the liver. SIGNIFICANCE The significance of this study lies in the observation that DAPA mitigated CBL-induced liver fibrosis in rats, most likely due to its antioxidant, anti-inflammatory, and antifibrotic effects. These results suggest that DAPA's beneficial impact on liver fibrosis might be attributed to its interaction with the Sirt1/AMPK/PGC1α/FoxO1 pathway, indicating a potential mechanistic action for future exploration.
Collapse
Affiliation(s)
- Heba A Hassan
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt; Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Mahitab M Nageeb
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Heba Osama Mohammed
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Walaa Samy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig 45519, Egypt
| | - Amal Fawzy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig 45519, Egypt
| | | | - Noha A T Abbas
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
6
|
Ganie SY, Javaid D, Hajam YA, Reshi MS. Arsenic toxicity: sources, pathophysiology and mechanism. Toxicol Res (Camb) 2024; 13:tfad111. [PMID: 38178998 PMCID: PMC10762673 DOI: 10.1093/toxres/tfad111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024] Open
Abstract
Background Arsenic is a naturally occurring element that poses a significant threat to human health due to its widespread presence in the environment, affecting millions worldwide. Sources of arsenic exposure are diverse, stemming from mining activities, manufacturing processes, and natural geological formations. Arsenic manifests in both organic and inorganic forms, with trivalent meta-arsenite (As3+) and pentavalent arsenate (As5+) being the most common inorganic forms. The trivalent state, in particular, holds toxicological significance due to its potent interactions with sulfur-containing proteins. Objective The primary objective of this review is to consolidate current knowledge on arsenic toxicity, addressing its sources, chemical forms, and the diverse pathways through which it affects human health. It also focuses on the impact of arsenic toxicity on various organs and systems, as well as potential molecular and cellular mechanisms involved in arsenic-induced pathogenesis. Methods A systematic literature review was conducted, encompassing studies from diverse fields such as environmental science, toxicology, and epidemiology. Key databases like PubMed, Scopus, Google Scholar, and Science Direct were searched using predetermined criteria to select relevant articles, with a focus on recent research and comprehensive reviews to unravel the toxicological manifestations of arsenic, employing various animal models to discern the underlying mechanisms of arsenic toxicity. Results The review outlines the multifaceted aspects of arsenic toxicity, including its association with chronic diseases such as cancer, cardiovascular disorders, and neurotoxicity. The emphasis is placed on elucidating the role of oxidative stress, genotoxicity, and epigenetic modifications in arsenic-induced cellular damage. Additionally, the impact of arsenic on vulnerable populations and potential interventions are discussed. Conclusions Arsenic toxicity represents a complex and pervasive public health issue with far-reaching implications. Understanding the diverse pathways through which arsenic exerts its toxic effects is crucial to developing effective mitigation strategies and interventions. Further research is needed to fill gaps in our understanding of arsenic toxicity and to inform public health policies aimed at minimising exposure.Arsenic toxicity is a crucial public health problem influencing millions of people around the world. The possible sources of arsenic toxicity includes mining, manufacturing processes and natural geological sources. Arsenic exists in organic as well as in inorganic forms. Trivalent meta-arsenite (As3+) and pentavalent arsenate (As5+) are two most common inorganic forms of arsenic. Trivalent oxidation state is toxicologically more potent due to its potential to interact with sulfur containing proteins. Humans are exposed to arsenic in many ways such as environment and consumption of arsenic containing foods. Drinking of arsenic-contaminated groundwater is an unavoidable source of poisoning, especially in India, Bangladesh, China, and some Central and South American countries. Plenty of research has been carried out on toxicological manifestation of arsenic in different animal models to identify the actual mechanism of aresenic toxicity. Therefore, we have made an effort to summarize the toxicology of arsenic, its pathophysiological impacts on various organs and its molecular mechanism of action.
Collapse
Affiliation(s)
- Shahid Yousuf Ganie
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India
| | - Darakhshan Javaid
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India
| | - Younis Ahmad Hajam
- Department of Life Sciences and Allied Health Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab 144030, India
| | - Mohd Salim Reshi
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India
| |
Collapse
|
7
|
Tang Z, Li X, Tian L, Sun Y, Zhu X, Liu F. Mesoporous polydopamine based biominetic nanodrug ameliorates liver fibrosis via antioxidation and TGF-β/SMADS pathway. Int J Biol Macromol 2023; 248:125906. [PMID: 37482153 DOI: 10.1016/j.ijbiomac.2023.125906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/12/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Early intervention of liver fibrosis can prevent its further irreversible progression. Both excess reactive oxygen species (ROS) and transforming growth factor beta(TGF-β)/drosophila mothers against decapentaplegic protein (SMADS) pathway balance disorder promote the progression of hepatic stellate cell (HSC) activation, but existing therapeutic strategies failed to focus on those two problems. A new biomimetic mesoporous polydopamine nandrug (MPO) was constructed for liver fibrosis therapy with multiple targets and reliable biosafety. The MPO was formed by mesoporous polydopamine (mPDA) which has the effect of ROS elimination and encapsulated with anti-fibrotic drug -oxymatrine (OMT) which can intervene liver fibrosis targeting TGF-β/SMADSpathway. Particularly, the nanodrug was completed by macrophage-derived exosome covering. The MPO was confirmed to possess a desired size distribution with negative zeta potential and exhibite strong ROS scavenger ability. Besides, in vitro studies, MPO showed efficient endocytosis and superior intracellular ROS scavenging without cytotoxicity; in vivo studies, MPO effectively cleared the excessive ROS in liver tissue and balanced the TGF-β/SMADS pathways, which in turn inhibited HSC activation and showed superior anti-liver fibrosis therapeutic efficiency with good biological safety. Taken together, this work showed highlights the great potential of the MPO for ameliorating liver fibrosis via ROS elimination and TGF-β/SMADS balancing.
Collapse
Affiliation(s)
- Zihui Tang
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China; State Key Laboratory of Systems Medicine for Cancer, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200090, China
| | - Xiaojuan Li
- Department of Gastroenterology, Minhang hospital of Fudan University, China
| | - Le Tian
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yuhao Sun
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xinyan Zhu
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Fei Liu
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
8
|
Huang F, Ding G, Yuan Y, Zhao L, Ding W, Wu S. PTEN Overexpression Alters Autophagy Levels and Slows Sodium Arsenite-Induced Hepatic Stellate Cell Fibrosis. TOXICS 2023; 11:578. [PMID: 37505544 PMCID: PMC10386595 DOI: 10.3390/toxics11070578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
Exposure to inorganic arsenic remains a global public health problem. The liver is the main target organ, leading to arsenic-induced liver fibrosis. Phosphatase and tensin homology deleted on chromosome ten (PTEN) may participate in arsenic-induced liver fibrosis by regulating autophagy, but the exact mechanisms remain unclear. We established a mouse model of arsenic poisoning through their drinking water and a fibrosis model using the human hepatic stellate cell line LX-2 through NaAsO2 exposure for 24 h. Masson staining measured liver fibrosis. The cells were transfected with a PTEN overexpression plasmid. Western blot and qRT-PCR determined the levels of protein/mRNA expression. Fibrosis was evident in both the mouse model and arsenic-exposed LX-2 cells. NaAsO2 upregulated expression of autophagic markers microtubule-associated protein light chain A/B (LC3), recombinant human autophagy effector protein (Beclin-1), and hairy and enhancer of split homolog-1 (HES1), but downregulated PTEN. Alongside this, α-smooth muscle actin (α-SMA) expression was significantly upregulated by NaAsO2. PTEN overexpression altered NaAsO2-induced autophagy and downregulated LC3 and Beclin-1. While Notch1, HES1, α-SMA, and collagen I expression were all downregulated in the NaAsO2 groups. Therefore, PTEN overexpression might decrease autophagy and inhibit fibrosis progression caused by arsenic, and the NOTCH1/HES1 pathway is likely involved.
Collapse
Affiliation(s)
- Fei Huang
- Department of Occupational and Environmental Health, College of Public Health, Xinjiang Medical University, No. 567 Shangde North Road, Shuimogou District, Urumqi 830011, China
| | - Guanxin Ding
- Department of Occupational and Environmental Health, College of Public Health, Xinjiang Medical University, No. 567 Shangde North Road, Shuimogou District, Urumqi 830011, China
| | - Yanjie Yuan
- The First Division Hospital of Xinjiang Production and Construction Corps, No. 4, Jiankang Road, Aksu City 843000, China
| | - Lijun Zhao
- Department of Occupational and Environmental Health, College of Public Health, Xinjiang Medical University, No. 567 Shangde North Road, Shuimogou District, Urumqi 830011, China
| | - Wenmeng Ding
- Department of Occupational and Environmental Health, College of Public Health, Xinjiang Medical University, No. 567 Shangde North Road, Shuimogou District, Urumqi 830011, China
| | | |
Collapse
|
9
|
Ezhilarasan D. Molecular mechanisms in thioacetamide-induced acute and chronic liver injury models. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104093. [PMID: 36870405 DOI: 10.1016/j.etap.2023.104093] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Thioacetamide (TAA) undergoes bioactivation in the liver by the CYP450 2E1 enzyme, resulting in the formation of TAA-S-oxide and TAA-S-dioxide. TAA-S-dioxide induces oxidative stress via lipid peroxidation of the hepatocellular membrane. A single TAA dose (50-300 mg/kg) administration initiates hepatocellular necrosis around the pericentral region after its covalent binding to macromolecules in the liver. Intermittent TAA administration (150-300 mg/kg, weekly thrice, for 11-16 weeks) activates transforming growth factor (TGF)-β/smad3 downstream signaling in injured hepatocytes, causing hepatic stellate cells (HSCs) to acquire myofibroblast like phenotype. The activated HSCs synthesize a variety of extracellular matrix, leading to liver fibrosis, cirrhosis, and portal hypertension. The TAA induced liver injury varies depending on the animal model, dosage, frequency, and routes of administration. However, TAA induces hepatotoxicity in a reproducible manner, and it is an ideal model to evaluate the antioxidant, cytoprotective, and antifibrotic compounds in experimental animals.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600 077, India.
| |
Collapse
|
10
|
Abou Rayia DM, Ashour DS, Abo Safia HS, Abdel Ghafar MT, Amer RS, Saad AE. Human umbilical cord blood mesenchymal stem cells as a potential therapy for schistosomal hepatic fibrosis: an experimental study. Pathog Glob Health 2023; 117:190-202. [PMID: 35435145 PMCID: PMC9970248 DOI: 10.1080/20477724.2022.2064795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The objective of our study was to assess the effect of human umbilical cord blood (HUCB) mesenchymal stem cells (MSCs) transplantation on schistosomal hepatic fibrosis in mice. The study animals were divided into three groups. Group I is a control group, where the mice were infected with Schistosoma mansoni cercariae and remained untreated. The mice of the other two groups were infected and treated with either praziquantel (Group II) or HUCB-MSCs (Group III). Liver function tests, as well as histopathological evaluation of liver fibrosis using hematoxylin and eosin and Masson's trichrome stains, were performed. Additionally, an immunohistochemical study was carried out using anti-glial fibrillary acidic protein (GFAP) in hepatic stellate cells. Compared to the control group, the treated (praziquantel and MSCs) groups showed a substantial improvement, with a significant difference regarding the histopathological evaluation of liver fibrosis in the MSCs-treated group. In conclusion, MSCs could be a promising and efficient cell therapy for liver fibrosis.
