1
|
Niri P, Saha A, Polopalli S, Kumar M, Das S, Saha B, Goyary D, Bhutia YD, Karmakar S, Kishor S, Rahaman S, Chattopadhyay P. β-Caryophyllene attenuates oxidative stress and inflammatory response in LPS induced acute lung injury by targeting ACE2/MasR and Nrf2/HO-1/NF-κB axis. Biochem Biophys Res Commun 2025; 746:151286. [PMID: 39756207 DOI: 10.1016/j.bbrc.2024.151286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), is a clinical syndrome that can cause pulmonary edema, inflammation, oxidative stress, and immunological dysregulations. β-Caryophyllene (BCP), a natural bicyclic sesquiterpene, possesses a variety of pharmacological properties and has the potential to be a therapeutic agent. This study aimed to comprehend the effect of BCP on Nrf2/HO-1/NF-κB and ACE2/MasR axis in a rat model of ALI by lipopolysaccharide (LPS) and the underlying mechanisms during this process. The study also examined pulmonary edema, BALF, and cytokine production to investigate inflammation and oxidative stress. In the LPS group, Western blot analysis showed decreased Nrf2/HO-1 and ACE2/MasR, including increased lung edema, elevated vascular permeability, neutrophil infiltration in BALF, increased cytokine levels, and histological changes. In comparison to the LPS group, BCP dramatically reduced lung edema, vascular permeability, and histological changes. Additionally, by lowering malondialdehyde and myeloperoxidase activity in lung tissues, it also reduced oxidative stress. BCP boosted IL-10 production and decreased the levels of pro-inflammatory cytokines and neutrophil infiltration. BCP administration decreased VEGF-A and SP-D expression, subsequently lowering NF-κB activation and cytokine production. Further, BCP altered ACE2 expression, indicating its involvement by activating the ACE2/Angiotensin (1-7)/MasR axis. In addition, BCP could stimulate the Nrf2/HO-1 anti-oxidant axis to suppress NF-κB and reduce inflammation. BCP modulation of the ACE2/MasR and Nrf2/HO-1/NF-κB axis impedes the course of ALI by influencing immunological response including but not limited to oxidative stress, the influx of neutrophils, and cytokine production. Hence, BCP may act as a potential candidate for management of ALI.
Collapse
Affiliation(s)
- Pakter Niri
- Division of Pharmaceutical Technology, Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India; Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Subramanyam Polopalli
- Division of Pharmaceutical Technology, Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India; Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Mohit Kumar
- Division of Pharmaceutical Technology, Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India
| | - Sanghita Das
- Division of Pharmaceutical Technology, Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India; Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Bidisha Saha
- Division of Pharmaceutical Technology, Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India
| | - Danswrang Goyary
- Division of Pharmaceutical Technology, Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India
| | - Yangchen Doma Bhutia
- Division of Pharmaceutical Technology, Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India
| | - Sanjeev Karmakar
- Division of Pharmaceutical Technology, Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India
| | - Sumit Kishor
- Division of Pharmaceutical Technology, Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India
| | - Saidur Rahaman
- Division of Pharmaceutical Technology, Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India
| | - Pronobesh Chattopadhyay
- Division of Pharmaceutical Technology, Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India.
| |
Collapse
|
2
|
Li S, Sun W. Establishment of a mouse model of allergic asthma sensitized and triggered with PM2.5. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-12. [PMID: 39829037 DOI: 10.1080/09603123.2025.2453054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
To establish a mouse model of asthma sensitized and challenged with PM2.5 extract, 48 female BALB/c mice were included in this analysis. They were divided into six groups: normal control, ovalbumin (OVA) control, three PM2.5 dose groups, and a PM2.5+OVA combined group. Mice received intraperitoneal injections of PBS, OVA, PM2.5, or OVA+PM2.5 every 7 days for three weeks, followed by a one-week intranasal challenge. Airway responsiveness to acetylcholine was measured 24 hours post-challenge. Lung and nasal tissues were analyzed for histopathology, and bronchoalveolar lavage fluid (BALF) was assessed for inflammatory cells and cytokines. Compared to controls, PM2.5 and PM2.5+OVA groups showed increased airway hyperresponsiveness, pathological changes, elevated serum IgE, and altered cytokine levels (higher IL-4, IL-13; lower IFN-γ). In conclusion, PM2.5 extract can successfully establish a mouse model of allergic asthma.
Collapse
Affiliation(s)
- Shaohua Li
- Department of Respiratory and Critical Care Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wuzhuang Sun
- Department of Respiratory and Critical Care Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
Oliveira-Melo P, Nepomuceno NA, Ruiz LM, Correia AT, Vilela VS, de Oliveira Braga KA, Manzuti GM, Feitosa DDM, Kennedy-Feitosa E, Wang A, Cypel M, Fernandes PMP. Angiotensin-converting enzyme 2 activation attenuates inflammation and oxidative stress in brain death donor followed by rat lung transplantation. Sci Rep 2024; 14:23567. [PMID: 39384890 PMCID: PMC11464679 DOI: 10.1038/s41598-024-75043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024] Open
Abstract
Brain death (BD) provides most of the donor organs destined for lung transplantation (LTx). However, the organs may be affected by inflammatory and oxidative processes. Based on this, we hypothesize that the angiotensin-converting enzyme 2 (ACE2) activation can reduce the lung injury associated with LTx. 3 h after BD induction, rats were injected with saline (BD group) or an ACE2 activator (ACE2a group; 15 mg/kg-1) and kept on mechanical ventilation for additional 3 h. A third group included a control ventilation (Control group) prior to transplant. After BD protocol, left LTx were performed, followed by 2 h-reperfusion. ACE2 activation was associated with better oxygenation after BD management (p = 0.01), attenuating edema (p = 0.05) followed by the reduction in tissue resistance (p = 0.01) and increase of respiratory compliance (p = 0.02). Nrf2 expression was also upregulated in the ACE2a group (p = 0.03). After transplantation, ACE2a group showed lower levels of TNF-α (p = 0.02), IL-6 (p = 0.001), IL-1β (p = 0.01), ROS (p = 0.004) and MDA (p = 0.002), in addition to higher CAT activity (p = 0.04). In conclusion, our study suggests that ACE2 activation improves anti-inflammatory and antioxidant activity in a model of LTx.
Collapse
Affiliation(s)
- Paolo Oliveira-Melo
- Departamento de Cardiopneumologia, Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Instituto do Coração, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Natalia Aparecida Nepomuceno
- Departamento de Cardiopneumologia, Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Instituto do Coração, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Liliane Moreira Ruiz
- Departamento de Cardiopneumologia, Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Instituto do Coração, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Aristides Tadeu Correia
- Departamento de Cardiopneumologia, Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Instituto do Coração, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Vanessa Sana Vilela
- Departamento de Cardiopneumologia, Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Instituto do Coração, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Karina Andrighetti de Oliveira Braga
- Departamento de Cardiopneumologia, Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Instituto do Coração, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Giovana Maria Manzuti
- Departamento de Cardiopneumologia, Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Instituto do Coração, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Emanuel Kennedy-Feitosa
- Departamento de Ciências da Saúde, Laboratório de Morfofisiofarmacologia, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brazil
| | - Aizhou Wang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Marcelo Cypel
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Paulo Manuel Pêgo Fernandes
- Departamento de Cardiopneumologia, Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Instituto do Coração, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
4
|
Sun X, Xu Y, Zhou J. Angiotensin converting enzyme 2 activation improves allergic rhinitis and suppresses Th2 cytokine release. Immun Inflamm Dis 2023; 11:e763. [PMID: 36705419 PMCID: PMC9846113 DOI: 10.1002/iid3.763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/29/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE Allergic rhinitis (AR) is primarily regulated by type I hypersensitivity, with Th2 and immunoglobulin E (IgE) playing essential roles. This study aimed to determine whether angiotensin converting enzyme (ACE)2 could participate in the regulation of AR. METHODS Nasal mucosal tissues of AR patients were collected to determine ACE2 levels. Following AR mouse models were established, ACE2 levels in nasal mucosa were determined. Then the influences of diminazene aceturate (ACE2 agonist) on AR symptoms, pathology, specific antibodies, histamine, and interleukins (ILs) release in vivo were evaluated. Afterward, human nasal mucosa epithelial cells were exposed to IL-13, and the impacts of ACE2 overexpression on the secretion of pro-inflammatory factors in vitro were assessed. RESULTS ACE2 levels significantly declined in nasal mucosa both in patients and mouse models (p < .001). Diminazene aceturate treatment elevated the ACE2 level in mice (p < .01), accompanied by reduced frequency of nasal spray and nasal friction, decreased eosinophils and goblet cells (p < .001) according to histopathological staining. Furthermore, lgE, lgG1, histamine, and IL levels in mice were also decreased (p < .05). In vitro experiments revealed that ACE2 overexpression suppressed the secretion of pro-inflammatory factors (p < .001). CONCLUSION Together, ACE2 activation can alleviate the symptoms of AR in mice and inhibit the release of Th2 cytokines. Activating ACE2 is a promising therapeutic approach for AR.
Collapse
Affiliation(s)
- Xiuying Sun
- Department of OtorhinostomologyThe Affiliated Huaian No. 1 People′s Hospital of Nanjing Medical UniversityHuai′anJiangsuChina
| | - Yu Xu
- Department of OtorhinostomologyThe Affiliated Huaian No. 1 People′s Hospital of Nanjing Medical UniversityHuai′anJiangsuChina
| | - Jinhui Zhou
- Department of OtorhinostomologyThe Affiliated Huaian No. 1 People′s Hospital of Nanjing Medical UniversityHuai′anJiangsuChina
| |
Collapse
|
5
|
Yang Z, Roth K, Ding J, Kassotis CD, Mor G, Petriello MC. Exposure to a mixture of per-and polyfluoroalkyl substances modulates pulmonary expression of ACE2 and circulating hormones and cytokines. Toxicol Appl Pharmacol 2022; 456:116284. [PMID: 36270329 PMCID: PMC10325118 DOI: 10.1016/j.taap.2022.116284] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 01/01/2023]
Abstract
Genetic and environmental factors impact on the interindividual variability of susceptibility to communicable and non-communicable diseases. A class of ubiquitous chemicals, Per- and polyfluoroalkyl substances (PFAS) have been linked in epidemiological studies to immunosuppression and increased susceptibility to viral infections, but possible mechanisms are not well elucidated. To begin to gain insight into the role of PFAS in susceptibility to one such viral infection, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), male and female C57BL/6 J mice were exposed to control water or a mixture of 5 PFAS (PFOS, PFOA, PFNA, PFHxS, Genx) for 12 weeks and lungs were isolated for examination of expression of SARS-CoV-2-related receptors Angiotensin-Converting Enzyme 2 (ACE2) and others. Secondary analyses included circulating hormones and cytokines which have been shown to directly or indirectly impact on ACE2 expression and severity of viral infections. Changes in mRNA and protein expression were analyzed by RT-qPCR and western blotting and circulating hormones and cytokines were determined by ELISA and MESO QuickPlex. The PFAS mixture decreased Ace2 mRNA 2.5-fold in male mice (p < 0.0001), with no significant change observed in females. In addition, TMPRSS2, ANPEP, ENPEP and DPP4 (other genes implicated in COVID-19 infection) were modulated due to PFAS. Plasma testosterone, but not estrogen were strikingly decreased due to PFAS which corresponded to PFAS-mediated repression of 4 representative pulmonary AR target genes; hemoglobin, beta adult major chain (Hbb-b1), Ferrochelatase (Fech), Collagen Type XIV Alpha 1 Chain (Col14a1), 5'-Aminolevulinate Synthase 2 (Alas2). Finally, PFAS modulated circulating pro and anti-inflammatory mediators including IFN-γ (downregulated 3.0-fold in females; p = 0.0301, 2.1-fold in males; p = 0.0418) and IL-6 (upregulated 5.6-fold in males; p = 0.030, no change in females). In conclusion, our data indicate long term exposure to a PFAS mixture impacts mechanisms related to expression of ACE2 in the lung. This work provides a mechanistic rationale for important future studies of PFAS exposure and subsequent viral infection.
