1
|
Heng YC, Wong GWJ, Kittelmann S. Expanding the biosynthesis spectrum of hydroxy fatty acids: unleashing the potential of novel bacterial fatty acid hydratases. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:131. [PMID: 39456067 PMCID: PMC11515146 DOI: 10.1186/s13068-024-02578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Hydroxy fatty acids represent an emerging class of compounds with promising applications in the chemical, medicinal and functional food sectors. The challenges associated with their chemical synthesis have spurred exploration of biological synthesis as an alternative route, particularly through the use of fatty acid hydratases. Fatty acid hydratases catalyse the regioselective addition of a hydrogen atom and a hydroxyl group from a water molecule to the carbon-carbon cis-double bond of unsaturated fatty acids to form hydroxy fatty acids. Despite having been discovered in the early 1960s, previous research has primarily focused on characterizing single fatty acid hydratase variants with a limited range of substrates. Comprehensive studies that systematically examine and compare the characteristics of multiple variants of fatty acid hydratases are still lacking. RESULTS In this study, we employed an integrated bioinformatics workflow to identify 23 fatty acid hydratases and characterized their activities against nine unsaturated fatty acid substrates using whole-cell biotransformation assays. Additionally, we tested a dual-protein system involving two fatty acid hydratases of distinct regioselectivity and demonstrated its suitability in enhancing the biosynthesis of di-hydroxy fatty acids. CONCLUSIONS Our study demonstrates that fatty acid hydratases can be classified into three subtypes based on their regioselectivity and provides insights into their preferred substrate structures. These understandings pave ways for the design of optimal fatty acid hydratase variants and bioprocesses for the cost-efficient biosynthesis of hydroxy fatty acids.
Collapse
Affiliation(s)
- Yu Chyuan Heng
- Wilmar International Limited, 28 Biopolis Road, Singapore, 138568, Singapore.
| | - Garrett Wei Jie Wong
- Wilmar International Limited, 28 Biopolis Road, Singapore, 138568, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
| | - Sandra Kittelmann
- Wilmar International Limited, 28 Biopolis Road, Singapore, 138568, Singapore.
| |
Collapse
|
2
|
Tossetta G, Fantone S, Togni L, Santarelli A, Olivieri F, Marzioni D, Rippo MR. Modulation of NRF2/KEAP1 Signaling by Phytotherapeutics in Periodontitis. Antioxidants (Basel) 2024; 13:1270. [PMID: 39456522 PMCID: PMC11504014 DOI: 10.3390/antiox13101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Periodontitis affects up to 40% of adults over 60 years old and is a consequence of gingivitis. Periodontitis is characterized by a chronic inflammation, periodontal damage, and alveolar bone resorption. The nuclear factor erythroid 2-related factor 2 (NFE2L2 or NRF2)/Kelch-like ECH-Associated Protein 1 (KEAP1) (NRF2/KEAP1) signaling pathway plays a key role in periodontitis by modulating redox balance and inflammation of the periodontium. However, NRF2 expression is decreased in gingival tissues of patients with periodontitis while oxidative stress is significantly increased in this pathology. Oxidative stress and lipopolysaccharide (LPS) produced by gram-negative bacteria favor the production of inflammatory causing periodontal inflammation and favoring alveolar bone. In this review, we analyzed the current literature regarding the role of natural and synthetic compounds in modulating the NRF2/KEAP1 pathway in in vitro and in vivo models of periodontitis in order to evaluate new potential treatments of periodontitis that can improve the outcome of this disease.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Sonia Fantone
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (S.F.); (F.O.)
| | - Lucrezia Togni
- Department of Clinical Specialistic and Dental Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (L.T.); (A.S.)
| | - Andrea Santarelli
- Department of Clinical Specialistic and Dental Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (L.T.); (A.S.)
- Dentistry Clinic, National Institute of Health and Science of Aging, IRCCS INRCA, 60126 Ancona, Italy
| | - Fabiola Olivieri
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (S.F.); (F.O.)
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
- IRCCS INRCA, 60124 Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy;
| |
Collapse
|
3
|
Lejeune C, Abreu S, Guérard F, Askora A, David M, Chaminade P, Gakière B, Virolle M. Consequences of the deletion of the major specialized metabolite biosynthetic pathways of Streptomyces coelicolor on the metabolome and lipidome of this strain. Microb Biotechnol 2024; 17:e14538. [PMID: 39093579 PMCID: PMC11296114 DOI: 10.1111/1751-7915.14538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/13/2024] [Indexed: 08/04/2024] Open
Abstract
Chassis strains, derived from Streptomyces coelicolor M145, deleted for one or more of its four main specialized metabolites biosynthetic pathways (CPK, CDA, RED and ACT), in various combinations, were constructed for the heterologous expression of specialized metabolites biosynthetic pathways of various types and origins. To determine consequences of these deletions on the metabolism of the deleted strains comparative lipidomic and metabolomic analyses of these strains and of the original strain were carried out. These studies unexpectedly revealed that the deletion of the peptidic clusters, RED and/or CDA, in a strain deleted for the ACT cluster, resulted into a great increase in the triacylglycerol (TAG) content, whereas the deletion of polyketide clusters, ACT and CPK had no impact on TAG content. Low or high TAG content of the deleted strains was correlated with abundance or paucity in amino acids, respectively, reflecting high or low activity of oxidative metabolism. Hypotheses based on what is known on the bio-activity and the nature of the precursors of these specialized metabolites are proposed to explain the unexpected consequences of the deletion of these pathways on the metabolism of the bacteria and on the efficiency of the deleted strains as chassis strains.
Collapse
Affiliation(s)
- Clara Lejeune
- Institut de Biologie Intégrative de la Cellule (I2BC, UMR 9198), Université Paris‐Saclay, CEA, CNRS, Group MES (Métabolisme Energétique Des Streptomyces)Gif‐sur‐YvetteFrance
| | - Sonia Abreu
- UFR Pharmacie, Université Paris‐Saclay, CNRS, Group «Lipides, Systèmes Analytiques et Biologiques (Lip(Sys)»OrsayFrance
| | - Florence Guérard
- Institut Des Sciences Des Plantes (IPS2, UMR 9213), Université Paris‐Saclay, CNRS, Plateforme «SPOmics‐Métabolome»Gif‐sur‐YvetteFrance
| | - Ahmed Askora
- Institut de Biologie Intégrative de la Cellule (I2BC, UMR 9198), Université Paris‐Saclay, CEA, CNRS, Group MES (Métabolisme Energétique Des Streptomyces)Gif‐sur‐YvetteFrance
- Department of Botany and Microbiology, Faculty of ScienceZagazig UniversityZagazigEgypt
| | - Michelle David
- Institut de Biologie Intégrative de la Cellule (I2BC, UMR 9198), Université Paris‐Saclay, CEA, CNRS, Group MES (Métabolisme Energétique Des Streptomyces)Gif‐sur‐YvetteFrance
| | - Pierre Chaminade
- UFR Pharmacie, Université Paris‐Saclay, CNRS, Group «Lipides, Systèmes Analytiques et Biologiques (Lip(Sys)»OrsayFrance
| | - Bertrand Gakière
- Institut Des Sciences Des Plantes (IPS2, UMR 9213), Université Paris‐Saclay, CNRS, Plateforme «SPOmics‐Métabolome»Gif‐sur‐YvetteFrance
| | - Marie‐Joelle Virolle
- Institut de Biologie Intégrative de la Cellule (I2BC, UMR 9198), Université Paris‐Saclay, CEA, CNRS, Group MES (Métabolisme Energétique Des Streptomyces)Gif‐sur‐YvetteFrance
| |
Collapse
|
4
|
Ando M, Nagata K, Takeshita R, Ito N, Noguchi S, Minamikawa N, Kodama N, Yamamoto A, Yashiro T, Hachisu M, Ichihara G, Kishino S, Yamamoto M, Ogawa J, Nishiyama C. The gut lactic acid bacteria metabolite, 10-oxo- cis-6, trans-11-octadecadienoic acid, suppresses inflammatory bowel disease in mice by modulating the NRF2 pathway and GPCR-signaling. Front Immunol 2024; 15:1374425. [PMID: 38745644 PMCID: PMC11091332 DOI: 10.3389/fimmu.2024.1374425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
Various gut bacteria, including Lactobacillus plantarum, possess several enzymes that produce hydroxy fatty acids (FAs), oxo FAs, conjugated FAs, and partially saturated FAs from polyunsaturated FAs as secondary metabolites. Among these derivatives, we identified 10-oxo-cis-6,trans-11-octadecadienoic acid (γKetoC), a γ-linolenic acid (GLA)-derived enon FA, as the most effective immunomodulator, which inhibited the antigen-induced immunoactivation and LPS-induced production of inflammatory cytokines. The treatment with γKetoC significantly suppressed proliferation of CD4+ T cells, LPS-induced activation of bone marrow-derived dendritic cells (BMDCs), and LPS-induced IL-6 release from peritoneal cells, splenocytes, and CD11c+ cells isolated from the spleen. γKetoC also inhibited the release of inflammatory cytokines from BMDCs stimulated with poly-I:C, R-848, or CpG. Further in vitro experiments using an agonist of GPR40/120 suggested the involvement of these GPCRs in the effects of γKetoC on DCs. We also found that γKetoC stimulated the NRF2 pathway in DCs, and the suppressive effects of γKetoC and agonist of GPR40/120 on the release of IL-6 and IL-12 were reduced in Nrf2-/- BMDCs. We evaluated the role of NRF2 in the anti-inflammatory effects of γKetoC in a dextran sodium sulfate-induced colitis model. The oral administration of γKetoC significantly reduced body weight loss, improved stool scores, and attenuated atrophy of the colon, in wild-type C57BL/6 and Nrf2+/- mice with colitis. In contrast, the pathology of colitis was deteriorated in Nrf2-/- mice even with the administration of γKetoC. Collectively, the present results demonstrated the involvement of the NRF2 pathway and GPCRs in γKetoC-mediated anti-inflammatory responses.