Collapse
Affiliation(s)
- Dina M Abou Rayia
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dalia S Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hend S Abo Safia
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Rania S Amer
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Abeer E Saad
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.,Medical Parasitology Sub-unit, Pathology Department, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
11
|
Peng M, Shao M, Dong H, Han X, Hao M, Yang Q, Lyu Q, Tang D, Shen Z, Wang K, Kuang H, Cao G. Nanodrug rescues liver fibrosis via synergistic therapy with H 2O 2 depletion and Saikosaponin b1 sustained release. Commun Biol 2023; 6:184. [PMID: 36797395 PMCID: PMC9935535 DOI: 10.1038/s42003-023-04473-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 01/11/2023] [Indexed: 02/18/2023] Open
Abstract
Hypoxia and hydrogen peroxide (H2O2) accumulation form the profibrogenic liver environment, which involves fibrogenesis and chronic stimulation of hepatic stellate cells (HSCs). Catalase (CAT) is the major antioxidant enzyme that catalyzes H2O2 into oxygen and water, which loses its activity in different liver diseases, especially in liver fibrosis. Clinical specimens of cirrhosis patients and liver fibrotic mice are collected in this work, and results show that CAT decrease is closely correlated with hypoxia-induced transforminmg growth factor β1 (TGF-β1). A multifunctional nanosystem combining CAT-like MnO2 and anti-fibrosis Saikosaponin b1 (Ssb1) is subsequently constructed for antifibrotic therapy. MnO2 catalyzes the accumulated H2O2 into oxygen, thereby ameliorating the hypoxic and oxidative stress to prevent activation of HSCs, and assists to enhance the antifibrotic pharmaceutical effect of Ssb1. This work suggests that TGF-β1 is responsible for the diminished CAT in liver fibrosis, and our designed MnO2@PLGA/Ssb1 nanosystem displays enhanced antifibrotic efficiency through removing excess H2O2 and hypoxic stress, which may be a promising therapeutic approach for liver fibrosis treatment.
Collapse
Affiliation(s)
- Mengyun Peng
- grid.268505.c0000 0000 8744 8924School of Pharmacy, Zhejiang Chinese Medical University, 310053 Hangzhou, P. R. China
| | - Meiyu Shao
- grid.268505.c0000 0000 8744 8924School of Pharmacy, Zhejiang Chinese Medical University, 310053 Hangzhou, P. R. China
| | - Hongyan Dong
- grid.268505.c0000 0000 8744 8924School of Pharmacy, Zhejiang Chinese Medical University, 310053 Hangzhou, P. R. China
| | - Xin Han
- grid.268505.c0000 0000 8744 8924School of Pharmacy, Zhejiang Chinese Medical University, 310053 Hangzhou, P. R. China
| | - Min Hao
- grid.268505.c0000 0000 8744 8924School of Pharmacy, Zhejiang Chinese Medical University, 310053 Hangzhou, P. R. China
| | - Qiao Yang
- grid.268505.c0000 0000 8744 8924School of Pharmacy, Zhejiang Chinese Medical University, 310053 Hangzhou, P. R. China
| | - Qiang Lyu
- grid.268505.c0000 0000 8744 8924School of Pharmacy, Zhejiang Chinese Medical University, 310053 Hangzhou, P. R. China
| | - Dongxin Tang
- grid.464322.50000 0004 1762 5410Department of Science and Education, The First Affiliated Hospital of Guiyang University of Chinese Medicine, 550001 Guiyang, China
| | - Zhe Shen
- grid.13402.340000 0004 1759 700XDepartment of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003 Hangzhou, China
| | - Kuilong Wang
- grid.268505.c0000 0000 8744 8924School of Pharmacy, Zhejiang Chinese Medical University, 310053 Hangzhou, P. R. China
| | - Haodan Kuang
- grid.268505.c0000 0000 8744 8924School of Pharmacy, Zhejiang Chinese Medical University, 310053 Hangzhou, P. R. China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, 310053, Hangzhou, P. R. China.
| |
Collapse
|
12
|
Arsenic-Induced Injury of Mouse Hepatocytes through Lysosome and Mitochondria: An In Vitro Study. Int J Hepatol 2022; 2022:1546297. [PMID: 36117518 PMCID: PMC9477643 DOI: 10.1155/2022/1546297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND AND AIMS The cellular mechanism of liver injury related to arsenic toxicity is ill defined. It is thought that oxidative stress and mitochondrial dysfunction may play some role in arsenic-induced liver damage. In this study, we evaluated subcellular events within the primary cultured mouse hepatocytes when exposed to inorganic arsenic. METHODS Primary cultured mouse hepatocytes were treated with 10 μM arsenic for different time periods. Reactive oxygen species (ROS) formation, functional changes of the lysosome and mitochondria, and mode of hepatocytes death were studied by laser confocal microscopy, fluorescence spectroscopy, and flow cytometry. Expression of proapoptotic member of the BCL-2 family of genes BAX and antiapoptotic BCL-2 mRNA expression were studied by real-time PCR. Cytochrome c expression was studied by Western blotting. RESULTS Fluorescence spectroscopy as well as flow cytometric analysis revealed that arsenic-induced formation of ROS was time dependent. Confocal microscopy showed initiation of ROS formation from periphery of the hepatocytes at 30 min of arsenic exposure that progressed to central part of the hepatocytes at 3 h of arsenic exposure. The ROS formation was found to be NADPH oxidase (NOX) dependent. This low level of intracellular ROS induced lysosomal membrane permeabilization (LMP) and subsequently released cathepsin B to the cytosol. The LMP further increased intracellular ROS which in turn triggered induction of mitochondrial permeability transition (MPT). Pretreatment of hepatocytes with LMP inhibitor bafilomycin A (BafA) significantly decreased, and LMP inducer chloroquine (ChQ) significantly increased the production of ROS suggesting that LMP preceded enhanced ROS generation in response to arsenic. MPT was accompanied with increase in BAX : BCL2 mRNA ratio resulting in upregulation of caspase 3 and increased hepatocyte apoptosis. CONCLUSION Although arsenic-related oxidative liver injury is well established, neither the site of origin of ROS nor the early sequence of events in arsenic toxicity due to ROS is known. We believe that our study provides evidences elucidating the early sequence of events that culminates in the death of the mouse hepatocytes during arsenic exposure.
Collapse
|
13
|
Li WQ, Liu WH, Qian D, Liu J, Zhou SQ, Zhang L, Peng W, Su L, Zhang H. Traditional Chinese medicine: An important source for discovering candidate agents against hepatic fibrosis. Front Pharmacol 2022; 13:962525. [PMID: 36081936 PMCID: PMC9445813 DOI: 10.3389/fphar.2022.962525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatic fibrosis (HF) refers to the pathophysiological process of connective tissue dysplasia in the liver caused by various pathogenic factors. Nowadays, HF is becoming a severe threat to the health of human being. However, the drugs available for treating HF are limited. Currently, increasing natural agents derived from traditional Chinese medicines (TCMs) have been found to be beneficial for HF. A systemic literature search was conducted from PubMed, GeenMedical, Sci-Hub, CNKI, Google Scholar and Baidu Scholar, with the keywords of "traditional Chinese medicine," "herbal medicine," "natural agents," "liver diseases," and "hepatic fibrosis." So far, more than 76 natural monomers have been isolated and identified from the TCMs with inhibitory effect on HF, including alkaloids, flavones, quinones, terpenoids, saponins, phenylpropanoids, and polysaccharides, etc. The anti-hepatic fibrosis effects of these compounds include hepatoprotection, inhibition of hepatic stellate cells (HSC) activation, regulation of extracellular matrix (ECM) synthesis & secretion, regulation of autophagy, and antioxidant & anti-inflammation, etc. Natural compounds and extracts from TCMs are promising agents for the prevention and treatment of HF, and this review would be of great significance to development of novel drugs for treating HF.
Collapse
Affiliation(s)
- Wen-Qing Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Hao Liu
- Department of Pharmacy, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Die Qian
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shi-Qiong Zhou
- Hospital of Nursing, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Lei Zhang
- Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Hong Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Ge C, Tan J, Lou D, Zhu L, Zhong Z, Dai X, Sun Y, Kuang Q, Zhao J, Wang L, Liu J, Wang B, Xu M. Mulberrin confers protection against hepatic fibrosis by Trim31/Nrf2 signaling. Redox Biol 2022; 51:102274. [PMID: 35240537 PMCID: PMC8891817 DOI: 10.1016/j.redox.2022.102274] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Mulberrin (Mul) is a key component of the traditional Chinese medicine Romulus Mori with various biological functions. However, the effects of Mul on liver fibrosis have not been addressed, and thus were investigated in our present study, as well as the underlying mechanisms. Here, we found that Mul administration significantly ameliorated carbon tetrachloride (CCl4)-induced liver injury and dysfunction in mice. Furthermore, CCl4-triggerd collagen deposition and liver fibrosis were remarkably attenuated in mice with Mul supplementation through suppressing transforming growth factor β1 (TGF-β1)/SMAD2/3 signaling pathway. Additionally, Mul treatments strongly restrained the hepatic inflammation in CCl4-challenged mice via blocking nuclear factor-κB (NF-κB) signaling. Importantly, we found that Mul markedly increased liver TRIM31 expression in CCl4-treated mice, accompanied with the inactivation of NOD-like receptor protein 3 (NLRP3) inflammasome. CCl4-triggered hepatic oxidative stress was also efficiently mitigated by Mul consumption via improving nuclear factor E2-related factor 2 (Nrf2) activation. Our in vitro studies confirmed that Mul reduced the activation of human and mouse primary hepatic stellate cells (HSCs) stimulated by TGF-β1. Consistently, Mul remarkably retarded the inflammatory response and reactive oxygen species (ROS) accumulation both in human and murine hepatocytes. More importantly, by using hepatocyte-specific TRIM31 knockout mice (TRIM31Hep-cKO) and mouse primary hepatocytes with Nrf2-knockout (Nrf2KO), we identified that the anti-fibrotic and hepatic protective effects of Mul were TRIM31/Nrf2 signaling-dependent, relieving HSCs activation and liver fibrosis. Therefore, Mul-ameliorated hepatocyte injury contributed to the suppression of HSCs activation by improving TRIM31/Nrf2 axis, thus providing a novel therapeutic strategy for hepatic fibrosis treatment.
