1
|
Oladele JO, Wang M, Xenophontos X, Lilly K, Tamamis P, Phillips TD. Chlorophyll-Amended Organoclays for the Detoxification of Ochratoxin A. Toxins (Basel) 2024; 16:479. [PMID: 39591234 PMCID: PMC11598794 DOI: 10.3390/toxins16110479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Climate change has been associated with outbreaks of mycotoxicosis following periods of drought, enhanced fungal growth, and increased exposure to mycotoxins. For detoxification, the inclusion of clay-based materials in food and drinking water has resulted in a very promising strategy to reduce mycotoxin exposure. In this strategy, mycotoxins are tightly sorbed to high-affinity clay particles in the gastrointestinal tract, thus decreasing bioavailability, uptake to blood, and potential toxicity. This study investigated the ability of chlorophyll and chlorophyllin-amended montmorillonite clays to decrease the toxicity of ochratoxin A (OTA). The sorption mechanisms of OTA binding to surfaces of sorbents, as well as binding parameters such as capacity, affinity, enthalpy, and free energy, were examined. Chlorophyll-amended organoclay (CMCH) demonstrated the highest binding (72%) and was better than the chlorophyllin-amended hydrophilic clay (59%), possibly due to the hydrophobicity of OTA (LogP 4.7). In silico studies using molecular dynamics simulations showed that CMCH improves OTA binding in comparison to parent clay in line with experiments. Simulations depicted that chlorophyll amendments on clay facilitated OTA molecules binding both directly, through enhancing OTA binding on the clay, or predominantly indirectly, through OTA molecules interacting with bound chlorophyll amendments. Simulations uncovered the key role of calcium ions in OTA binding, particularly in neutral conditions, and demonstrated that CMCH binding to OTA is enhanced under both neutral and acidic conditions. Furthermore, the protection of various sorbents against OTA-induced toxicity was carried out using two living organisms (Hydra vulgaris and Caenorhabditis elegans) which are susceptible to OTA toxicity. This study showed the significant detoxification of OTA (33% to 100%) by inclusion of sorbents. Organoclay (CMCH) at 0.5% offered complete protection. These findings suggest that the chlorophyll-amended organoclays described in this study could be included in food and feed as OTA binders and as potential filter materials for water and beverages to protect against OTA contaminants during outbreaks and emergencies.
Collapse
Affiliation(s)
- Johnson O. Oladele
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA; (J.O.O.); (M.W.)
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Meichen Wang
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA; (J.O.O.); (M.W.)
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Xenophon Xenophontos
- Artie McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA; (X.X.); (P.T.)
| | - Kendall Lilly
- Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Phanourios Tamamis
- Artie McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA; (X.X.); (P.T.)
- Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Timothy D. Phillips
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA; (J.O.O.); (M.W.)
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
2
|
Okasha H, Song B, Song Z. Hidden Hazards Revealed: Mycotoxins and Their Masked Forms in Poultry. Toxins (Basel) 2024; 16:137. [PMID: 38535803 PMCID: PMC10976275 DOI: 10.3390/toxins16030137] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/25/2025] Open
Abstract
The presence of mycotoxins and their masked forms in chicken feed poses a significant threat to both productivity and health. This review examines the multifaceted impacts of mycotoxins on various aspects of chicken well-being, encompassing feed efficiency, growth, immunity, antioxidants, blood biochemistry, and internal organs. Mycotoxins, toxic substances produced by fungi, can exert detrimental effects even at low levels of contamination. The hidden or masked forms of mycotoxins further complicate the situation, as they are not easily detected by conventional methods but can be converted into their toxic forms during digestion. Consequently, chickens are exposed to mycotoxin-related risks despite apparently low mycotoxin levels. The consequences of mycotoxin exposure in chickens include reduced feed efficiency, compromised growth rates, impaired immune function, altered antioxidant levels, disturbances in blood biochemical parameters, and adverse effects on internal organs. To mitigate these impacts, effective management strategies are essential, such as routine monitoring of feed ingredients and finished feeds, adherence to proper storage practices, and the implementation of feed detoxification methods and mycotoxin binders. Raising awareness of these hidden hazards is crucial for safeguarding chicken productivity and health.
Collapse
Affiliation(s)
- Hamada Okasha
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (H.O.); (B.S.)
- Animal Production Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Bochen Song
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (H.O.); (B.S.)
| | - Zhigang Song
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (H.O.); (B.S.)
| |
Collapse
|
3
|
Kharboush TG, Ahmed IA, Farag AA, Kharboush T, Sayed AEDH, Abdel-Kareim AM, Al Mohaini M, Attia H, Eid RA, Zaki MSA, Al-Tabbakh ASM. Epigenetic alterations of miR-155 and global DNA methylation as potential mediators of ochratoxin A cytotoxicity and carcinogenicity in human lung fibroblasts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5473-5483. [PMID: 38114706 PMCID: PMC10799132 DOI: 10.1007/s11356-023-31283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Ochratoxin A (OTA) is a well-known mycotoxin that adversely affects different human cells. Inhalational exposure to OTA and subsequent pulmonary diseases have been previously reported, yet its potential carcinogenicity and underlying molecular mechanisms have not been fully elucidated. This study aimed to evaluate the OTA-induced cytotoxicity and the epigenetic changes underlying its potential carcinogenicity in fetal lung fibroblast (WI-38) cells. OTA cytotoxicity was assessed by MTT assay; RT-qPCR was used to determine the expression of BAX, BCL-2, TP53, and miR-155, while ELISA was used for measuring 5-methyl cytosine percentage to assess global DNA methylation in OTA-treated versus control cells. WI-38 cells demonstrated sensitivity to OTA with IC50 at 22.38 μM. Though BAX and Bcl-2 were downregulated, with low BAX/BCL-2 ratio, and TP53 was upregulated, their fold changes showed decline trend with increasing OTA concentration. A significant dose-dependent miR-155 upregulation was observed, with dynamic time-related decline. Using subtoxic OTA concentrations, a significant global DNA hypermethylation with significant dose-dependent and dynamic alterations was identified. Global DNA hypermethylation and miR-155 upregulation are epigenetic mechanisms that mediate OTA toxicity on WI-38 cells. BAX downregulation, reduced BAX/BCL-2 ratio together with miR-155 upregulation indicated either the inhibition of TP53-dependent apoptosis or a tissue specific response to OTA exposure. The aforementioned OTA-induced variations present a new molecular evidence of OTA cytotoxicity and possible carcinogenicity in lung fibroblast cells.
Collapse
Affiliation(s)
- Taghrid G Kharboush
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| | - Inas A Ahmed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, 13518, Egypt
- Central Laboratory for Research, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| | - Amina A Farag
- Department of Forensic Medicine & Clinical Toxicology, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| | - Tayseir Kharboush
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Asyut, 71516, Egypt.
- Molecular Biology Research & Studies Institute, Assiut University, Asyut, 71516, Egypt.
| | - Amal M Abdel-Kareim
- Department of Zoology, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Mohammed Al Mohaini
- Basic Sciences Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, 31982, Alahsa, Saudi Arabia
- King Abdullah International Medical Research Center, 31982, Alahsa, Saudi Arabia
| | - Hend Attia
- Clinical and Chemical Pathology, School of Medicine, Newgiza University (NGU), Giza, Egypt
| | - Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, P.O. Box 62529, Abha, Saudi Arabia
| | - Mohamed Samir A Zaki
- Department of Anatomy, College of Medicine, King Khalid University, P.O. Box 62529, Abha, Saudi Arabia
| | - Al-Shaimaa M Al-Tabbakh
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| |
Collapse
|
4
|
Więckowska M, Szelenberger R, Niemcewicz M, Harmata P, Poplawski T, Bijak M. Ochratoxin A-The Current Knowledge Concerning Hepatotoxicity, Mode of Action and Possible Prevention. Molecules 2023; 28:6617. [PMID: 37764392 PMCID: PMC10534339 DOI: 10.3390/molecules28186617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Ochratoxin A (OTA) is considered as the most toxic of the other ochratoxins synthesized by various fungal species belonging to the Aspergillus and Penicillium families. OTA commonly contaminates food and beverages, resulting in animal and human health issues. The toxicity of OTA is known to cause liver damage and is still being researched. However, current findings do not provide clear insights into the toxin mechanism of action. The current studies focusing on the use of potentially protective compounds against the effects of the toxin are insufficient as they are mainly conducted on animals. Further research is required to fill the existing gaps in both fields (namely the exact OTA molecular mechanism and the prevention of its toxicity in the human liver). This review article is a summary of the so far obtained results of studies focusing on the OTA hepatotoxicity, its mode of action, and the known approaches of liver cells protection, which may be the base for expanding other research in near future.
Collapse
Affiliation(s)
- Magdalena Więckowska
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (M.N.)
| | - Rafał Szelenberger
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (M.N.)
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (M.N.)
| | - Piotr Harmata
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 gen. S. Kaliskiego St., 00-908 Warsaw, Poland;
| | - Tomasz Poplawski
- Department of Pharmaceutical Microbiology and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (M.N.)
| |
Collapse
|
5
|
Yang L, Yang L, Cai Y, Luo Y, Wang H, Wang L, Chen J, Liu X, Wu Y, Qin Y, Wu Z, Liu N. Natural mycotoxin contamination in dog food: A review on toxicity and detoxification methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114948. [PMID: 37105098 DOI: 10.1016/j.ecoenv.2023.114948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Nowadays, the companion animals (dogs or other pets) are considered as members of the family and have established strong emotional relationships with their owners. Dogs are long lived compared to food animals, so safety, adequacy, and efficacy of dog food is of great importance for their health. Cereals, cereal by-products as well as feedstuffs of plant origin are commonly employed food resources in dry food, yet are potential ingredients for mycotoxins contamination, so dogs are theoretically more vulnerable to exposure when consumed daily. Aflatoxins (AF), deoxynivalenol (DON), fumonisins (FUM), ochratoxin A (OTA), and zearalenone (ZEA) are the most frequent mycotoxins that might present in dog food and cause toxicity on the growth and metabolism of dogs. An understanding of toxicological effects and detoxification methods (physical, chemical, or biological approaches) of mycotoxins will help to improve commercial ped food quality, reduce harm and minimize exposure to dogs. Herein, we outline a description of mycotoxins detected in dog food, toxicity and clinical findings in dogs, as well as methods applied in mycotoxins detoxification. This review aims to provide a reference for future studies involved in the evaluation of the risk, preventative strategies, and clear criteria of mycotoxins for minimizing exposure, reducing harm, and preventing mycotoxicosis in dog.
Collapse
Affiliation(s)
- Ling Yang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Lihan Yang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuqing Cai
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yifei Luo
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hui Wang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Li Wang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Jingqing Chen
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiaoming Liu
- College of Animal Science and Technology, Shandong Agricultural University, China
| | - Yingjie Wu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yinghe Qin
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Ning Liu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Sibiya T, Ghazi T, Mohan J, Nagiah S, Chuturgoon AA. Spirulina platensis Mitigates the Inhibition of Selected miRNAs that Promote Inflammation in HAART-Treated HepG2 Cells. PLANTS (BASEL, SWITZERLAND) 2022; 12:119. [PMID: 36616248 PMCID: PMC9824462 DOI: 10.3390/plants12010119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The introduction of highly active antiretroviral therapy (HAART) in the treatment of HIV/AIDS has recently gained popularity. In addition, the significant role of microRNA expression in HIV pathogenesis cannot be overlooked; hence the need to explore the mechanisms of microRNA expression in the presence of HAART and Spirulina platensis (SP) in HepG2 cells. This study investigates the biochemical mechanisms of microRNA expression in HepG2 cells in the presence of HAART, SP, and the potential synergistic effect of HAART−SP. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine cell viability following SP treatment. The cellular redox status was assessed using the quantification of intracellular reactive oxygen species (ROS), lipid peroxidation, and a lactate dehydrogenase (LDH) assay. The fluorometric JC-1 assay was used to determine mitochondrial polarisation. The quantitative polymerase chain reaction (qPCR) was also employed for micro-RNA and gene expressions. The results show that MiR-146a (p < 0.0001) and miR-155 (p < 0.0001) levels increased in SP-treated cells. However, only miR-146a (p < 0.0001) in HAART−SP indicated an increase, while miR-155 (p < 0.0001) in HAART−SP treatment indicated a significant decreased expression. Further inflammation analysis revealed that Cox-1 mRNA expression was reduced in SP-treated cells (p = 0.4129). However, Cox-1 expression was significantly increased in HAART−SP-treated cells (p < 0.0001). The investigation revealed that HepG2 cells exposed to HAART−SP treatment showed a significant decrease in Cox-2 (p < 0.0001) expression. mRNA expression also decreased in SP-treated cells (p < 0.0001); therefore, SP potentially controls inflammation by regulating microRNA expressions. Moreover, the positive synergistic effect is indicated by normalised intracellular ROS levels (p < 0.0001) in the HAART−SP treatment. We hereby recommend further investigation on the synergistic roles of SP and HAART in the expression of microRNA with more focus on inflammatory and oxidative pathways.