Collapse
Affiliation(s)
- Miki Ando
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Kazuki Nagata
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Ryuki Takeshita
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Naoto Ito
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Sakura Noguchi
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Natsuki Minamikawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Naoki Kodama
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Asuka Yamamoto
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Takuya Yashiro
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Masakazu Hachisu
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Science, Tokyo University of Science, Chiba, Japan
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masayuki Yamamoto
- Department of Molecular Biochemistry, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
5
|
Abstract
Ferroptosis is a distinctive form of iron-dependent necrotic cell death, characterized by excessive lipid peroxidation on cellular membranes and compromised cellular antioxidant defenses. Multiple metabolic pathways, including iron and lipid metabolism, as well as antioxidant systems, contribute to the execution of ferroptosis. The gut microbiota exerts regulatory effects on ferroptosis through its microbial composition, biological functions, and metabolites. Notably, most pathogenic bacteria tend to promote ferroptosis, thereby inducing or exacerbating diseases, while most probiotics have been shown to protect against cell death. Given microbiota colonization in the gut, an intimate association is found between intestinal diseases and microbiota. This review consolidates the essential aspects of ferroptotic processes, emphasizing key molecules and delineating the intricate interplay between gut microbiota and ferroptosis. Moreover, this review underscores the potential utility of gut microbiota modulation in regulating ferroptosis for the treatment of intestinal diseases.
Collapse
Affiliation(s)
- Ting Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| |
Collapse
|
6
|
Xie R, Chen F, Ma Y, Hu W, Zheng Q, Cao J, Wu Y. Network pharmacology‒based analysis of marine cyanobacteria derived bioactive compounds for application to Alzheimer's disease. Front Pharmacol 2023; 14:1249632. [PMID: 37927608 PMCID: PMC10620974 DOI: 10.3389/fphar.2023.1249632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
In recent years, the Alzheimer's disease (AD) epidemic has become one of the largest global healthcare crises. Besides, the available systemic therapies for AD are still inadequate. Due to the insufficient therapeutic options, new treatment strategies are urgently needed to achieve a satisfactory therapeutic effect. Marine bio-resources have been accepted as one of the most economically viable and sustainable sources with potential applications for drug discovery and development. In this study, a marine cyanobacteria-Synechococcus sp. XM-24 was selected as the object of research, to systematically investigate its therapeutic potential mechanisms for AD. The major active compounds derived from the Synechococcus sp. biomass were identified via pyrolysis-gas chromatography-mass spectrometry (GC-MS), and 22 compounds were identified in this strain. The most abundant chemical compounds was (E)-octadec-11-enoic acid, with the peak area of 30.6%. Follow by tridecanoic acid, 12-methyl- and hexadecanoic acid, with a peak area of 23.26% and 18.23%, respectively. GC-MS analysis also identified indolizine, isoquinoline, 3,4-dihydro- and Phthalazine, 1-methyl-, as well as alkene and alkane from the strain. After the chemical toxicity test, 10 compounds were finally collected to do the further analysis. Then, network pharmacology and molecular docking were adopted to systematically study the potential anti-AD mechanism of these compounds. Based on the analysis, the 10 Synechococcus-derived active compounds could interact with 128 related anti-AD targets. Among them, epidermal growth factor receptor (EGFR), vascular endothelial growth factor A (VEGFA) and mitogen-activated protein kinase 3 (MAPK3) were the major targets. Furthermore, the compounds N-capric acid isopropyl ester, (E)-octadec-11-enoic acid, and 2H-Pyran-2,4(3H)-dione, dihydro-6-methyl- obtained higher degrees in the compounds-intersection targets network analysis, indicating these compounds may play more important role in the process of anti-AD. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these active compounds exert the anti-AD effects mainly through PI3K-Akt signaling pathway, neuroactive ligand-receptor interaction and ras signaling pathway. Our study identified Synechococcus-derived bioactive compounds have the potential for application to AD by targeting multiple targets and related pathways, which will provide a foundation for future research on applications of marine cyanobacteria in the functional drug industry.
Collapse
Affiliation(s)
- Rui Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Feng Chen
- Department of Pediatric Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yixuan Ma
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Wen Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Qiang Zheng
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jinguo Cao
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Yi Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| |
Collapse
|
7
|
Kumar H, Dhalaria R, Guleria S, Cimler R, Sharma R, Siddiqui SA, Valko M, Nepovimova E, Dhanjal DS, Singh R, Kumar V, Pathera AK, Verma N, Kaur T, Manickam S, Alomar SY, Kuča K. Anti-oxidant potential of plants and probiotic spp. in alleviating oxidative stress induced by H 2O 2. Biomed Pharmacother 2023; 165:115022. [PMID: 37336149 DOI: 10.1016/j.biopha.2023.115022] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023] Open
Abstract
Cells produce reactive oxygen species (ROS) as a metabolic by-product. ROS molecules trigger oxidative stress as a feedback response that significantly initiates biological processes such as autophagy, apoptosis, and necrosis. Furthermore, extensive research has revealed that hydrogen peroxide (H2O2) is an important ROS entity and plays a crucial role in several physiological processes, including cell differentiation, cell signalling, and apoptosis. However, excessive production of H2O2 has been shown to disrupt biomolecules and cell organelles, leading to an inflammatory response and contributing to the development of health complications such as collagen deposition, aging, liver fibrosis, sepsis, ulcerative colitis, etc. Extracts of different plant species, phytochemicals, and Lactobacillus sp (probiotic) have been reported for their anti-oxidant potential. In this view, the researchers have gained significant interest in exploring the potential plants spp., their phytochemicals, and the potential of Lactobacillus sp. strains that exhibit anti-oxidant properties and health benefits. Thus, the current review focuses on comprehending the information related to the formation of H2O2, the factors influencing it, and their pathophysiology imposed on human health. Moreover, this review also discussed the anti-oxidant potential and role of different extract of plants, Lactobacillus sp. and their fermented products in curbing H2O2‑induced oxidative stress in both in-vitro and in-vivo models via boosting the anti-oxidative activity, inhibiting of important enzyme release and downregulation of cytochrome c, cleaved caspases-3, - 8, and - 9 expression. In particular, this knowledge will assist R&D sections in biopharmaceutical and food industries in developing herbal medicine and probiotics-based or derived food products that can effectively alleviate oxidative stress issues induced by H2O2 generation.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala 147001, India
| | - Richard Cimler
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Ruchi Sharma
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Essigberg 3, 94315 Straubing, Germany.
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 81237, Bratislava, Slovakia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Vijay Kumar
- Central Ayurveda Research Institute, Jhansi 284003, Uttar Pradesh, India
| | | | - Narinder Verma
- School of Management and Liberal Arts, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Talwinder Kaur
- Department of Microbiology, DAV University, Sarmastpur, Jalandhar, Punjab, 144001, India
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, 18071 Granada, Spain; Biomedical Research Center, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic.
| |
Collapse
|
8
|
Bouchab H, Essadek S, El Kamouni S, Moustaid K, Essamadi A, Andreoletti P, Cherkaoui-Malki M, El Kebbaj R, Nasser B. Antioxidant Effects of Argan Oil and Olive Oil against Iron-Induced Oxidative Stress: In Vivo and In Vitro Approaches. Molecules 2023; 28:5924. [PMID: 37570894 PMCID: PMC10420636 DOI: 10.3390/molecules28155924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/13/2023] Open
Abstract
Recently, the study of the protective powers of medicinal plants has become the focus of several studies. Attention has been focused on the identification of new molecules with antioxidant and chelating properties to counter reactive oxygen species (ROS) involved as key elements in several pathologies. Considerable attention is given to argan oil (AO) and olive oil (OO) due to their particular composition and preventive properties. Our study aimed to determine the content of AO and OO on phenolic compounds, chlorophylls, and carotenoid pigments and their antioxidant potential by FRAP and DPPH tests. Thus, several metallic elements can induce oxidative stress, as a consequence of the formation of ROS. Iron is one of these metal ions, which participates in the generation of free radicals, especially OH from H2O2 via the Fenton reaction, initiating oxidative stress. To study the antioxidant potential of AO and OO, we evaluated their preventives effects against oxidative stress induced by ferrous sulfate (FeSO4) in the protozoan Tetrahymena pyriformis and mice. Then, we evaluated the activities of the enzymatic (superoxide dismutase (SOD), glutathione peroxidase (GPx)) and metabolite markers (lipid peroxidation (MDA) and glutathione (GSH)) of the antioxidant balance. The results of the antioxidant compounds show that both oils contain phenolic compounds and pigments. Moreover, AO and OO exhibit antioxidant potential across FRAP and DPPH assays. On the other hand, the results in Tetrahymena pyriformis and mice show a variation in the level of iron-changed SOD and GPx activities and MDA and GSH levels. By contrast, treating Tetrahymena pyriformis and mice with argan and olive oils shows significant prevention in the SOD and GPx activities. These results reveal that the iron-changed ROS imbalance can be counteracted by AO and OO, which is probably related to their composition, especially their high content of polyphenols, sterols, and tocopherols, which is underlined by their antioxidant activities.