Collapse
Affiliation(s)
- Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China.
| | - Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Zixuan Zhong
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Xianling Dai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Yan Sun
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Qin Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Junjie Zhao
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Longyan Wang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Jin Liu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China.
| | - Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China.
| |
Collapse
|
15
|
Garbuzenko DV. Pathophysiological mechanisms of hepatic stellate cells activation in liver fibrosis. World J Clin Cases 2022; 10:3662-3676. [PMID: 35647163 PMCID: PMC9100727 DOI: 10.12998/wjcc.v10.i12.3662] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/17/2021] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a complex pathological process controlled by a variety of cells, mediators and signaling pathways. Hepatic stellate cells play a central role in the development of liver fibrosis. In chronic liver disease, hepatic stellate cells undergo dramatic phenotypic activation and acquire fibrogenic properties. This review focuses on the pathophysiological mechanisms of hepatic stellate cells activation in liver fibrosis. They enter the cell cycle under the influence of various triggers. The "Initiation" phase of hepatic stellate cells activation overlaps and continues with the "Perpetuation" phase, which is characterized by a pronounced inflammatory and fibrogenic reaction. This is followed by a resolution phase if the injury subsides. Knowledge of these pathophysiological mechanisms paved the way for drugs aimed at preventing the development and progression of liver fibrosis. In this respect, impairments in intracellular signaling, epigenetic changes and cellular stress response can be the targets of therapy where the goal is to deactivate hepatic stellate cells. Potential antifibrotic therapy may focus on inducing hepatic stellate cells to return to an inactive state through cellular aging, apoptosis, and/or clearance by immune cells, and serve as potential antifibrotic therapy. It is especially important to prevent the formation of liver cirrhosis since the only radical approach to its treatment is liver transplantation which can be performed in only a limited number of countries.
Collapse
|
16
|
Kalo MB, Rezaei M. In vitro toxic interaction of arsenic and hyperglycemia in mitochondria: an important implication of increased vulnerability in pre-diabetics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28375-28385. [PMID: 34993818 DOI: 10.1007/s11356-022-18513-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Environmental pollutants and lifestyle both contribute to the rapidly increasing prevalence of type 2 diabetes mellitus (T2DM) worldwide. Evidence suggests that exposure to environmental contaminants such as arsenic is associated with impaired glucose metabolism and insulin signaling. In the present study, isolated rat liver mitochondria (1 mg/ml) were co-exposed to low concentration of arsenic trioxide (ATO) ( IC25 = 40 µM) and hyperglycemic condition (20, 40, 80, 160 mM glucose or 20, 40, 80, 160 mM pyruvate (PYR)). Mitochondrial dehydrogenase activity (complex II), glutathione content (GSH), reactive oxygen species (ROS), lipid peroxidation, mitochondrial membrane potential (ΔΨ), and mitochondrial swelling were then evaluated in the presence of ATO 40 µM and PYR 40 mM. Unexpectedly, glucose alone (20, 40, 80, 160 mM) had no toxic effect on mitochondria, even at very high concentrations and even when combined with ATO. Interestingly, PYR at low concentrations (≤ 10 mM) has a protective effect on mitochondria, but at higher concentrations (≥ 40 mM) with ATO, it decreased the complex II activity and increased mitochondrial ROS production, lipid peroxidation, GSH depletion, mitochondrial membrane damage, and swelling (p < 0.05). In conclusion, PYR but not glucose increased ATO mitochondrial toxicity even at low concentrations. These results suggest that pre-diabetics with non-clinical hyperglycemia, who are inevitably exposed to low concentrations of arsenic through food and water, may develop mitochondrial dysfunction that accelerates their progression to diabetes over time.
Collapse
Affiliation(s)
- Mersad Bagherpour Kalo
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
17
|
Arsenic Induces Continuous Inflammation and Regulates Th1/Th2/Th17/Treg Balance in Liver and Kidney In Vivo. Mediators Inflamm 2022; 2022:8414047. [PMID: 35210942 PMCID: PMC8863494 DOI: 10.1155/2022/8414047] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/26/2022] [Indexed: 12/26/2022] Open
Abstract
Numerous studies on arsenic-induced hepatonephric toxicity including cancer have been reported. Given that chronic inflammatory response and immune imbalance are associated with oncogenesis, we investigated whether arsenic could influence the hepatic and nephritic expression of inflammatory factors and the differentiation of T cells. Mice were exposed to NaAsO2 (0, 25, and 50 mg/L) for 1 and 3 months. Our data showed the destruction of the structure and inflammatory infiltration in the liver. The arsenic markedly increased the activity of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST). The myeloperoxidase (MPO) activities increased in the liver at 25 and 50 mg/L arsenic for 3 months as well as in the kidney at both 1 and 3 months. An increased expression of inflammatory indicators (IL-1β, IL-12, and TNF-α) at 25 and 50 mg/L arsenic for 1 and 3 months in the liver and kidney, as well as IL-1β in the liver for 3 months and in the kidney at 50 mg/L for 1 and 3 months were demonstrated in our experiments. Besides, a definite tendency toward Th1/Th17 cytokines in the liver while Th2/Th17 cytokines in kidney was also observed by arsenic. Moreover, arsenic enhanced the expression of MAPK/Nrf2/NF-κB signaling molecules. In conclusion, the results of the study suggested that arsenic induces continuous immune-inflammatory responses in the liver and kidney.
Collapse
|
18
|
Wang FD, Zhou J, Chen EQ. Molecular Mechanisms and Potential New Therapeutic Drugs for Liver Fibrosis. Front Pharmacol 2022; 13:787748. [PMID: 35222022 PMCID: PMC8874120 DOI: 10.3389/fphar.2022.787748] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis is the pathological process of excessive extracellular matrix deposition after liver injury and is a precursor to cirrhosis, hepatocellular carcinoma (HCC). It is essentially a wound healing response to liver tissue damage. Numerous studies have shown that hepatic stellate cells play a critical role in this process, with various cells, cytokines, and signaling pathways engaged. Currently, the treatment targeting etiology is considered the most effective measure to prevent and treat liver fibrosis, but reversal fibrosis by elimination of the causative agent often occurs too slowly or too rarely to avoid life-threatening complications, especially in advanced fibrosis. Liver transplantation is the only treatment option in the end-stage, leaving us with an urgent need for new therapies. An in-depth understanding of the mechanisms of liver fibrosis could identify new targets for the treatment. Most of the drugs targeting critical cells and cytokines in the pathogenesis of liver fibrosis are still in pre-clinical trials and there are hardly any definitive anti-fibrotic chemical or biological drugs available for clinical use. In this review, we will summarize the pathogenesis of liver fibrosis, focusing on the role of key cells, associated mechanisms, and signaling pathways, and summarize various therapeutic measures or drugs that have been trialed in clinical practice or are in the research stage.
Collapse
|
19
|
Nash MJ, Dobrinskikh E, Newsom SA, Messaoudi I, Janssen RC, Aagaard KM, McCurdy CE, Gannon M, Kievit P, Friedman JE, Wesolowski SR. Maternal Western diet exposure increases periportal fibrosis beginning in utero in nonhuman primate offspring. JCI Insight 2021; 6:e154093. [PMID: 34935645 PMCID: PMC8783685 DOI: 10.1172/jci.insight.154093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/10/2021] [Indexed: 12/29/2022] Open
Abstract
Maternal obesity affects nearly one-third of pregnancies and is a major risk factor for nonalcoholic fatty liver disease (NAFLD) in adolescent offspring, yet the mechanisms behind NAFLD remain poorly understood. Here, we demonstrate that nonhuman primate fetuses exposed to maternal Western-style diet (WSD) displayed increased fibrillar collagen deposition in the liver periportal region, with increased ACTA2 and TIMP1 staining, indicating localized hepatic stellate cell (HSC) and myofibroblast activation. This collagen deposition pattern persisted in 1-year-old offspring, despite weaning to a control diet (CD). Maternal WSD exposure increased the frequency of DCs and reduced memory CD4+ T cells in fetal liver without affecting systemic or hepatic inflammatory cytokines. Switching obese dams from WSD to CD before conception or supplementation of the WSD with resveratrol decreased fetal hepatic collagen deposition and reduced markers of portal triad fibrosis, oxidative stress, and fetal hypoxemia. These results demonstrate that HSCs and myofibroblasts are sensitive to maternal WSD-associated oxidative stress in the fetal liver, which is accompanied by increased periportal collagen deposition, indicative of early fibrogenesis beginning in utero. Alleviating maternal WSD-driven oxidative stress in the fetal liver holds promise for halting steatosis and fibrosis and preventing developmental programming of NAFLD.
Collapse
Affiliation(s)
- Michael J. Nash
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Evgenia Dobrinskikh
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sean A. Newsom
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, Irvine, California, USA
| | - Rachel C. Janssen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kjersti M. Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, and Departments of Molecular and Human Genetics and Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Carrie E. McCurdy
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Maureen Gannon
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jacob E. Friedman
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Stephanie R. Wesolowski
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
20
|
Acute Toxicological and Biodistribution Aspects of Superparamagnetic Magnetite Nanoparticles In Vitro and on Animal Tissues. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00914-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Ezhilarasan D. Mitochondria: A critical hub for hepatic stellate cells activation during chronic liver diseases. Hepatobiliary Pancreat Dis Int 2021; 20:315-322. [PMID: 33975780 DOI: 10.1016/j.hbpd.2021.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/19/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Upon liver injury, quiescent hepatic stellate cells (qHSCs), reside in the perisinusoidal space, phenotypically transdifferentiate into myofibroblast-like cells (MFBs). The qHSCs in the normal liver are less fibrogenic, migratory, and also have less proliferative potential. However, activated HSCs (aHSCs) are more fibrogenic and have a high migratory and proliferative MFBs phenotype. HSCs activation is a highly energetic process that needs abundant intracellular energy in the form of adenosine triphosphate (ATP) for the synthesis of extracellular matrix (ECM) in the injured liver to substantiate the injury. DATA SOURCES The articles were collected through PubMed and EMBASE using search terms "mitochondria and hepatic stellate cells", "mitochondria and HSCs", "mitochondria and hepatic fibrosis", "mitochondria and liver diseases", and "mitochondria and chronic liver disease", and relevant publications published before September 31, 2020 were included in this review. RESULTS Mitochondria homeostasis is affected during HSCs activation. Mitochondria in aHSCs are highly energetic and are in a high metabolically active state exhibiting increased activity such as glycolysis and respiration. aHSCs have high glycolytic enzymes expression and glycolytic activity induced by Hedgehog (Hh) signaling from injured hepatocytes. Increased glycolysis and aerobic glycolysis (Warburg effect) end-products in aHSCs consequently activate the ECM-related gene expressions. Increased Hh signaling from injured hepatocytes downregulates peroxisome proliferator-activated receptor-γ expression and decreases lipogenesis in aHSCs. Glutaminolysis and tricarboxylic acid cycle liberate ATPs that fuel HSCs to proliferate and produce ECM during their activation. CONCLUSIONS Available studies suggest that mitochondria functions can increase in parallel with HSCs activation. Therefore, mitochondrial modulators should be tested in an elaborate manner to control or prevent the HSCs activation during liver injury to subsequently regress hepatic fibrosis.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, the Blue Lab, Molecular Medicine and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
22
|
Alam T, Rizwan S, Farooqui Z, Abidi S, Parwez I, Khan F. Oral Nigella sativa oil administration alleviates arsenic-induced redox imbalance, DNA damage, and metabolic and histological alterations in rat liver. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41464-41478. [PMID: 33786765 DOI: 10.1007/s11356-021-13493-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Arsenic, an omnipresent environmental contaminant, is regarded as a potent hepatotoxin. Nigella sativa oil (NSO) consumption has been shown to improve hepatic functions in various in vivo models of acute hepatic injury. The present study evaluates the protective efficacy of NSO against sodium arsenate (As)-induced deleterious alterations in the liver. Male Wistar rats were divided into four groups, namely, control, As, NSO, and AsNSO. After pre-treating rats in AsNSO and NSO groups with NSO (2 mL/kg bwt, orally) for 14 days, NSO treatment was further extended for 30 days, with and without As treatment (5 mg/kg bwt, orally), respectively. As induced an upsurge in serum ALT and AST activities indicating liver injury, as also confirmed by the histopathological findings. As caused significant alterations in the activities of membrane marker enzymes and carbohydrate metabolic enzymes, and in the vital components of antioxidant defense system. Marked DNA damage and hepatic arsenic accumulation were also observed in As-treated rats. Oral NSO administration ameliorated these deleterious alterations and improved overall hepatic antioxidant and metabolic status in As-treated rats. Prevention of oxidative damage could be the underlying mechanism of NSO-mediated protective effects. The results suggest that NSO could be a useful dietary supplement in the management of arsenic hepatotoxicity.