Collapse
Affiliation(s)
- Thabani Sibiya
- Department of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Howard College Campus, Durban 4013, South Africa
| | - Terisha Ghazi
- Department of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Howard College Campus, Durban 4013, South Africa
| | - Jivanka Mohan
- Department of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Howard College Campus, Durban 4013, South Africa
| | - Savania Nagiah
- Department of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Howard College Campus, Durban 4013, South Africa
- Department of Human Biology, Medical Programme, Faculty of Health Sciences, Nelson Mandela University Missionvale, Bethelsdorp, Port Elizabeth 6059, South Africa
| | - Anil A. Chuturgoon
- Department of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Howard College Campus, Durban 4013, South Africa
| |
Collapse
|
7
|
Zhang Z, Song Y, Ma L, Huang K, Liang Z. Co-Occurrence of <i>Staphylococcus aureus</i> and Ochratoxin A in Pasteurized Milk. Toxins (Basel) 2022; 14:toxins14100718. [PMID: 36287986 PMCID: PMC9612031 DOI: 10.3390/toxins14100718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Pathogens and mycotoxins are serious public health risks for humans and food safety in milk. This study concentrated on detecting <i>Staphylococcus aureus</i> and Ochratoxin A (OTA) in 210 pasteurized milk from ten urban Beijing districts to suggest the co-occurrence of <i>S. aureus</i> with toxin-producing genes and OTA in milk and the possible risk. <i>S. aureus</i> was identified by physiological and biochemical experiments and molecular biology experiments, and enterotoxin genes were identified by PCR. OTA was detected by LC-MS/MS. The study found 29 isolates of <i>S. aureus</i>, of which 17.24% had the sea gene encoding enterotoxin A. OTA was detected in 31 out of 120 samples and the maximum amount of detection was 18.8 μg/kg. The results of this study indicate that when failing to guarantee the cold chain, the presence of <i>S. aureus</i> with enterotoxin genes in milk will present a risk to food safety. Furthermore, the high detection rates and levels of OTA in milk suggest that OTA is a hidden risk. The co-occurrence of <i>S. aureus</i> and OTA in milk is a food safety concern and there is a need to control the occurrence of these two biohazards in milk.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanmin Song
- Beijing JTM International Food Co., Ltd., Beijing 101400, China
| | - Liyan Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: ; Tel.: +86-010-6273-7055
| |
Collapse
|
8
|
Erdal İ, Yalçın SS. The relationship between ochratoxin A and blood pressure in adolescents. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103959. [PMID: 35987497 DOI: 10.1016/j.etap.2022.103959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/15/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Ochratoxin A (OTA) is a chemical produced by some fungal species, and although its toxic effects have been shown in many animal studies, there are limited studies in humans. We aimed to examine the relationship between OTA and hypertension. 50 newly diagnosed hypertensive patients and 33 healthy individuals aged between 12 and 14 were included in the study. Anthropometric measurements, blood pressure measurements, complete blood count, blood biochemical parameters, urine lead level and urine OTA level were measured. OTA was detected in the urine samples of 90.9% of the control group, 100% of the hypertensive group and 85.7% of the obese+hypertensive group. Median urinary OTA was 32.9 ng/g creatinine for hypertensive group, 32.2 ng/g creatinine for hypertensive+obese group, 18.8 ng/g creatinine for the control group. Multivariate logistic regression analysis revealed a positive association between last quartile of urinary OTA level and being hypertensive [AOR:5.93 (95%CI: 1.27-27.61)] in adolescents without obesity. Hypertensive cases could be evaluated for OTA exposure in further studies.
Collapse
Affiliation(s)
- İzzet Erdal
- Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| | - S Songül Yalçın
- Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
9
|
Assar DH, Asa SA, El-Abasy MA, Elbialy ZI, Shukry M, Latif AAE, BinMowyna MN, Althobaiti NA, El-Magd MA. Aspergillus awamori attenuates ochratoxin A-induced renal and cardiac injuries in rabbits by activating the Nrf2/HO-1 signaling pathway and downregulating IL1β, TNFα, and iNOS gene expressions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69798-69817. [PMID: 35576029 PMCID: PMC9512883 DOI: 10.1007/s11356-022-20599-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/29/2022] [Indexed: 05/10/2023]
Abstract
Ochratoxin A (OTA) is one of the most dangerous and that pollute agricultural products, inducing a variety of toxic effects in humans and animals. The current study explored the protective effect of different concentrations of Aspergillus awamori (A. awamori) against OTA (0.3 mg/kg diet) induced renal and cardiac damage by exploring its mechanism of action in 60 New Zealand white male rabbits. Dietary supplementation of A. awamori at the selected doses of 50, 100, and 150 mg/kg diet, respectively, for 2 months significantly improved the rabbit's growth performance; modulated the suppressed immune response and restored the altered hematological parameters; reduced the elevated levels of renal injury biomarkers such as urea, creatinine, and alkaline phosphatase; and increased serum total proteins concentrations. Moreover, it also declined enzymatic activities of cardiac injury biomarkers, including AST, LDH, and CK-MB. A. awamori alleviated OTA-induced degenerative and necrotic changes in the kidney and heart of rabbits. Interestingly, A. awamori upregulated Nrf2/OH-1 signaling pathway. Therefore enhanced TAC, CAT, and SOD enzyme activities and reduced OTA-induced oxidative and nitrosative stress by declining iNOS gene expression and consequently lowered MDA and NO levels. In addition to attenuating renal and cardiac inflammation via reducing IL-1β, TNF-α gene expressions in a dose-dependent response. In conclusion,this is the first report to pinpoint that dietary incorporation of A. awamori counteracted OTA-induced renal and cardiac damage by potentiating the rabbit's antioxidant defense system through its potent antioxidant, free radical scavenging, and anti-inflammatory properties in a dose-dependent response. Based on our observations, A. awamori could be utilized as a natural protective agent against ochratoxicosis in rabbits.
Collapse
Affiliation(s)
- Doaa H. Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516 Egypt
| | - Samah Abou Asa
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516 Egypt
| | - Moshira A. El-Abasy
- Poultry and Rabbit Diseases Department, Faculty of Veterinary Medicine, Kafr El-Sheikh University, Kafr El-Sheikh, 33516 Egypt
| | - Zizy I. Elbialy
- Fish Processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, 33516 Kafr El-Sheikh, Egypt
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516 Egypt
| | - Amera Abd El Latif
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516 Egypt
| | - Mona N. BinMowyna
- College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Norah A. Althobaiti
- Biology Department, College of Science and Humanities-Al Quwaiiyah, Shaqra University, Al Quwaiiyah, 19257 Saudi Arabia
| | - Mohammed A. El-Magd
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516 Egypt
| |
Collapse
|
10
|
Chen X, Liu W, Li H, Zhang J, Hu C, Liu X. The adverse effect of heat stress and potential nutritional interventions. Food Funct 2022; 13:9195-9207. [PMID: 36040720 DOI: 10.1039/d2fo01813f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heat stress can cause tissue damage and metabolic disturbances, including intestinal and liver dysfunction, acid-base imbalance, oxidative damage, inflammatory response, and immune suppression. Serious cases can lead to heatstroke, which can be life-threatening. The body often finds it challenging to counteract these adverse effects, and traditional cooling methods are limited by the inconvenience of tool portability and the difficulty of determining the cooling endpoint. Consequently, more research was conducted to prevent and mitigate the negative effect of heat stress via nutritional intervention. This article reviewed the pathological changes and altered metabolic mechanisms caused by heat stress and discussed the protein (amino acid), vitamin, trace element, and electrolyte action pathways and mechanisms to mitigate heat stress and prevent heat-related disease. The main food sources for these nutrients and the recommended micronutrient supplementation forms were summarized to provide scientific dietary protocols for special populations.
Collapse
Affiliation(s)
- Xinwei Chen
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing, China.
| | - Wanlu Liu
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing, China.
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing, China.
| | - Jian Zhang
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing, China.
| | - Changli Hu
- Jinmailang Beverage Corporation Limited, Beijing, China
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing, China.
| |
Collapse
|
11
|
Liu WC, Pushparaj K, Meyyazhagan A, Arumugam VA, Pappuswamy M, Bhotla HK, Baskaran R, Issara U, Balasubramanian B, Mousavi Khaneghah A. Ochratoxin A as an alarming health threat for livestock and human: A review on molecular interactions, mechanism of toxicity, detection, detoxification, and dietary prophylaxis. Toxicon 2022; 213:59-75. [PMID: 35452686 DOI: 10.1016/j.toxicon.2022.04.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/22/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
Ochratoxin A (OTA) is a toxic metabolite produced by Aspergillus and Penicillium fungi commonly found in raw plant sources and other feeds. This review comprises an extensive evaluation of the origin and proprieties of OTA, toxicokinetics, biotransformation, and toxicodynamics of ochratoxins. In in vitro and in vivo studies, the compatibility of OTA with oxidative stress is observed through the production of free radicals, resulting in genotoxicity and carcinogenicity. The OTA leads to nephrotoxicity as the chief target organ is the kidney. Other OTA excretion and absorption rates are observed, and the routes of elimination include faeces, urine, and breast milk. The alternations in the Phe moiety of OTA are the precursor for the amino acid alternation, bringing about Phe-hydroxylase and Phe-tRNA synthase, resulting in the complete dysfunction of cellular metabolism. Biodetoxification using specific microorganisms decreased the DNA damage, lipid peroxidation, and cytotoxicity. This review addressed the ability of antioxidants and the dietary components as prophylactic measures to encounter toxicity and demonstrated their capability to counteract the chronic exposure through supplementation as feed additives.
Collapse
Affiliation(s)
- Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641 043, Tamil Nadu, India
| | - Arun Meyyazhagan
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru, Karnataka, 560076, India.
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Manikantan Pappuswamy
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru, Karnataka, 560076, India
| | - Haripriya Kuchi Bhotla
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Rathinasamy Baskaran
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Utthapon Issara
- Division of Food Science and Technology Management, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, 12110, Thailand
| | | | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
12
|
Wang Q, Chen W, Zhang B, Gao Z, Zhang Q, Deng H, Han L, Shen XL. Perfluorooctanoic acid induces hepatocellular endoplasmic reticulum stress and mitochondrial-mediated apoptosis in vitro via endoplasmic reticulum-mitochondria communication. Chem Biol Interact 2022; 354:109844. [PMID: 35123991 DOI: 10.1016/j.cbi.2022.109844] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 11/25/2022]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent organic pollutant that is widely distributed in the natural environment. Cohort study showed that PFOA-producing workers displayed a significant increase for mortality of liver cancer and liver cirrhosis. However, the underlying mechanism of PFOA-induced hepatotoxicity is far from clear. In this research, cell viability, apoptosis rate, reactive oxygen species, mitochondrial membrane potential (ΔΨm), calcium ion levels, and protein expressions of human liver L02 cells in response to PFOA were determined. Results indicated that a 24 h-treatment with 64 and 256 μM PFOA could remarkably induce mitochondrial-mediated apoptosis via initiating the vicious cycle between endoplasmic reticulum stress and oxidative stress, thereby increasing the level of calcium ion and decreasing the level of ΔΨm, simultaneously elevating the protein expressions of Cyclophilin D (CYPD), Bcl-2 homologous antagonist/killer (Bak), Bcl-2-associated X protein (Bax), Bcl-2-like protein 11 (Bim), cytochrome C (Cyt-C), 78 kDa glucose-regulated protein (GRP78), CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP), and thioredoxin-interacting protein (TXNIP), while inhibiting the protein expression of tumor necrosis factor receptor-associated protein 1 (TRAP1), Lon protease 1 (Lonp1), Pro-caspase-9, B-cell lymphoma-2 (Bcl-2), and Sigma 1-type opioid receptor (Sig-1R) (p < 0.05). To sum up, PFOA-induced hepatocellular endoplasmic reticulum stress and mitochondrial-mediated apoptosis in vitro was regulated by endoplasmic reticulum (ER)-mitochondria communication via mitochondria-associated ER membranes (MAMs).