Collapse
Affiliation(s)
- Zhao Yang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Katherine Roth
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Jiahui Ding
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Gil Mor
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA
| | - Michael C Petriello
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
6
|
Lu Z, Wu D, Wang Z, Zhang H, Du Y, Wang G. Diminazene aceturate mitigates cardiomyopathy by interfering with renin-angiotensin system in a septic rat model. BMC Pharmacol Toxicol 2022; 23:44. [PMID: 35787308 PMCID: PMC9251020 DOI: 10.1186/s40360-022-00584-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 06/27/2022] [Indexed: 11/19/2022] Open
Abstract
Background There were limited studies investigating treatments of septic cardiomyopathy (SCM), which is a common complication during sepsis. A septic rat model created by cecal ligation and puncture (CLP) was used to investigate the effects of diminazene aceturate (DIZE) in SCM. Methods A total of 151 Wistar rats were randomly assigned into the sham, CLP, or CLP + DIZE group. Data evaluated postoperatively at 6, 12, 24, and 48 hours included: cardiac function; plasma concentrations of tumor necrosis factor-alpha (TNF-α), interleukin-6, angiotensin-(1–7) [Ang-(1–7)], angiotensin II (AngII), troponin I, and brain natriuretic peptide; expression levels of myocardial Ang-(1–7), angiotensin-converting enzyme (ACE), ACE2, and angiotensin type 1 and Mas receptors; and histological changes. Results We found that the CLP + DIZE group had a lower mortality compared to the CLP group (38.5% versus 61.5%) within 48 h postoperatively, although without statistical significance. In contrast to the sham group, the CLP group had decreased cardiac functions, increased myocardial injuries, and higher TNF-α levels, which were ameliorated in the CLP + DIZE group. Furthermore, administration of DIZE could reverse the decreases of myocardial Ang-(1–7) and ACE2 expressions in the CLP group, which finally minimized the myocardial microstructure disruptions. Conclusions It was concluded that DIZE could mitigate the development of SCM and preserve cardiac function during sepsis possibly by interfering with the renin-angiotensin system through promoting myocardial ACE2 expression and restoring local Ang-(1–7) levels. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-022-00584-4.
Collapse
Affiliation(s)
- Zhaoqing Lu
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Di Wu
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zheng Wang
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Hanyu Zhang
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yufan Du
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Guoxing Wang
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
7
|
Patel R, Fang CH, Grube JG, Eloy JA, Hsueh WD. COVID-19 and rhinological surgery. OPERATIVE TECHNIQUES IN OTOLARYNGOLOGY--HEAD AND NECK SURGERY 2022; 33:103-111. [PMID: 35502266 PMCID: PMC9046134 DOI: 10.1016/j.otot.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Coronavirus-19 (COVID-19) pandemic has caused disruptions in the normal patient care workflow, necessitating adaptations within the healthcare profession. The objective of this article is to outline some of these adaptations and considerations necessitated by COVID-19 within the subspeciality of rhinology and endoscopic skull base surgery.
Collapse
Affiliation(s)
- Rushi Patel
- Department of Otolaryngology - Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Christina H Fang
- Department of Otorhinolaryngology - Head and Neck Surgery, Montefiore Medical Center, The University Hospital for Albert Einstein College of Medicine, Bronx, New York
| | - Jordon G Grube
- Division of Otolaryngology, Albany Medical College, Albany, New York
| | - Jean Anderson Eloy
- Department of Otolaryngology - Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
- Center for Skull Base and Pituitary Surgery, Neurological Institute of New Jersey, Rutgers New Jersey Medical School, Newark, New Jersey
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
- Department of Ophthalmology and Visual Science, Rutgers New Jersey Medical School, Newark, New Jersey
- Department of Otolaryngology and Facial Plastic Surgery, Saint Barnabas Medical Center - RWJ Barnabas Health, Livingston, New Jersey
| | - Wayne D Hsueh
- Department of Otolaryngology - Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
8
|
Chen Y, Wu X, Yang X, Liu X, Zeng Y, Li J. Melatonin antagonizes ozone-exacerbated asthma by inhibiting the TRPV1 channel and stabilizing the Nrf2 pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59858-59867. [PMID: 34146326 DOI: 10.1007/s11356-021-14945-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/12/2021] [Indexed: 06/12/2023]
Abstract
Over the past few years, ozone has been identified as a potential risk factor for exacerbating asthma. However, few attempts have been made to prevent the progression of ozone-exacerbated asthma. This study investigated the attenuating effects of melatonin on ozone-aggravated allergic asthma, and explored the changes to the transient receptor potential vanilloid 1 (TRPV1)-nuclear factor erythroid-derived 2-related factor 2 (Nrf2) pathway associated with melatonin treatment. The levels of TRPV1 and calcitonin gene-related peptides (CGRP) in lung tissue were detected by immunohistochemistry, western blot, and enzyme-linked immunosorbent assay (ELISA). The Nrf2 signaling involved proteins and mRNA were evaluated by western blot and RT-qPCR. The change of Immunoglobulin E (IgE) and T helper (Th) 2 and Th17 cytokines in serum and bronchoalveolar lavage fluid (BALF) was determined by ELISA. Recruitment of inflammatory cells in BALF, histopathological changes, and airway hyperresponsiveness (AHR) were also determined in lung tissues. Our results indicated that melatonin treatment significantly reduced oxidative stress, as indicated by levels of glutathione (GSH), malonaldehyde (MDA), and 8-hydroxy-2-deoxyguanosine (8-OH-dG). Moreover, ozone-exacerbated asthma symptoms, such as inflammatory cell infiltration, levels of serum immunoglobulin, Th2 and Th17 cytokines in BALF, obvious changes in lung histology, and AHR, were all ameliorated by melatonin treatment. Interestingly, melatonin not only markedly decreased the protein levels of TRPV1 and CGRP, but also enhanced the expression of Nrf2, quinone oxidoreductase-1 (NQO-1), and heme oxygenase-1 (HO-1). Taken together, our results demonstrate that melatonin administration could antagonize ozone-exacerbated asthma by inhibiting the TRPV1 channel and stabilizing the Nrf2 pathway.
Collapse
Affiliation(s)
- Yushan Chen
- Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xiaoyu Wu
- Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xu Yang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xudong Liu
- Department of Food Science and Engineering, Moutai Institute, Renhuai, 564507, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jinquan Li
- Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
9
|
Gregório JF, Rodrigues-Machado MDG, Santos RAS, Carvalho Ribeiro IA, Nunes OM, Aguiar Oliveira IF, Vasconcelos AV, Campagnole-Santos MJ, Magalhães GS. ASTHMA: ROLE OF THE ANGIOTENSIN-(1-7)/MAS PATHWAY IN PATHOPHYSIOLOGY AND THERAPY. Br J Pharmacol 2021; 178:4428-4439. [PMID: 34235725 DOI: 10.1111/bph.15619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/06/2021] [Accepted: 06/30/2021] [Indexed: 11/29/2022] Open
Abstract
The incidence of asthma is a global health problem, requiring studies aimed at developing new treatments to improve clinical management, thereby reducing personal and economic burdens on the health system. Therefore, the discovery of mediators that promote anti-inflammatory and pro-resolutive events are highly desirable to improve lung function and quality of life in asthmatic patients. In that regard, experimental studies have shown that the Angiotensin-(1-7)/Mas receptor of the renin-angiotensin system (RAS) is a potential candidate for the treatment of asthma. Therefore, we reviewed findings related to the function of the Angiotensin-(1-7)/Mas pathway in regulating the processes associated with inflammation and exacerbations in asthma, including leukocyte influx, fibrogenesis, pulmonary dysfunction and resolution of inflammation. Thus, knowledge of the role of the Angiotensin-(1-7)/Mas can help pave the way for the development of new treatments for this disease with high morbidity and mortality through new experimental and clinical trials.