Collapse
Affiliation(s)
- Habiba Bouchab
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco; (H.B.); (S.E.); (S.E.K.); (A.E.)
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco
| | - Soukaina Essadek
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco; (H.B.); (S.E.); (S.E.K.); (A.E.)
- Bio-PeroxIL Laboratory, EA7270, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France; (P.A.); (M.C.-M.)
| | - Soufiane El Kamouni
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco; (H.B.); (S.E.); (S.E.K.); (A.E.)
| | - Khadija Moustaid
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco;
| | - Abdelkhalid Essamadi
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco; (H.B.); (S.E.); (S.E.K.); (A.E.)
| | - Pierre Andreoletti
- Bio-PeroxIL Laboratory, EA7270, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France; (P.A.); (M.C.-M.)
| | - Mustapha Cherkaoui-Malki
- Bio-PeroxIL Laboratory, EA7270, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France; (P.A.); (M.C.-M.)
| | - Riad El Kebbaj
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco
| | - Boubker Nasser
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco; (H.B.); (S.E.); (S.E.K.); (A.E.)
| |
Collapse
|
9
|
Feng T, Mou L, Ou G, Liu L, Zhang Y, Hu D. Comparative analysis of toxicity and metabolomic profiling of rac-glufosinate and L-glufosinate in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106618. [PMID: 37451187 DOI: 10.1016/j.aquatox.2023.106618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023]
Abstract
Glufosinate is a chiral pesticide, with commercial formulations such as racemic glufosinate (rac-glufosinate) and pure L-glufosinate enantiomer (L-glufosinate) on the market. There has been little research on the difference in toxicity to non-target organisms between these two main ingredients. The effects of rac-glufosinate and L-glufosinate on glutathione reductase (GR), catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) levels in zebrafish were investigated in this study. The effect of two glufosinate agents at low concentrations (0.01 and 0.1 mg/L) on these four oxidative indicators was found to be significantly lower than that of high concentrations (1 and 10 mg/L). L-glufosinate had a stronger enhancing effect on CAT, GR, and MDA content than rac-glufosinate and a stronger inhibitory effect on SOD activity than rac-glufosinate. The researchers used ultra-high-performance liquid chromatography coupled with high-resolution mass spectroscopy metabolomics to compare rac-glufosinate and L-glufosinate for metabolic disorders in adult zebrafish. Stable and obvious metabolic maps of the two agents were obtained using multivariate statistical results, such as principal component analysis and orthogonal partial minimum discriminant analysis. Compared to the control group, the rac-glufosinate and L-glufosinate treatment groups shared 151 differential metabolites, which primarily affected zebrafish energy metabolism, amino acid metabolism, and other metabolic pathways. Caffeine metabolism and biotin metabolism were among the unique pathways disrupted in rac-glufosinate-exposed zebrafish. Contrarily, L-glufosinate treatment primarily affected eight metabolic pathways, including arginine biosynthesis, melanogenesis, and glutathione metabolism. These findings may provide more detailed information on the toxicity of rac-glufosinate and L-glufosinate in zebrafish, as well as some context for assessing the environmental risk of the two glufosinate agents to aquatic organisms.
Collapse
Affiliation(s)
- Tianyou Feng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Lianhong Mou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Guipeng Ou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ling Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yuping Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Deyu Hu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
10
|
Fujimoto D, Shinohara M, Kawamori H, Toba T, Kakizaki S, Nakamura K, Sasaki S, Hamana T, Fujii H, Osumi Y, Hayasaka N, Kishino S, Ogawa J, Hirata KI, Otake H. The relationship between unique gut microbiome-derived lipid metabolites and subsequent revascularization in patients who underwent percutaneous coronary intervention. Atherosclerosis 2023; 375:1-8. [PMID: 37216727 DOI: 10.1016/j.atherosclerosis.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Studies have recently revealed the linoleic acid metabolic pathway of Lactobacillus plantarum, the representative gut bacterium in human gastrointestinal tract, and the anti-inflammatory effects of metabolites in this pathway. However, no clinical trials have evaluated the association between these metabolites and revascularization in patients who underwent percutaneous coronary intervention (PCI). METHODS We retrospectively reviewed patients who underwent PCI with subsequent revascularization or coronary angiography (CAG) without revascularization. Patients with frozen blood samples at the index PCI and revascularization or follow-up CAG were enrolled. RESULTS Among 701 consecutive patients who underwent PCI, we enrolled 53 patients who underwent subsequent revascularization and 161 patients who underwent follow-up CAG without revascularization. Patients who underwent revascularization showed significantly lower plasma 10-oxo-octadecanoic acid (KetoB) levels (720.5 [551.6-876.5] vs. 818.4 [641.1-1103.6 pg/mL]; p = 0.01) at index PCI. Multivariate logistic regression analysis revealed that decreased plasma KetoB levels at the index PCI were independently associated with subsequent revascularization after PCI (odds ratio; 0.90 per 100 pg/mL increase, 95% confidence interval; 0.82-0.98). Additionally, in vitro experiments showed that the addition of purified KetoB suppressed the mRNA levels of IL-6 and IL-1β in macrophages and IL-1β mRNA in neutrophils. CONCLUSIONS Plasma KetoB level at index PCI was independently associated with subsequent revascularization after PCI, and KetoB could act as an anti-inflammatory lipid mediator in macrophages and neutrophils. The assessment of gut microbiome-derived metabolites may help predict revascularization after PCI.
Collapse
Affiliation(s)
- Daichi Fujimoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masakazu Shinohara
- Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Epidemiology, Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroyuki Kawamori
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayoshi Toba
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shunsuke Kakizaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koichi Nakamura
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoru Sasaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyo Hamana
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroyuki Fujii
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuto Osumi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naomi Hayasaka
- Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shigenobu Kishino
- Laboratory of Fermentation Physiology and Applied Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Jun Ogawa
- Laboratory of Fermentation Physiology and Applied Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiromasa Otake
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
11
|
Cuciniello R, Di Meo F, Filosa S, Crispi S, Bergamo P. The Antioxidant Effect of Dietary Bioactives Arises from the Interplay between the Physiology of the Host and the Gut Microbiota: Involvement of Short-Chain Fatty Acids. Antioxidants (Basel) 2023; 12:antiox12051073. [PMID: 37237938 DOI: 10.3390/antiox12051073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The maintenance of redox homeostasis is associated with a healthy status while the disruption of this mechanism leads to the development of various pathological conditions. Bioactive molecules such as carbohydrates accessible to the microbiota (MACs), polyphenols, and polyunsaturated fatty acids (PUFAs) are food components best characterized for their beneficial effect on human health. In particular, increasing evidence suggests that their antioxidant ability is involved in the prevention of several human diseases. Some experimental data indicate that the activation of the nuclear factor 2-related erythroid 2 (Nrf2) pathway-the key mechanism in the maintenance of redox homeostasis-is involved in the beneficial effects exerted by the intake of PUFAs and polyphenols. However, it is known that the latter must be metabolized before becoming active and that the intestinal microbiota play a key role in the biotransformation of some ingested food components. In addition, recent studies, indicating the efficacy of the MACs, polyphenols, and PUFAs in increasing the microbial population with the ability to yield biologically active metabolites (e.g., polyphenol metabolites, short-chain fatty acids (SCFAs)), support the hypothesis that these factors are responsible for the antioxidant action on the physiology of the host. The underlying mechanisms through which MACs, polyphenols, and PUFAs might influence the redox status have not been fully elucidated, but based on the efficacy of SCFAs as Nrf2 activators, their contribution to the antioxidant efficacy of dietary bioactives cannot be excluded. In this review, we aimed to summarize the main mechanisms through which MACs, polyphenols, and PUFAs can modulate the host's redox homeostasis through their ability to directly or indirectly activate the Nrf2 pathway. We discuss their probiotic effects and the role played by the alteration of the metabolism/composition of the gut microbiota in the generation of potential Nrf2-ligands (e.g., SCFAs) in the host's redox homeostasis.