Collapse
Affiliation(s)
- Qian Wang
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Wenying Chen
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Boyang Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, PR China.
| | - Zilu Gao
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Qipeng Zhang
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Huiqiong Deng
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Lingyun Han
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Xiao Li Shen
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| |
Collapse
|
13
|
Mohan J, Sheik Abdul N, Nagiah S, Ghazi T, Chuturgoon AA. Fumonisin B 2 Induces Mitochondrial Stress and Mitophagy in Human Embryonic Kidney (Hek293) Cells-A Preliminary Study. Toxins (Basel) 2022; 14:toxins14030171. [PMID: 35324667 PMCID: PMC8954924 DOI: 10.3390/toxins14030171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 12/11/2021] [Indexed: 12/04/2022] Open
Abstract
Ubiquitous soil fungi parasitise agricultural commodities and produce mycotoxins. Fumonisin B2 (FB2), the structural analogue of the commonly studied Fumonisin B1 (FB1), is a neglected mycotoxin produced by several Fusarium species. Mycotoxins are known for inducing toxicity via mitochondrial stress alluding to mitochondrial degradation (mitophagy). These processes involve inter-related pathways that are regulated by proteins related to SIRT3 and Nrf2. This study aimed to investigate mitochondrial stress responses in human kidney (Hek293) cells exposed to FB2 for 24 h. Cell viability was assessed via the methylthiazol tetrazolium (MTT) assay, and the half-maximal inhibitory concentration (IC50 = 317.4 µmol/L) was estimated using statistical software. Reactive oxygen species (ROS; H2DCFDA), mitochondrial membrane depolarisation (JC1-mitoscreen) and adenosine triphosphate (ATP; luminometry) levels were evaluated to assess mitochondrial integrity. The relative expression of mitochondrial stress response proteins (SIRT3, pNrf2, LONP1, PINK1, p62 and HSP60) was determined by Western blot. Transcript levels of SIRT3, PINK1 and miR-27b were assessed using quantitative PCR (qPCR). FB2 reduced ATP production (p = 0.0040), increased mitochondrial stress marker HSP60 (p = 0.0140) and suppressed upregulation of mitochondrial stress response proteins SIRT3 (p = 0.0026) and LONP1 (p = 0.5934). FB2 promoted mitophagy via upregulation of pNrf2 (p = 0.0008), PINK1 (p = 0.0014) and p62 (p < 0.0001) protein expression. FB2 also suppressed miR-27b expression (p < 0.0001), further promoting the occurrence of mitophagy. Overall, the findings suggest that FB2 increases mitochondrial stress and promotes mitophagy in Hek293 cells.
Collapse
Affiliation(s)
- Jivanka Mohan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (J.M.); (N.S.A.); (S.N.); (T.G.)
| | - Naeem Sheik Abdul
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (J.M.); (N.S.A.); (S.N.); (T.G.)
- Applied Microbial and Health Biotechnology, Cape Peninsula University of Technology, Cape Town 7535, South Africa
| | - Savania Nagiah
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (J.M.); (N.S.A.); (S.N.); (T.G.)
- Medical Programme, Department of Human Biology, Faculty of Health Sciences, Nelson Mandela University Missionvale, Bethelsdorp, Port Elizabeth 6059, South Africa
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (J.M.); (N.S.A.); (S.N.); (T.G.)
| | - Anil A. Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (J.M.); (N.S.A.); (S.N.); (T.G.)
- Correspondence: ; Tel.: +27-312-604-404
| |
Collapse
|
14
|
Dai H, Wang L, Li L, Huang Z, Ye L. Metallothionein 1: A New Spotlight on Inflammatory Diseases. Front Immunol 2021; 12:739918. [PMID: 34804020 PMCID: PMC8602684 DOI: 10.3389/fimmu.2021.739918] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/18/2021] [Indexed: 01/15/2023] Open
Abstract
MT1 has been demonstrated to be an essential stress protein in maintaining physiological balance and regulating immune homeostasis. While the immunological involvement of MT1 in central nervous system disorders and cancer has been extensively investigated, mounting evidence suggests that MT1 has a broader role in inflammatory diseases and can shape innate and adaptive immunity. In this review, we will first summarize the biological features of MT1 and the regulators that influence MT1 expression, emphasizing metal, inflammation, and immunosuppressive factors. We will then focus on the immunoregulatory function of MT1 on diverse immune cells and the signaling pathways regulated by MT1. Finally, we will discuss recent advances in our knowledge of the biological role of MT1 in several inflammatory diseases to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Hanying Dai
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Lu Wang
- Respiratory Medicine Department, Shenzhen University General Hospital, Shenzhen, China
| | - Lingyun Li
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Zhong Huang
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Liang Ye
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
15
|
Ochratoxin A-Induced Nephrotoxicity: Up-to-Date Evidence. Int J Mol Sci 2021; 22:ijms222011237. [PMID: 34681895 PMCID: PMC8539333 DOI: 10.3390/ijms222011237] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin widely found in various foods and feeds that have a deleterious effect on humans and animals. It has been shown that OTA causes multiorgan toxicity, and the kidney is the main target of OTA among them. This present article aims to review recent and latest intracellular molecular interactions and signaling pathways of OTA-induced nephrotoxicity. Pyroptosis, lipotoxicity, organic anionic membrane transporter, autophagy, the ubiquitin-proteasome system, and histone acetyltransferase have been involved in the renal toxicity caused by OTA. Meanwhile, the literature reviewed the alternative or method against OTA toxicity by reducing ROS production, oxidative stress, activating the Nrf2 pathway, through using nanoparticles, a natural flavonoid, and metal supplement. The present review discloses the molecular mechanism of OTA-induced nephrotoxicity, providing opinions and strategies against OTA toxicity.
Collapse
|
16
|
Bernal-Algaba E, Pulgarín-Alfaro M, Fernández-Cruz ML. Cytotoxicity of Mycotoxins Frequently Present in Aquafeeds to the Fish Cell Line RTGill-W1. Toxins (Basel) 2021; 13:581. [PMID: 34437452 PMCID: PMC8402477 DOI: 10.3390/toxins13080581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022] Open
Abstract
In the last decades, the aquaculture industry has introduced plant-based ingredients as a source of protein in aquafeeds. This has led to mycotoxin contaminations, representing an ecological, health and economic problem. The aim of this study was to determine in the RTgill-W1 fish cell line the toxicity of fifteen mycotoxins of common occurrence in aquafeeds. To identify the most sensitive endpoint of toxicity, the triple assay was used. It consisted of three assays: alamarBlue, Neutral Red Uptake and CFDA-AM, which revealed the mitochondrial activity, the lysosomal integrity and the plasma membrane integrity, respectively. Most of the assayed mycotoxins were toxic predominantly at lysosomal level (enniatins, beauvericin, zearalenone, ochratoxin A, deoxynivalenol (DON) and its acetylated metabolites 15-O-acetyl-DON and 3-acetyl-DON). Aflatoxins B1 and B2 exerted the greatest effects at mitochondrial level, while fumonisins B1 and B2 and nivalenol were not toxic up to 100 µg/mL. In general, low toxicity was observed at plasma membrane level. The vast majority of the mycotoxins assayed exerted a pronounced acute effect in the fish RTgill-W1 cell line, emphasizing the need for further studies to ascertain the impact of mycotoxin contamination of fish feeds in the aquaculture industry and to establish safe limits in aquafeeds.
Collapse
Affiliation(s)
| | | | - María Luisa Fernández-Cruz
- Department of Environment and Agronomy, National Institute of Agriculture and Food Research and Technology (INIA), Spanish National Research Council (CSIC), 28040 Madrid, Spain; (E.B.-A.); (M.P.-A.)
| |
Collapse
|
17
|
Zhao M, Wang Y, Jia X, Liu W, Zhang X, Cui J. The effect of ochratoxin A on cytotoxicity and glucose metabolism in human esophageal epithelium Het-1A cells. Toxicon 2021; 198:80-92. [PMID: 33965433 DOI: 10.1016/j.toxicon.2021.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 12/24/2022]
Abstract
Ochratoxin A (OTA) is a widespread mycotoxin worldwide that causes major health risks. The esophageal epithelium is unavoidably exposed to food contaminated OTA after ingestion. Yet, few studies have involved in the putative effects of OTA on the cytotoxicity and glucose metabolism responses on esophageal epithelial cells. In this in vitro study, we aimed to investigate the effects of OTA on esophageal epithelial cell intracellular apoptosis, oxidative stress, DNA damage, mitochondrial function and glucose metabolism. Human esophageal epithelial Het-1A cells were exposed to 2.5, 5 or 10 μM OTA for 24 h. The results showed that OTA decreased cell viability and concomitantly increased apoptosis-related indices, reactive oxygen species generation, oxidative DNA damage, mitochondrial dysfunction and mitochondrial apoptotic pathway activation. In addition, OTA switched the glucose metabolism of Het-1A cells from oxidative phosphorylation towards glycolysis by decreasing the expression of tricarboxylic acid cycle-associated enzymes such as α-ketoglutarate dehydrogenase and isocitrate dehydrogenase 1 and by increasing pyruvate dehydrogenase kinase 1 expression. The data indicated that cell apoptosis, oxidative damage, mitochondrial dysfunction and glucose metabolism perturbation might play pivotal roles in the mechanism of OTA-induced esophageal toxicity.
Collapse
Affiliation(s)
- Man Zhao
- Metabolic Disease and Cancer Research Center, Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yuan Wang
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Xin Jia
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Weina Liu
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Xianghong Zhang
- Metabolic Disease and Cancer Research Center, Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China; Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Jinfeng Cui
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
18
|
Zhu L, Yuhan J, Huang K, He X, Liang Z, Xu W. Multidimensional analysis of the epigenetic alterations in toxicities induced by mycotoxins. Food Chem Toxicol 2021; 153:112251. [PMID: 33961929 DOI: 10.1016/j.fct.2021.112251] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/30/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
Mycotoxins contaminate all types of food and feed, threatening human and animal health through food chain accumulation, producing various toxic effects. Increasing attention is being focused on the molecular mechanism of mycotoxin-induced toxicity in all kinds of in vivo and in vitro models. Epigenetic alterations, including DNA methylation, non-coding RNAs (ncRNAs), and protein post-translational modifications (PTMs), were identified as being involved in various types of mycotoxin-induced toxicity. In this review, the emphasis was on summarizing the epigenetic alterations induced by mycotoxin, including aflatoxin B1 (AFB1), ochratoxin A (OTA), zearalenone (ZEA), fumonisin B1 (FB1), and deoxynivalenol (DON). This review summarized and analyzed the roles of DNA methylation, ncRNAs, and protein PTMs after mycotoxin exposure based on recently published papers. Moreover, the main research methods and their deficiencies were determined, while some remedial suggestions are proposed. In summary, this review helps to understand better the epigenetic alterations induced by the non-genotoxic effects of mycotoxin.