Collapse
Affiliation(s)
- Juliana Fabiana Gregório
- Department of Physiology and Biophysics, National Institute of Science and Technology - INCT-Nanobiopharmaceutical, Biological Sciences Institute, Federal University of Minas Gerais
| | | | - Robson A S Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology - INCT-Nanobiopharmaceutical, Biological Sciences Institute, Federal University of Minas Gerais
| | | | - Olivia Mendonça Nunes
- Medical Sciences Faculty of Minas Gerais, Post-Graduation Program in Health Sciences, Belo Horizonte, Brazil
| | | | - Ana Victoria Vasconcelos
- Medical Sciences Faculty of Minas Gerais, Post-Graduation Program in Health Sciences, Belo Horizonte, Brazil
| | - Maria José Campagnole-Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology - INCT-Nanobiopharmaceutical, Biological Sciences Institute, Federal University of Minas Gerais
| | - Giselle Santos Magalhães
- Department of Physiology and Biophysics, National Institute of Science and Technology - INCT-Nanobiopharmaceutical, Biological Sciences Institute, Federal University of Minas Gerais.,Medical Sciences Faculty of Minas Gerais, Post-Graduation Program in Health Sciences, Belo Horizonte, Brazil
| |
Collapse
|
10
|
Fukuda A, Toyoshima S, Yamada S, Kurosawa Y, Okayama Y, Maruoka S, Gon Y. Enzymatic activity of ACE2 regulates type 2 airway inflammation in mice. Allergy 2021; 76:1913-1917. [PMID: 33521968 PMCID: PMC8013183 DOI: 10.1111/all.14754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/08/2021] [Accepted: 01/23/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Asami Fukuda
- Department of Internal Medicine Division of Respiratory Medicine Nihon University School of Medicine Tokyo Japan
- Center for Allergy Nihon University Itabashi Hospital Tokyo Japan
| | - Shota Toyoshima
- Department of Internal Medicine Division of Respiratory Medicine Nihon University School of Medicine Tokyo Japan
- Center for Allergy Nihon University Itabashi Hospital Tokyo Japan
| | - Shiho Yamada
- Department of Internal Medicine Division of Respiratory Medicine Nihon University School of Medicine Tokyo Japan
- Center for Allergy Nihon University Itabashi Hospital Tokyo Japan
| | - Yusuke Kurosawa
- Department of Internal Medicine Division of Respiratory Medicine Nihon University School of Medicine Tokyo Japan
- Center for Allergy Nihon University Itabashi Hospital Tokyo Japan
| | - Yoshimichi Okayama
- Center for Allergy Nihon University Itabashi Hospital Tokyo Japan
- Allergy and Immunology Research Project Team Center for Medical Education Nihon University School of Medicine Tokyo Japan
| | - Shuichiro Maruoka
- Department of Internal Medicine Division of Respiratory Medicine Nihon University School of Medicine Tokyo Japan
- Center for Allergy Nihon University Itabashi Hospital Tokyo Japan
| | - Yasuhiro Gon
- Department of Internal Medicine Division of Respiratory Medicine Nihon University School of Medicine Tokyo Japan
- Center for Allergy Nihon University Itabashi Hospital Tokyo Japan
| |
Collapse
|
11
|
Reyes FM, Hache-Marliere M, Karamanis D, Berto CG, Estrada R, Langston M, Ntaios G, Gulani P, Shah CD, Palaiodimos L. Assessment of the Association of COPD and Asthma with In-Hospital Mortality in Patients with COVID-19. A Systematic Review, Meta-Analysis, and Meta-Regression Analysis. J Clin Med 2021; 10:jcm10102087. [PMID: 34068023 PMCID: PMC8152460 DOI: 10.3390/jcm10102087] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 02/08/2023] Open
Abstract
Together, chronic obstructive pulmonary disease (COPD) and asthma account for the most common non-infectious respiratory pathologies. Conflicting preliminary studies have shown varied effect for COPD and asthma as prognostic factors for mortality in coronavirus disease 2019 (COVID-19). The aim of this study was to explore the association of COPD and asthma with in-hospital mortality in patients with COVID-19 by systematically reviewing and synthesizing with a meta-analysis the available observational studies. MEDLINE, Scopus, and medRxiv databases were reviewed. A random-effects model meta-analysis was used, and I-square was utilized to assess for heterogeneity. In-hospital mortality was defined as the primary endpoint. Sensitivity and meta-regression analyses were performed. Thirty studies with 21,309 patients were included in this meta-analysis (1465 with COPD and 633 with asthma). Hospitalized COVID-19 patients with COPD had higher risk of death compared to those without COPD (OR: 2.29; 95% CI: 1.79–2.93; I2 59.6%). No significant difference in in-hospital mortality was seen in patients with and without asthma (OR: 0.87; 95% CI: 0.68–1.10; I2 0.0%). The likelihood of death was significantly higher in patients with COPD that were hospitalized with COVID-19 compared to patients without COPD. Further studies are needed to assess whether this association is independent or not. No significant difference was demonstrated in COVID-19-related mortality between patients with and without asthma.
Collapse
Affiliation(s)
- Felix M. Reyes
- Division of Pulmonary Medicine, Montefiore Medical Center, Bronx, NY 10461, USA; (F.M.R.); (C.D.S.)
- Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.G.B.); (M.L.); (P.G.); (L.P.)
| | - Manuel Hache-Marliere
- Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.G.B.); (M.L.); (P.G.); (L.P.)
- Department of Medicine, Jacobi Medical Center, Bronx, NY 10461, USA
- Correspondence:
| | | | - Cesar G. Berto
- Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.G.B.); (M.L.); (P.G.); (L.P.)
- Department of Medicine, Jacobi Medical Center, Bronx, NY 10461, USA
| | - Rodolfo Estrada
- Division of Pulmonary Diseases and Critical Care Medicine, University of Texas Health at San Antonio, San Antonio, TX 78229, USA;
| | - Matthew Langston
- Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.G.B.); (M.L.); (P.G.); (L.P.)
- Department of Medicine, Jacobi Medical Center, Bronx, NY 10461, USA
| | - George Ntaios
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, 38221 Larissa, Greece;
| | - Perminder Gulani
- Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.G.B.); (M.L.); (P.G.); (L.P.)
- Department of Medicine, Jacobi Medical Center, Bronx, NY 10461, USA
| | - Chirag D. Shah
- Division of Pulmonary Medicine, Montefiore Medical Center, Bronx, NY 10461, USA; (F.M.R.); (C.D.S.)
- Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.G.B.); (M.L.); (P.G.); (L.P.)
| | - Leonidas Palaiodimos
- Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.G.B.); (M.L.); (P.G.); (L.P.)
- Division of Hospital Medicine, Jacobi Medical Center, Bronx, NY 10461, USA
| |
Collapse
|
12
|
Lee SW, Kim SY, Moon SY, Yang JM, Ha EK, Jee HM, Shin JI, Cho SH, Yon DK, Suh DI. Estimating COVID-19 Infection and Severity Risks in Patients with Chronic Rhinosinusitis: A Korean Nationwide Cohort Study. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:2262-2271.e2. [PMID: 33931377 PMCID: PMC8079802 DOI: 10.1016/j.jaip.2021.03.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 02/08/2023]
Abstract
Background Basic studies suggest that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can affect chronic rhinosinusitis (CRS), but there is unclear real-world evidence regarding the association of underlying CRS with the risk for SARS-CoV-2 infection and severe coronavirus disease 19 (COVID-19). Objective We aimed to determine whether CRS is associated with increased risk for SARS-CoV-2 infection and severe COVID-19. Methods Altogether, 219,959 adult patients who tested for SARS-CoV-2 in South Korea from January 1 to May 15, 2020 (excluding self-referral) were identified in this nested case-control study with propensity score matching. Data on SARS-CoV-2 test results and COVID-19 worsened outcomes (ie, the need for oxygen therapy, intensive care, or mechanical ventilation, and death) were obtained from the Health Insurance Review and Assessment Service of Korea. Results In this matched cohort, 380 of 12,217 patients with CRS (3.1%) tested positive for SARS-CoV-2 infection, compared with 310 patients without CRS (2.5%; adjusted odds ratio = 1.22; 95% confidence interval, 1.04-1.42). Moreover, 60 of 286 COVID-19 patients with CRS (21.0%) had severe COVID-19 outcomes, compared with 38 without CRS (13.3%; adjusted odds ratio = 1.71; 95% confidence interval, 1.09-2.71). Subgroup analysis identified that CRS patients with an absence of nasal polyps, prior intranasal corticosteroid use, or nonatopic type had a greater risk for SARS-CoV-2 infection and severe COVID-19 outcomes. Conclusions In patients with CRS, prior intranasal corticosteroid use, the absence of nasal polyps, or nonatopic type was associated with increased risk for SARS-CoV-2 infection and severe COVID-19 in the Korean nationwide cohort. Clinicians should be cautious in determining prognosis and care for patients with CRS amid the COVID-19 pandemic.
Collapse
Affiliation(s)
- Seung Won Lee
- Department of Data Science, Sejong University College of Software Convergence, Seoul, South Korea
| | - So Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea.
| | - Sung Yong Moon
- Department of Data Science, Sejong University College of Software Convergence, Seoul, South Korea
| | - Jee Myung Yang
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eun Kyo Ha
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Hye Mi Jee
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Seong Ho Cho
- Division of Allergy-Immunology, University of South Florida Morsani College of Medicine, Tampa, Fla
| | - Dong Keon Yon
- Department of Pediatrics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
| | - Dong In Suh
- Department of Pediatrics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
13
|
Oz M, Lorke DE. Multifunctional angiotensin converting enzyme 2, the SARS-CoV-2 entry receptor, and critical appraisal of its role in acute lung injury. Biomed Pharmacother 2021; 136:111193. [PMID: 33461019 PMCID: PMC7836742 DOI: 10.1016/j.biopha.2020.111193] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022] Open
Abstract
The recent emergence of coronavirus disease-2019 (COVID-19) as a pandemic affecting millions of individuals has raised great concern throughout the world, and the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was identified as the causative agent for COVID-19. The multifunctional protein angiotensin converting enzyme 2 (ACE2) is accepted as its primary target for entry into host cells. In its enzymatic function, ACE2, like its homologue ACE, regulates the renin-angiotensin system (RAS) critical for cardiovascular and renal homeostasis in mammals. Unlike ACE, however, ACE2 drives an alternative RAS pathway by degrading Ang-II and thus operates to balance RAS homeostasis in the context of hypertension, heart failure, and cardiovascular as well as renal complications of diabetes. Outside the RAS, ACE2 hydrolyzes key peptides, such as amyloid-β, apelin, and [des-Arg9]-bradykinin. In addition to its enzymatic functions, ACE2 is found to regulate intestinal amino acid homeostasis and the gut microbiome. Although the non-enzymatic function of ACE2 as the entry receptor for SARS-CoV-2 has been well established, the contribution of enzymatic functions of ACE2 to the pathogenesis of COVID-19-related lung injury has been a matter of debate. A complete understanding of this central enzyme may begin to explain the various symptoms and pathologies seen in SARS-CoV-2 infected individuals, and may aid in the development of novel treatments for COVID-19.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait.
| | - Dietrich Ernst Lorke
- Department of Anatomy and Cellular Biology, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
14
|
Orlandi RR, Kingdom TT, Smith TL, Bleier B, DeConde A, Luong AU, Poetker DM, Soler Z, Welch KC, Wise SK, Adappa N, Alt JA, Anselmo-Lima WT, Bachert C, Baroody FM, Batra PS, Bernal-Sprekelsen M, Beswick D, Bhattacharyya N, Chandra RK, Chang EH, Chiu A, Chowdhury N, Citardi MJ, Cohen NA, Conley DB, DelGaudio J, Desrosiers M, Douglas R, Eloy JA, Fokkens WJ, Gray ST, Gudis DA, Hamilos DL, Han JK, Harvey R, Hellings P, Holbrook EH, Hopkins C, Hwang P, Javer AR, Jiang RS, Kennedy D, Kern R, Laidlaw T, Lal D, Lane A, Lee HM, Lee JT, Levy JM, Lin SY, Lund V, McMains KC, Metson R, Mullol J, Naclerio R, Oakley G, Otori N, Palmer JN, Parikh SR, Passali D, Patel Z, Peters A, Philpott C, Psaltis AJ, Ramakrishnan VR, Ramanathan M, Roh HJ, Rudmik L, Sacks R, Schlosser RJ, Sedaghat AR, Senior BA, Sindwani R, Smith K, Snidvongs K, Stewart M, Suh JD, Tan BK, Turner JH, van Drunen CM, Voegels R, Wang DY, Woodworth BA, Wormald PJ, Wright ED, Yan C, Zhang L, Zhou B. International consensus statement on allergy and rhinology: rhinosinusitis 2021. Int Forum Allergy Rhinol 2021; 11:213-739. [PMID: 33236525 DOI: 10.1002/alr.22741] [Citation(s) in RCA: 490] [Impact Index Per Article: 122.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
I. EXECUTIVE SUMMARY BACKGROUND: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR-RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR-RS-2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence-based findings of the document. METHODS ICAR-RS presents over 180 topics in the forms of evidence-based reviews with recommendations (EBRRs), evidence-based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. RESULTS ICAR-RS-2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence-based management algorithm is provided. CONCLUSION This ICAR-RS-2021 executive summary provides a compilation of the evidence-based recommendations for medical and surgical treatment of the most common forms of RS.