Collapse
Affiliation(s)
- Rossana Cuciniello
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 111-80131 Naples, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Francesco Di Meo
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 111-80131 Naples, Italy
- Department of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Stefania Filosa
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 111-80131 Naples, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Stefania Crispi
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 111-80131 Naples, Italy
| | - Paolo Bergamo
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 111-80131 Naples, Italy
| |
Collapse
|
12
|
Deandra FA, Ketherin K, Rachmasari R, Sulijaya B, Takahashi N. Probiotics and metabolites regulate the oral and gut microbiome composition as host modulation agents in periodontitis: A narrative review. Heliyon 2023; 9:e13475. [PMID: 36820037 PMCID: PMC9937986 DOI: 10.1016/j.heliyon.2023.e13475] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is defined as an oral bacterial dysbiosis-induced persistent inflammation on dental supporting tissue resulting in periodontal tissue breakdown and alveolar bone destruction. The disease is initiated by the interaction between periodontopathogens and the host immune system. Its development and severity can be associated with several systemic diseases, such as cardiovascular disease (CVD), diabetes mellitus, and rheumatoid arthritis (RA). Moreover, the latest research has suggested that the oral and gut microbiome hypothesis lays the oral and systemic connection mechanism. Bacterial homeostasis and restoration in the oral cavity and intestine become therapeutics concepts. Concerning the treatment of periodontitis, a local inflammatory condition, prolonged systemic administration of antibiotics is no longer recommended due to bacterial resistance issues. Probiotics and several bioactive metabolites have been widely investigated to address the needs of host modulation therapy in periodontitis. Evidence suggests that the use of probiotics helps downregulate the inflammation process through the regulation of toll-like receptor 4 (TLR4) and the production of fatty acid, targeting reactive oxygen species (ROS). In brief, several herbals have anti-inflammatory properties by inhibiting pro-inflammatory cytokines and mediators, including mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB). Consistently, improvement of periodontal pocket depth (PPD) and gingival index (GI) was seen in a group given melatonin as an adjunct treatment. In all, this review will highlight host modulation agents regarding periodontitis therapy, plausible mechanisms on how probiotics and metabolites work on periodontal restoration, and their reported studies. Limitations given by published studies will be elaborated, while future directions will be proposed.
Collapse
Affiliation(s)
- Fathia Agzarine Deandra
- Postgraduate Program in Periodontology, Department of Periodontology, Universitas Indonesia, Jakarta, Indonesia
| | - Ketherin Ketherin
- Postgraduate Program in Periodontology, Department of Periodontology, Universitas Indonesia, Jakarta, Indonesia
| | - Rieska Rachmasari
- Postgraduate Program in Periodontology, Department of Periodontology, Universitas Indonesia, Jakarta, Indonesia
| | - Benso Sulijaya
- Department of Periodontology, Universitas Indonesia, Jakarta, Indonesia,Dental Division, Universitas Indonesia Hospital, Depok, West Java, Indonesia,Corresponding author. Department of Periodontology, Universitas Indonesia, Jakarta, Indonesia.
| | - Naoki Takahashi
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Japan
| |
Collapse
|
13
|
Lee HR, Kwon SY, Choi SA, Lee JH, Lee HS, Park JB. Valorization of Soy Lecithin by Enzyme Cascade Reactions Including a Phospholipase A2, a Fatty Acid Double-Bond Hydratase, and/or a Photoactivated Decarboxylase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10818-10825. [PMID: 36001340 DOI: 10.1021/acs.jafc.2c04012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A huge amount of phospholipids or lecithin is produced as a byproduct in the vegetable oil industry. However, most are just used as a feed additive. This study has focused on enzymatic valorization of lecithin. This was exploited by enzymatic transformation of soy lecithin into lysolecithin liposomes, including functional free fatty acids, hydroxy fatty acids, hydrocarbons, or secondary fatty alcohols. One of the representative examples was the preparation of lysolecithin liposomes containing secondary fatty alcohols [e.g., 9-Hydroxyheptadec-11-ene (9) and 9-heptadecanol (10)] by using a phospholipase A2 from Streptomyces violaceoruber, a fatty acid double-bond hydratase from Stenotrophomonas maltophilia, and a photoactivated decarboxylase from Chlorella variabilis NC64A. The engineered liposomes turned out to range ca. 144 nm in diameter by dynamic light scattering analysis. Thereby, this study will contribute to application of functional fatty acids and their derivatives as well as valorization of lecithin for the food and cosmetic industries.
Collapse
Affiliation(s)
- Hyo-Ran Lee
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Seung-Yeon Kwon
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Su-Ah Choi
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Jeong-Hoo Lee
- Docsmedi Co.,Ltd., 143 Gangseong-ro, Ilsanseo-gu, Goyang-si 10387, Gyeonggi-do, Republic of Korea
| | - Hye-Seong Lee
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Jin-Byung Park
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
14
|
Blazheva D, Mihaylova D, Averina OV, Slavchev A, Brazkova M, Poluektova EU, Danilenko VN, Krastanov A. Antioxidant Potential of Probiotics and Postbiotics: A Biotechnological Approach to Improving Their Stability. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422090058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
YU C, Liu Y, Xuemei Z, Ma A, Jianxin T, Yiling T. Fermented Carrot Pulp Regulates the Dysfunction of Murine Intestinal Microbiota. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2479956. [PMID: 35340216 PMCID: PMC8942650 DOI: 10.1155/2022/2479956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 01/04/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022]
Abstract
It was the focus of attention that probiotic control drink was packed with prebiotic nutrients and lactic acid bacteria. So, this study is aimed at revealing that the fermented carrot pulp regulation and protection function to the intestinal microecological disorders usually induced by antibiotic treatment. First, we study on lactobacillus fermentation conditions and effects on the secondary metabolism of fermented carrot juice, get its phenolic acids up, and get its flavonoids down. Then, establishment of the dysbacteriosis mouse model was used to validate the fermented carrot pulp prevention and treatment of intestinal microbiota imbalance. After the antibiotic treatment, the mice showed impotence, laziness, slow movement, weight loss, thin feces, dull hair, and anal redness, while the mice in the control group were all normal in terms of the mental state, diet, weight, and bowl movement. Along with the treatment, the abnormal conditions of the mice in the model group and natural recovery group improved in different degrees, indicating that the fermentation treatment is of help to the intestinal microbiota recovery. The fermentation-treated group of mice recovered close to normal that the diarrhea disappeared, and the weight gain, mental state, and the feces became normal. The serum antioxidant (SOD, GSH, and MDA) levels of the mice were checked. The superoxide dismutase (SOD) levels and glutathione (GSH) levels in the ordinary fermentation-treated group and probiotic fermentation-treated group were significantly increased compare to the natural recovery group. The malondialdehyde (MDA) levels showed great differences between the fermentation-treated groups and the blank group. At last, the 16sRNA analysis revealed that the microbiota richness and diversity in probiotic fermentation (J) are much higher than those in the model group (H), ordinary fermentation group (I), and blank group (G). Groups J and I are of significantly higher antioxidant level than group H; however, only the glutathione (GSH) level in group J increased dramatically but not those in the other three groups. Antibiotic treatment-induced mouse intestinal microecological disorder reduce the microbiota richness and diversity. Prebiotics fermented carrot pulp treatment can help in the recovery from the microbiota richness and diversity level prior to the antibiotic treatment, which suggests it can regulate and protect the murine intestinal microbiome.
Collapse
Affiliation(s)
- Chenchen YU
- College of Food Science and Technology, Hebei Agricultural University, Baoding Hebei, China
| | - Ying Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding Hebei, China
| | - Zhang Xuemei
- College of Forestry, Hebei Agricultural University, Baoding Hebei, China
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Tan Jianxin
- College of Food Science and Technology, Hebei Agricultural University, Baoding Hebei, China
| | - Tian Yiling
- College of Food Science and Technology, Hebei Agricultural University, Baoding Hebei, China
| |
Collapse
|
16
|
Morozumi S, Ueda M, Okahashi N, Arita M. Structures and functions of the gut microbial lipidome. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159110. [PMID: 34995792 DOI: 10.1016/j.bbalip.2021.159110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022]
Abstract
Microbial lipids provide signals that are responsible for maintaining host health and controlling disease. The differences in the structures of microbial lipids have been shown to alter receptor selectivity and agonist/antagonist activity. Advanced lipidomics is an emerging field that helps to elucidate the complex bacterial lipid diversity. The use of cutting-edge technologies is expected to lead to the discovery of new functional metabolites involved in host homeostasis. This review aims to describe recent updates on functional lipid metabolites derived from gut microbiota, their structure-activity relationships, and advanced lipidomics technologies.
Collapse
Affiliation(s)
- Satoshi Morozumi
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Masahiro Ueda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; JSR Bioscience and Informatics R&D Center, JSR Corporation, 3-103-9 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Nobuyuki Okahashi
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
17
|
Recent trends in the field of lipid engineering. J Biosci Bioeng 2022; 133:405-413. [DOI: 10.1016/j.jbiosc.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 12/14/2022]
|
18
|
Wu H, Tang D, Yun M, Liu H, Huang S, Yun C, Hocher B, Zhang X, Liu F, Yin L, Dai Y. Metabolic Dysfunctions of Intestinal Fatty Acids and Tryptophan Reveal Immuno-Inflammatory Response Activation in IgA Nephropathy. Front Med (Lausanne) 2022; 9:811526. [PMID: 35186998 PMCID: PMC8850467 DOI: 10.3389/fmed.2022.811526] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/04/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Immunoglobulin A nephropathy (IgAN) is the most common form of primary glomerulonephritis. Although an important link between intestinal metabolites and immune activity is widely established, the metabolic profile of IgAN is still poorly understood, which severely limits the mechanistic studies and therapy of IgAN. METHODS The diversity of intestinal flora and relative abundance of metabolites in IgAN patients and healthy subjects were measured by 16s ribosomal RNA gene sequencing combined with liquid chromatography tandem-mass spectrometry. The levels of serum Gd-IgA1, IL-6, IL-10, IL-22, and TNF-a were tested by ELISA. We employed the tryptophan-targeted UHPLC-MRM-MS approach to assess the content of tryptophan metabolites quantitatively. RESULTS Intestinal fatty acid levels, mainly unsaturated fatty acids, were observed to be dramatically decreased in IgAN patients. Disorders in linoleic acid and arachidonic acid metabolism, metabolic imbalances of anti-/pro- inflammatory fatty acid metabolites, and intestinal AhR signaling deficiency might reflect the damage of the intestinal mucosal barrier in IgAN patients. In addition, we found that high levels of Gd-IgA1, IL-22, and TNF-α were associated with the activity of the tryptophan-kynurenine metabolic pathway, as well as lower levels of 3-indolepropionic acid. 3-indolepropionic acid, kynurenine, and indoleacrylic acid had synergistic effects on regulating immuno-inflammatory responses in IgAN patients. CONCLUSIONS The metabolic characteristic of fatty acids and tryptophan in the intestinal system is disturbed in IgAN patients, leading to active immune-inflammatory reactions.