Collapse
Affiliation(s)
- Tauseef Alam
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P., 202002, India
| | - Sana Rizwan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P., 202002, India
| | - Zeba Farooqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P., 202002, India
| | - Subuhi Abidi
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P., 202002, India
| | - Iqbal Parwez
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P., 202002, India
| | - Farah Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P., 202002, India.
| |
Collapse
|
23
|
Sun J, Shi L, Xiao T, Xue J, Li J, Wang P, Wu L, Dai X, Ni X, Liu Q. microRNA-21, via the HIF-1α/VEGF signaling pathway, is involved in arsenite-induced hepatic fibrosis through aberrant cross-talk of hepatocytes and hepatic stellate cells. CHEMOSPHERE 2021; 266:129177. [PMID: 33310519 DOI: 10.1016/j.chemosphere.2020.129177] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/17/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Long-term exposure to arsenic, a widely distributed environmental toxicant, may result in damage to various organs, including the liver. Mice exposed chronically to arsenite developed hepatic damage, inflammation, and fibrosis, as well as increased levels of microRNA-21 (miR-21) and hypoxia-inducible factor (HIF)-1α. The levels of miR-21 and HIF-1α were also enhanced in primary hepatocytes and L-02 cells exposed to arsenite. The culture media from these cells induced the activation of hepatic stellate cells (HSCs), as demonstrated by up-regulation of the protein levels of α-smooth muscle actin (α-SMA) and collagen1A2 (COL1A2) and by increased activity in gel contractility assays. For L-02 cells, knockdown of miR-21 blocked the arsenite-induced up-regulation of HIF-1α and vascular endothelial growth factor (VEGF), which prevented the activation of LX-2 cells induced by medium from arsenite-exposed L-02 cells. However, these effects were reversed by down-regulation of von Hippel Lindau protein (pVHL). In arsenite-treated L-02 cells, miR-21 knockdown elevated the levels of ubiquitination and accelerated the degradation of HIF-1α via pVHL. In the livers of miR-21-/- mice exposed chronically to arsenite, there were less hepatic damage, lower fibrosis, lower levels of HIF-1α and VEGF, and higher levels of pVHL than for wild-type mice. In summary, we propose that miR-21, acting via the HIF-1α/VEGF signaling pathway, is involved in arsenite-induced hepatic fibrosis through mediating aberrant cross-talk of hepatocytes and HSCs. The findings provide evidence relating to the pathogenesis of hepatic fibrosis induced by exposure to arsenic.
Collapse
Affiliation(s)
- Jing Sun
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Le Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Tian Xiao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Junchao Xue
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Junjie Li
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Peiwen Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Lu Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Xiangyu Dai
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Xinye Ni
- Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou, 213003, Jiangsu, People's Republic of China.
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
24
|
He Q, Luo Y, Xie Z. Sulforaphane ameliorates cadmium induced hepatotoxicity through the up-regulation of /Nrf2/ARE pathway and the inactivation of NF-κB. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
25
|
Pang Q, Jin H, Wang Y, Dai M, Liu S, Tan Y, Liu H, Lu Z. Depletion of serotonin relieves concanavalin A-induced liver fibrosis in mice by inhibiting inflammation, oxidative stress, and TGF-β1/Smads signaling pathway. Toxicol Lett 2021; 340:123-132. [PMID: 33429011 DOI: 10.1016/j.toxlet.2021.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
Serotonin exerts important functions in several liver pathophysiological processes. In this study, we investigated the role of serotonin in concanavalin A (Con A)-induced liver fibrosis (LF) in mice and the underlying mechanisms. To establish the mouse model of LF, mice of wild-type (WT) and tryptophan hydroxylase 1 (Tph1) knockout (serotonin depletion) received Con A for 8 successive weeks. Degree of fibrosis was assessed by Sirius red staining, as well as the measurements of alpha smooth muscle actin (α- SMA), hydroxyproline (Hyp) and type I collagen in liver tissues. To elucidate the potential mechanisms, we assessed the effect of serotonin depletion on inflammatory, oxidative stress as well as TGF-β1/Smads signaling pathway. We found that serotonin depletion significantly inhibited collagen deposition as evaluated by less collagenous fiber in Sirus Red staining and reduced contents of Hyp and type I collagen. In addition, the absence of serotonin significantly inhibited the release of several inflammatory cytokines, including interleukin-6 (IL-6), interferon-gamma (IFN-γ), tumor necrosis-alpha (TNF-α), and transforming growth factor β1 (TGF-β1). Oxidative stress was also largely mitigated in LF mice with serotonin deficiency as manifested by the decreases of oxidative stress markers (malonaldehyde (MDA) and myeloperoxidase (MPO)), as well as the increases of antioxidant stress indicators (glutathione (GSH), and GSH-px, catalase (CAT), superoxide dismutase (SOD)) in liver tissues. Moreover, the lack of serotonin may provide an antifibrotic role by inhibiting the intrahepatic expressions of TGF-β1, phosphorylated-smad2 (p-smad2), and phosphorylated-smad3 (p-smad3). These results indicated that, serotonin depletion attenuates Con A-induced LF through the regulation of inflammatory response, oxidative stress injury, and TGF-β1/Smads signaling pathway.
Collapse
Affiliation(s)
- Qing Pang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061 Shaanxi Province, China
| | - Hao Jin
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China
| | - Yong Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China
| | - Mengnan Dai
- Clinical Medical College of Bengbu Medical College, Bengbu, 233000 Anhui Province, China
| | - Shuangchi Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China
| | - Yi Tan
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China.
| | - Huichun Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China.
| | - Zheng Lu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China.
| |
Collapse
|
26
|
Chen X, Wang D, Sun B, Liu C, Zhu K, Zhang A. GBE attenuates arsenite-induced hepatotoxicity by regulating E2F1-autophagy-E2F7a pathway and restoring lysosomal activity. J Cell Physiol 2020; 236:4050-4065. [PMID: 33174204 DOI: 10.1002/jcp.30147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 11/07/2022]
Abstract
Arsenic is an environmental toxicant. Its overdose can cause liver damage. Autophagy has been reported to be involved in arsenite (iAs3+ ) cytotoxicity and plays a dual role in cell proliferation and cell death. However, the effect and molecular regulative mechanisms of iAs3+ on autophagy in hepatocytes remains largely unknown. Here, we found that iAs3+ exposure lead to hepatotoxicity by inducing autophagosome and autolysosome accumulation. On the one hand, iAs3+ promoted autophagosome synthesis by inhibiting E2F1/mTOR pathway in L-02 human hepatocytes. On the other, iAs3+ blocked autophagosome degradation partially via suppressing the expression of INPP5E and Rab7 as well as impairing lysosomal activity. More importantly, autophagosome and autolysosome accumulation induced by iAs3+ increased the protein level of E2F7a, which could further inhibit cell viability and induce apoptosis of L-02 cells. The treatment of Ginkgo biloba extract (GBE) effectively reduced autophagosome and autolysosome accumulation and thus alleviated iAs3+ -induced hepatotoxicity. Moreover, GBE could also protect lysosomal activity, promote the phosphorylation level of E2F1 (Ser364 and Thr433) and Rb (Ser780) as well as suppress the protein level of E2F7a in iAs3+ -treated L-02 cells. Taken together, our data suggested that autophagosome and autophagolysosome accumulation play a critical role for iAs3+ -induced hepatotoxicity, and GBE is a promising candidate for intervening iAs3+ induced liver damage by regulating E2F1-autophagy-E2F7a pathway and restoring lysosomal activity.
Collapse
Affiliation(s)
- Xiong Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Dapeng Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chunyan Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Kai Zhu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
27
|
Delaney P, Ramdas Nair A, Palmer C, Khan N, Sadler KC. Arsenic induced redox imbalance triggers the unfolded protein response in the liver of zebrafish. Toxicol Appl Pharmacol 2020; 409:115307. [PMID: 33147493 DOI: 10.1016/j.taap.2020.115307] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/01/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022]
Abstract
Inorganic arsenic (iAs) is one of the most endemic toxicants worldwide and oxidative stress is a key cellular pathway underlying iAs toxicity. Other cellular stress response pathways, such as the unfolded protein response (UPR), are also impacted by iAs exposure, however it is not known how these pathways intersect to cause disease. We optimized the use of zebrafish larvae to identify the relationship between these cellular stress response pathways and arsenic toxicity. We found that the window of iAs susceptibility during zebrafish development corresponds with the development of the liver, and that even a 24-h exposure can cause lethality if administered to mature larvae, but not to early embryos. Acute exposure of larvae to iAs generates reactive oxygen species (ROS), an antioxidant response, endoplasmic reticulum (ER) stress and UPR activation in the liver. An in vivo assay using transgenic larvae expressing a GFP-tagged secreted glycoprotein in hepatocytes (Tg(fabp10a:Gc-EGFP)) revealed acute iAs exposure selectively decreased expression of Gc-EGFP, indicating that iAs impairs secretory protein folding in the liver. The transcriptional output of UPR activation is preceded by ROS production and activation of genes involved in the oxidative stress response. These studies implicate redox imbalance as the mechanism of iAs-induced ER stress and suggest that crosstalk between these pathways underlie iAs-induced hepatic toxicity.