Collapse
Affiliation(s)
- Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Jieyu Yuhan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaoyun He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
19
|
Ochratoxin A Induces Oxidative Stress in HepG2 Cells by Impairing the Gene Expression of Antioxidant Enzymes. Toxins (Basel) 2021; 13:toxins13040271. [PMID: 33918675 PMCID: PMC8068875 DOI: 10.3390/toxins13040271] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 02/08/2023] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin frequently found in raw and processed foods. While it is considered a possible human carcinogen, the mechanism of action remains unclear. OTA has been shown to be hepatotoxic in both in vitro and in vivo models and oxidative stress may be one of the factors contributing to its toxicity. Hence, the effect of OTA on human hepatocellular carcinoma, HepG2 cells, was investigated on oxidative stress parameters. The cytotoxicity of OTA on HepG2 was time- and dose-dependent within a range between 0.1 and 10 µM; while 100 μM of OTA increased the intracellular reactive oxygen species (ROS) in a time-dependent manner. Additionally, the levels of glutathione (GSH) were increased by 9.7% and 11.3% at 10 and 100 nM of OTA, respectively; while OTA at 100 μM depleted GSH by 40.5% after 24 h exposure compared with the control. Finally, the mRNA level of catalase (CAT) was downregulated by 2.33-, 1.92-, and 1.82-fold after cells were treated with 1, 10, and 10 μM OTA for 24 h, respectively; which was linked to a decrease in CAT enzymatic activity. These results suggest that oxidative stress is involved in OTA-mediated toxicity in HepG2 cells.
Collapse
|
20
|
Gao J, Xu X, Huang K, Liang Z. Fungal G-Protein-Coupled Receptors: A Promising Mediator of the Impact of Extracellular Signals on Biosynthesis of Ochratoxin A. Front Microbiol 2021; 12:631392. [PMID: 33643259 PMCID: PMC7907439 DOI: 10.3389/fmicb.2021.631392] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/21/2021] [Indexed: 01/17/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are transmembrane receptors involved in transducing signals from the external environment inside the cell, which enables fungi to coordinate cell transport, metabolism, and growth to promote their survival, reproduction, and virulence. There are 14 classes of GPCRs in fungi involved in sensing various ligands. In this paper, the synthesis of mycotoxins that are GPCR-mediated is discussed with respect to ligands, environmental stimuli, and intra-/interspecific communication. Despite their apparent importance in fungal biology, very little is known about the role of ochratoxin A (OTA) biosynthesis by Aspergillus ochraceus and the ligands that are involved. Fortunately, increasing evidence shows that the GPCR that involves the AF/ST (sterigmatocystin) pathway in fungi belongs to the same genus. Therefore, we speculate that GPCRs play an important role in a variety of environmental signals and downstream pathways in OTA biosynthesis. The verification of this inference will result in a more controllable GPCR target for control of fungal contamination in the future.
Collapse
Affiliation(s)
- Jing Gao
- Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Xinge Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhihong Liang
- Beijing Laboratory for Food Quality and Safety, Beijing, China.,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Mavrommatis A, Giamouri E, Tavrizelou S, Zacharioudaki M, Danezis G, Simitzis PE, Zoidis E, Tsiplakou E, Pappas AC, Georgiou CA, Feggeros K. Impact of Mycotoxins on Animals' Oxidative Status. Antioxidants (Basel) 2021; 10:214. [PMID: 33535708 PMCID: PMC7912820 DOI: 10.3390/antiox10020214] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Mycotoxins appear to be the "Achilles' heel" of the agriculture sector inducing enormous economic losses and representing a severe risk to the health of humans and animals. Although novel determination protocols have been developed and legislation has been implemented within Europe, the side effects of mycotoxins on the homeostatic mechanisms of the animals have not been extensively considered. Feed mycotoxin contamination and the effects on the antioxidant status of livestock (poultry, swine, and ruminants) are presented. The findings support the idea that the antioxidant systems in both monogastrics and ruminants are challenged under the detrimental effect of mycotoxins by increasing the toxic lipid peroxidation by-product malondialdehyde (MDA) and inhibiting the activity of antioxidant defense mechanisms. The degree of oxidative stress is related to the duration of contamination, co-contamination, the synergetic effects, toxin levels, animal age, species, and productive stage. Since the damaging effects of MDA and other by-products derived by lipid peroxidation as well as reactive oxygen species have been extensively studied on human health, a more integrated monitoring mechanism (which will take into account the oxidative stability) is urgently required to be implemented in animal products.
Collapse
Affiliation(s)
- Alexandros Mavrommatis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Elisavet Giamouri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Savvina Tavrizelou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Maria Zacharioudaki
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - George Danezis
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (G.D.); (C.A.G.)
- FoodOmics GR Research Infrastructure, Agricultural University of Athens, 11855 Athens, Greece
| | - Panagiotis E. Simitzis
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Evangelos Zoidis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Eleni Tsiplakou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Athanasios C. Pappas
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Constantinos A. Georgiou
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (G.D.); (C.A.G.)
- FoodOmics GR Research Infrastructure, Agricultural University of Athens, 11855 Athens, Greece
| | - Kostas Feggeros
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| |
Collapse
|
22
|
Zhang Q, Chen W, Zhang B, Li C, Zhang X, Wang Q, Wang Y, Zhou Q, Li X, Shen XL. Central role of TRAP1 in the ameliorative effect of oleanolic acid on the mitochondrial-mediated and endoplasmic reticulum stress-excitated apoptosis induced by ochratoxin A. Toxicology 2021; 450:152681. [PMID: 33465424 DOI: 10.1016/j.tox.2021.152681] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/25/2020] [Accepted: 01/07/2021] [Indexed: 01/06/2023]
Abstract
Ochratoxin A (OTA) is a nephrotoxic mycotoxin that is widely distributed in foodstuffs and feeds, meanwhile oleanolic acid (OA) is ubiquitous in various fruit skins, food materials, and medicinal herbs. Due to that OA has a nephroprotective effect, it has the poteintial to counteract OTA-induced nephrotoxicity by nutritional intervention of OA. Furthermore, tumor necrosis factor receptor-associated protein 1 (TRAP1) acts as the core of endoplasmic reticulum (ER)-mitochondria crosstalk, becoming our focus in the mechanism investigation. In this study, the cell viability, apoptosis rate, and protein expressions of human proximal tubule epithelial-originated kidney-2 (HK-2) cells in response to OTA and/or OA were determined. Results indicated that a 24 h-treatment of 1-5 μM OTA could notably induce mitochondrial-mediated and ER stress (ERS)-excitated apoptosis via inhibiting TRAP1, thereby activating CypD, Bax, Cyt-C, Cleaved Caspase-9, Cleaved Caspase-3, GRP78, p-PERK, p-eIF2α, ATF4, and CHOP and inhibiting Bcl-2 (P < 0.05). Results of the RNA interference of TRAP1 further ascertained its anti-apoptotic function via inhibiting CypD, Bax, GRP78, and CHOP and enhancing Bcl-2 (P < 0.05). The pre-treatment of 2 μM OA for 2 h could remarkably relieve OTA-induced suppression of TRAP1 (P < 0.05). In conclusion, TRAP1 played a central role in the ameliorative effect of OA on the mitochondrial-mediated and ERS-excitated apoptosis induced by OTA.
Collapse
Affiliation(s)
- Qipeng Zhang
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Wenying Chen
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Boyang Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, PR China.
| | - Chen Li
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Xunyao Zhang
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Qian Wang
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Yan Wang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, PR China.
| | - Qian Zhou
- College of Food Science and Technology, Hebei Agricultural University, Hebei, 071000, Hebei, PR China.
| | - Xiaohong Li
- Department of Food and Bioengineering, Beijing Agricultural Vocational College, Beijing, 102442, PR China.
| | - Xiao Li Shen
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| |
Collapse
|
23
|
Niaz K, Shah SZA, Khan F, Bule M. Ochratoxin A-induced genotoxic and epigenetic mechanisms lead to Alzheimer disease: its modulation with strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44673-44700. [PMID: 32424756 DOI: 10.1007/s11356-020-08991-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Ochratoxin A (OTA) is a naturally occurring mycotoxin mostly found in food items including grains and coffee beans. It induces DNA single-strand breaks and has been considered to be carcinogenic. It is recognized as a serious threat to reproductive health both in males and females. OTA is highly nephrotoxic and carcinogenic, and its potency changes evidently between species and sexes. There is a close association between OTA, mutagenicity, carcinogenicity, and genotoxicity, but the underlying mechanisms are not clear. Reports regarding genotoxic effects in relation to OTA which leads to the induction of DNA adduct formation, protein synthesis inhibition, perturbation of cellular energy production, initiation of oxidative stress, induction of apoptosis, influences on mitosis, induction of cell cycle arrest, and interference with cytokine pathways. All these mechanisms are associated with nephrotoxicity, hepatotoxicity, teratotoxicity, immunological toxicity, and neurotoxicity. OTA administration activates various mechanisms such as p38 MAPK, JNKs, and ERKs dysfunctions, BDNF disruption, TH overexpression, caspase-3 and 9 activation, and ERK-1/2 phosphorylation which ultimately lead to Alzheimer disease (AD) progression. The current review will focus on OTA in terms of recent discoveries in the field of molecular biology. The main aim is to investigate the underlying mechanisms of OTA in regard to genotoxicity and epigenetic modulations that lead to AD. Also, we will highlight the strategies for the purpose of attenuating the hazards posed by OTA exposure.
Collapse
Affiliation(s)
- Kamal Niaz
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan.
| | - Syed Zahid Ali Shah
- Department of Pathology, Faculty of Veterinary Science, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Fazlullah Khan
- The Institute of Pharmaceutical Sciences (TIPS), School of Pharmacy, International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, 1417614411, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, 1417614411, Iran
| | - Mohammed Bule
- Department of Pharmacy, College of Medicine and Health Sciences, Ambo University, Ambo, Oromia, Ethiopia
| |
Collapse
|
24
|
Effects of Single and Repeated Oral Doses of Ochratoxin A on the Lipid Peroxidation and Antioxidant Defense Systems in Mouse Kidneys. Toxins (Basel) 2020; 12:toxins12110732. [PMID: 33266415 PMCID: PMC7700583 DOI: 10.3390/toxins12110732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/02/2020] [Accepted: 11/20/2020] [Indexed: 12/22/2022] Open
Abstract
Ochratoxin-A (OTA) is a carcinogenic and nephrotoxic mycotoxin, which may cause health problems in humans and animals, and it is a contaminant in foods and feeds. The purpose of the present study is to evaluate the effect of oral OTA exposure on the antioxidant defense and lipid peroxidation in the kidney. In vivo administration of OTA in CD1, male mice (1 or 10 mg/kg body weight in a single oral dose for 24 h and repeated daily oral dose for 72 h or repeated daily oral dose of 0.5 mg/kg bodyweight for 21 days) resulted in a significant elevation of OTA levels in blood plasma. Some histopathological alterations, transcriptional changes in the glutathione system, and oxidative stress response-related genes were also found. In the renal cortex, the activity of the glutathione-system-related enzymes and certain metabolites of the lipid peroxidation (conjugated dienes, trienes, and thiobarbituric reactive substances) also changed.
Collapse
|
25
|
Kumar P, Mahato DK, Sharma B, Borah R, Haque S, Mahmud MC, Shah AK, Rawal D, Bora H, Bui S. Ochratoxins in food and feed: Occurrence and its impact on human health and management strategies. Toxicon 2020; 187:151-162. [DOI: 10.1016/j.toxicon.2020.08.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
|
26
|
Choi SY, Kim TH, Hong MW, Park TS, Lee H, Lee SJ. Transcriptomic alterations induced by aflatoxin B1 and ochratoxin A in LMH cell line. Poult Sci 2020; 99:5265-5274. [PMID: 33142442 PMCID: PMC7647754 DOI: 10.1016/j.psj.2020.05.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/09/2020] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
Aflatoxin B1 (AFB1) and ochratoxin A (OTA), which are toxic metabolites of ubiquitously occurring molds, show diverse toxicological effects such as hepatotoxicity, genotoxicity, and immunotoxicity in human and animals. Despite poultry show sensitivity to AFB1 and OTA, the mechanism of these mycotoxins in chickens has not been fully investigated. Here, we aimed to elucidate the molecular mechanism induced by AFB1 and/or OTA in chicken hepatic cells using transcriptomic analysis. Aflatoxin B1 and OTA induced cytotoxic effects in a dose-dependent manner at 48 h after exposure. Furthermore, correlation effect indicated an antagonism between the 2 toxins. The mRNA sequencing of AFB1-treated or OTA-treated chicken hepatocarcinoma and functional analysis revealed the pathways that were commonly regulated by both mycotoxins, especially PPAR signaling, focal adhesion, and MAPK signaling. Based on these findings, a possible hypothesis is that AFB1 and OTA have similar toxic mechanisms and compete for some steps in the chicken liver, and it is expected that the mycotoxins would have antagonistic effects. In addition, genes identified through transcriptome analysis provide candidates for further study of AFB1 and OTA toxicity and targets for efforts to improve the health of chickens exposed to mycotoxins.