Collapse
Affiliation(s)
| | | | | | | | | | - Amber U Luong
- University of Texas Medical School at Houston, Houston, TX
| | | | - Zachary Soler
- Medical University of South Carolina, Charleston, SC
| | - Kevin C Welch
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | | | | | | | - Claus Bachert
- Ghent University, Ghent, Belgium.,Karolinska Institute, Stockholm, Sweden.,Sun Yatsen University, Gangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - David A Gudis
- Columbia University Irving Medical Center, New York, NY
| | - Daniel L Hamilos
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Richard Harvey
- University of New South Wales and Macquarie University, Sydney, New South Wales, Australia
| | | | | | | | | | - Amin R Javer
- University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | - Valerie Lund
- Royal National Throat Nose and Ear Hospital, UCLH, London, UK
| | - Kevin C McMains
- Uniformed Services University of Health Sciences, San Antonio, TX
| | | | - Joaquim Mullol
- IDIBAPS Hospital Clinic, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | - Alkis J Psaltis
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | - Luke Rudmik
- University of Calgary, Calgary, Alberta, Canada
| | - Raymond Sacks
- University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | - De Yun Wang
- National University of Singapore, Singapore, Singapore
| | | | | | | | - Carol Yan
- University of California San Diego, La Jolla, CA
| | - Luo Zhang
- Capital Medical University, Beijing, China
| | - Bing Zhou
- Capital Medical University, Beijing, China
| |
Collapse
|
15
|
İşlek A, Balcı MK. Evaluation of effects of chronic nasal steroid use on rhinological symptoms of COVID-19 with SNOT-22 questionnaire. Pharmacol Rep 2021; 73:781-785. [PMID: 33625686 PMCID: PMC7903365 DOI: 10.1007/s43440-021-00235-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/24/2021] [Accepted: 02/11/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND The benefits of corticosteroids for the treatment of COVID-19 infection are documented in the literature. The goal of the study is to compare the severity of rhinological symptoms of COVID-19 between patients with nasal steroid use (NSU) and the control group (CG) using the sino-nasal outcome test (SNOT-22) questionnaire. METHODS A face-to-face survey was conducted at a second referral state hospital between. Patients with a complete recovery from COVID-19 were included in NSU and CG groups. Two subscales of the SNOT-22 were filled by the patients. The frequency and duration of smell and taste loss and SNOT-22 scores were compared between the two groups. RESULTS Forty-seven patients were included in the study. Thirty-one patients were in CG and 16 patients in the NSU group. Twenty-four (51.1%) patients were females and 23 (48.9%) were males. The mean age was 41.4 ± 8.6 years. Olfactory dysfunction was detected in 12 (75%) patients in the NSU group, and 31 (93.3%) patients in the control group (CG). Gustatory dysfunction was seen in 10 (62.5%) patients in the NSU group and 24 (77.4%) patients NSU group. (p = 0.071, 0.279, respectively). The duration of the olfactory (6.6 ± 2.5 days) and gustatory dysfunction (6.1 ± 2.6 days) and the mean SNOT-22 total score (11.9 ± 1.6) was significantly lower in the NSU group (p < 0.001, CI 11.1-5.1, CI 9.9-4.6, CI 9.3-5.9, respectively). CONCLUSIONS Although nasal steroid use does not prevent olfactory and gustatory dysfunction in COVID-19 patients, it may reduce the severity and duration of these symptoms.
Collapse
Affiliation(s)
- Akif İşlek
- Department of Otorhinolaryngology, Nusaybin State Hospital, Mardin, Turkey.
| | - Mustafa Koray Balcı
- Department of Otorhinolaryngology, İzmir Katip Celebi University Atatürk Training and Research Hospital, İzmir, Turkey
| |
Collapse
|
16
|
Muñoz X, Pilia F, Ojanguren I, Romero-Mesones C, Cruz MJ. Is asthma a risk factor for COVID-19? Are phenotypes important? ERJ Open Res 2021; 7:00216-2020. [PMID: 33527078 PMCID: PMC7667724 DOI: 10.1183/23120541.00216-2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 10/27/2020] [Indexed: 01/22/2023] Open
Abstract
These results reaffirm the idea that asthma does not appear to be a risk factor for the development of #COVID19. However, most of the asthma patients in this study had a non-T2 phenotype. https://bit.ly/38hIp18.
Collapse
Affiliation(s)
- Xavier Muñoz
- Servei de Pneumologia Hospital Vall d'Hebron, Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Biología Celular, Fisiología e Inmunología, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Florencia Pilia
- Servei de Pneumologia Hospital Vall d'Hebron, Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Iñigo Ojanguren
- Servei de Pneumologia Hospital Vall d'Hebron, Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Christian Romero-Mesones
- Servei de Pneumologia Hospital Vall d'Hebron, Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María-Jesús Cruz
- Servei de Pneumologia Hospital Vall d'Hebron, Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Hu Y, Liu L, Lu X. Regulation of Angiotensin-Converting Enzyme 2: A Potential Target to Prevent COVID-19? Front Endocrinol (Lausanne) 2021; 12:725967. [PMID: 34745001 PMCID: PMC8569797 DOI: 10.3389/fendo.2021.725967] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/20/2021] [Indexed: 01/01/2023] Open
Abstract
The renin-angiotensin system (RAS) is crucially involved in the physiology and pathology of all organs in mammals. Angiotensin-converting enzyme 2 (ACE2), which is a homolog of ACE, acts as a negative regulator in the homeostasis of RAS. ACE2 has been proven to be the receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the coronavirus disease 2019 (COVID-19) pandemic. As SARS-CoV-2 enters the host cells through binding of viral spike protein with ACE2 in humans, the distribution and expression level of ACE2 may be critical for SARS-CoV-2 infection. Growing evidence shows the implication of ACE2 in pathological progression in tissue injury and several chronic conditions such as hypertension, diabetes, and cardiovascular disease; this suggests that ACE2 is essential in the progression and clinical prognosis of COVID-19 as well. Therefore, we summarized the expression and activity of ACE2 under various conditions and regulators. We further discussed its potential implication in susceptibility to COVID-19 and its potential for being a therapeutic target in COVID-19.
Collapse
|
18
|
Assaf SM, Tarasevych SP, Diamant Z, Hanania NA. Asthma and severe acute respiratory syndrome coronavirus 2019: current evidence and knowledge gaps. Curr Opin Pulm Med 2021; 27:45-53. [PMID: 33065601 DOI: 10.1097/mcp.0000000000000744] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Although respiratory viruses are common triggers of asthma exacerbation, it is unknown whether this also applies to infection with SARS-CoV-2. Indeed, patients with asthma and allergy appear underrepresented in large reports of COVID-19 cases worldwide. In this review, we evaluate existing literature on this topic and potential underlying mechanisms for any interrelationship between asthma and COVID-19. RECENT FINDINGS Data from several preclinical and clinical reports suggest a lower susceptibility for COVID-19 in patients with underlying type 2 airway inflammation including asthma that may be related to a reduced expression of ACE2 and TMPRSS2 receptors for SARS-CoV-2. Corticosteroids further decrease expression of the ACE2 and TMPRSS2 receptors, hence may also have a protective effect against infection with SARS-CoV-2. In addition, some studies suggest that the reported improvement in asthma control and a reduction in asthma exacerbations during the COVID-19 pandemic may be related to improvement in adherence to controller therapy and reduced exposure to triggers, such as other respiratory viruses and air pollutants. Recent data point towards differential susceptibility for COVID-19 among asthma patients based on their phenotype and/or endotype. On the basis of existing evidence, continuation with controller therapies is recommended for all patients with asthma. For patients with severe uncontrolled asthma infected by SARS-CoV-2, adjustment of controllers and biologics should be based on a multidisciplinary decision. SUMMARY Underrepresentation of SARS-CoV-2-infected patients with asthma and related allergic diseases may be based on potentially protective underlying mechanisms, such as type 2 airway inflammation, downregulation of ACE2/TMPRSS2 receptors, reduced exposures to triggers and improved adherence to controller medications. Although it is imperative that control should be maintained and asthma medications be continued in all patients, management of patients with severe uncontrolled asthma infected by SARS-CoV-2 including adjustment of controllers and biologics should be discussed on an individual basis.