Collapse
Affiliation(s)
- Patrice Delaney
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Anjana Ramdas Nair
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Catherine Palmer
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Nouf Khan
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates.
| |
Collapse
|
28
|
Golbabapour S, Bagheri-Lankarani K, Ghavami S, Geramizadeh B. Autoimmune Hepatitis and Stellate Cells: An Insight into the Role of Autophagy. Curr Med Chem 2020; 27:6073-6095. [PMID: 30947648 DOI: 10.2174/0929867326666190402120231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 02/08/2023]
Abstract
Autoimmune hepatitis is a necroinflammatory process of liver, featuring interface hepatitis
by T cells, macrophages and plasma cells that invade to periportal parenchyma. In this process, a
variety of cytokines are secreted and liver tissues undergo fibrogenesis, resulting in the apoptosis of
hepatocytes. Autophagy is a complementary mechanism for restraining intracellular pathogens to
which the innate immune system does not provide efficient endocytosis. Hepatocytes with their
particular regenerative features are normally in a quiescent state, and, autophagy controls the accumulation
of excess products, therefore the liver serves as a basic model for the study of autophagy.
Impairment of autophagy in the liver causes the accumulation of damaged organelles, misfolded
proteins and exceeded lipids in hepatocytes as seen in metabolic diseases. In this review, we introduce
autoimmune hepatitis in association with autophagy signaling. We also discuss some genes and
proteins of autophagy, their regulatory roles in the activation of hepatic stellate cells and the importance
of lipophagy and tyrosine kinase in hepatic fibrogenesis. In order to provide a comprehensive
overview of the regulatory role of autophagy in autoimmune hepatitis, the pathway analysis of autophagy
in autoimmune hepatitis is also included in this article.
Collapse
Affiliation(s)
- Shahram Golbabapour
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital, Birmingham, B15 2WB, United Kingdom
| | - Kamran Bagheri-Lankarani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Ghavami
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bita Geramizadeh
- Department of Pathology, Medical school of Shiraz University, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
29
|
Renu K, Saravanan A, Elangovan A, Ramesh S, Annamalai S, Namachivayam A, Abel P, Madhyastha H, Madhyastha R, Maruyama M, Balachandar V, Valsala Gopalakrishnan A. An appraisal on molecular and biochemical signalling cascades during arsenic-induced hepatotoxicity. Life Sci 2020; 260:118438. [PMID: 32949585 DOI: 10.1016/j.lfs.2020.118438] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/22/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
Arsenic is a ubiquitous metalloid compound commonly found in the environment, and it is usually found in combination with sulphur and metals. Arsenic is considered as a therapeutic as well as poisoning agent since ancient times. It causes toxic effects on different organs, mainly the liver. In this review, we focused on the molecular mechanism of arsenic-induced hepatotoxicity. Here we envisaged the bridge between arsenic and hepatotoxicity with particular focus on the level of hepatic enzymes such as ALT, AST, and ALP. Here, we attempted to elucidate the role of arsenic in redox imbalance on increased oxidative stress (elevated level of ROS, MDA and NO) and decreased antioxidant levels such as reduced GSH, catalase, and SOD. Oxidative stress induces mitochondrial dysfunction via apoptosis (AKT-PKB, MAPK, PI3/AKT, PKCδ-JNK, AKT/ERK, p53 pathways), fibrosis (TGF-β/Smad pathway), and necrosis and inflammation (TNF-α, NF-ĸB, IL-1, and IL-6). Along with that, arsenic activates caspases and Bax, decreases Bcl2 through mitochondrial dysfunction, and induces apoptosis regulatory mechanism. We believe the alteration of all these pathways leads to arsenic-induced hepatotoxicity.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu 632014, India
| | - Anusha Saravanan
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu 632014, India
| | - Anushree Elangovan
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu 632014, India
| | - Sineka Ramesh
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu 632014, India
| | - Sivakumar Annamalai
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu 632014, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu 632014, India
| | - Praveena Abel
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu 632014, India
| | - Harishkumar Madhyastha
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889 1692, Japan
| | - Radha Madhyastha
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889 1692, Japan
| | - Masugi Maruyama
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889 1692, Japan
| | - Vellingiri Balachandar
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | | |
Collapse
|
30
|
Chen Y, Fan Y, Guo DY, Xu B, Shi XY, Li JT, Duan LF. Study on the relationship between hepatic fibrosis and epithelial-mesenchymal transition in intrahepatic cells. Biomed Pharmacother 2020; 129:110413. [PMID: 32570119 DOI: 10.1016/j.biopha.2020.110413] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatic fibrosis is a pathophysiological process, which causes excessive extracellular matrix (ECM) deposition resulting from persistent liver damage. Myofibroblasts are the core cells that produce ECM. It is known that epithelial-mesenchymal transition (EMT) is not a simple transition of cells from the epithelial to mesenchymal state. Instead, it is a process, in which epithelial cells temporarily lose cell polarity, transform into interstitial cell-like morphology, and acquire migration ability. Hepatocytes, hepatic stellate cells, and bile duct cells are the types of intrahepatic cells found in the liver. They can be transformed into myofibroblasts via EMT and play important roles in the development of hepatic fibrosis through a maze of regulations involving various pathways. The aim of the present study is to explore the relationship between the relevant regulatory factors and the EMT signaling pathways in the various intrahepatic cells.
Collapse
Affiliation(s)
- Yang Chen
- The Basic Medical College of Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Yu Fan
- The Basic Medical College of Shaanxi University of Chinese Medicine, Xianyang 712046, China; Shaanxi Province Key Laboratory of Basic and New Herbal Medicament Research, Xianyang 712046, China.
| | - Dong-Yan Guo
- Shaanxi Province Key Laboratory of Basic and New Herbal Medicament Research, Xianyang 712046, China.
| | - Bing Xu
- The Medical Technical College of Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Xiao-Yan Shi
- The Basic Medical College of Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Jing-Tao Li
- The First Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China.
| | - Li-Fang Duan
- The Basic Medical College of Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| |
Collapse
|
31
|
Tao Y, Qiu T, Yao X, Jiang L, Wang N, Jiang J, Jia X, Wei S, Zhang J, Zhu Y, Tian W, Yang G, Liu X, Liu S, Ding Y, Sun X. IRE1α/NOX4 signaling pathway mediates ROS-dependent activation of hepatic stellate cells in NaAsO 2 -induced liver fibrosis. J Cell Physiol 2020; 236:1469-1480. [PMID: 32776539 DOI: 10.1002/jcp.29952] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
Liver fibrosis is a severe health problem worldwide, and it is characterized by the activation of hepatic stellate cells (HSCs) and excessive deposition of collagen. Prolonged arsenic exposure can induce HSCs activation and liver fibrosis. In the present study, the results showed that chronic NaAsO2 ingestion could result in liver fibrosis and oxidative stress in Sprague-Dawley rats, along with representative collagen deposition and HSCs activation. In addition, the inositol-requiring enzyme 1α (IRE1α)-endoplasmic reticulum (ER)-stress pathway was activated, and the activity of nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) was upregulated in rat livers. Simultaneously, the excessive production of reactive oxygen species (ROS) could induce HSCs activation, and NOX4 played an important role in generating ROS in vitro. Moreover, ER stress occurred with HSCs activation at the same time under NaAsO2 exposure, and during ER stress, the IRE1α pathway was responsible for NOX4 activation. Therefore, inhibition of IRE1α activation could attenuate the HSCs activation induced by NaAsO2 . In conclusion, the present study manifested that inorganic arsenic exposure could activate HSCs through IRE1α/NOX4-mediated ROS generation.
Collapse
Affiliation(s)
- Ye Tao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Tianming Qiu
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Xiaofeng Yao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Liping Jiang
- Experimental Teaching Center of Public Health, Dalian Medical University, Dalian, China
| | - Ningning Wang
- Department of Nutrition and Food Hygiene, Dalian Medical University, Dalian, China
| | - Jintong Jiang
- School of Foreign Languages, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xue Jia
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Sen Wei
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Jingyuan Zhang
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Yuhan Zhu
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Wenyue Tian
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guang Yang
- Department of Nutrition and Food Hygiene, Dalian Medical University, Dalian, China
| | - Xiaofang Liu
- Department of Nutrition and Food Hygiene, Dalian Medical University, Dalian, China
| | - Shuang Liu
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Yang Ding
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiance Sun
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China.,Global Health Research Center, Dalian Medical University, Dalian, China
| |
Collapse
|
32
|
Advantages of adipose tissue stem cells over CD34 + mobilization to decrease hepatic fibrosis in Wistar rats. Ann Hepatol 2020; 18:620-626. [PMID: 31147180 DOI: 10.1016/j.aohep.2018.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 12/04/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION AND OBJECTIVES Chronic liver inflammation may lead to hepatic cirrhosis, limiting its regenerative capacity. The clinical standard of care is transplantation, although stem cell therapy may be an alternative option. The study aim was to induce endogenous hematopoietic stem cells (HSCs) with granulocyte colony stimulating factor (G-CSF) and/or intravenous administration of adipose tissue-derived mesenchymal stem cells (MSCs) to decrease hepatic fibrosis in an experimental model. MATERIAL AND METHODS A liver fibrosis model was developed with female Wistar rats via multiple intraperitoneal doses of carbon tetrachloride. Three rats were selected to confirm cirrhosis, and the rest were set into experimental groups to evaluate single and combined therapies of G-CSF-stimulated HSC mobilization and intravenous MSC administration. RESULTS Treatment with MSCs and G-CSF significantly improved alanine amino transferase levels, while treatment with G-CSF, MSCs, and G-CSF+MSCs decreased aspartate amino transferase levels. Hepatocyte growth factor (HGF) and interleukin 10 levels increased with MSC treatment. Transforming growth factor β levels were lower with MSC treatment. Interleukin 1β and tumor necrosis factor alpha levels decreased in all treated groups. Histopathology showed that MSCs and G-CSF reduced liver fibrosis from F4 to F2. CONCLUSIONS MSC treatment improves liver function, decreases hepatic fibrosis, and plays an anti-inflammatory role; it promotes HGF levels and increased proliferating cell nuclear antigen when followed by MSC treatment mobilization using G-CSF. When these therapies were combined, however, fibrosis improvement was less evident.
Collapse
|
33
|
Arsenic Exposure and Methylation Efficiency in Relation to Oxidative Stress in Semiconductor Workers. ATMOSPHERE 2020. [DOI: 10.3390/atmos11050464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study examined associations between oxidative stress and arsenic (As) exposure and methylation efficiency in semiconductor workers. An As-exposed group (n = 427) and a control group (n = 91) were included. The As-exposure group (n = 427) included 149 maintenance staff members and 278 production staff members representing high As exposure and low As exposure, respectively. The control group included 91 administrative staff members with no or minimal As exposure. An occupational exposure assessment was conducted to assess personal As exposure by measuring As concentrations in urine, hair, and fingernails of the subjects. Urinary As(III), As(V), monomethylarsonic (MMA), and dimethylarsinic acid (DMA) were quantified to assess an internal dose of inorganic As. Urinary 8-hydroxy-2’-deoxyguanosine (8-OHdG) and malondialdehyde (MDA) were measured to asses oxidative DNA damage and lipid peroxidation, respectively. As concentrations in urine, hair, and fingernails significantly increased (p < 0.05) in the As-exposed group in comparison to the control group. Geometric mean urinary concentrations of As, 8-OHdG, and MDA in the As-exposed group significantly exceeded those in the control group. As exposure to As-exposed workers had increased concentrations of 8-OHdG in contrast to those in control subjects. Moreover, urinary 8-OHdG concentrations in the semiconductor workers were positively correlated with urinary total As metabolite (As(III) + As(V) + MMA + DMA) concentrations. Furthermore, urinary excretion of 8-OHdG concentrations in As-exposed workers were positively associated with urinary excretion of MMA concentrations and primary methylation index values (the ration of MMA/inorganic As). However, fingernail and hair samples did not perform as well as urinary samples to measure oxidative stress induced by As exposure. 8-OHdG could serve as a more reliable biomarker for assessing As methylation than MDA did. Occupational exposure to inorganic As was associated with increased oxidative stress among semiconductor workers.