Collapse
Affiliation(s)
- So-Young Choi
- Department of Animal Life Science, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea
| | - Tae Hyun Kim
- Department of Animal Science, University of California, Davis, Davis, CA 95616, USA
| | - Min-Wook Hong
- Department of Animal Life Science, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea
| | - Tae Sub Park
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Korea
| | - Hyojeong Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea
| | - Sung-Jin Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea.
| |
Collapse
|
27
|
Pan CY, Lin FY, Kao LS, Huang CC, Liu PS. Zinc oxide nanoparticles modulate the gene expression of ZnT1 and ZIP8 to manipulate zinc homeostasis and stress-induced cytotoxicity in human neuroblastoma SH-SY5Y cells. PLoS One 2020; 15:e0232729. [PMID: 32915786 PMCID: PMC7485861 DOI: 10.1371/journal.pone.0232729] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/27/2020] [Indexed: 11/19/2022] Open
Abstract
Zinc ions (Zn2+) are important messenger molecules involved in various physiological functions. To maintain the homeostasis of cytosolic Zn2+ concentration ([Zn2+]c), Zrt/Irt-related proteins (ZIPs) and Zn2+ transporters (ZnTs) are the two families of proteins responsible for decreasing and increasing the [Zn2+]c, respectively, by fluxing Zn2+ across the membranes of the cell and intracellular compartments in opposite directions. Most studies focus on the cytotoxicity incurred by a high concentration of [Zn2+]c and less investigate the [Zn2+]c at physiological levels. Zinc oxide-nanoparticle (ZnO-NP) is blood brain barrier-permeable and elevates the [Zn2+]c to different levels according to the concentrations of ZnO-NP applied. In this study, we mildly elevated the [Zn2+]c by ZnO-NP at concentrations below 1 μg/ml, which had little cytotoxicity, in cultured human neuroblastoma SH-SY5Y cells and characterized the importance of Zn2+ transporters in 6-hydroxy dopamine (6-OHDA)-induced cell death. The results show that ZnO-NP at low concentrations elevated the [Zn2+]c transiently in 6 hr, then declined gradually to a basal level in 24 hr. Knocking down the expression levels of ZnT1 (located mostly at the plasma membrane) and ZIP8 (present in endosomes and lysosomes) increased and decreased the ZnO-NP-induced elevation of [Zn2+]c, respectively. ZnO-NP treatment reduced the basal levels of reactive oxygen species and Bax/Bcl-2 mRNA ratios; in addition, ZnO-NP decreased the 6-OHDA-induced ROS production, p53 expression, and cell death. These results show that ZnO-NP-induced mild elevation in [Zn2+]c activates beneficial effects in reducing the 6-OHDA-induced cytotoxic effects. Therefore, brain-delivery of ZnO-NP can be regarded as a potential therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Chien-Yuan Pan
- Department of Life Science and Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | - Fang-Yu Lin
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Lung-Sen Kao
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chien-Chang Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Shan Liu
- Department of Microbiology, Soochow University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
28
|
Ghazi T, Arumugam T, Foolchand A, Chuturgoon AA. The Impact of Natural Dietary Compounds and Food-Borne Mycotoxins on DNA Methylation and Cancer. Cells 2020; 9:E2004. [PMID: 32878338 PMCID: PMC7565866 DOI: 10.3390/cells9092004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer initiation and progression is an accumulation of genetic and epigenetic modifications. DNA methylation is a common epigenetic modification that regulates gene expression, and aberrant DNA methylation patterns are considered a hallmark of cancer. The human diet is a source of micronutrients, bioactive molecules, and mycotoxins that have the ability to alter DNA methylation patterns and are thus a contributing factor for both the prevention and onset of cancer. Micronutrients such as betaine, choline, folate, and methionine serve as cofactors or methyl donors for one-carbon metabolism and other DNA methylation reactions. Dietary bioactive compounds such as curcumin, epigallocatechin-3-gallate, genistein, quercetin, resveratrol, and sulforaphane reactivate essential tumor suppressor genes by reversing aberrant DNA methylation patterns, and therefore, they have shown potential against various cancers. In contrast, fungi-contaminated agricultural foods are a source of potent mycotoxins that induce carcinogenesis. In this review, we summarize the existing literature on dietary micronutrients, bioactive compounds, and food-borne mycotoxins that affect DNA methylation patterns and identify their potential in the onset and treatment of cancer.
Collapse
Affiliation(s)
| | | | | | - Anil A. Chuturgoon
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.G.); (T.A.); (A.F.)
| |
Collapse
|
29
|
Basiouni S, Fayed MAA, Tarabees R, El-Sayed M, Elkhatam A, Töllner KR, Hessel M, Geisberger T, Huber C, Eisenreich W, Shehata AA. Characterization of Sunflower Oil Extracts from the Lichen Usnea barbata. Metabolites 2020; 10:metabo10090353. [PMID: 32878015 PMCID: PMC7570345 DOI: 10.3390/metabo10090353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022] Open
Abstract
The increasing global emergence of multidrug resistant (MDR) pathogens is categorized as one of the most important health problems. Therefore, the discovery of novel antimicrobials is of the utmost importance. Lichens provide a rich source of natural products including unique polyketides and polyphenols. Many of them display pharmaceutical benefits. The aim of this study was directed towards the characterization of sunflower oil extracts from the fruticose lichen, Usnea barbata. The concentration of the major polyketide, usnic acid, was 1.6 mg/mL extract as determined by NMR analysis of the crude mixture corresponding to 80 mg per g of the dried lichen. The total phenolics and flavonoids were determined by photometric assays as 4.4 mg/mL (gallic acid equivalent) and 0.27 mg/mL (rutin equivalent) corresponding to 220 mg/g and 13.7 mg/g lichen, respectively. Gram-positive (e.g., Enterococcus faecalis) and Gram-negative bacteria, as well as clinical isolates of infected chickens were sensitive against these extracts as determined by agar diffusion tests. Most of these activities increased in the presence of zinc salts. The data suggest the potential usage of U. barbata extracts as natural additives and mild antibiotics in animal husbandry, especially against enterococcosis in poultry.
Collapse
Affiliation(s)
- Shereen Basiouni
- Clinical Pathology Department, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Egypt;
| | - Marwa A. A. Fayed
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat 32897, Egypt;
| | - Reda Tarabees
- Institute for Bacteriology and Mycology, Faculty of Veterinary Medicine, University of Sadat City, Sadat 32897, Egypt; (R.T.); (M.E.-S.)
| | - Mohamed El-Sayed
- Institute for Bacteriology and Mycology, Faculty of Veterinary Medicine, University of Sadat City, Sadat 32897, Egypt; (R.T.); (M.E.-S.)
| | - Ahmed Elkhatam
- Department for Parasitology, Faculty of Veterinary Medicine, University of Sadat City, Sadat 32897, Egypt;
| | - Klaus-Rainer Töllner
- Research and Development Section, PerNaturam GmbH, An der Trift 8, 56290 Gödenroth, Germany; (K.-R.T.); (M.H.)
| | - Manfred Hessel
- Research and Development Section, PerNaturam GmbH, An der Trift 8, 56290 Gödenroth, Germany; (K.-R.T.); (M.H.)
| | - Thomas Geisberger
- Chair of Biochemistry, Department of Chemistry, Technical University Munich, Lichtenbergstraße 4, 85748 Garching, Germany; (T.G.); (C.H.)
| | - Claudia Huber
- Chair of Biochemistry, Department of Chemistry, Technical University Munich, Lichtenbergstraße 4, 85748 Garching, Germany; (T.G.); (C.H.)
| | - Wolfgang Eisenreich
- Chair of Biochemistry, Department of Chemistry, Technical University Munich, Lichtenbergstraße 4, 85748 Garching, Germany; (T.G.); (C.H.)
- Correspondence: (W.E.); (A.A.S.); Tel.: +49-089-289-13336 (W.E.); +49-06762-96362-137 (A.A.S.)
| | - Awad A. Shehata
- Research and Development Section, PerNaturam GmbH, An der Trift 8, 56290 Gödenroth, Germany; (K.-R.T.); (M.H.)
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat 32897, Egypt
- Correspondence: (W.E.); (A.A.S.); Tel.: +49-089-289-13336 (W.E.); +49-06762-96362-137 (A.A.S.)
| |
Collapse
|
30
|
Xiong K, Zhi HW, Liu JY, Wang XY, Zhao ZY, Pei PG, Deng L, Xiong SY. Detoxification of Ochratoxin A by a novel Aspergillus oryzae strain and optimization of its biodegradation. Rev Argent Microbiol 2020; 53:48-58. [PMID: 32693928 DOI: 10.1016/j.ram.2020.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/26/2020] [Accepted: 06/01/2020] [Indexed: 11/25/2022] Open
Abstract
The mycotoxin Ochratoxin A (OTA) causes serious health risks and is found in food products throughout the world. The most promising method to detoxify this compound is biodegradation. In this study, Aspergillus oryzae strain M30011 was isolated and characterized based on its considerable capacity to degrade OTA. The degradation product (compound I) of A. oryzae-treated OTA was isolated, and its toxicity response was also evaluated. Furthermore, the relationships between three key cultivation condition factors affecting the OTA degradation rate were examined using the response surface methodology (RSM). Compound I was identified as ochratoxin α (C11H9O5Cl), and the toxicity response experiments indicated that A. oryzae detoxified OTA to a great extent. A maximum degradation rate of 94% was observed after 72h. This study demonstrates the potential for using A. oryzae to detoxify OTA and suggests that it could be applied in the food industry to improve food safety and quality.
Collapse
Affiliation(s)
- Ke Xiong
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Hui-Wei Zhi
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jia-Yun Liu
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Xiao-Yi Wang
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Zhi-Yao Zhao
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Peng-Gang Pei
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Lei Deng
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Su-Yue Xiong
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
31
|
Zhu L, Huang C, Yang X, Zhang B, He X, Xu W, Huang K. Proteomics reveals the alleviation of zinc towards aflatoxin B1-induced cytotoxicity in human hepatocyes (HepG2 cells). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110596. [PMID: 32353602 DOI: 10.1016/j.ecoenv.2020.110596] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 05/24/2023]
Abstract
Aflatoxin B1 (AFB1) is a known carcinogen found in contaminated food and designated by the World Health Organization as a class I carcinogenic substance. AFB1 presents with carcinogenicity, teratogenicity, and mutagenicity, and the liver is the human organ most susceptible to AFB1. Zinc (Zn), which is one of the essential nutrient elements that could protect the cells from biological toxins, heavy metals, hydrogen peroxide, metal chelators and radiation, is assessed in this study for its potential to alleviate AFB1-induced cytotoxicity. Samples were divided into three groups, namely CK, AFB1, and AFB1+Zn. Protein expressions were analyzed by two-way electrophoresis combined with flight mass spectrometry, with 41 differentially expressed proteins identified in the results, mainly related to oxidative stress, cell apoptosis, DNA damage, and energy metabolism. Zn was found to regulate the expression of peroxidases (peroxiredoxin-1, peroxiredoxin-5, peroxiredoxin-6) to relieve AFB1-induced oxidative stress. Moreover, Zn could decrease the expression of pro-apoptotic genes (cleaved-caspase-3, caspase-9, and Bax) and increase the expression of anti-apoptotic genes (Bcl-2 and Bcl-xl) to alleviate the cell apoptosis induced by AFB1. In addition, AFB1 reduced intracellular ATP levels, whereas Zn supplementation boosted ATP levels and maintained homeostasis and a steady state of cellular energy metabolism by modulating AMPK-ACC phosphorylation levels, while many zinc finger proteins changed after AFB1 treatment. These results, therefore, indicate that Zn could alleviate AFB1-induced cytotoxicity by changing the expressions of zinc finger proteins in liver hepatocellular carcinoma (HepG2 cells).