Collapse
Affiliation(s)
- Sara M Assaf
- Section of Pulmonary and Critical Care Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | | | - Zuzana Diamant
- Department of Respiratory Medicine & Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden
- Department of Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Belgium
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
- Department of Clin Pharm & Pharmacol, Univ Groningen, Univ Med Ctr, Groningen, Groningen, The Netherlands
| | - Nicola A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
19
|
Matsuda S, Ikeda Y, Tsuji A, Murakami M. COVID-19 cellular pathogenesis in brief. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2021; 26:129. [PMID: 35126592 PMCID: PMC8772513 DOI: 10.4103/jrms.jrms_471_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/27/2020] [Accepted: 09/02/2020] [Indexed: 12/03/2022]
|
20
|
Pillaiyar T, Wendt LL, Manickam M, Easwaran M. The recent outbreaks of human coronaviruses: A medicinal chemistry perspective. Med Res Rev 2021; 41:72-135. [PMID: 32852058 PMCID: PMC7461420 DOI: 10.1002/med.21724] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/22/2020] [Accepted: 08/08/2020] [Indexed: 01/18/2023]
Abstract
Coronaviruses (CoVs) infect both humans and animals. In humans, CoVs can cause respiratory, kidney, heart, brain, and intestinal infections that can range from mild to lethal. Since the start of the 21st century, three β-coronaviruses have crossed the species barrier to infect humans: severe-acute respiratory syndrome (SARS)-CoV-1, Middle East respiratory syndrome (MERS)-CoV, and SARS-CoV-2 (2019-nCoV). These viruses are dangerous and can easily be transmitted from human to human. Therefore, the development of anticoronaviral therapies is urgently needed. However, to date, no approved vaccines or drugs against CoV infections are available. In this review, we focus on the medicinal chemistry efforts toward the development of antiviral agents against SARS-CoV-1, MERS-CoV, SARS-CoV-2, targeting biochemical events important for viral replication and its life cycle. These targets include the spike glycoprotein and its host-receptors for viral entry, proteases that are essential for cleaving polyproteins to produce functional proteins, and RNA-dependent RNA polymerase for viral RNA replication.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal ChemistryUniversity of BonnBonnGermany
| | - Lukas L. Wendt
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal ChemistryUniversity of BonnBonnGermany
| | - Manoj Manickam
- Department of ChemistryPSG Institute of Technology and Applied ResearchCoimbatoreTamil NaduIndia
| | - Maheswaran Easwaran
- Department of Biomedical EngineeringSethu Institute of TechnologyVirudhunagarTamilnaduIndia
| |
Collapse
|
21
|
Bouazza B, Hadj-Said D, Pescatore KA, Chahed R. Are Patients with Asthma and Chronic Obstructive Pulmonary Disease Preferred Targets of COVID-19? Tuberc Respir Dis (Seoul) 2021; 84:22-34. [PMID: 33099990 PMCID: PMC7801803 DOI: 10.4046/trd.2020.0101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/30/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
The coronavirus pandemic, known as coronavirus disease 2019 (COVID-19), is an infectious respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus first identified in patients from Wuhan, China. Since December 2019, SARS-CoV-2 has spread swiftly around the world, infected more than 25 million people, and caused more than 800,000 deaths in 188 countries. Chronic respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD) appear to be risk factors for COVID-19, however, their prevalence remains controversial. In fact, studies in China reported lower rates of chronic respiratory conditions in patients with COVID-19 than in the general population, while the trend is reversed in the United States and Europe. Although the underlying molecular mechanisms of a possible interaction between COVID-19 and chronic respiratory diseases remain unknown, some observations can help to elucidate them. Indeed, physiological changes, immune response, or medications used against SARS-CoV-2 may have a greater impact on patients with chronic respiratory conditions already debilitated by chronic inflammation, dyspnea, and the use of immunosuppressant drugs like corticosteroids. In this review, we discuss importance and the impact of COVID-19 on asthma and COPD patients, the possible available treatments, and patient management during the pandemic.
Collapse
Affiliation(s)
- Belaid Bouazza
- Department of Biochemistry and Microbiology, Faculty of Biological and Agricultural Sciences, Mouloud Mammeri University, Tizi-Ouzou, Algeria
| | - Dihia Hadj-Said
- Department of Biochemistry and Microbiology, Faculty of Biological and Agricultural Sciences, Mouloud Mammeri University, Tizi-Ouzou, Algeria
| | | | - Rachid Chahed
- Cabinet Médical Privé, Spécialité de Pneumologie, Tizi-Ouzou, Algeria
| |
Collapse
|
22
|
Checa J, Aran JM. Airway Redox Homeostasis and Inflammation Gone Awry: From Molecular Pathogenesis to Emerging Therapeutics in Respiratory Pathology. Int J Mol Sci 2020; 21:E9317. [PMID: 33297418 PMCID: PMC7731288 DOI: 10.3390/ijms21239317] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/05/2020] [Indexed: 02/06/2023] Open
Abstract
As aerobic organisms, we are continuously and throughout our lifetime subjected to an oxidizing atmosphere and, most often, to environmental threats. The lung is the internal organ most highly exposed to this milieu. Therefore, it has evolved to confront both oxidative stress induced by reactive oxygen species (ROS) and a variety of pollutants, pathogens, and allergens that promote inflammation and can harm the airways to different degrees. Indeed, an excess of ROS, generated intrinsically or from external sources, can imprint direct damage to key structural cell components (nucleic acids, sugars, lipids, and proteins) and indirectly perturb ROS-mediated signaling in lung epithelia, impairing its homeostasis. These early events complemented with efficient recognition of pathogen- or damage-associated recognition patterns by the airway resident cells alert the immune system, which mounts an inflammatory response to remove the hazards, including collateral dead cells and cellular debris, in an attempt to return to homeostatic conditions. Thus, any major or chronic dysregulation of the redox balance, the air-liquid interface, or defects in epithelial proteins impairing mucociliary clearance or other defense systems may lead to airway damage. Here, we review our understanding of the key role of oxidative stress and inflammation in respiratory pathology, and extensively report current and future trends in antioxidant and anti-inflammatory treatments focusing on the following major acute and chronic lung diseases: acute lung injury/respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and cystic fibrosis.
Collapse
Affiliation(s)
| | - Josep M. Aran
- Immune-Inflammatory Processes and Gene Therapeutics Group, IDIBELL, L’Hospitalet de Llobregat, 08908 Barcelona, Spain;
| |
Collapse
|
23
|
Yang Y, Zhao Y, Zhang F, Zhang L, Li L. COVID-19 in Elderly Adults: Clinical Features, Molecular Mechanisms, and Proposed Strategies. Aging Dis 2020; 11:1481-1495. [PMID: 33269102 PMCID: PMC7673861 DOI: 10.14336/ad.2020.0903] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is causing problems worldwide. Most people are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but elderly populations are more susceptible. Elevated susceptibility and death rates in elderly COVID-19 patients, especially those with age-related complications, are challenges for pandemic prevention and control. In this paper, we review the clinical features of elderly patients with COVID-19 and explore the related molecular mechanisms that are essential for the exploration of preventive and therapeutic strategies in the current pandemic. Furthermore, we analyze the feasibility of currently recommended potential novel methods against COVID-19 among elderly populations.
Collapse
Affiliation(s)
| | | | | | | | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
24
|
Ferrario CM, Ahmad S, Groban L. Twenty years of progress in angiotensin converting enzyme 2 and its link to SARS-CoV-2 disease. Clin Sci (Lond) 2020; 134:2645-2664. [PMID: 33063823 PMCID: PMC9055624 DOI: 10.1042/cs20200901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022]
Abstract
The virulence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the aggressive nature of the disease has transformed the universal pace of research in the desperate attempt to seek effective therapies to halt the morbidity and mortality of this pandemic. The rapid sequencing of the SARS-CoV-2 virus facilitated identification of the receptor for angiotensin converting enzyme 2 (ACE2) as the high affinity binding site that allows virus endocytosis. Parallel evidence that coronavirus disease 2019 (COVID-19) disease evolution shows greater lethality in patients with antecedent cardiovascular disease, diabetes, or even obesity questioned the potential unfavorable contribution of angiotensin converting enzyme (ACE) inhibitors or angiotensin II (Ang II) receptor blockers as facilitators of adverse outcomes due to the ability of these therapies to augment the transcription of Ace2 with consequent increase in protein formation and enzymatic activity. We review, here, the specific studies that support a role of these agents in altering the expression and activity of ACE2 and underscore that the robustness of the experimental data is associated with weak clinical long-term studies of the existence of a similar regulation of tissue or plasma ACE2 in human subjects.
Collapse
Affiliation(s)
- Carlos M. Ferrario
- Departments of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, U.S.A
| | - Sarfaraz Ahmad
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, U.S.A
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, U.S.A
| |
Collapse
|
25
|
Penna C, Mercurio V, Tocchetti CG, Pagliaro P. Sex-related differences in COVID-19 lethality. Br J Pharmacol 2020; 177:4375-4385. [PMID: 32698249 PMCID: PMC7405496 DOI: 10.1111/bph.15207] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/30/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Many countries have been affected by the worldwide outbreak of COVID-19. Among Western countries, Italy has been particularly hit at the beginning of the pandemic, immediately after China. In Italy and elsewhere, women seem to be less affected than men by severe/fatal COVID-19 infection, regardless of their age. Although women and men are affected differently by this infection, very few studies consider different therapeutic approaches for the two sexes. Understanding the mechanisms underlying these differences may help to find appropriate and sex specific therapies. Here, we consider that other mechanisms are involved to explain this difference, in addition to the protection attributable to oestrogens. Several X-linked genes (such as ACE2) and Y-linked genes (SRY and SOX9) may explain sex differences. Cardiovascular comorbidities are among the major enhancers of virus lethality. In addition, the number of sex-independent, non-genetic factors that can change susceptibility and mortality is enormous, and many other factors should be considered, including gender and cultural habits in different countries.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological SciencesUniversity of TorinoTurinItaly
- National Institute of Cardiovascular ResearchesBolognaItaly
| | - Valentina Mercurio
- Department of Translational Medical SciencesFederico II UniversityNaplesItaly
| | - Carlo G. Tocchetti
- Department of Translational Medical SciencesFederico II UniversityNaplesItaly
- Interdepartmental Center of Clinical and Translational ResearchFederico II UniversityNaplesItaly
| | - Pasquale Pagliaro
- Department of Clinical and Biological SciencesUniversity of TorinoTurinItaly
- National Institute of Cardiovascular ResearchesBolognaItaly
| |
Collapse
|
26
|
Riggioni C, Comberiati P, Giovannini M, Agache I, Akdis M, Alves‐Correia M, Antó JM, Arcolaci A, Azkur AK, Azkur D, Beken B, Boccabella C, Bousquet J, Breiteneder H, Carvalho D, De las Vecillas L, Diamant Z, Eguiluz‐Gracia I, Eiwegger T, Eyerich S, Fokkens W, Gao Y, Hannachi F, Johnston SL, Jutel M, Karavelia A, Klimek L, Moya B, Nadeau KC, O'Hehir R, O'Mahony L, Pfaar O, Sanak M, Schwarze J, Sokolowska M, Torres MJ, van de Veen W, van Zelm MC, Wang DY, Zhang L, Jiménez‐Saiz R, Akdis CA. A compendium answering 150 questions on COVID-19 and SARS-CoV-2. Allergy 2020; 75:2503-2541. [PMID: 32535955 PMCID: PMC7323196 DOI: 10.1111/all.14449] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 02/06/2023]
Abstract
In December 2019, China reported the first cases of the coronavirus disease 2019 (COVID-19). This disease, caused by the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), has developed into a pandemic. To date, it has resulted in ~9 million confirmed cases and caused almost 500 000 related deaths worldwide. Unequivocally, the COVID-19 pandemic is the gravest health and socioeconomic crisis of our time. In this context, numerous questions have emerged in demand of basic scientific information and evidence-based medical advice on SARS-CoV-2 and COVID-19. Although the majority of the patients show a very mild, self-limiting viral respiratory disease, many clinical manifestations in severe patients are unique to COVID-19, such as severe lymphopenia and eosinopenia, extensive pneumonia, a "cytokine storm" leading to acute respiratory distress syndrome, endothelitis, thromboembolic complications, and multiorgan failure. The epidemiologic features of COVID-19 are distinctive and have changed throughout the pandemic. Vaccine and drug development studies and clinical trials are rapidly growing at an unprecedented speed. However, basic and clinical research on COVID-19-related topics should be based on more coordinated high-quality studies. This paper answers pressing questions, formulated by young clinicians and scientists, on SARS-CoV-2, COVID-19, and allergy, focusing on the following topics: virology, immunology, diagnosis, management of patients with allergic disease and asthma, treatment, clinical trials, drug discovery, vaccine development, and epidemiology. A total of 150 questions were answered by experts in the field providing a comprehensive and practical overview of COVID-19 and allergic disease.