Collapse
|
34
|
Tao Y, Qiu T, Yao X, Jiang L, Wang N, Jia X, Wei S, Wang Z, Pei P, Zhang J, Zhu Y, Yang G, Liu X, Liu S, Sun X. Autophagic-CTSB-inflammasome axis modulates hepatic stellate cells activation in arsenic-induced liver fibrosis. CHEMOSPHERE 2020; 242:124959. [PMID: 31669990 DOI: 10.1016/j.chemosphere.2019.124959] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Long-term exposure to arsenic can cause liver injury and fibrosis. The activation of hepatic stellate cells (HSCs) plays an essential role in the process of liver fibrosis. We found that NaAsO2 caused liver damage and fibrosis in vivo, accompanied by excessive collagen deposition and HSCs activation. In addition, NaAsO2 upregulated autophagy flux, elevated the level of cytoplasmic cathepsin B (CTSB), and activated the NOD-like receptors containing pyrin domain 3 (NLRP3) inflammasome in a subtle way. Consistent with these findings in vivo, we demonstrated that NaAsO2-induced activation of HSCs depended on CTSB-mediated NLRP3 inflammasome activation in HSC-t6 cells and rats primary HSCs. Moreover, inhibition of autophagy decreased the cytoplasmic CTSB and alleviated the activation of the NLRP3 inflammasome, thereby attenuating the NaAsO2-induced HSCs activation. In summary, these results indicated that NaAsO2 induced HSCs activation via autophagic-CTSB-NLRP3 inflammasome pathway. These findings may provide a novel insight into the potential mechanism of NaAsO2-induced liver fibrosis.
Collapse
Affiliation(s)
- Ye Tao
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Tianming Qiu
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Xiaofeng Yao
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Liping Jiang
- Experimental Teaching Center of Public Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Ningning Wang
- Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Xue Jia
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Sen Wei
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Zhidong Wang
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Pei Pei
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Jingyuan Zhang
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Yuhan Zhu
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Guang Yang
- Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Xiaofang Liu
- Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Shuang Liu
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Xiance Sun
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China; Global Health Research Center, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| |
Collapse
|
35
|
Pomegranate peel extract ameliorates liver fibrosis induced by carbon tetrachloride in rats through suppressing p38MAPK/Nrf2 pathway. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
36
|
Cooper AM, Felix D, Alcantara F, Zaslavsky I, Work A, Watson PL, Pezzoli K, Yu Q, Zhu D, Scavo AJ, Zarabi Y, Schroeder JI. Monitoring and mitigation of toxic heavy metals and arsenic accumulation in food crops: A case study of an urban community garden. PLANT DIRECT 2020; 4:e00198. [PMID: 31956855 PMCID: PMC6957986 DOI: 10.1002/pld3.198] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 05/12/2023]
Abstract
Urban community gardens have increased in prevalence as a means to generate fresh fruits and vegetables, including in areas lacking access to healthy food options. However, urban soils may have high levels of toxic heavy metals, including lead and cadmium and the metalloid arsenic, which can lead to severe health risks. In this study, fruit and vegetable samples grown at an urban community garden in southeastern San Diego, the Ocean View Growing Grounds, were sampled repeatedly over a four-year time period in order to measure potential contamination of toxic heavy metals and metalloids and to develop solutions for this problem. Metal nutrient, heavy metal, and metalloid concentrations were monitored in the leaf and fruit tissues of fruit trees over the sampling period. Several of the fruit trees showed uptake of lead in the leaf samples, with Black Mission fig measuring 0.843-1.531 mg/kg dry weight and Mexican Lime measuring 1.103-1.522 mg/kg dry weight over the sampling period. Vegetables that were grown directly in the ground at this community garden and surrounding areas showed arsenic, 0.80 + 0.073 mg/kg dry weight for Swiss chard, and lead, 0.84 ± 0.404 mg/kg dry weight for strawberries, in their edible tissues. The subsequent introduction of raised beds with uncontaminated soil is described, which eliminated any detectable heavy metal or metalloid contamination in these crops during the monitoring period. Recommendations for facilitating the monitoring of edible tissues and for reducing risk are discussed, including introduction of raised beds and collaborations with local universities and research groups.
Collapse
Affiliation(s)
- Andrew M. Cooper
- Division of Biological Sciences, Cell and Developmental Biology SectionUniversity of California, San DiegoLa JollaCAUSA
| | - Didra Felix
- Division of Biological Sciences, Cell and Developmental Biology SectionUniversity of California, San DiegoLa JollaCAUSA
| | - Fatima Alcantara
- Division of Biological Sciences, Cell and Developmental Biology SectionUniversity of California, San DiegoLa JollaCAUSA
| | - Ilya Zaslavsky
- Spatial Information Systems LaboratorySan Diego Supercomputer CenterLa JollaCAUSA
| | - Amy Work
- UC San Diego LibrarySan Diego Supercomputer CenterLa JollaCAUSA
| | | | - Keith Pezzoli
- Department of Urban Studies and PlanningBioregional Center for Sustainability Science, Planning and DesignUniversity of California, San DiegoLa JollaCAUSA
| | - Qi Yu
- Division of Biological Sciences, Cell and Developmental Biology SectionUniversity of California, San DiegoLa JollaCAUSA
- Hubei Key Laboratory of Genetic Regulation and Integrative BiologySchool of Life SciencesCentral China Normal UniversityWuhanChina
| | - Dan Zhu
- Division of Biological Sciences, Cell and Developmental Biology SectionUniversity of California, San DiegoLa JollaCAUSA
| | - Alexander J. Scavo
- Division of Biological Sciences, Cell and Developmental Biology SectionUniversity of California, San DiegoLa JollaCAUSA
| | - Yasman Zarabi
- Division of Biological Sciences, Cell and Developmental Biology SectionUniversity of California, San DiegoLa JollaCAUSA
| | - Julian I. Schroeder
- Division of Biological Sciences, Cell and Developmental Biology SectionUniversity of California, San DiegoLa JollaCAUSA
| |
Collapse
|
37
|
Ren L, Qi K, Zhang L, Bai Z, Ren C, Xu X, Zhang Z, Li X. Glutathione Might Attenuate Cadmium-Induced Liver Oxidative Stress and Hepatic Stellate Cell Activation. Biol Trace Elem Res 2019; 191:443-452. [PMID: 30715683 DOI: 10.1007/s12011-019-1641-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/14/2019] [Indexed: 02/06/2023]
Abstract
The liver is a major organ involved in cadmium (Cd)-induced oxidative damage. Following liver injury, hepatic stellate cells (HSCs) are activated to participate in the wound healing process, but also facilitate liver fibrosis. Previous studies have observed fibrogenic effects of Cd on liver. However, the oxidative stress mechanisms of Cd-induced HSC activation as well as whether administration of glutathione (GSH) alleviates this activation, remain unclear. In this study, 24 rats were divided randomly into four experimental groups: control, GSH-treated, Cd-treated, and Cd + GSH-treated. After 4 weeks, the liver injury index, HSC-specific activation markers, oxidative stress-related antioxidants, and enzyme activities and signals were measured. Cd uptake and the generation of reactive oxygen species (ROS) in hepatocytes were detected by mass cytometry and fluorescence microscopy, respectively. Levels of aspartate aminotransferase, xanthine oxidase, γ-glutamyl transpeptidase, and α-smooth muscle actin (αSMA) were significantly increased in Cd-treated rats. Activated HSCs positive for αSMA expression and excess collagen deposition were detected in the Cd-treated group. In contrast, activities of the antioxidant enzymes superoxide dismutase, glutathione peroxidase, and catalase were reduced. Supplementation with GSH reversed some of the Cd-induced effects and increased the protein level of phosphorylated (p)-P65 while decreasing p-JNK. Pretreatment with GSH lowered Cd uptake and ROS generation in hepatocytes in vitro. These results indicate that administration of GSH was effective in attenuating Cd-induced oxidative stress via decreasing Cd uptake, restoring the activities of oxidative enzymes, activating NF-κB, inhibiting the JNK signaling pathway, and preventing excessive ROS generation and HSC activation.
Collapse
Affiliation(s)
- Longfei Ren
- The First Clinical Medical College, Lanzhou University; The Fifth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Kuo Qi
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University; The Fifth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
- Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Zhongtian Bai
- The First Clinical Medical College, Lanzhou University; The Fifth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China
| | - Chenghui Ren
- The First Clinical Medical College, Lanzhou University; The Fifth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Xianyun Xu
- The First Clinical Medical College, Lanzhou University; The Fifth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Zeliang Zhang
- The First Clinical Medical College, Lanzhou University; The Fifth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Xun Li
- The First Clinical Medical College, Lanzhou University; The Fifth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China.
- Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
38
|
Dai X, Chen C, Xue J, Xiao T, Mostofa G, Wang D, Chen X, Xu H, Sun Q, Li J, Wei Y, Chen F, Quamruzzaman Q, Zhang A, Liu Q. Exosomal MALAT1 derived from hepatic cells is involved in the activation of hepatic stellate cells via miRNA-26b in fibrosis induced by arsenite. Toxicol Lett 2019; 316:73-84. [PMID: 31513886 DOI: 10.1016/j.toxlet.2019.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/28/2019] [Accepted: 09/08/2019] [Indexed: 12/15/2022]
Abstract
In the liver microenvironment, interactions among diverse types of hepatic cells are involved in liver fibrosis. In fibrotic tissues, exosomes act as transporters in intercellular communication. Long non-coding RNAs (lncRNAs) are involved in the activation of hepatic stellate cells (HSCs), which are participants in liver fibrosis. However, the functions of exosomal lncRNAs in liver fibrosis induced by arsenite are undefined. The purposes of the present study were (a) to determine if lncRNAs secreted from human hepatic (L-02) cells exposed to arsenite are shuttled to hepatic stellate LX-2 cells and (b) to establish their effects on LX-2 cells. In mice, MALAT1 was overexpressed in the progression of liver fibrosis induced by arsenite as well as in L-02 cells exposed to arsenite. Co-cultures with arsenite-treated L-02 cells induced the activation of LX-2 cells and overexpression of MALAT1. Arsenite-treated L-02 cells transported MALAT1 into LX-2 cells. Downregulation of MALAT1, which reduced the MALAT1 levels in exosomes derived from arsenite-treated L-02 cells, inhibited the activation of LX-2 cells. Additionally, exosomal MALAT1 derived from arsenite-treated L-02 cells promoted the activation of LX-2 cells via microRNA-26b regulation of COL1A2. Furthermore, circulating exosomal MALAT1 was up-regulated in people exposed to arsenite. In sum, exosomes derived from arsenite-treated hepatic cells transferred MALAT1 to HSCs, which induced their activation. These findings support the concept that, during liver fibrosis induced by arsenite, exosomal lncRNAs are involved in cell-cell communication.