Collapse
Affiliation(s)
- Hongwei Wu
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.,Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China.,Department of Medicine Nephrology, University Medical Centre Mannheim, Heidelberg, Germany
| | - Donge Tang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Manhua Yun
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Haiping Liu
- The Second People's Hospital of Lianping County, Guangdong, China
| | - Shaoxing Huang
- The Second People's Hospital of Lianping County, Guangdong, China
| | - Chen Yun
- Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Berthold Hocher
- Department of Medicine Nephrology, University Medical Centre Mannheim, Heidelberg, Germany.,Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Xinzhou Zhang
- Key Renal Laboratory of Shenzhen, Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Fanna Liu
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Lianghong Yin
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yong Dai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
19
|
Song J, Qiu H, Du P, Mou F, Nie Z, Zheng Y, Wang M. Polyphenols extracted from Shanxi-aged vinegar exert hypolipidemic effects on OA-induced HepG2 cells via the PPARα-LXRα-ABCA1 pathway. J Food Biochem 2022; 46:e14029. [PMID: 35023169 DOI: 10.1111/jfbc.14029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/11/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022]
Abstract
Hyperlipidemia is one of the key risk factors causing many chronic diseases, and lowering blood lipid levels can prevent many diseases. In this paper, a hyperlipidemic cell model of oleic acid (OA) induced hepatocellular carcinoma cells (HepG2) was established using polyphenols extracted from Shanxi-aged vinegar (SAVEP). The effects of SAVEP on nuclear damage, mitochondrial membrane potential, apoptosis, cellular lipid deposition, and lipid metabolism protein expression in HepG2 hyperlipidemic cells were examined to investigate the lipid-lowering mechanism of SAVEP at the cellular level. The results showed that SAVEP could reduce the content of TC/TG index, repair the nuclear damage, reduce lipid accumulation and finally decrease the rate of apoptosis by up-regulating the expression of key proteins such as PPARα, LXRα, and ABCA1 in the process of lipid metabolism. PRACTICAL APPLICATIONS: In this thesis, the hypolipidemic activity of polyphenol extracts from Shanxi-aged vinegar was analyzed on the level of HepG2 cells. The hypolipidemic mechanism of oxidative stress, lipid metabolism and inflammatory stress was also elucidated. It provided a theoretical basis for the in-depth understanding of the hypolipidemic health effects of Shanxi-aged vinegar.
Collapse
Affiliation(s)
- Jia Song
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Huirui Qiu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Peng Du
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Fangming Mou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Zhiqiang Nie
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Yu Zheng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
20
|
Polyunsaturated Fatty Acids as Prebiotics: Innovation or Confirmation? Foods 2022; 11:foods11020146. [PMID: 35053879 PMCID: PMC8774454 DOI: 10.3390/foods11020146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/01/2023] Open
Abstract
The International Scientific Association for Probiotics and Prebiotics (ISAPP), in its last consensus statement about prebiotics, defined polyunsaturated fatty acids (PUFAs) as “candidate prebiotics” due to a lack of complete scientific evidence. Previous studies have demonstrated the ability of microbiota to metabolize PUFAs, although the role of the resulting metabolites in the host is less known. Recent partial evidence shows that these metabolites can have important health effects in the host, reinforcing the concept of the prebiotic action of PUFAs, despite the data being mostly related to omega-6 linoleic acid and to lactobacilli taxon. However, considering that the symbionts in our gut benefit from the nutritional molecules that we include in our diet, and that bacteria, like all living organisms, cannot benefit from a single nutritional molecule, the concept of the “correct prebiotic diet” should be the new frontier in the field of gut microbiota research.
Collapse
|
21
|
Uerlings J, Arévalo Sureda E, Schroyen M, Kroeske K, Tanghe S, De Vos M, Bruggeman G, Wavreille J, Bindelle J, Purcaro G, Everaert N. Impact of Citrus Pulp or Inulin on Intestinal Microbiota and Metabolites, Barrier, and Immune Function of Weaned Piglets. Front Nutr 2021; 8:650211. [PMID: 34926538 PMCID: PMC8679862 DOI: 10.3389/fnut.2021.650211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 10/25/2021] [Indexed: 01/11/2023] Open
Abstract
We investigated the use of citrus pulp (CP) as a novel prebiotic capable of exerting microbiota and immunomodulating capacities to alleviate weaning stress. Inulin (IN), a well-known prebiotic, was used for comparison. Hundred and 28 male weaned piglets of 21 days old were assigned to 32 pens of 4 piglets each. Piglets were assigned to one of the four treatments, i.e., control, IN supplemented at 0.2% (IN0.2%), and CP supplemented either at 0.2% (CP0.2%) or at 2% (CP2%). On d10–11 and d31–32 post-weaning, one pig per pen was euthanized for intestinal sampling to evaluate the growth performance, chyme characteristics, small intestinal morphology, colonic inflammatory response and barrier integrity, metabolite profiles [gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS)], and microbial populations. The IN treatment and the two CP treatments induced higher small intestinal villus height to crypt depth ratios in comparison with the control diet at both sampling times. All treatments decreased acidic goblet cell absolute counts in the crypts in comparison to the control diet of the duodenum on d10–11 and d31–32. The gene expression of β-defensin 2 was downregulated in colonic tissues following the IN and CP2% inclusion on d31–32. On d31–32, piglets fed with IN and CP0.2% showed lower mRNA levels of occludin and claudin-3, respectively. Not surprisingly, flavonoids were observed in the colon in the CP treatments. Increased colonic acetate proportions on d10–11, at the expense of branched-chain fatty acid (BCFA) levels, were observed following the CP2% supplementation compared to the control diet, inferring a reduction of proteolytic fermentation in the hindgut. The beneficial microbial community Faecalibacterium spp. was promoted in the colon of piglets fed with CP2% on d10–11 (p = 0.04; false discovery rate (FDR) non-significant) and on d31–32 (p = 0.03; FDR non-significant) in comparison with the control diet. Additionally, on d31–32, CP2% increased the relative abundance of Megasphaera spp. compared to control values (p = 0.03; FDR non-significant). In conclusion, CP2% promoted the growth of beneficial bacterial communities in both post-weaning time points, modulating colonic fermentation patterns in the colon. The effects of CP supplementation were similar to those of IN and showed the potential as a beneficial feed supplement to alleviate weaning stress.
Collapse
Affiliation(s)
- Julie Uerlings
- Precision Livestock and Nutrition Unit, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.,Research Foundation for Industry and Agriculture, National Scientific Research Foundation (FRIA-FNRS), Brussels, Belgium
| | - Ester Arévalo Sureda
- Precision Livestock and Nutrition Unit, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Kikianne Kroeske
- Precision Livestock and Nutrition Unit, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.,Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | | | | | | | - José Wavreille
- Production and Sectors Department, Walloon Agricultural Research Center, Gembloux, Belgium
| | - Jérôme Bindelle
- Precision Livestock and Nutrition Unit, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Giorgia Purcaro
- Analytical Chemistry Lab, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.,Animal and Human Health Engineering, Department of Biosystems, Katholieke Universiteit Leuven, Heverlee, Belgium
| |
Collapse
|
22
|
Antioxidative effect of soybean milk fermented by Lactobacillus plantarum Y16 on 2, 2 –azobis (2-methylpropionamidine) dihydrochloride (ABAP)-damaged HepG2 cells. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Modulatory role of dietary polyunsaturated fatty acids in Nrf2-mediated redox homeostasis. Prog Lipid Res 2020; 80:101066. [DOI: 10.1016/j.plipres.2020.101066] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
|
24
|
Hosomi K, Kiyono H, Kunisawa J. Fatty acid metabolism in the host and commensal bacteria for the control of intestinal immune responses and diseases. Gut Microbes 2020; 11:276-284. [PMID: 31120334 PMCID: PMC7524326 DOI: 10.1080/19490976.2019.1612662] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Intestinal tissue has a specialized immune system that exhibits an exquisite balance between active and suppressive responses important for the maintenance of health. Intestinal immunity is functionally affected by both diet and gut commensal bacteria. Here, we review the effects of fatty acids on the regulation of intestinal immunity and immunological diseases, revealing that dietary fatty acids and their metabolites play an important role in the regulation of allergy, inflammation, and immunosurveillance in the intestine. Several lines of evidence have revealed that some dietary fatty acids are converted to biologically active metabolites by enzymes not only in the host but also in the commensal bacteria. Thus, biological interaction between diet and commensal bacteria could form the basis of a new era in the control of host immunity and its associated diseases.