Collapse
|
27
|
Branco ACCC, Sato MN, Alberca RW. The Possible Dual Role of the ACE2 Receptor in Asthma and Coronavirus (SARS-CoV2) Infection. Front Cell Infect Microbiol 2020; 10:550571. [PMID: 33072624 PMCID: PMC7538685 DOI: 10.3389/fcimb.2020.550571] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/26/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Anna Cláudia Calvielli Castelo Branco
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Maria Notomi Sato
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Ricardo Wesley Alberca
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Battagello D, Dragunas G, Klein M, Ayub AL, Velloso F, Correa R. Unpuzzling COVID-19: tissue-related signaling pathways associated with SARS-CoV-2 infection and transmission. Clin Sci (Lond) 2020; 134:2137-2160. [PMID: 32820801 PMCID: PMC7443512 DOI: 10.1042/cs20200904] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
The highly infective coronavirus disease 19 (COVID-19) is caused by a novel strain of coronaviruses - the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) - discovered in December 2019 in the city of Wuhan (Hubei Province, China). Remarkably, COVID-19 has rapidly spread across all continents and turned into a public health emergency, which was ultimately declared as a pandemic by the World Health Organization (WHO) in early 2020. SARS-CoV-2 presents similar aspects to other members of the coronavirus family, mainly regarding its genome, protein structure and intracellular mechanisms, that may translate into mild (or even asymptomatic) to severe infectious conditions. Although the mechanistic features underlying the COVID-19 progression have not been fully clarified, current evidence have suggested that SARS-CoV-2 may primarily behave as other β-coronavirus members. To better understand the development and transmission of COVID-19, unveiling the signaling pathways that may be impacted by SARS-CoV-2 infection, at the molecular and cellular levels, is of crucial importance. In this review, we present the main aspects related to the origin, classification, etiology and clinical impact of SARS-CoV-2. Specifically, here we describe the potential mechanisms of cellular interaction and signaling pathways, elicited by functional receptors, in major targeted tissues/organs from the respiratory, gastrointestinal (GI), cardiovascular, renal, and nervous systems. Furthermore, the potential involvement of these signaling pathways in evoking the onset and progression of COVID-19 symptoms in these organ systems are presently discussed. A brief description of future perspectives related to potential COVID-19 treatments is also highlighted.
Collapse
Affiliation(s)
- Daniella S. Battagello
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Guilherme Dragunas
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Marianne O. Klein
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Ana L.P. Ayub
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Fernando J. Velloso
- Department of Pharmacology, Physiology and Neurosciences, Rutgers-NJMS, Newark, NJ, U.S.A
| | - Ricardo G. Correa
- NCI-Designated Cancer Center, Sanford Burnham Prebys (SBP) Medical Discovery Institute, La Jolla, CA, U.S.A
| |
Collapse
|
29
|
Khan N. Possible protective role of 17β-estradiol against COVID-19. JOURNAL OF ALLERGY AND INFECTIOUS DISEASES 2020; 1:38-48. [PMID: 33196058 PMCID: PMC7665224 DOI: 10.46439/allergy.1.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is the virus that causes coronavirus disease 2019 (COVID-19); a worldwide pandemic as declared by the World Health Organization (WHO). SARS-CoV-2 appears to infect cells by first binding and priming its viral-spike proteins with membrane-associated angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). Through the coordinated actions of ACE2 and TMPRSS2, SARS-CoV-2 spike proteins fuse with plasma membranes and ultimately the virus enters cells. ACE2 is integral to the renin-angiotensin-aldosterone system (RAAS), and SARS-CoV-2 down-regulates protein expression levels of ACE2. Once infected, patients typically develop acute respiratory distress syndrome (ARDS) and a number of other severe complications that result in a high rate of fatality, especially in older (>60 years) adults and in people with pre-existing medical conditions. Data now indicate clearly that among people of all age groups, COVID-19 fatalities are higher in men than women. Here, attention is focused on these sex differences and posit a role of estrogen in these differences as well as possible therapeutic and protective actions of 17β-estradiol against COVID-19.
Collapse
Affiliation(s)
- Nabab Khan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203, USA
| |
Collapse
|
30
|
Saheb Sharif-Askari F, Saheb Sharif-Askari N, Goel S, Fakhri S, Al-Muhsen S, Hamid Q, Halwani R. Are patients with chronic rhinosinusitis with nasal polyps at a decreased risk of COVID-19 infection? Int Forum Allergy Rhinol 2020; 10:1182-1185. [PMID: 32757347 PMCID: PMC7436719 DOI: 10.1002/alr.22672] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/06/2020] [Accepted: 07/19/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Fatemeh Saheb Sharif-Askari
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Narjes Saheb Sharif-Askari
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Swati Goel
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Samer Fakhri
- Department of Otorhinolaryngology-Head & Neck Surgery, Faculty of Medicine and AUBMC, American University of Beirut, Beirut, Lebanon
| | - Saleh Al-Muhsen
- Immunology Research Lab, department of pediatrics, College of Medicine, King Saud University, Saudi Arabia
| | - Qutayba Hamid
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Rabih Halwani
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Prince Abdullah Ben Khaled Celiac Disease Chair, department of pediatrics, Faculty of Medicine, King Saud University, Saudi Arabia
| |
Collapse
|
31
|
Hosoki K, Chakraborty A, Sur S. Molecular mechanisms and epidemiology of COVID-19 from an allergist's perspective. J Allergy Clin Immunol 2020; 146:285-299. [PMID: 32624257 PMCID: PMC7331543 DOI: 10.1016/j.jaci.2020.05.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/19/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
The global pandemic caused by the newly described severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused worldwide suffering and death of unimaginable magnitude from coronavirus disease 2019 (COVID-19). The virus is transmitted through aerosol droplets, and causes severe acute respiratory syndrome. SARS-CoV-2 uses the receptor-binding domain of its spike protein S1 to attach to the host angiotensin-converting enzyme 2 receptor in lung and airway cells. Binding requires the help of another host protein, transmembrane protease serine S1 member 2. Several factors likely contribute to the efficient transmission of SARS-CoV-2. The receptor-binding domain of SARS-CoV-2 has a 10- to 20-fold higher receptor-binding capacity compared with previous pandemic coronaviruses. In addition, because asymptomatic persons infected with SARS-CoV-2 have high viral loads in their nasal secretions, they can silently and efficiently spread the disease. PCR-based tests have emerged as the criterion standard for the diagnosis of infection. Caution must be exercised in interpreting antibody-based tests because they have not yet been validated, and may give a false sense of security of being "immune" to SARS-CoV-2. We discuss how the development of some symptoms in allergic rhinitis can serve as clues for new-onset COVID-19. There are mixed reports that asthma is a risk factor for severe COVID-19, possibly due to differences in asthma endotypes. The rapid spread of COVID-19 has focused the efforts of scientists on repurposing existing Food and Drug Administration-approved drugs that inhibit viral entry, endocytosis, genome assembly, translation, and replication. Numerous clinical trials have been launched to identify effective treatments for COVID-19. Initial data from a placebo-controlled study suggest faster time to recovery in patients on remdesivir; it is now being evaluated in additional controlled studies. As discussed in this review, till effective vaccines and treatments emerge, it is important to understand the scientific rationale of pandemic-mitigation strategies such as wearing facemasks and social distancing, and implement them.
Collapse
Affiliation(s)
- Koa Hosoki
- Department of Medicine, Immunology Allergy and Rheumatology, Baylor College of Medicine, Houston, Tex
| | - Abhijit Chakraborty
- Department of Medicine, Immunology Allergy and Rheumatology, Baylor College of Medicine, Houston, Tex
| | - Sanjiv Sur
- Department of Medicine, Immunology Allergy and Rheumatology, Baylor College of Medicine, Houston, Tex.
| |
Collapse
|
32
|
Jian L, Yi W, Zhang N, Wen W, Krysko O, Song WJ, Bachert C. Perspective: COVID-19, implications of nasal diseases and consequences for their management. J Allergy Clin Immunol 2020; 146:67-69. [PMID: 32360869 PMCID: PMC7252138 DOI: 10.1016/j.jaci.2020.04.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/13/2020] [Accepted: 04/24/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Li Jian
- First Affiliated Hospital, Sun Yat-sen University, International Airway Research Center, Guangzhou, China
| | - Wei Yi
- First Affiliated Hospital, Sun Yat-sen University, International Airway Research Center, Guangzhou, China
| | - Nan Zhang
- Upper Airways Research Laboratory and Department of Oto-Rhino-Laryngology, Ghent University, Ghent, Belgium
| | - Weiping Wen
- First Affiliated Hospital, Sun Yat-sen University, International Airway Research Center, Guangzhou, China
| | - Olga Krysko
- Upper Airways Research Laboratory and Department of Oto-Rhino-Laryngology, Ghent University, Ghent, Belgium
| | - Woo-Jung Song
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Claus Bachert
- First Affiliated Hospital, Sun Yat-sen University, International Airway Research Center, Guangzhou, China; Upper Airways Research Laboratory and Department of Oto-Rhino-Laryngology, Ghent University, Ghent, Belgium; Division of ENT Diseases, CLINTEC, Karolinska Institute, University of Stockholm, Stockholm, Sweden.
| |
Collapse
|
33
|
Perrotta F, Matera MG, Cazzola M, Bianco A. Severe respiratory SARS-CoV2 infection: Does ACE2 receptor matter? Respir Med 2020; 168:105996. [PMID: 32364961 PMCID: PMC7194970 DOI: 10.1016/j.rmed.2020.105996] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022]
Abstract
SARS-CoV-2 is a novel virus of the Coronaviridiae family that represents a major global health issue. Mechanisms implicated in virus/host cells interaction are central for cell infection and replication that in turn lead to disease onset and local damage. To enter airway and lung epithelia, SARS-CoV-2 attaches to ACE2 receptors by spike (S) glycoproteins. Molecular mechanisms that promote interaction between SARS-CoV-2 virus and host with particular focus on virus cell entry receptor ACE2 are described. We further explore the impact of underlying medical conditions and therapies including renin-angiotensin inhibitors on modulating ACE 2, which is the major SARS-CoV-2 cell entry receptor.