Collapse
Affiliation(s)
- Liye Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China
| | - Chuchu Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China
| | - Xuan Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China
| | - Boyang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China
| | - Xiaoyun He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China
| | - Kunlun Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
32
|
Abstract
Fungi produce mycotoxins in the presence of appropriate temperature, humidity, sufficient nutrients and if the density of the mushroom mass is favorable. Although all mycotoxins are of fungal origin, all toxic compounds produced by fungi are not called mycotoxins. The interest in mycotoxins first started in the 1960s, and today the interest in mycotoxin-induced diseases has increased. To date, 400 mycotoxins have been identified and the most important species producing mycotoxins belongs to Aspergillus, Penicillium, Alternaria and Fusarium genera. Mycotoxins are classified as hepatotoxins, nephrotoxins, neurotoxins, immunotoxins etc. In this review genotoxic and also other health effects of some major mycotoxin groups like Aflatoxins, Ochratoxins, Patulin, Fumonisins, Zearalenone, Trichothecenes and Ergot alkaloids were deeply analyzed.
Collapse
|
33
|
Luo X, Zhai Y, Qi L, Pan L, Wang J, Xing J, Wang R, Wang L, Zhang Q, Yang K, Chen Z. Influences of Electron Beam Irradiation on the Physical and Chemical Properties of Zearalenone- and Ochratoxin A-Contaminated Corn and In Vivo Toxicity Assessment. Foods 2020; 9:foods9030376. [PMID: 32213868 PMCID: PMC7143755 DOI: 10.3390/foods9030376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 01/21/2023] Open
Abstract
Electron beam irradiation (EBI) has high energy, no induced radioactivity, and strong degradation capacity toward mycotoxins, such as zearalenone (ZEN) and ochratoxin A (OTA). In this study, we determined EBI’s influence on the physical and chemical properties of corn contaminated with ZEN and OTA. Moreover, the toxicity of corn after EBI was assessed through a mouse experiment. Amylose content and starch crystallinity in corn decreased significantly (p < 0.05) at an irradiation dose higher than 20 kGy. Scanning electron microscopy results revealed that the starch particles of corn began to be crushed at 10 kGy. Essential and total amino acid contents in corn decreased significantly with increasing irradiation dose of EBI (p < 0.05). Feeding EBI-treated corn fodders to mice could significantly improve blood biochemical indexes. The EBI-treated group was not significantly different from the normal corn group and did not display histopathological changes of the liver. EBI treatment can influence the quality of corn to some extent and effectively lower the toxicity of ZEN and OTA in contaminated corn. The results provide a theoretical and practical basis for the processing of EBI-treated corn and its safety.
Collapse
Affiliation(s)
- Xiaohu Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China;
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; (Y.Z.); (L.Q.); (L.P.); (R.W.); (L.W.); (K.Y.); (Z.C.)
- National Engineering Laboratory for Agri-product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China;
- Correspondence: ; Tel.: +86-510-8532-98-20
| | - Yuheng Zhai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; (Y.Z.); (L.Q.); (L.P.); (R.W.); (L.W.); (K.Y.); (Z.C.)
| | - Lijun Qi
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; (Y.Z.); (L.Q.); (L.P.); (R.W.); (L.W.); (K.Y.); (Z.C.)
| | - Lihong Pan
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; (Y.Z.); (L.Q.); (L.P.); (R.W.); (L.W.); (K.Y.); (Z.C.)
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China;
| | - Jiali Xing
- Ningbo Institute for food control, Ningbo 315048, China;
| | - Ren Wang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; (Y.Z.); (L.Q.); (L.P.); (R.W.); (L.W.); (K.Y.); (Z.C.)
| | - Li Wang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; (Y.Z.); (L.Q.); (L.P.); (R.W.); (L.W.); (K.Y.); (Z.C.)
| | - Qingchuan Zhang
- National Engineering Laboratory for Agri-product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China;
| | - Kai Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; (Y.Z.); (L.Q.); (L.P.); (R.W.); (L.W.); (K.Y.); (Z.C.)
| | - Zhengxing Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; (Y.Z.); (L.Q.); (L.P.); (R.W.); (L.W.); (K.Y.); (Z.C.)
| |
Collapse
|
34
|
Akpinar HA, Kahraman H, Yaman I. Ochratoxin A Sequentially Activates Autophagy and the Ubiquitin-Proteasome System. Toxins (Basel) 2019; 11:E615. [PMID: 31653047 PMCID: PMC6891609 DOI: 10.3390/toxins11110615] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/12/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
Abstract
Ochratoxin A (OTA) is a carcinogenic mycotoxin, which is produced by Aspergillus and Penicillium genera of fungi and commonly contaminates food and feed. We and others have previously shown that OTA causes sustained activation of PI3K/AKT and MAPK/ERK1-2 signaling pathways in different cell types and animal models. Given the close relationship between cellular signaling activity and protein stability, we were curious whether increased PI3K/AKT and MAPK/ERK1-2 signaling may be the result of OTA-stimulated alterations in proteolytic activity. We show that both of the major proteolytic systems, autophagy, and the ubiquitin-proteasome system (UPS), are activated upon OTA exposure in human kidney proximal tubule HK-2 and mouse embryonic fibroblast (MEF) cells. OTA stimulates transient autophagic activity at early time points of treatment but autophagic activity subsides after 6 h even in the sustained presence of OTA. Interestingly, OTA exposure also results in increased cell death in wild-type MEF cells but not in autophagy-halted Atg5-deficient cells, suggesting that autophagy exerts a pro-death effect on OTA-induced cytotoxicity. In addition, prolonged OTA exposure decreased ubiquitinated protein levels by increasing proteasomal activity. Using purified and cellular proteasomes, we observed enhanced chymotrypsin-, caspase-, and trypsin-like activities of the 26S but not the 20S proteasome in the presence of OTA. However, in the cellular context, increased proteasomal activity depended on prior induction of autophagy. Our results suggest that autophagy and subsequent UPS activation are responsible for sustained activation of PI3K/AKT and MAPK/ERK1-2 pathways through regulating the levels of critical phosphatases VHR/DUSP3, DUSP4, and PHLPP, which are known to be involved in OTA toxicity and carcinogenicity.
Collapse
Affiliation(s)
- Hafize Aysin Akpinar
- Molecular Toxicology and Cancer Research Laboratory, Department of Molecular Biology and Genetics, Bogazici University, Bebek-Istanbul 34342, Turkey.
| | - Hilal Kahraman
- Molecular Toxicology and Cancer Research Laboratory, Department of Molecular Biology and Genetics, Bogazici University, Bebek-Istanbul 34342, Turkey.
| | - Ibrahim Yaman
- Molecular Toxicology and Cancer Research Laboratory, Department of Molecular Biology and Genetics, Bogazici University, Bebek-Istanbul 34342, Turkey.
- Center for Life Sciences and Technologies, Bogazici University, Bebek-Istanbul 34342, Turkey.
| |
Collapse
|
35
|
Li C, Chen W, Zheng L, Zhang B, Yang X, Zhang Q, Wang N, Wang Y, Yang J, Sha J, Zhou Z, Li X, Li Y, Shen XL. Ameliorative effect of ursolic acid on ochratoxin A-induced renal cytotoxicity mediated by Lonp1/Aco2/Hsp75. Toxicon 2019; 168:141-146. [PMID: 31356822 DOI: 10.1016/j.toxicon.2019.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 12/27/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin ubiquitous in feeds and foodstuffs. The water-insoluble pentacyclic triterpene bioactive compound, ursolic acid (UA), is widespread in various cuticular waxes of edible fruits, food materials, and medicinal plants. Although studies have reported that oxidative stress was involved in both the nephrotoxicity of OTA and the renoprotective function of UA, the role of stress-responsive Lon protease 1 (Lonp1) in the renoprotection of UA against OTA is still unknown. In this study, cell viability, reactive oxygen species (ROS) production, and several proteins' expressions of human embryonic kidney 293T (HEK293T) cells in response to UA, OTA, and/or Lonp1 inhibitor CDDO-me treatment were detected to reveal the protective mechanism of UA against OTA-induced renal cytotoxicity. Results indicated that a 2 h-treatment of 1 μM UA could significantly alleviate the ROS production and cell death induced by a 24 h-treatment of 8 μM OTA in HEK293T cells (P < 0.05). Compared with the control, the protein expressions of Lonp1, Aco2 and Hsp75 were significantly inhibited after 8 μM OTA treating for 24 h (P < 0.05), which could be notably reversed by the pre-treatment and post-treatment of 1 μM UA (P < 0.05). The protein expressions of Lonp1, Aco2 and Hsp75 were inhibited by the addition of CDDO-me. The three protein expression trends were similar before and after the addition of CDDO-me. In conclusion, OTA could inhibit the expression of Lonp1, suppressing Aco2 and Hsp75 as a result, thereby activating ROS and inducing cell death in HEK293T cells, which could be alleviated by UA pre-treatment.
Collapse
Affiliation(s)
- Chen Li
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Wenying Chen
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China; Experimental Teaching Demonstration Center for Preventive Medicine of Guizhou Province, Zunyi, 563000, Guizhou, PR China.
| | - Lirong Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China.
| | - Boyang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China.
| | - Xuqin Yang
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Qipeng Zhang
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Ning Wang
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, Henan, PR China.
| | - Yan Wang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, PR China.
| | - Jieyeqi Yang
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Jingzhou Sha
- Sichuan Provincial Department of Ecology and Environment, Chengdu, 610000, PR China; Solid Waste and Chemical Management Center in Sichuan Province, Chengdu, 610000, PR China.
| | - Zheng Zhou
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China; Experimental Teaching Demonstration Center for Preventive Medicine of Guizhou Province, Zunyi, 563000, Guizhou, PR China.
| | - Xiaohong Li
- Department of Food and Bioengineering, Beijing Agricultural Vocational College, Beijing, 102442, PR China.
| | - Yuzhe Li
- China National Center for Food Safety Risk Assessment, No. 37, Guangqu Road, Chaoyang District, Beijing, 100022, PR China.
| | - Xiao Li Shen
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China; Experimental Teaching Demonstration Center for Preventive Medicine of Guizhou Province, Zunyi, 563000, Guizhou, PR China.