Collapse
Affiliation(s)
- Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Osaka, Japan
| | - Hiroshi Kiyono
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan,IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan,Graduate School of Medicine, Chiba University, Chiba, Japan,Department of Medicine, School of Medicine and CU-UCSD Center for Mucosal Immunology, Allergy and Vaccine, University of California, California, USA
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Osaka, Japan,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan,Graduate School of Medicine, Graduate School of Pharmaceutical Sciences, Graduate School of Dentistry, Osaka University, Osaka, Japan,Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Hyogo, Japan,CONTACT Jun Kunisawa Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki City, Osaka567-0085, Japan
| |
Collapse
|
25
|
Sulijaya B, Takahashi N, Yamazaki K. Lactobacillus-Derived Bioactive Metabolites for the Regulation of Periodontal Health: Evidences to Clinical Setting. Molecules 2020; 25:molecules25092088. [PMID: 32365716 PMCID: PMC7248875 DOI: 10.3390/molecules25092088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/26/2022] Open
Abstract
Background: Gut microbiota plays a pivotal role in regulating host metabolism that affects the systemic health. To date, several studies have confirmed the fact that microbiota interacts with host, modulating immunity, controlling the homeostasis environment, and maintaining systemic condition. Recent studies have focused on the protective function of poly unsaturated fatty acids, 10-oxo-trans-11-oxadecenoic acid (KetoC) and 10-hydroxy-cis-12-octadecenoic acid (HYA), generated by gut microbiota on periodontal disease. Nevertheless, the mechanism remains unclear as investigations are limited to in vivo and in vitro studies. In this present review, we found that the administration of metabolites, KetoC and HYA, by a probiotic gut microbiota Lactobacillus plantarum from linoleic acid is found to inhibit the oxidation process, possess an antimicrobial function, and prevent the inflammation. These findings suggest the promising use of functional lipids for human health. Conclusion: Protective modalities of bioactive metabolites may support periodontal therapy by suppressing bacterial dysbiosis and regulating periodontal homeostasis in the clinical setting.
Collapse
Affiliation(s)
- Benso Sulijaya
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; or
| | - Naoki Takahashi
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan;
| | - Kazuhisa Yamazaki
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Correspondence: ; Tel.: +81-25-227-0744
| |
Collapse
|
26
|
Sofyana NT, Zheng J, Manabe Y, Yamamoto Y, Kishino S, Ogawa J, Sugawara T. Gut microbial fatty acid metabolites (KetoA and KetoC) affect the progression of nonalcoholic steatohepatitis and reverse cholesterol transport metabolism in mouse model. Lipids 2020; 55:151-162. [PMID: 32040876 DOI: 10.1002/lipd.12219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 01/05/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a common liver disease that occurs in both alcoholics and nonalcoholics. Oxidative stress is a possible causative factor for liver diseases including NASH. Gut microorganisms, especially lactic acid bacteria, can produce unique fatty acids, including hydroxy, oxo, conjugated, and partially saturated fatty acids. The oxo fatty acid 10-oxo-11(E)-octadecenoic acid (KetoC) provides potent cytoprotective effects against oxidative stress through activation of Nrf2-ARE pathway. The aim of this study was to explore the preventive and therapeutic effects of gut microbial fatty acid metabolites in a NASH mouse model. The mice were divided into 3 experimental groups and fed as follows: (1) high-fat diet (HFD) (2) HFD mixed with 0.1% KetoA (10-oxo-12(Z)-octadecenoic acid), and (3) HFD mixed with 0.1% KetoC. After 3 weeks of feeding, plasma parameters, liver histology, and mRNA expression of multiple genes were assessed. There was hardly any difference in fat accumulation in the histological study; however, no ballooning occurred in 2/5 mice of KetoC group. Bridging fibrosis was not observed in the KetoA group, although KetoA administration did not significantly suppress fibrosis score (p = 0.10). In addition, KetoC increased the expression level of HDL related genes and HDL cholesterol levels in the plasma. These results indicated that KetoA and KetoC may partly affect the progression of NASH in mice models.
Collapse
Affiliation(s)
- Neng Tanty Sofyana
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Jiawen Zheng
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuki Manabe
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuta Yamamoto
- Department of Anatomy and Cell Biology, Wakayama Medical University, 580 Mikazura, Wakayama-shi, 641-0011, Japan
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tatsuya Sugawara
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
27
|
Yokoji-Takeuchi M, Takahashi N, Yamada-Hara M, Sulijaya B, Tsuzuno T, Aoki-Nonaka Y, Tabeta K, Kishino S, Ogawa J, Yamazaki K. A bacterial metabolite induces Nrf2-mediated anti-oxidative responses in gingival epithelial cells by activating the MAPK signaling pathway. Arch Oral Biol 2020; 110:104602. [DOI: 10.1016/j.archoralbio.2019.104602] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/06/2019] [Accepted: 11/04/2019] [Indexed: 12/25/2022]
|
28
|
Sulijaya B, Yamada‐Hara M, Yokoji‐Takeuchi M, Matsuda‐Matsukawa Y, Yamazaki K, Matsugishi A, Tsuzuno T, Sato K, Aoki‐Nonaka Y, Takahashi N, Kishino S, Ogawa J, Tabeta K, Yamazaki K. Antimicrobial function of the polyunsaturated fatty acid KetoC in an experimental model of periodontitis. J Periodontol 2019; 90:1470-1480. [DOI: 10.1002/jper.19-0130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Benso Sulijaya
- Research Unit for Oral‐Systemic ConnectionDivision of Oral Science for Health PromotionNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
- Department of PeriodontologyFaculty of DentistryUniversitas Indonesia Jakarta Indonesia
| | - Miki Yamada‐Hara
- Research Unit for Oral‐Systemic ConnectionDivision of Oral Science for Health PromotionNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
- Research Center for Advanced Oral ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Mai Yokoji‐Takeuchi
- Research Unit for Oral‐Systemic ConnectionDivision of Oral Science for Health PromotionNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Yumi Matsuda‐Matsukawa
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Kyoko Yamazaki
- Research Unit for Oral‐Systemic ConnectionDivision of Oral Science for Health PromotionNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Aoi Matsugishi
- Research Unit for Oral‐Systemic ConnectionDivision of Oral Science for Health PromotionNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Takahiro Tsuzuno
- Research Unit for Oral‐Systemic ConnectionDivision of Oral Science for Health PromotionNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Keisuke Sato
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Yukari Aoki‐Nonaka
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Naoki Takahashi
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
- Research Center for Advanced Oral ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Shigenobu Kishino
- Division of Applied Life SciencesGraduate School of AgricultureKyoto University Kyoto Japan
| | - Jun Ogawa
- Division of Applied Life SciencesGraduate School of AgricultureKyoto University Kyoto Japan
| | - Koichi Tabeta
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Kazuhisa Yamazaki
- Research Unit for Oral‐Systemic ConnectionDivision of Oral Science for Health PromotionNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| |
Collapse
|
29
|
Mu G, Li H, Tuo Y, Gao Y, Zhang Y. Antioxidative effect of Lactobacillus plantarum Y44 on 2,2′-azobis(2-methylpropionamidine) dihydrochloride (ABAP)-damaged Caco-2 cells. J Dairy Sci 2019; 102:6863-6875. [DOI: 10.3168/jds.2019-16447] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/05/2019] [Indexed: 01/17/2023]
|
30
|
Sulijaya B, Takahashi N, Yamazaki K. Host modulation therapy using anti-inflammatory and antioxidant agents in periodontitis: A review to a clinical translation. Arch Oral Biol 2019; 105:72-80. [PMID: 31288144 DOI: 10.1016/j.archoralbio.2019.07.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To highlight the shifting paradigm of periodontitis, describe mechanism of periodontal bone destruction, and propose an updated host modulation therapy (HMT) strategy. To add further clinical relevance, related studies investigating the efficacy of several HMT agents in periodontitis will be discussed. DESIGN Literature searches were conducted from articles published in PubMed using keywords "periodontal disease AND periodontitis AND host modulation therapy AND anti-inflammatory AND antioxidant", and then the findings were comprehensively summarized and elaborated. RESULT Accumulating evidence indicates that periodontitis is no longer defined solely as a pathogen-induced disease; rather, it is now recognized as a consequence of uncontrolled immune response and oxidative stress leading to periodontal tissue damage. Although periodontopathic bacteria initiate the disease, inflammation and oxidative stress were reported to be the main causes for the severity of tissue destruction. Thus, since the concept of periodontitis has shifted, our approach to its management needs to be adjusted to accommodate the latest paradigm. Nowadays, the modulation of inflammation and oxidative stress is considered a target of HMT. HMT agents, such as probiotics, anti-inflammatory drugs, anti-chemokines, lipid mediators, and bio-active fatty acids, have been extensively investigated for their remarkable functions in modulating the immune response and providing antioxidant effects. CONCLUSION Findings from in vitro, in vivo, and human studies frequently demonstrate positive association by the administration of HMT in periodontitis. HMT strategy targeted on anti-inflammatory and antioxidant in periodontitis might serve as an excellent therapeutic approach to reach the level of clinical benefit.