Collapse
Affiliation(s)
- Fabio Perrotta
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Cazzola
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli"/Hosp. Monaldi, Naples, Italy.
| |
Collapse
|
34
|
Mueller AL, McNamara MS, Sinclair DA. Why does COVID-19 disproportionately affect older people? Aging (Albany NY) 2020; 12:9959-9981. [PMID: 32470948 PMCID: PMC7288963 DOI: 10.18632/aging.103344] [Citation(s) in RCA: 622] [Impact Index Per Article: 124.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
The severity and outcome of coronavirus disease 2019 (COVID-19) largely depends on a patient's age. Adults over 65 years of age represent 80% of hospitalizations and have a 23-fold greater risk of death than those under 65. In the clinic, COVID-19 patients most commonly present with fever, cough and dyspnea, and from there the disease can progress to acute respiratory distress syndrome, lung consolidation, cytokine release syndrome, endotheliitis, coagulopathy, multiple organ failure and death. Comorbidities such as cardiovascular disease, diabetes and obesity increase the chances of fatal disease, but they alone do not explain why age is an independent risk factor. Here, we present the molecular differences between young, middle-aged and older people that may explain why COVID-19 is a mild illness in some but life-threatening in others. We also discuss several biological age clocks that could be used in conjunction with genetic tests to identify both the mechanisms of the disease and individuals most at risk. Finally, based on these mechanisms, we discuss treatments that could increase the survival of older people, not simply by inhibiting the virus, but by restoring patients' ability to clear the infection and effectively regulate immune responses.
Collapse
Affiliation(s)
- Amber L. Mueller
- Glenn Center for Biology of Aging Research, Blavatnik Institute, Harvard Medical School, Boston, MA 20115, USA
| | - Maeve S. McNamara
- Glenn Center for Biology of Aging Research, Blavatnik Institute, Harvard Medical School, Boston, MA 20115, USA
| | - David A. Sinclair
- Glenn Center for Biology of Aging Research, Blavatnik Institute, Harvard Medical School, Boston, MA 20115, USA
| |
Collapse
|
35
|
Chirumbolo S, Bjørklund G. The bimodal SARS-CoV-2 outbreak in Italy as an effect of environmental and allergic causes. J Allergy Clin Immunol 2020; 146:331-332. [PMID: 32507495 PMCID: PMC7253996 DOI: 10.1016/j.jaci.2020.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/13/2020] [Indexed: 02/01/2023]
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway.
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
36
|
Magalhães GS, Gregório JF, Ramos KE, Cançado-Ribeiro ATP, Baroni IF, Barcelos LS, Pinho V, Teixeira MM, Santos RAS, Rodrigues-Machado MG, Campagnole-Santos MJ. Treatment with inhaled formulation of angiotensin-(1-7) reverses inflammation and pulmonary remodeling in a model of chronic asthma. Immunobiology 2020; 225:151957. [PMID: 32517880 DOI: 10.1016/j.imbio.2020.151957] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/17/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
Asthma is characterized by inflammation, pulmonary remodeling and bronchial hyperresponsiveness. We have previously shown that treatment with angiotensin-(1-7) [Ang-(1-7)] promotes resolution of eosinophilic inflammation and prevents chronic allergic lung inflammation. Here, we evaluated the effect of treatment with the inclusion compound of Ang-(1-7) in hydroxypropyl β-cyclodextrin (HPβCD) given by inhalation on pulmonary remodeling in an ovalbumin (OVA)-induced chronic allergic lung inflammation. Mice were sensitized to ovalbumin (OVA; 4 injections over 42 days, 14 days apart) and were challenged 3 times per week, for 4 weeks (days 21-46). After the 2nd week of challenge, mice were treated with Ang-(1-7) by inhalation (4.5 μg of Ang-(1-7) included in 6.9 μg of HPβCD for 14 days, i.e. days 35-48). Mice were killed 72 h after the last challenge and blood, bronchoalveolar lavage fluid (BALF) and lungs were collected. Histology and morphometric analysis were performed in the lung. Metalloproteinase (MMP)-9 and MMP-12 expression and activity, IL-5, CCL11 in the lung and plasma IgE were measured. After 2 weeks of OVA challenge there was an increase in plasma IgE and in inflammatory cells infiltration in the lung of asthmatic mice. Treatment with inhaled administration of Ang-(1-7)/HPβCD for 14 days reduced eosinophils, IL5, CCL11 in the lung and plasma IgE. Treatment of asthmatic mice with Ang-(1-7)/HPβCD by inhalation reversed pulmonary remodeling by reducing collagen deposition and MMP-9 and MMP-12 expression and activity. These results show for the first time that treatment by inhalation with Ang-(1-7) can reverse an installed asthma, inhibiting pulmonary inflammation and remodeling.
Collapse
Affiliation(s)
- Giselle Santos Magalhães
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil; Faculty of Medical Sciences of Minas Gerais, Post-Graduation Program in Health Sciences, Belo Horizonte, Brazil
| | - Juliana Fabiana Gregório
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Kezia Emanoeli Ramos
- Faculty of Medical Sciences of Minas Gerais, Post-Graduation Program in Health Sciences, Belo Horizonte, Brazil
| | | | - Isis Felippe Baroni
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lucíola Silva Barcelos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Robson Augusto Souza Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Maria Jose Campagnole-Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
37
|
Rossi GP, Sanga V, Barton M. Potential harmful effects of discontinuing ACE-inhibitors and ARBs in COVID-19 patients. eLife 2020; 9:e57278. [PMID: 32250244 PMCID: PMC7198232 DOI: 10.7554/elife.57278] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/03/2020] [Indexed: 01/22/2023] Open
Abstract
The discovery of angiotensin converting enzyme-2 (ACE-2) as the receptor for SARS- CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) has implicated the renin-angiotensin-aldosterone system in acute respiratory distress syndrome (ARDS) and respiratory failure in patients with coronavirus disease-19 (COVID-19). The angiotensin converting enzyme-1-angiotensin II-angiotensin AT1 receptor pathway contributes to the pathophysiology of ARDS, whereas activation of the ACE-2-angiotensin(1-7)-angiotensin AT2 receptor and the ACE-2-angiotensin(1-7)-Mas receptor pathways have been shown to be protective. Here we propose and discuss therapeutic considerations how to increase soluble ACE-2 in plasma in order for ACE-2 to capture and thereby inactivate SARS-CoV-2. This could be achieved by administering recombinant soluble ACE-2. We also discuss why and how ACEIs and ARBs provide cardiovascular, renal and also pulmonary protection in SARS-CoV-2- associated ARDS. Discontinuing these medications in COVID-19 patients may therefore potentially be harmful.
Collapse
Affiliation(s)
- Gian Paolo Rossi
- Hypertension Unit -Department of Medicine-DIMED, University of PadovaPadovaItaly
| | - Viola Sanga
- International PhD Program in Arterial Hypertension and Vascular Biology (ARHYVAB)- University of PaduaPaduaItaly
| | - Matthias Barton
- University of ZürichZürichSwitzerland
- Andreas Grüntzig FoundationZürichSwitzerland
| |
Collapse
|
38
|
Nemoto W, Yamagata R, Nakagawasai O, Nakagawa K, Hung WY, Fujita M, Tadano T, Tan-No K. Effect of spinal angiotensin-converting enzyme 2 activation on the formalin-induced nociceptive response in mice. Eur J Pharmacol 2020; 872:172950. [PMID: 31987711 DOI: 10.1016/j.ejphar.2020.172950] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 12/30/2022]
Abstract
We have previously demonstrated that the phosphorylation of p38 MAPK, through spinal AT1 receptor activation, is involved in formalin-induced nociception and follows accompanied by the increase in spinal angiotensin (Ang) II levels. We have also found that Ang (1-7), an N-terminal fragment of Ang II generated by ACE2, prevents the Ang II-induced nociceptive behavior via spinal MAS1 and the inhibition of p38 MAPK phosphorylation. Here, we examined whether the ACE2 activator diminazene aceturate (DIZE) can prevent the formalin-induced nociception in mice. The i.t. administration of DIZE attenuated the second, but not the first phase of formalin-induced nociceptive response. An increase in the activity of spinal ACE2 was measured following DIZE administration. The inhibitory effect of DIZE on nociception was abolished by the i.t. co-administration of the MAS1 antagonist A779. The i.t. administration of Ang (1-7) showed a similar effect on the second phase of the response which was also attenuated by A779. Furthermore, DIZE and Ang (1-7) each inhibited the formalin-induced phosphorylation of p38 MAPK on the dorsal lumbar spinal cord. This inhibition was again prevented by A779. ACE2 was expressed in neurons and microglia but absent from astrocytes in the superficial dorsal horn. Our data show that the i.t.-administered DIZE attenuates the second phase of the formalin-induced nociception which is accompanied by the inhibition of p38 MAPK phosphorylation. They also suggest the involvement of MAS1 activation on spinal neurons and microglia in response to the increase in Ang (1-7) following ACE2 activation.
Collapse
Affiliation(s)
- Wataru Nemoto
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan.
| | - Ryota Yamagata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Osamu Nakagawasai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Koharu Nakagawa
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Wan-Yi Hung
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Maho Fujita
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Takeshi Tadano
- Complementary and Alternative Medicine Clinical Research and Development, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Koichi Tan-No
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| |
Collapse
|
39
|
Sodhi CP, Nguyen J, Yamaguchi Y, Werts AD, Lu P, Ladd MR, Fulton WB, Kovler ML, Wang S, Prindle T, Zhang Y, Lazartigues ED, Holtzman MJ, Alcorn JF, Hackam DJ, Jia H. A Dynamic Variation of Pulmonary ACE2 Is Required to Modulate Neutrophilic Inflammation in Response to Pseudomonas aeruginosa Lung Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2019; 203:3000-3012. [PMID: 31645418 DOI: 10.4049/jimmunol.1900579] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a potent negative regulator capable of restraining overactivation of the renin-angiotensin system, which contributes to exuberant inflammation after bacterial infection. However, the mechanism through which ACE2 modulates this inflammatory response is not well understood. Accumulating evidence indicates that infectious insults perturb ACE2 activity, allowing for uncontrolled inflammation. In the current study, we demonstrate that pulmonary ACE2 levels are dynamically varied during bacterial lung infection, and the fluctuation is critical in determining the severity of bacterial pneumonia. Specifically, we found that a pre-existing and persistent deficiency of active ACE2 led to excessive neutrophil accumulation in mouse lungs subjected to bacterial infection, resulting in a hyperinflammatory response and lung damage. In contrast, pre-existing and persistent increased ACE2 activity reduces neutrophil infiltration and compromises host defense, leading to overwhelming bacterial infection. Further, we found that the interruption of pulmonary ACE2 restitution in the model of bacterial lung infection delays the recovery process from neutrophilic lung inflammation. We observed the beneficial effects of recombinant ACE2 when administered to bacterially infected mouse lungs following an initial inflammatory response. In seeking to elucidate the mechanisms involved, we discovered that ACE2 inhibits neutrophil infiltration and lung inflammation by limiting IL-17 signaling by reducing the activity of the STAT3 pathway. The results suggest that the alteration of active ACE2 is not only a consequence of bacterial lung infection but also a critical component of host defense through modulation of the innate immune response to bacterial lung infection by regulating neutrophil influx.