| |
Collapse
|
36
|
Marchetti F, Nicola C, Pettinari R, Pettinari C, Aiello I, Deda M, Candreva A, Morelli S, Bartolo L, Crispini A. Zinc(II) Complexes of Acylpyrazolones Decorated with a Cyclohexyl Group Display Antiproliferative Activity Against Human Breast Cancer Cells. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Fabio Marchetti
- School of Science and Technology Chemistry Section University of Camerino Via S. Agostino 1 62032 Camerino MC Italy
| | - Corrado Nicola
- School of Science and Technology Chemistry Section University of Camerino Via S. Agostino 1 62032 Camerino MC Italy
| | - Riccardo Pettinari
- School of Pharmacy, Chemistry Section Chemistry Section University of Camerino Via S. Agostino 1 62032 Camerino MC Italy
| | - Claudio Pettinari
- School of Pharmacy, Chemistry Section Chemistry Section University of Camerino Via S. Agostino 1 62032 Camerino MC Italy
| | - Iolinda Aiello
- Dept. of Chemistry and Chemical Technologies MAT_IN LAB University of Calabria 87030 Arcavacata di Rende (CS) Italy
| | - Massimo Deda
- Dept. of Chemistry and Chemical Technologies MAT_IN LAB University of Calabria 87030 Arcavacata di Rende (CS) Italy
| | - Angela Candreva
- Dept. of Chemistry and Chemical Technologies MAT_IN LAB University of Calabria 87030 Arcavacata di Rende (CS) Italy
| | - Sabrina Morelli
- Institute on Membrane Technology National Research Council of Italy c/o University of Calabria via P. Bucci ‐ cubo 17C 87030 Arcavacata di Rende (CS) Italy
| | - Loredana Bartolo
- Institute on Membrane Technology National Research Council of Italy c/o University of Calabria via P. Bucci ‐ cubo 17C 87030 Arcavacata di Rende (CS) Italy
| | - Alessandra Crispini
- Dept. of Chemistry and Chemical Technologies MAT_IN LAB University of Calabria 87030 Arcavacata di Rende (CS) Italy
| |
Collapse
|
37
|
Shi H, Zhang R, Lan L, Chen Z, Kan J. Zinc mediates resuscitation of lactic acid-injured Escherichia coli by relieving oxidative stress. J Appl Microbiol 2019; 127:1741-1750. [PMID: 31487417 DOI: 10.1111/jam.14433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 01/10/2023]
Abstract
AIMS Lactic acid is a natural antimicrobial in food industry, and also exists in fermented food. It was reported that sublethally injured Escherichia coli could survive in acidic conditions. When conditions become advantageous, injured E. coli can restore physiological function, which is a potential threat in food industry. Recovery is a necessary step for discriminating injured bacteria, but the resuscitation mechanism of injured bacteria is still unknown. METHODS AND RESULTS In our study, sublethal lactic acid treatment (pH 4·2, 60 min) posed oxidative stress on E. coli by decrease of superoxide dismutase (SOD) activity and overproduction of reactive oxygen species (ROS). Zinc with low concentration (1·0 mmol l-1 ) significantly increased the recovery ratio of injured E.coli induced by lactic acid. The recovery ratios of injured cell in minimal A medium (minA) with 1·0 mmol l-1 zinc reached to that with 3·0 mmol l-1 catalase (CAT). Conversely, the addition of zinc chelator N, N, N', N'-tetrakis (2-pyridylmethyl) decreased the recovery ratio. Zinc accelerated resuscitation of injured E. coli by improving SOD activity, and decreasing ROS production. Deletion of sodC encoding Cu/ZnSOD, katE/katG encoding CAT or regulating gene rpoS significantly decreased the recovery ratio. Among all of the mutants in this study, ΔrpoS and ΔsodC showed the lowest recovery ratio, which means they played significant roles in the process of resuscitation. CONCLUSION We provided direct evidence that zinc mediated resuscitation of lactic acid-injured E. coli by relieving oxidative stress. Zinc can be used as a low-cost and effective agent to improve recovery ratio and detection efficiency of injured bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY Antibacterial agents are a challenge for bacteria, but bacteria can survive as a sublethally injured state under stresses. Using injured E. coli induced by lactic acid as a model organism, we validated the significant role of zinc on resuscitation of injured cells.
Collapse
Affiliation(s)
- H Shi
- College of Food Science, Southwest University, Chongqing, China
| | - R Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - L Lan
- College of Food Science, Southwest University, Chongqing, China
| | - Z Chen
- College of Food Science, Southwest University, Chongqing, China
| | - J Kan
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
38
|
Babayan N, Tadevosyan G, Khondkaryan L, Grigoryan R, Sarkisyan N, Haroutiounian R, Stopper H. Ochratoxin A induces global DNA hypomethylation and oxidative stress in neuronal cells in vitro. Mycotoxin Res 2019; 36:73-81. [PMID: 31441013 DOI: 10.1007/s12550-019-00370-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/07/2019] [Accepted: 08/13/2019] [Indexed: 12/24/2022]
Abstract
Recently, it was reported that ochratoxin A (OTA) mycotoxin, produced by a number of Aspergillus and Penicillium fungal species, may cause neuropsychological impairment or mental and emotional disorders but the mechanism of neurotoxicity remains unknown. Adverse effects of OTA in human (SHSY5Y) and mouse (HT22) neuronal cell lines were studied in vitro. OTA was found to be non-cytotoxic in both cell lines at concentrations 2.5-30 μmol/l, which are above the levels reported for human and animal plasma. OTA led to slightly elevated chromosomal instability in HT22 cells at concentrations of 15-30 μmol/l after 48 h, while in SHSY5Y cells, no evidence for genotoxic effects was observed at concentrations of 2.5-30 μmol/l. OTA treatment at 10 μmol/l resulted in elevated levels of unmethylated cytosines in CpG dinucleotides (up to 1.4-fold), elevated levels of intracellular reactive oxygen species (up to 1.6-fold), and in elevated levels of oxidized DNA purines (up to 2.2-fold) in both cell lines. Detected global DNA hypomethylation and oxidative stress were found to be reversible in 96 h and 24-72 h, respectively. In general, the observed pattern of OTA-induced effects in both cell lines was similar, but HT22 cells exhibited higher sensitivity, as well as better repair capacity in response to OTA toxicity. In conclusion, the results suggest that oxidative stress and epigenetic changes are directly involved in OTA-induced neurotoxicity, while cytotoxicity and genotoxicity cannot be considered as primary cause of toxicity in neuronal cells in vitro.
Collapse
Affiliation(s)
- Nelly Babayan
- Institute of Molecular Biology, National Academy of Sciences of Armenia, Hasratyan 7, 0014, Yerevan, Armenia. .,Yerevan State University, A. Manoogian 1, 0025, Yerevan, Armenia.
| | - Gohar Tadevosyan
- Institute of Molecular Biology, National Academy of Sciences of Armenia, Hasratyan 7, 0014, Yerevan, Armenia
| | - Lusine Khondkaryan
- Institute of Molecular Biology, National Academy of Sciences of Armenia, Hasratyan 7, 0014, Yerevan, Armenia
| | - Ruzanna Grigoryan
- Institute of Molecular Biology, National Academy of Sciences of Armenia, Hasratyan 7, 0014, Yerevan, Armenia
| | - Natalya Sarkisyan
- Institute of Molecular Biology, National Academy of Sciences of Armenia, Hasratyan 7, 0014, Yerevan, Armenia
| | | | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher 9, 997078, Wuerzburg, Germany
| |
Collapse
|
39
|
Li H, Malyar RM, Zhai N, Wang H, Liu K, Liu D, Pan C, Gan F, Huang K, Miao J, Chen X. Zinc supplementation alleviates OTA-induced oxidative stress and apoptosis in MDCK cells by up-regulating metallothioneins. Life Sci 2019; 234:116735. [PMID: 31394124 DOI: 10.1016/j.lfs.2019.116735] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
AIMS The present study was to investigate the protective effects of Zn supplementation in OTA-induced apoptosis of Madin-Darby canine kidney (MDCK) epithelial cells and explore the potential mechanisms. Aiming to provides a new insight into the treatment strategy of OTA-induced nephrotoxicity by nutritional regulation. MAIN METHODS Initially, through MTT and LDH assay revealed that Zn supplementation significantly suppressed OTA-induced cytotoxicity in MDCK cells. Then, the production of reactive oxygen species (ROS) was detected by using a DCFH-DA assay. Annexin V-FITC/PI, Hoechst 33258 staining and Flow cytometry were used to detect the apoptosis. The expressions of apoptosis-related molecules were determined by RT-PCR, Western blotting. Interestingly, OTA treatment slightly increased the levels of Metallothionein-1 (MT-1) and Metallothionein-2 (MT-2) by using RT-PCR, Western blotting assay; while Zn supplementation further improved the increase of MT-1 and MT-2 induced by OTA. However, the inhibitive effects of Zn supplementation were significantly blocked after double knockdown of MT-1 and MT-2 by using Small Interfering RNA (siRNA) Transfection method. KEY FINDINGS Our study provides supportive data for the potential roles of Zn in reducing OTA-induced oxidative stress and apoptosis in MDCK cells. SIGNIFICANCE Zn is one of the key structural components of many proteins, which plays an important role in several physiological processes such as cell survival and apoptosis. This metal is expected to contribute to the conservative and adjuvant treatment of kidney disease and should therefore be investigated further.
Collapse
Affiliation(s)
- Hu Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine Nanjing Agricultural University Nanjing, China
| | - Rahmani Mohammad Malyar
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine Nanjing Agricultural University Nanjing, China
| | - Nianhui Zhai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine Nanjing Agricultural University Nanjing, China
| | - Hong Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine Nanjing Agricultural University Nanjing, China
| | - Kai Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine Nanjing Agricultural University Nanjing, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine Nanjing Agricultural University Nanjing, China
| | - Cuiling Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine Nanjing Agricultural University Nanjing, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine Nanjing Agricultural University Nanjing, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine Nanjing Agricultural University Nanjing, China
| | - Jinfeng Miao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine Nanjing Agricultural University Nanjing, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine Nanjing Agricultural University Nanjing, China.
| |
Collapse
|
40
|
García-Herranz V, Valdehita A, Navas J, Fernández-Cruz M. Cytotoxicity against fish and mammalian cell lines and endocrine activity of the mycotoxins beauvericin, deoxynivalenol and ochratoxin-A. Food Chem Toxicol 2019; 127:288-297. [DOI: 10.1016/j.fct.2019.01.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/10/2019] [Accepted: 01/29/2019] [Indexed: 12/15/2022]
|
41
|
Sheik Abdul N, Nagiah S, Chuturgoon AA. Fusaric acid induces NRF2 as a cytoprotective response to prevent NLRP3 activation in the liver derived HepG2 cell line. Toxicol In Vitro 2019; 55:151-159. [DOI: 10.1016/j.tiv.2018.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/21/2018] [Accepted: 12/17/2018] [Indexed: 01/16/2023]
|
42
|
Limonciel A, van Breda SG, Jiang X, Tredwell GD, Wilmes A, Aschauer L, Siskos AP, Sachinidis A, Keun HC, Kopp-Schneider A, de Kok TM, Kleinjans JCS, Jennings P. Persistence of Epigenomic Effects After Recovery From Repeated Treatment With Two Nephrocarcinogens. Front Genet 2018; 9:558. [PMID: 30559759 PMCID: PMC6286959 DOI: 10.3389/fgene.2018.00558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/31/2018] [Indexed: 11/13/2022] Open
Abstract
The discovery of the epigenetic regulation of transcription has provided a new source of mechanistic understanding to long lasting effects of chemicals. However, this information is still seldom exploited in a toxicological context and studies of chemical effect after washout remain rare. Here we studied the effects of two nephrocarcinogens on the human proximal tubule cell line RPTEC/TERT1 using high-content mRNA microarrays coupled with miRNA, histone acetylation (HA) and DNA methylation (DM) arrays and metabolomics during a 5-day repeat-dose exposure and 3 days after washout. The mycotoxin ochratoxin A (OTA) was chosen as a model compound for its known impact on HA and DM. The foremost effect observed was the modulation of thousands of mRNAs and histones by OTA during and after exposure. In comparison, the oxidant potassium bromate (KBrO3) had a milder impact on gene expression and epigenetics. However, there was no strong correlation between epigenetic modifications and mRNA changes with OTA while with KBrO3 the gene expression data correlated better with HA for both up- and down-regulated genes. Even when focusing on the genes with persistent epigenetic modifications after washout, only half were coupled to matching changes in gene expression induced by OTA, suggesting that while OTA causes a major effect on the two epigenetic mechanisms studied, these alone cannot explain its impact on gene expression. Mechanistic analysis confirmed the known activation of Nrf2 and p53 by KBrO3, while OTA inhibited most of the same genes, and genes involved in the unfolded protein response. A few miRNAs could be linked to these effects of OTA, albeit without clear contribution of epigenetics to the modulation of the pathways at large. Metabolomics revealed disturbances in amino acid balance, energy catabolism, nucleotide metabolism and polyamine metabolism with both chemicals. In conclusion, the large impact of OTA on transcription was confirmed at the mRNA level but also with two high-content epigenomic methodologies. Transcriptomic data confirmed the previously reported activation (by KBrO3) and inhibition (by OTA) of protective pathways. However, the integration of omic datasets suggested that HA and DM were not driving forces in the gene expression changes induced by either chemical.