Collapse
Affiliation(s)
- Xiangyu Dai
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Chao Chen
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, people's Republic of China
| | - Junchao Xue
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Tian Xiao
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Golam Mostofa
- Dhaka Community Hospital Trust, Dhaka 1217, Bangladesh
| | - Dapeng Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Xiong Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Hui Xu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Qian Sun
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Junjie Li
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Yongyue Wei
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Feng Chen
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | | | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
39
|
Nithyananthan S, Thirunavukkarasu C. Arsenic trioxide, a cancer chemo drug hampers fibrotic liver regeneration by interrupting oxidative stress rekindling and stellate cell rejuvenation. J Cell Physiol 2019; 235:1222-1234. [PMID: 31270803 DOI: 10.1002/jcp.29037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
Abstract
After withdrawal of liver toxic insult, the spontaneous regenerative potential of the liver is well reported in the literature. On the other hand, various molecules have been reported to promote as well as delay such natural regeneration. This current study investigates the involvement of arsenic trioxide (ATO) medication at chemotherapeutic dose on the spontaneous regeneration of the CCl4 induced fibrotic liver. Liver injury markers, such as albumin and SGOT, SGPT, and ALP activities, in serum indicated that ATO supplementation during liver regeneration hampers the rejuvenation process. The hepatic architecture as well as the degree of fibrosis by hematoxylin and eosin and Sirius red staining confirms the above findings. The reduced hepatic antioxidant system and elevated oxidative stress markers, such as lipid peroxidation and 8-hydroxy deoxy-guanosine-positive hepatocytes in ATO supplied rats, display the persistence of oxidative stress when compared with healthy controls and the normal regeneration model. Immuno-histochemical localization of Ki-67 indicates that mitotically active hepatocytes were fewer in the ATO given rats when compared with normal regeneration rats. Further delay in hepatic fibrinolysis was monitored by matrix metalloproteinase zymography assay in the ATO-given animals. Poly(ADP-ribose) polymerase 1 expression demonstrates elevated hepatocyte apoptosis with ATO. Furthermore, increased α-smooth muscle actin indicates that the stellate cells are in an activated state in ATO supplemented fibrotic animals. In conclusion, it's observed that ATO supplementation to the fibrotic liver delays oxidative stress revitalization and maintains stellate cells in the active form, thereby delaying liver regeneration, and the health status of the liver must be taken into account before administering drugs like ATO.
Collapse
|
40
|
Amadi CN, Offor SJ, Frazzoli C, Orisakwe OE. Natural antidotes and management of metal toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18032-18052. [PMID: 31079302 DOI: 10.1007/s11356-019-05104-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
The global burden of heavy metal especially mercury, arsenic, lead, and cadmium toxicities remains a significant public health challenge. Developing nations are particularly at high risk and carry the highest burden of this hazard. Chelation therapy has been the mainstay for treatment of heavy metal poisoning where the chelating agent binds metal ions to form complex ring-like structures called "chelates" to enhance their elimination from the body. Metal chelators have some drawbacks such as redistribution of some heavy metals from other tissues to the brain thereby increasing its neurotoxicity, causing loss of essential metals such as copper and zinc as well as some serious adverse effects, e.g., hepatotoxicity. The use of natural antidotes, which are easily available, affordable, and with little or no side effects compared to the classic metal chelators, is the focus of this review and suggested as cheaper options for developing nations in the treatment of heavy metal poisoning.
Collapse
Affiliation(s)
- Cecilia Nwadiuto Amadi
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Samuel James Offor
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Chiara Frazzoli
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Ageing, Istituto Superiore di Sanità (Italian National Institute of Health), Rome, Italy
| | - Orish Ebere Orisakwe
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria.
| |
Collapse
|
41
|
Luangmonkong T, Suriguga S, Mutsaers HAM, Groothuis GMM, Olinga P, Boersema M. Targeting Oxidative Stress for the Treatment of Liver Fibrosis. Rev Physiol Biochem Pharmacol 2019; 175:71-102. [PMID: 29728869 DOI: 10.1007/112_2018_10] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress is a reflection of the imbalance between the production of reactive oxygen species (ROS) and the scavenging capacity of the antioxidant system. Excessive ROS, generated from various endogenous oxidative biochemical enzymes, interferes with the normal function of liver-specific cells and presumably plays a role in the pathogenesis of liver fibrosis. Once exposed to harmful stimuli, Kupffer cells (KC) are the main effectors responsible for the generation of ROS, which consequently affect hepatic stellate cells (HSC) and hepatocytes. ROS-activated HSC undergo a phenotypic switch and deposit an excessive amount of extracellular matrix that alters the normal liver architecture and negatively affects liver function. Additionally, ROS stimulate necrosis and apoptosis of hepatocytes, which causes liver injury and leads to the progression of end-stage liver disease. In this review, we overview the role of ROS in liver fibrosis and discuss the promising therapeutic interventions related to oxidative stress. Most importantly, novel drugs that directly target the molecular pathways responsible for ROS generation, namely, mitochondrial dysfunction inhibitors, endoplasmic reticulum stress inhibitors, NADPH oxidase (NOX) inhibitors, and Toll-like receptor (TLR)-affecting agents, are reviewed in detail. In addition, challenges for targeting oxidative stress in the management of liver fibrosis are discussed.
Collapse
Affiliation(s)
- Theerut Luangmonkong
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands.,Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Su Suriguga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Henricus A M Mutsaers
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Geny M M Groothuis
- Department of Pharmacokinetics, Toxicology and Targeting, University of Groningen, Groningen, The Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands.
| | - Miriam Boersema
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
42
|
Kobayashi H. Somatic driver mutations in endometriosis as possible regulators of fibrogenesis (Review). ACTA ACUST UNITED AC 2019. [DOI: 10.3892/wasj.2019.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
43
|
Dreval K, Tryndyak V, Kindrat I, Twaddle NC, Orisakwe OE, Mudalige TK, Beland FA, Doerge DR, Pogribny IP. Cellular and Molecular Effects of Prolonged Low-Level Sodium Arsenite Exposure on Human Hepatic HepaRG Cells. Toxicol Sci 2019; 162:676-687. [PMID: 29301061 DOI: 10.1093/toxsci/kfx290] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inorganic arsenic is a human carcinogen associated with several types of cancers, including liver cancer. Inorganic arsenic has been postulated to target stem cells, causing their oncogenic transformation. This is proposed to be one of the key events in arsenic-associated carcinogenesis; however, the underlying mechanisms for this process remain largely unknown. To address this question, human hepatic HepaRG cells, at progenitor and differentiated states, were continuously treated with a noncytotoxic concentration of 1 μM sodium arsenite (NaAsO2). The HepaRG cells demonstrated active intracellular arsenite metabolism that shared important characteristic with primary human hepatocytes. Treatment of proliferating progenitor-like HepaRG cells with NaAsO2 inhibited their differentiation into mature hepatocyte-like cells, up-regulated genes involved in cell growth, proliferation, and survival, and down-regulated genes involved in cell death. In contrast, treatment of differentiated hepatocyte-like HepaRG cells with NaAsO2 resulted in enhanced cell death of mature hepatocyte-like cells, overexpression of cell death-related genes, and down-regulation of genes in the cell proliferation pathway, while biliary-like cells remained largely unaffected. Mechanistically, the cytotoxic effect of arsenic on mature hepatocyte-like HepaRG cells may be attributed to arsenic-induced dysregulation of cellular iron metabolism. The inhibitory effect of NaAsO2 on the differentiation of progenitor cells, the resistance of biliary-like cells to cell death, and the enhanced cell death of functional hepatocyte-like cells resulted in stem-cell activation. These effects favored the proliferation of liver progenitor cells that can serve as a source of initiation and driving force of arsenic-mediated liver carcinogenesis.
Collapse
Affiliation(s)
- Kostiantyn Dreval
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Iryna Kindrat
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079.,Department of Biological and Medical Chemistry, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
| | - Nathan C Twaddle
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Orish Ebere Orisakwe
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079.,Department of Experimental Pharmacology and Toxicology, University of Port-Harcourt, Rivers State, Nigeria
| | - Thilak K Mudalige
- Office of Regulatory Affairs, Arkansas Regional Laboratory, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Daniel R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| |
Collapse
|
44
|
Wang Z, Tao Y, Qiu T, Yao X, Jiang L, Wang N, Wei S, Jia X, Pei P, Yang G, Liu X, Liu S, Sun X. Taurine protected As 2O 3-induced the activation of hepatic stellate cells through inhibiting PPARα-autophagy pathway. Chem Biol Interact 2019; 300:123-130. [PMID: 30677399 DOI: 10.1016/j.cbi.2019.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/27/2018] [Accepted: 01/16/2019] [Indexed: 01/16/2023]
Abstract
The activation of hepatic stellate cells (HSCs) is a key event in the development of hepatic fibrosis caused by arsenic. However, it is unclear how arsenic induces the activation of HSCs. In the present study, we found that arsenic trioxide (As2O3) induced liver tissue damage, stimulated autophagy and HSCs activation, and increased collagen accumulation in the liver of mice. Supplemented with taurine (Tau) attenuated the changes mentioned above caused by As2O3. In human hepatic stellate cell line LX-2 cells, we found that As2O3-induced activation of HSCs was autophagy-dependent, and we found that peroxisome proliferator activated receptors alpha (PPARα) played an important role in arsenic-induced HSCs activation. In addition, inhibiting autophagy and PPARα alleviated the activation of HSCs and lipid droplet loss induced by As2O3. Moreover, we found that Tau alleviated As2O3-induced elevation of autophagy and PPARα expression, and activation of the HSCs. Our results indicated that autophagy was regulated by PPARα and was involved in lipid droplet loss during the activation of HSCs. Tau alleviated As2O3-induced HSCs activation by inhibiting the PPARα/autophagy pathway. These findings give an innovative insight into the association of PPARα, autophagy, the activation of HSCs and hepatic fibrosis induced by As2O3.