Collapse
Affiliation(s)
- Benso Sulijaya
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Periodontology, Department of Oral Biological Science, Niigata University Faculty of Dentistry, Niigata, Japan; Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Naoki Takahashi
- Division of Periodontology, Department of Oral Biological Science, Niigata University Faculty of Dentistry, Niigata, Japan; Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuhisa Yamazaki
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
31
|
Sulijaya B, Takahashi N, Yamazaki K, Yamazaki K. Nutrition as Adjunct Therapy in Periodontal Disease Management. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40496-019-0216-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Song M, Chan AT. Environmental Factors, Gut Microbiota, and Colorectal Cancer Prevention. Clin Gastroenterol Hepatol 2019; 17:275-289. [PMID: 30031175 PMCID: PMC6314893 DOI: 10.1016/j.cgh.2018.07.012] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
Abstract
The substantial burden of colorectal cancer and increasing trend in young adults highlight the importance of lifestyle modification as a complement to screening for colorectal cancer prevention. Several dietary and lifestyle factors have been implicated in the development of colorectal cancer, possibly through the intricate metabolic and inflammatory mechanisms. Likewise, as a key metabolic and immune regulator, the gut microbiota has been recognized to play an important role in colorectal tumorigenesis. Increasing data support that environmental factors are crucial determinants for the gut microbial composition and function, whose alterations induce changes in the host gene expression, metabolic regulation, and local and systemic immune response, thereby influencing cancer development. Here, we review the epidemiologic and mechanistic evidence regarding the links between diet and lifestyle and the gut microbiota in the development of colorectal cancer. We focus on factors for which substantial data support their importance for colorectal cancer and their potential role in the gut microbiota, including overweight and obesity, physical activity, dietary patterns, fiber, red and processed meat, marine omega-3 fatty acid, alcohol, and smoking. We also briefly describe other colorectal cancer-preventive factors for which the links with the gut microbiota have been suggested but remain to be mechanistically characterized, including vitamin D status, dairy consumption, and metformin use. Given limitations in available evidence, we highlight the need for further investigations in the relationship between environmental factors, gut microbiota, and colorectal cancer, which may lead to development and clinical translation of potential microbiota-based strategies for cancer prevention.
Collapse
Affiliation(s)
- Mingyang Song
- Departments of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA
| | - Andrew T. Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
33
|
Hira T, Ogasawara S, Yahagi A, Kamachi M, Li J, Nishimura S, Sakaino M, Yamashita T, Kishino S, Ogawa J, Hara H. Novel Mechanism of Fatty Acid Sensing in Enteroendocrine Cells: Specific Structures in Oxo-Fatty Acids Produced by Gut Bacteria Are Responsible for CCK Secretion in STC-1 Cells via GPR40. Mol Nutr Food Res 2018; 62:e1800146. [DOI: 10.1002/mnfr.201800146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/19/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Tohru Hira
- Research Faculty of Agriculture; Hokkaido University; Sapporo 060-8589 Japan
| | - Shono Ogasawara
- Graduate School of Agriculture; Hokkaido University; Sapporo 060-8589 Japan
| | - Asuka Yahagi
- Graduate School of Agriculture; Hokkaido University; Sapporo 060-8589 Japan
| | - Minami Kamachi
- Graduate School of Agriculture; Hokkaido University; Sapporo 060-8589 Japan
| | - Jiaxin Li
- School of Agriculture; Hokkaido University; Sapporo 060-8589 Japan
| | - Saki Nishimura
- Fundamental Research Laboratory, Research and Development Division; J-Oil Mills, Inc.; Yokohama 230-0053 Japan
| | - Masayoshi Sakaino
- Fundamental Research Laboratory, Research and Development Division; J-Oil Mills, Inc.; Yokohama 230-0053 Japan
| | - Takatoshi Yamashita
- Fundamental Research Laboratory, Research and Development Division; J-Oil Mills, Inc.; Yokohama 230-0053 Japan
| | - Shigenobu Kishino
- Graduate School of Agriculture; Kyoto University; Kyoto 606-8502 Japan
| | - Jun Ogawa
- Graduate School of Agriculture; Kyoto University; Kyoto 606-8502 Japan
| | - Hiroshi Hara
- Research Faculty of Agriculture; Hokkaido University; Sapporo 060-8589 Japan
| |
Collapse
|
34
|
Finamore A, Ambra R, Nobili F, Garaguso I, Raguzzini A, Serafini M. Redox Role of Lactobacillus casei Shirota Against the Cellular Damage Induced by 2,2'-Azobis (2-Amidinopropane) Dihydrochloride-Induced Oxidative and Inflammatory Stress in Enterocytes-Like Epithelial Cells. Front Immunol 2018; 9:1131. [PMID: 29881384 PMCID: PMC5976738 DOI: 10.3389/fimmu.2018.01131] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/04/2018] [Indexed: 12/27/2022] Open
Abstract
In western societies where most of the day is spent in the postprandial state, the existence of oxidative and inflammatory stress conditions makes postprandial stress an important factor involved in the development of cardiovascular risk factors. A large body of evidence have been accumulated on the anti-inflammatory effects of probiotics, but no information is available on the mechanisms through which intestinal microbiota modulates redox unbalance associated with inflammatory stress. Here, we aimed to investigate the ability of Lactobacillus casei Shirota (LS) to induce an antioxidant response to counteract oxidative and inflammatory stress in an in vitro model of enterocytes. Our results show that pretreatment of enterocytes with LS prevents membrane barrier disruption and cellular reactive oxygen species (ROS) accumulation inside the cells, modulates the expression of the gastro-intestinal glutathione peroxidase (GPX2) antioxidant enzyme, and reduces p65 phosphorylation, supporting the involvement of the Nfr2 and nuclear factor kappa B pathways in the activation of antioxidant cellular defenses by probiotics. These results suggest, for the first time, a redox mechanism by LS in protecting intestinal cells from AAPH-induced oxidative and inflammatory stress.
Collapse
Affiliation(s)
- Alberto Finamore
- Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Roberto Ambra
- Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Fabio Nobili
- Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Ivana Garaguso
- Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Anna Raguzzini
- Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Mauro Serafini
- Functional Foods and Metabolic Stress Prevention Laboratory, Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
35
|
Sulijaya B, Takahashi N, Yamada M, Yokoji M, Sato K, Aoki-Nonaka Y, Nakajima T, Kishino S, Ogawa J, Yamazaki K. The anti-inflammatory effect of 10-oxo-trans-11-octadecenoic acid (KetoC) on RAW 264.7 cells stimulated with Porphyromonas gingivalis lipopolysaccharide. J Periodontal Res 2018; 53:777-784. [PMID: 29687443 DOI: 10.1111/jre.12564] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND There is rapidly developing interest into the role of several anti-inflammatory agents to resolve inflammation in periodontal disease. A bioactive polyunsaturated fatty acid, 10-oxo-trans-11-octadecenoic acid (KetoC), is known to have various beneficial physiological effects; however, the effect of KetoC on inflammation remains unclear. Here, we investigated the effect of KetoC on RAW 264.7 cells stimulated with Porphyromonas gingivalis lipopolysaccharide, and explored the intracellular mechanism responsible for its anti-inflammatory effects. METHODS RAW 264.7 cells were pre-treated with or without KetoC, and then stimulated with or without P. gingivalis lipopolysaccharide. Levels of tumor necrosis factor α (TNFα), interleukin (IL)-6 and IL-1β were determined by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Specific antagonists for G protein-coupled receptor (GPR)40 and GPR120 were used to clarify the receptor for KetoC. The intracellular mechanism was investigated using western blotting analysis to separate nuclear and cytosolic NF-κB p65 protein. RESULT KetoC (5 μmol/L) was not toxic to RAW 264.7 cells, and significantly reduced the expression of TNFα and IL-6 mRNA and protein, and IL-1β mRNA. No protein production of IL-1β was observed. Additionally, when bound to GPR120, KetoC trended to downregulate nuclear NF-κB p65 protein levels. However, the antagonist for GPR40 failed to diminish the action of KetoC. CONCLUSION KetoC suppressed the proinflammatory cytokines TNFα, IL-6 and IL-1β via NF-κB p65, by binding to its receptor GPR120. KetoC is a promising candidate in future studies as a bioactive anti-inflammatory agent in treating periodontal disease.
Collapse
Affiliation(s)
- B Sulijaya
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - N Takahashi
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - M Yamada
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - M Yokoji
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - K Sato
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Y Aoki-Nonaka
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - T Nakajima
- Division of Dental Educational Research Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - S Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - J Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - K Yamazaki
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
36
|
Filannino P, Di Cagno R, Trani A, Cantatore V, Gambacorta G, Gobbetti M. Lactic acid fermentation enriches the profile of biogenic compounds and enhances the functional features of common purslane ( Portulaca oleracea L.). J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
37
|
Diet, Gut Microbiota, and Colorectal Cancer Prevention: A Review of Potential Mechanisms and Promising Targets for Future Research. CURRENT COLORECTAL CANCER REPORTS 2017; 13:429-439. [PMID: 29333111 DOI: 10.1007/s11888-017-0389-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Diet plays an important role in the development of colorectal cancer. Emerging data have implicated the gut microbiota in colorectal cancer. Diet is a major determinant for the gut microbial structure and function. Therefore, it has been hypothesized that alterations in gut microbes and their metabolites may contribute to the influence of diet on the development of colorectal cancer. We review several major dietary factors that have been linked to gut microbiota and colorectal cancer, including major dietary patterns, fiber, red meat and sulfur, and obesity. Most of the epidemiologic evidence derives from cross-sectional or short-term, highly controlled feeding studies that are limited in size. Therefore, high-quality large-scale prospective studies with dietary data collected over the life course and comprehensive gut microbial composition and function assessed well prior to neoplastic occurrence are critically needed to identify microbiome-based interventions that may complement or optimize current diet-based strategies for colorectal cancer prevention and management.