Collapse
Affiliation(s)
- Alice Limonciel
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Simone G van Breda
- Department of Toxicogenomics, GROW-School for Oncology and Development Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Xiaoqi Jiang
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gregory D Tredwell
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT, Australia
| | - Anja Wilmes
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Lydia Aschauer
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria.,Brookes Innovation Hub, Orbit Discovery, Oxford, United Kingdom
| | - Alexandros P Siskos
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Agapios Sachinidis
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne (UKK), Cologne, Germany
| | - Hector C Keun
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | | - Theo M de Kok
- Department of Toxicogenomics, GROW-School for Oncology and Development Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Jos C S Kleinjans
- Department of Toxicogenomics, GROW-School for Oncology and Development Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Paul Jennings
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
43
|
Arumugam T, Pillay Y, Ghazi T, Nagiah S, Abdul NS, Chuturgoon AA. Fumonisin B1-induced oxidative stress triggers Nrf2-mediated antioxidant response in human hepatocellular carcinoma (HepG2) cells. Mycotoxin Res 2018; 35:99-109. [DOI: 10.1007/s12550-018-0335-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022]
|
44
|
Khatoon A, Abidin ZU. Mycotoxicosis – diagnosis, prevention and control: past practices and future perspectives. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1485701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Aisha Khatoon
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | |
Collapse
|
45
|
Yu Z, Wu F, Tian J, Guo X, An R. Protective effects of compound ammonium glycyrrhizin, L‑arginine, silymarin and glucurolactone against liver damage induced by ochratoxin A in primary chicken hepatocytes. Mol Med Rep 2018; 18:2551-2560. [PMID: 30015927 PMCID: PMC6102706 DOI: 10.3892/mmr.2018.9285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 02/15/2018] [Indexed: 12/13/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin that is produced by fungi in improperly stored food and animal feed. It exhibits nephrotoxic, hepatotoxic, embryotoxic, teratogenic, neurotoxic, immunotoxic and carcinogenic effects in laboratory and farm animals. In the present study, the hepatotoxicity of OPA was investigated in chicken primary hepatocytes. On this basis, the cytoprotective effects of compound ammonium glycyrrhizin (CAG), L‑arginine (L‑Arg), silymarin (Sil) and glucurolactone (GA) were investigated in vitro. Hepatocytes were treated with OTA, which resulted in a significant decrease in cell viability and increases in serum aspartate transaminase and alanine transaminase activities, as determined by an MTT assay and commercial kits, respectively. Furthermore, following OTA treatment, the levels of hepatic antioxidants, such as superoxide dismutase and glutathione, were decreased, and the lipid peroxidation product malondialdehyde was increased, compared with the control group. However, pretreatment with CAG, L‑Arg, Sil and GA significantly ameliorated these alterations and Sil exerted the optimum hepatoprotective effect. The apoptotic rates were measured by flow cytometry and the results revealed that OTA increased cell apoptosis. The four types of hepatoprotective compounds employed in the present study decreased the apoptosis rate and significantly reversed OTA‑induced increases in the mRNA expression levels of caspase‑3, which was determined by reverse transcription‑quantitative polymerase chain reaction. Furthermore, B‑cell lymphoma‑2 (Bcl‑2) mRNA expression was increased in OTA‑treated cells when pretreated with CAG, L‑Arg, Sil and GA. However, no alterations in the mRNA expression of Bcl‑2‑associated X were observed in the L‑Arg and GA groups, compared with the OTA‑only group. These results indicate that OTA may exhibit hepatotoxicity in chickens and that CAG, L‑Arg, Sil and GA may protect the liver against this via anti‑oxidative and antiapoptosis mechanisms. In addition, CAG and GA are likely to mediate their effects through the mitochondrion‑dependent apoptosis pathway; however, the exact hepatoprotective mechanism of L‑Arg and GA require further investigation. Therefore, CAG, L‑Arg, Sil and GA are potential candidates for the prevention and treatment of chicken liver injury.
Collapse
Affiliation(s)
- Zugong Yu
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Feng Wu
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Jing Tian
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Xuewen Guo
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Ran An
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| |
Collapse
|
46
|
Chen W, Li C, Zhang B, Zhou Z, Shen Y, Liao X, Yang J, Wang Y, Li X, Li Y, Shen XL. Advances in Biodetoxification of Ochratoxin A-A Review of the Past Five Decades. Front Microbiol 2018; 9:1386. [PMID: 29997599 PMCID: PMC6028724 DOI: 10.3389/fmicb.2018.01386] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/06/2018] [Indexed: 12/11/2022] Open
Abstract
Ochratoxin A (OTA) is a toxic secondary fungal metabolite that widely takes place in various kinds of foodstuffs and feeds. Human beings and animals are inevitably threatened by OTA as a result. Therefore, it is necessary to adopt various measures to detoxify OTA-contaminated foods and feeds. Biological detoxification methods, with better safety, flavor, nutritional quality, organoleptic properties, availability, and cost-effectiveness, are more promising than physical and chemical detoxification methods. The state-of-the-art research advances of OTA biodetoxification by degradation, adsorption, or enzymes are reviewed in the present paper. Researchers have discovered a good deal of microorganisms that could degrade and/or adsorb OTA, including actinobacteria, bacteria, filamentous fungi, and yeast. The degradation of OTA to non-toxic or less toxic OTα via the hydrolysis of the amide bond is the most important OTA biodegradation mechanism. The most important influence factor of OTA adsorption capacity of microorganisms is cell wall components. A large number of microorganisms with good OTA degradation and/or adsorption ability, as well as some OTA degradation enzymes isolated or cloned from microorganisms and animal pancreas, have great application prospects in food and feed industries.
Collapse
Affiliation(s)
- Wenying Chen
- School of Public Health, Zunyi Medical University, Zunyi, China
- Experimental Teaching Demonstration Center for Preventive Medicine of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Chen Li
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Boyang Zhang
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zheng Zhou
- School of Public Health, Zunyi Medical University, Zunyi, China
- Experimental Teaching Demonstration Center for Preventive Medicine of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Yingbin Shen
- Department of Food Science and Engineering, School of Science and Engineering, Jinan University, Guangzhou, China
| | - Xin Liao
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Jieyeqi Yang
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Yan Wang
- Department of Food Quality and Safety, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohong Li
- Department of Food and Bioengineering, Beijing Agricultural Vocational College, Beijing, China
| | - Yuzhe Li
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Xiao L. Shen
- School of Public Health, Zunyi Medical University, Zunyi, China
- Experimental Teaching Demonstration Center for Preventive Medicine of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
47
|
Enciso JM, López de Cerain A, Pastor L, Azqueta A, Vettorazzi A. Is oxidative stress involved in the sex-dependent response to ochratoxin A renal toxicity? Food Chem Toxicol 2018; 116:379-387. [DOI: 10.1016/j.fct.2018.04.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 11/28/2022]
|
48
|
Soussi A, Gargouri M, El Feki A. Effects of co-exposure to lead and zinc on redox status, kidney variables, and histopathology in adult albino rats. Toxicol Ind Health 2018; 34:469-480. [PMID: 29702030 DOI: 10.1177/0748233718770293] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Lead (Pb) is a toxic metal that induces a wide range of biochemical and physiological effects in humans. Oxidative damage has been proposed as a possible mechanism involved in Pb toxicity. The current study was carried out to evaluate the antioxidant activities of zinc (Zn) supplement against lead acetate-induced kidney injury in rats. In this study, adults male rats were treated for 15 days with Pb (0.344 g/kg body weight (bw)) associated or not with Zn (10 mg/kg bw). Our study showed that supplementation with Zn prevented renal dysfunction as indicated by plasma biomarkers (urea, uric acid, creatinine, lactate dehydrogenase, and alkaline phosphatase levels) and oxidative stress-related parameters (thiobarbituric acid reactive substances, protein carbonyl, advanced oxidation protein product, superoxide dismutase, catalase, glutathione peroxidase, and vitamins (A, E)) in kidney tissue. The corrective effect of Zn on Pb-induced kidney nephrotoxicity recovered normal kidney histology. Overall, this study indicates that Zn alleviated the toxic effects of this heavy metal on renal tissue, suggesting its role as a potential antioxidant and nephroprotective agent.
Collapse
Affiliation(s)
- Ahlem Soussi
- Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Sfax, Sfax, Tunisia
| | - Manel Gargouri
- Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Sfax, Sfax, Tunisia
| | - Abdelfattah El Feki
- Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Sfax, Sfax, Tunisia
| |
Collapse
|
49
|
Park Y, Zhang J, Cai L. Reappraisal of metallothionein: Clinical implications for patients with diabetes mellitus. J Diabetes 2018; 10:213-231. [PMID: 29072367 DOI: 10.1111/1753-0407.12620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 08/29/2017] [Accepted: 10/20/2017] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen and nitrogen species (ROS and RNS, respectively) are byproducts of cellular physiological processes of the metabolism of intermediary nutrients. Although physiological defense mechanisms readily convert these species into water or urea, an improper balance between their production and removal leads to oxidative stress (OS), which is harmful to cellular components. This OS may result in uncontrolled growth or, ultimately, cell death. In addition, ROS and RNS are closely related to the development of diabetes and its complications. Therefore, numerous researchers have proposed the development of strategies for the removal of ROS/RNS to prevent or treat diabetes and its complications. Some molecules that are synthesized in the body or obtained from food participate in the removal and neutralization of ROS and RNS. Metallothionein, a cysteine-rich protein, is a metal-binding protein that has a wide range of functions in cellular homeostasis and immunity. Metallothionein can be induced by a variety of conditions, including zinc supplementation, and plays a crucial role in mediating anti-OS, anti-apoptotic, detoxification, and anti-inflammatory effects. Metallothionein can modulate various stress-induced signaling pathways (mitogen-activated protein kinase, Wnt, nuclear factor-κB, phosphatidylinositol 3-kinase, sirtuin 1/AMP-activated protein kinase and fibroblast growth factor 21) to alleviate diabetes and diabetic complications. However, a deeper understanding of the functional, biochemical, and molecular characteristics of metallothionein is needed to bring about new opportunities for OS therapy. This review focuses on newly proposed functions of a metallothionein and their implications relevant to diabetes and its complications.
Collapse
Affiliation(s)
- Yongsoo Park
- Department of Pediatrics, Pediatrics Research Institute, University of Louisville, Louisville, Kentucky, USA
- Hanyang University, College of Medicine and Engineering, Seoul, South Korea
| | - Jian Zhang
- Department of Pediatrics, Pediatrics Research Institute, University of Louisville, Louisville, Kentucky, USA
- The Center of Cardiovascular Disorders, The First Hospital of Jilin University, Changchun, China
| | - Lu Cai
- Department of Pediatrics, Pediatrics Research Institute, University of Louisville, Louisville, Kentucky, USA
- Department of Radiation Oncology, University of Louisville, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
50
|
Abstract
Mycotoxins are the most common contaminants of food and feed worldwide and are considered an important risk factor for human and animal health. Oxidative stress occurs in cells when the concentration of reactive oxygen species exceeds the cell’s antioxidant capacity. Oxidative stress causes DNA damage, enhances lipid peroxidation, protein damage and cell death. This review addresses the toxicity of the major mycotoxins, especially aflatoxin B1, deoxynivalenol, nivalenol, T-2 toxin, fumonisin B1, ochratoxin, patulin and zearalenone, in relation to oxidative stress. It summarises the data associated with oxidative stress as a plausible mechanism for mycotoxin-induced toxicity. Given the contamination caused by mycotoxins worldwide, the protective effects of a variety of natural compounds due to their antioxidant capacities have been evaluated. We review data on the ability of vitamins, flavonoids, crocin, curcumin, green tea, lycopene, phytic acid, L-carnitine, melatonin, minerals and mixtures of anti-oxidants to mitigate the toxic effect of mycotoxins associated with oxidative stress.
Collapse
Affiliation(s)
- E.O. da Silva
- Universidade Estadual de Londrina, Laboratory of Animal Pathology, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná 86051-990, Brazil
| | - A.P.F.L. Bracarense
- Universidade Estadual de Londrina, Laboratory of Animal Pathology, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná 86051-990, Brazil
| | - I.P. Oswald
- Université de Toulouse, Toxalim, Research Center in Food Toxicology, INRA, UMR 1331 ENVT, INP-PURPAN, 31076 Toulouse, France
| |
Collapse
|