Collapse
Affiliation(s)
- Zhidong Wang
- Department of Occupational and Environment Health, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Ye Tao
- Department of Occupational and Environment Health, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Tianming Qiu
- Department of Occupational and Environment Health, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Xiaofeng Yao
- Department of Occupational and Environment Health, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Liping Jiang
- Experimental Teaching Center of Public Health, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Ningning Wang
- Nutrition and Food Hygiene, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Sen Wei
- Department of Occupational and Environment Health, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Xue Jia
- Department of Occupational and Environment Health, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Pei Pei
- Department of Occupational and Environment Health, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Guang Yang
- Nutrition and Food Hygiene, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Xiaofang Liu
- Nutrition and Food Hygiene, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Shuang Liu
- Department of Occupational and Environment Health, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Xiance Sun
- Department of Occupational and Environment Health, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China; Global Health Research Center, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China.
| |
Collapse
|
45
|
Li J, Xue J, Wang D, Dai X, Sun Q, Xiao T, Wu L, Xia H, Mostofa G, Chen X, Wei Y, Chen F, Quamruzzaman Q, Zhang A, Liu Q. Regulation of gasdermin D by miR-379-5p is involved in arsenite-induced activation of hepatic stellate cells and in fibrosis via secretion of IL-1β from human hepatic cells. Metallomics 2019; 11:483-495. [DOI: 10.1039/c8mt00321a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Arsenic is an environmental toxicant and human carcinogen.
Collapse
|
46
|
Gallic Acid Attenuates Dimethylnitrosamine-Induced Liver Fibrosis by Alteration of Smad Phosphoisoform Signaling in Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1682743. [PMID: 30627538 PMCID: PMC6304566 DOI: 10.1155/2018/1682743] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 12/24/2022]
Abstract
Dimethylnitrosamine (DMN) is a potent hepatotoxin, carcinogen, and mutagen. In our previous study, a candidate gallic acid (GA) that widely exists in food and fruit was selected for its capability to alleviate DMN toxicity in vivo. We aimed to investigate the therapeutic potential of GA against DMN-induced liver fibrosis. During the first four weeks, DMN was administered to rats via intraperitoneal injection every other day, except the control group. GA or silymarin was given to rats by gavage once daily from the second to the sixth week. GA significantly reduced liver damage in serum parameters and improved the antioxidant capacity in liver and kidney tissues. Cytokines involved in liver fibrosis were measured at transcriptional and translational levels. These results indicate that GA exhibits robust antioxidant and antifibrosis effects and may be an effective candidate natural medicine for liver fibrosis treatment.
Collapse
|
47
|
Wang ZF, Wang MY, Yu DH, Zhao Y, Xu HM, Zhong S, Sun WY, He YF, Niu JQ, Gao PJ, Li HJ. Therapeutic effect of chitosan on CCl4‑induced hepatic fibrosis in rats. Mol Med Rep 2018; 18:3211-3218. [PMID: 30085342 PMCID: PMC6102732 DOI: 10.3892/mmr.2018.9343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 06/19/2018] [Indexed: 12/15/2022] Open
Abstract
Chitosan is a linear polysaccharide that is made by treating the chitin shells of shrimp and crustaceans with an alkaline substance, for example sodium hydroxide. Due to its unique physical and chemical properties, chitosan has a wide range of applications in the medical field. Currently, there are no effective treatments for liver fibrosis; therefore, the aim of the present study was to investigate the therapeutic effect of chitosan in a CCl4‑induced hepatic fibrosis (HF) rat model. The serum levels of aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP) were measured by ELISA. Collagen (COL) 3 and α‑smooth muscle actin (SMA) expression levels in the rat liver were detected by reverse transcription‑semiquantitative polymerase chain reaction and western blotting, respectively. The results demonstrated that treatment with chitosan significantly improved HF, by decreasing the serum levels of AST, ALT, and ALP; improving liver histology; and decreasing the expression levels of COL3 and α‑SMA. Chitosan may offer an alternative approach for the clinical treatment of HF.
Collapse
Affiliation(s)
- Zhong-Feng Wang
- Department of Geriatrics, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Mao-Yu Wang
- Department of CCU, The First People's Hospital of Aksu Prefecture in Xinjiang, Aksu, Xinjiang 843000, P.R. China
| | - De-Hai Yu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, Jilin 130061, P.R. China
| | - Hong-Mei Xu
- Department of Obstetrics, The First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China
| | - Sheng Zhong
- Department of Geriatrics, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wen-Yi Sun
- Department of Clinical Pharmacy and Pharmaceutical Management, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yu-Fang He
- Institute of Phytochemistry, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin 130012, P.R. China
| | - Jun-Qi Niu
- Department of Geriatrics, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Pu-Jun Gao
- Department of Geriatrics, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hai-Jun Li
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
48
|
Han WQ, Xu L, Tang XF, Chen WD, Wu YJ, Gao PJ. Membrane rafts-redox signalling pathway contributes to renal fibrosis via modulation of the renal tubular epithelial-mesenchymal transition. J Physiol 2018; 596:3603-3616. [PMID: 29863758 DOI: 10.1113/jp275952] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/25/2018] [Indexed: 01/27/2023] Open
Abstract
KEY POINTS Membrane rafts (MRs)-redox signalling pathway is activated in response to transforming growth factor-β1 (TGF-β1) stimulation in renal tubular cells. This pathway contributes to TGF-1β-induced epithelial-mesenchymal transition (EMT) in renal tubular cells. The the MRs-redox signalling pathway is activated in renal tubular cells isolated from angiotensin II (AngII)-induced hypertensive rats. Inhibition of this pathway attenuated renal inflammation and fibrosis in AngII-induced hypertension. ABSTRACT The membrane rafts (MRs)-redox pathway is characterized by NADPH oxidase subunit clustering and activation through lysosome fusion, V-type proton ATPase subunit E2 (encoded by the Atp6v1e2 gene) translocation and sphingomyelin phosphodiesterase 1 (SMPD1, encoded by the SMPD1 gene) activation. In the present study, we hypothesized that the MRs-redox-derived reactive oxygen species (ROS) are involved in renal inflammation and fibrosis by promoting renal tubular epithelial-mesenchymal transition (EMT). Results show that transforming growth factor-β1 (TGF-β1) acutely induced MR formation and ROS production in NRK-52E cells, a rat renal tubular cell line. In addition, transfection of Atp6v1e2 small hairpin RNAs (shRNA) and SMPD1 shRNA attenuated TGF-β1-induced changes in EMT markers, including E-cadherin, α-smooth muscle actin (α-SMA) and fibroblast-specific protein-1 (FSP-1) in NRK-52E cells. Moreover, Erk1/2 activation may be a downstream regulator of the MRs-redox-derived ROS, because both shRNAs significantly inhibited TGF-β1-induced Erk1/2 phosphorylation. Further in vivo study shows that the renal tubular the MRs-redox signalling pathway was activated in angiotensin II (AngII)-induced hypertension, as indicated by the increased NADPH oxidase subunit Nox4 fraction in the MR domain, SMPD1 activation and increased ROS content in isolated renal tubular cells. Finally, renal transfection of Atp6v1e2 shRNA and SMPD1 shRNA significantly prevented renal fibrosis and inflammation, as indicated by the decrease of α-SMA, fibronectin, collagen I, monocyte chemoattractant protein-1 (MCP-1), intercellular cell adhesion molecule-1 (ICAM-1) and tumour necrosis factor-α (TNF-α) in kidneys from AngII-infused rats. It was concluded that the the MRs-redox signalling pathway is involved in TGF-β1-induced renal tubular EMT and renal inflammation/fibrosis in AngII-induced hypertension.
Collapse
Affiliation(s)
- Wei-Qing Han
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Shanghai Institute of Hypertension, Shanghai, China
| | - Lian Xu
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Feng Tang
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Hypertension, Shanghai, China
| | - Wen-Dong Chen
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Hypertension, Shanghai, China
| | - Yong-Jie Wu
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Hypertension, Shanghai, China
| | - Ping-Jin Gao
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Shanghai Institute of Hypertension, Shanghai, China
| |
Collapse
|
49
|
Mortezaee K. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and liver fibrosis: A review. Cell Biochem Funct 2018; 36:292-302. [PMID: 30028028 DOI: 10.1002/cbf.3351] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022]
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are key producer of reactive oxygen species in liver cells. Hepatic stellate cells (HSCs) and Kupffer cells (KCs) are the two key cells for expression of NOX in liver. KCs produce only NOX2, while HSCs produce NOX1, 2, and 4, all of which play essential roles in the process of fibrogenesis within liver. These NOX subtypes are contributed to induction of liver fibrosis by acting through multiple pathways including induction of HSC activation, proliferation, survival and migration, stimulation of hepatocyte apoptosis, enhancement of fibrogenic mediators, and mediation of an inflammatory cascade in both KCs and HSCs. SIGNIFICANCE KCs and HSCs are two key cells for production of NOX in liver in relation to the pathology of liver fibrosis. NOX subtypes 1, 2, and 4 are inducers of fibrogenesis in liver. NOX activation favors hepatocyte apoptosis, HSC activation, and KC-mediated inflammatory cascade in liver, all of which are responsible for generation of liver fibrosis.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
50
|
Das S, Langthasa P, Barhoi D, Upadhaya P, Giri S. Effect of nutritional status on arsenic and smokeless tobacco induced genotoxicity, sperm abnormality and oxidative stress in mice in vivo. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:386-400. [PMID: 29569270 DOI: 10.1002/em.22188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/22/2018] [Accepted: 03/01/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Recently, high concentrations of arsenic have been documented in ground waters of Southern Assam, India. Indiscriminate smokeless tobacco consumption is a common practice in this region. Correlation between nutritional status and arsenic and smokeless tobacco-induced health effects has not been taken up in humans or other test systems. METHODS Mice were divided into groups based on protein (casein) content in the diet: High protein (40%), optimum protein (20%), and low protein (5%). Simultaneous chronic exposure (90 days) to arsenic and smokeless tobacco (sadagura) orally was given to evaluate the extent of the cytological and genotoxicological damage. Micronucleus assay and Comet assay of the femur bone marrow cells were conducted. Germ cell toxicity was evaluated by recording the sperm head abnormalities and total sperm count. Cell cycle analysis was performed in femur bone marrow cells using flow cytometer. Hepatic, renal, and intestinal tissues were analyzed for various oxidative stress evaluations. Histological examination of liver and kidney was performed. RESULTS Notably, high protein diet groups had lower arsenic and sadagura induced genotoxicity, germ cell abnormalities and oxidative stress as compared to optimum protein and low protein diet counterparts. CONCLUSION Our study indicates that sufficient levels of dietary protein appear to reduce the long-term arsenic and smokeless tobacco-induced toxicity in mice test system, as compared to lower or deficient amount of protein in the diet. This observation has implications and invites further studies especially epidemiological studies in the human population exposed to arsenic in South East Asian countries. Environ. Mol. Mutagen. 59:386-400, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Samrat Das
- Department of Life Science and Bioinformatics, Molecular and Cell Biology Laboratory, Assam University, Silchar, 788011, India
| | - Pimily Langthasa
- Department of Life Science and Bioinformatics, Molecular and Cell Biology Laboratory, Assam University, Silchar, 788011, India
| | - Dharmeswar Barhoi
- Department of Life Science and Bioinformatics, Molecular and Cell Biology Laboratory, Assam University, Silchar, 788011, India
| | - Puja Upadhaya
- Department of Life Science and Bioinformatics, Molecular and Cell Biology Laboratory, Assam University, Silchar, 788011, India
| | - Sarbani Giri
- Department of Life Science and Bioinformatics, Molecular and Cell Biology Laboratory, Assam University, Silchar, 788011, India
| |
Collapse
|