Collapse
|
38
|
Yang HE, Li Y, Nishimura A, Jheng HF, Yuliana A, Kitano-Ohue R, Nomura W, Takahashi N, Kim CS, Yu R, Kitamura N, Park SB, Kishino S, Ogawa J, Kawada T, Goto T. Synthesized enone fatty acids resembling metabolites from gut microbiota suppress macrophage-mediated inflammation in adipocytes. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201700064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/28/2017] [Accepted: 05/15/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Ha-Eun Yang
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate school of Agriculture; Kyoto University; Uji Kyoto Japan
| | - Yongjia Li
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate school of Agriculture; Kyoto University; Uji Kyoto Japan
| | - Akira Nishimura
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate school of Agriculture; Kyoto University; Uji Kyoto Japan
| | - Huei-Fen Jheng
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate school of Agriculture; Kyoto University; Uji Kyoto Japan
| | - Ana Yuliana
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate school of Agriculture; Kyoto University; Uji Kyoto Japan
| | - Ryuji Kitano-Ohue
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate school of Agriculture; Kyoto University; Uji Kyoto Japan
- Research Unit for Physiological Chemistry; The Center for the Promotion of Interdisciplinary Education and Research; Kyoto University; Japan
| | - Wataru Nomura
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate school of Agriculture; Kyoto University; Uji Kyoto Japan
- Research Unit for Physiological Chemistry; The Center for the Promotion of Interdisciplinary Education and Research; Kyoto University; Japan
| | - Nobuyuki Takahashi
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate school of Agriculture; Kyoto University; Uji Kyoto Japan
- Research Unit for Physiological Chemistry; The Center for the Promotion of Interdisciplinary Education and Research; Kyoto University; Japan
| | - Chu-Sook Kim
- Department of Food Science and Nutrition; University of Ulsan; Ulsan South Korea
| | - Rina Yu
- Department of Food Science and Nutrition; University of Ulsan; Ulsan South Korea
| | - Nahoko Kitamura
- Division of Applied Life Science; Graduate School of Agriculture; Kyoto University; Kyoto Japan
| | - Si-Bum Park
- Laboratory of Industrial Microbiology; Graduate School of Agriculture; Kyoto University; Kyoto Japan
| | - Shigenobu Kishino
- Division of Applied Life Science; Graduate School of Agriculture; Kyoto University; Kyoto Japan
| | - Jun Ogawa
- Research Unit for Physiological Chemistry; The Center for the Promotion of Interdisciplinary Education and Research; Kyoto University; Japan
- Division of Applied Life Science; Graduate School of Agriculture; Kyoto University; Kyoto Japan
| | - Teruo Kawada
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate school of Agriculture; Kyoto University; Uji Kyoto Japan
- Research Unit for Physiological Chemistry; The Center for the Promotion of Interdisciplinary Education and Research; Kyoto University; Japan
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate school of Agriculture; Kyoto University; Uji Kyoto Japan
- Research Unit for Physiological Chemistry; The Center for the Promotion of Interdisciplinary Education and Research; Kyoto University; Japan
| |
Collapse
|
39
|
Wang XH, Cui XX, Sun XQ, Wang XH, Li XC, Qi Y, Li W, Han MY, Muhammad I, Zhang XY. High Fat Diet-Induced Hepatic 18-Carbon Fatty Acids Accumulation Up-Regulates CYP2A5/CYP2A6 via NF-E2-Related Factor 2. Front Pharmacol 2017; 8:233. [PMID: 28555106 PMCID: PMC5431014 DOI: 10.3389/fphar.2017.00233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/12/2017] [Indexed: 01/04/2023] Open
Abstract
To investigate the role of hepatic 18-carbon fatty acids (FA) accumulation in regulating CYP2A5/2A6 and the significance of Nrf2 in the process during hepatocytes steatosis, Nrf2-null, and wild type mice fed with high-fat diet (HFD), and Nrf2 silenced or over expressed HepG2 cells administered with 18-carbon FA were used. HE and Oil Red O staining were used for mice hepatic pathological examination. The mRNA and protein expressions were measured with real-time PCR and Western blot. The results showed that hepatic CYP2A5 and Nrf2 expression levels were increased in HFD fed mice accompanied with hepatic 18-carbon FA accumulation. The Nrf2 expression was increased dose-dependently in cells administered with increasing concentrations of stearic acid, oleic acid, and alpha-linolenic acid. The Nrf2 expression was dose-dependently decreased in cells treated with increasing concentrations of linoleic acid, but the Nrf2 expression level was still found higher than the control cells. The CYP2A6 expression was increased dose-dependently in increasing 18-carbon FA treated cells. The HFD-induced up-regulation of hepatic CYP2A5 in vivo and the 18-carbon FA treatment induced up-regulation of CYP2A6 in HepG2 cells were, respectively, inhibited by Nrf2 deficiency and Nrf2 silencing. While the basal expression of mouse hepatic CYP2A5 was not impeded by Nrf2 deletion. Nrf2 over expression improved the up-regulation of CYP2A6 induced by 18-carbon FA. As the classical target gene of Nrf2, GSTA1 mRNA relative expression was increased in Nrf2 over expressed cells and was decreased in Nrf2 silenced cells. In presence or absence of 18-carbon FA treatment, the change of CYP2A6 expression level was similar to GSTA1 in Nrf2 silenced or over expressed HepG2 cells. It was concluded that HFD-induced hepatic 18-carbon FA accumulation contributes to the up-regulation of CYP2A5/2A6 via activating Nrf2. However, the CYP2A5/2A6 expression does not only depend on Nrf2.
Collapse
Affiliation(s)
- Xing-He Wang
- Laboratory of Veterinary Pharmacology and Toxicology, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Xiao-Xu Cui
- Laboratory of Veterinary Pharmacology and Toxicology, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Xiao-Qi Sun
- Laboratory of Veterinary Pharmacology and Toxicology, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Xing-Hui Wang
- Laboratory of Veterinary Pharmacology and Toxicology, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Xiao-Chong Li
- Laboratory of Veterinary Pharmacology and Toxicology, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Yue Qi
- Laboratory of Veterinary Pharmacology and Toxicology, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Wei Li
- Laboratory of Veterinary Pharmacology and Toxicology, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Mei-Yu Han
- Laboratory of Veterinary Pharmacology and Toxicology, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Ishfaq Muhammad
- Laboratory of Veterinary Pharmacology and Toxicology, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Xiu-Ying Zhang
- Laboratory of Veterinary Pharmacology and Toxicology, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| |
Collapse
|
40
|
Champion CJ, Xu J. The impact of metagenomic interplay on the mosquito redox homeostasis. Free Radic Biol Med 2017; 105:79-85. [PMID: 27880869 PMCID: PMC5401789 DOI: 10.1016/j.freeradbiomed.2016.11.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/02/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022]
Abstract
Mosquitoes are exposed to oxidative challenges throughout their life cycle. The primary challenge comes from a blood meal. The blood digestion turns the midgut into an oxidative environment, which imposes pressure not only on mosquito fecundity and other physiological traits but also on the microbiota in the midgut. During evolution, mosquitoes have developed numerous oxidative defense mechanisms to maintain redox homeostasis in the midgut. In addition to antioxidants, SOD, catalase, and glutathione system, sufficient supply of the reducing agent, NADPH, is vital for a successful defense against oxidative stress. Increasing evidence indicates that in response to oxidative stress, cells reconfigure metabolic pathways to increase the generation of NADPH through NADP-reducing networks including the pentose phosphate pathway and others. The microbial homeostasis is critical for the functional contributions to various host phenotypes. The symbiotic microbiota is regulated largely by the Duox-ROS pathway in Drosophila. In mosquitoes, Duox-ROS pathway, heme-mediated signaling, antimicrobial peptide production and C-type lectins work in concert to maintain the dynamic microbial community in the midgut. Microbial mechanisms against oxidative stress in this context are not well understood. Emerging evidence that microbial metabolites trigger host oxidative response warrants further study on the metagenomic interplay in an oxidative environment like mosquito gut ecosystem. Besides the classical Drosophila model, hematophagous insects like mosquitoes provide an alternative model system to study redox homeostasis in a symbiotic metagenomic context.
Collapse
Affiliation(s)
- Cody J Champion
- Biology Department, New Mexico State University, PO BOX 30001, MSC 3AF, Las Cruces, NM 88003, United States
| | - Jiannong Xu
- Biology Department, New Mexico State University, PO BOX 30001, MSC 3AF, Las Cruces, NM 88003, United States.
| |
Collapse
|