Collapse
Affiliation(s)
- Chhinder P Sodhi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jenny Nguyen
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Yukihiro Yamaguchi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Adam D Werts
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Peng Lu
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Mitchell R Ladd
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - William B Fulton
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Mark L Kovler
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Sanxia Wang
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Thomas Prindle
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Yong Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Eric D Lazartigues
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112.,Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119; and
| | - Michael J Holtzman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - John F Alcorn
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224
| | - David J Hackam
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Hongpeng Jia
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Hypertension (HTN) is a widespread and growing disease, with medication intolerance and side-effect present among many. To address these obstacles novel pharmacotherapy is an active area of drug development. This review seeks to explore future drug therapy for HTN in the preclinical and clinical arenas. RECENT FINDINGS The future of pharmacological therapy in HTN consists of revisiting old pathways to find new targets and exploring wholly new approaches to provide additional avenues of treatment. In this review, we discuss the current status of the most recent drug therapy in HTN. New developments in well trod areas include novel mineralocorticoid antagonists, aldosterone synthase inhibitors, aminopeptidase-A inhibitors, natriuretic peptide receptor agonists, or the counter-regulatory angiotensin converting enzyme 2/angiotensin (Ang) (1-7)/Mas receptor axis. Neprilysin inhibitors popularized for heart failure may also still hold HTN potential. Finally, we examine unique systems in development never before used in HTN such as Na/H exchange inhibitors, vasoactive intestinal peptide agonists, and dopamine beta hydroxylase inhibitors. SUMMARY A concise review of future directions of HTN pharmacotherapy.
Collapse
|
41
|
Abd El-Aleam RH, George RF, Lee KJ, Keeton AB, Piazza GA, Kamel AA, El-Daly ME, Hassan GS, Abdel-Rahman HM. Design and synthesis of 1,2,4-triazolo[1,5-a]pyrimidine derivatives as PDE 4B inhibitors endowed with bronchodilator activity. Arch Pharm (Weinheim) 2019; 352:e1900002. [PMID: 31353608 DOI: 10.1002/ardp.201900002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/17/2019] [Accepted: 05/01/2019] [Indexed: 12/30/2022]
Abstract
A series of 1,2,4-triazolo[1,5-a]pyrimidine derivatives was designed, synthesized, and screened for their phosphodiesterase (PDE 4B) inhibitory activity and bronchodilation ability. Compound 7e showed 41.80% PDE 4B inhibition at 10 µM. Eight compounds were screened for their bronchodilator activity, where compounds 7f and 7e elicited promising bronchodilator activity with EC50 values of 18.6 and 57.1 µM, respectively, compared to theophylline (EC50 = 425 µM). Molecular docking at the PDE 4B active site revealed a binding mode and docking scores comparable to those of a reference ligand, consistent with their PDE 4B inhibition activity.
Collapse
Affiliation(s)
- Rehab H Abd El-Aleam
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University, Beni Suef, Egypt
| | - Riham F George
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Kevin J Lee
- USA Mitchell Cancer Institute Drug Discovery Laboratory, University of South Alabama, Mobile, Alabama
| | - Adam B Keeton
- USA Mitchell Cancer Institute Drug Discovery Laboratory, University of South Alabama, Mobile, Alabama
| | - Gary A Piazza
- USA Mitchell Cancer Institute Drug Discovery Laboratory, University of South Alabama, Mobile, Alabama
| | - Amr A Kamel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Mahmoud E El-Daly
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Ghaneya S Hassan
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University, Badr City, Cairo, Egypt
| | - Hamdy M Abdel-Rahman
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University, Beni Suef, Egypt.,Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
42
|
β-Cyclodextrin as a Functional Excipient Used for Enhancing the Diminazene Aceturate Bioavailability. Pharmaceutics 2019; 11:pharmaceutics11060295. [PMID: 31234525 PMCID: PMC6630424 DOI: 10.3390/pharmaceutics11060295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/16/2019] [Accepted: 06/19/2019] [Indexed: 01/14/2023] Open
Abstract
In this study, we proposed formulations of diminazene aceturate (DA) designed to improve its bioavailability and to maximize the therapeutic index in animals by overcoming the rapid degradation under the acidic pH of the stomach. An important consequence is the fact that its amount in the bloodstream is close to the administered dose. This was made possible by incorporating DA into the β-cyclodextrin’s (βCD) cavity in a molar ratio of 1:1. The structure of the resulted inclusion complex was established by Raman, DSC, and Wide-Angle X ray Diffraction (WAXD) in solid state and by 1H-NMR and H-H ROESY in aqueous solutions. The stoichiometry of the DA:βCD inclusion complex was obtained by using the continuous variation method (Job’s plot), considering the chemical shifts variations of protons from both DA and βCD compounds in 1H-NMR spectra. The biological activity was estimated in vitro by antioxidant activity and in vivo by comparing the bioavailability of parent DA and its inclusion complexes after a single dose administration in Wistar rats by using the HPLC method on their blood plasma. In vitro tests showed an improved antioxidant activity. In vivo tests have shown that the DA concentration is always much higher in blood plasma of rats when DA:βCD inclusion complex of 1:1 molar ratio was administered (i.e., at 60 min, DA is around 11 and 3 times higher when DA:βCD inclusion complex of 1:1 molar ratio was administered than the parent DA one and DA:βCD lyophilized mixture of 1:2 molar ratio, respectively).
Collapse
|
43
|
Laxmi V, Gupta R, Bhattacharya SK, Ray A, Gulati K. Inhibitory effects of sildenafil and tadalafil on inflammation, oxidative stress and nitrosative stress in animal model of bronchial asthma. Pharmacol Rep 2019; 71:517-521. [PMID: 31009843 DOI: 10.1016/j.pharep.2019.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 01/22/2019] [Accepted: 02/14/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Cyclic neucleotides are involved in many cellular functions including smooth muscle relaxation, inflammation, and signal transduction. Sildenafil and tadalafil are phosphodiesterase-5 (PDE-5) inhibitors which prevent the degradation of cyclic neucleotide i.e. guanosine 3',5' cyclic monophosphate (cGMP) and increase the levels of cGMP. In this study sildenafil and tadalafil were evaluated for their anti-inflammatory, anti-oxidative and anti-nitrosative stress potential in animal model of bronchial asthma. METHODS Wistar rats were sensitized with 10 mg intraperitoneal (ip) ovalbumin adsorbed to 10 μg of aluminum hydroxide on day 0. Animals were given sildenafil (1 and 3 mg/kg ip) and tadalafil (1 and 3 mg/kg ip) from day 1 to day 14. Also, on day 14 animals were challenged with ovalbumin (1 mg ip). After 24 h, samples were collected to analyze interleukin-4 (IL-4) and tumour necrosis factor-α (TNF-α), in serum and bronchoalveolar lavage fluid (BALF). The oxidative stress markers malondialdehyde (MDA), reduced glutathione (GSH) and nitric oxide metabolites (NOx) were also measured in serum. RESULTS Pre-treatment with sildenafil (1 and 3 mg/kg ip) and tadalafil (1 and 3 mg/kg ip) significantly reduced the levels of pro-inflammatory cytokines IL-4 and TNF-α in rat serum and BALF. In addition, pre-treatment with both the drugs decreased the levels of MDA and NOx and increased the levels of GSH in serum. CONCLUSIONS Sildenafil and tadalafil decreased pro-inflammatory cytokines in serum and BALF. Both drugs inhibit oxidative and nitrosative stress in animal model of bronchial asthma and could have a therapeutic potential in bronchial asthma.
Collapse
Affiliation(s)
- Vijaya Laxmi
- Department of Pharmacology, University College of Medical Sciences and GTB Hospital, New Delhi, India
| | - Rachna Gupta
- Department of Pharmacology, University College of Medical Sciences and GTB Hospital, New Delhi, India.
| | - Swapan K Bhattacharya
- Department of Pharmacology, University College of Medical Sciences and GTB Hospital, New Delhi, India
| | - Arunabha Ray
- Vallabhbhai Patel Chest Institute, New Delhi, India
| | | |
Collapse
|
44
|
Southworth T, Mason S, Bell A, Ramis I, Calbet M, Domenech A, Prats N, Miralpeix M, Singh D. PI3K, p38 and JAK/STAT signalling in bronchial tissue from patients with asthma following allergen challenge. Biomark Res 2018; 6:14. [PMID: 29651336 PMCID: PMC5896031 DOI: 10.1186/s40364-018-0128-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/02/2018] [Indexed: 01/01/2023] Open
Abstract
Background Inhaled allergen challenges are often used to evaluate novel asthma treatments in early phase clinical trials. Current novel therapeutic targets in asthma include phosphoinositide 3-kinases (PI3K) delta and gamma, p38 mitogen-activated protein kinase (p38) and Janus kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signalling pathways. The activation of these pathways following allergen exposure in atopic asthma patients it is not known. Methods We collected bronchial biopsies from 11 atopic asthma patients at baseline and after allergen challenge to investigate biomarkers of PI3K, p38 MAPK and JAK/STAT activation by immunohistochemistry. Cell counts and levels of eosinophil cationic protein and interleukin-5 were also assessed in sputum and bronchoalvelar lavage. Results Biopsies collected post-allergen had an increased percentage of epithelial cells expressing phospho-p38 (17.5 vs 25.6%, p = 0.04), and increased numbers of sub-epithelial cells expressing phospho-STAT5 (122.2 vs 540.6 cells/mm2, p = 0.01) and the PI3K marker phospho-ribosomal protein S6 (180.7 vs 777.3 cells/mm2,p = 0.005). Type 2 inflammation was increased in the airways post allergen, with elevated levels of eosinophils, interleukin-5 and eosinophil cationic protein. Conclusions Future clinical trials of novel kinase inhibitors could use the allergen challenge model in proof of concept studies, while employing these biomarkers to investigate pharmacological inhibition in the lungs.
Collapse
Affiliation(s)
- Thomas Southworth
- 1Division of Infection, Immunity & Respiratory Medicine, The Medicines Evaluation Unit, The University of Manchester, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK.,3The University of Manchester, 2nd Floor Education and Research Center, Wythenshawe Hospital, Southmoor Road, Manchester, M23 9LT UK
| | - Sarah Mason
- 1Division of Infection, Immunity & Respiratory Medicine, The Medicines Evaluation Unit, The University of Manchester, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Alan Bell
- 1Division of Infection, Immunity & Respiratory Medicine, The Medicines Evaluation Unit, The University of Manchester, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Isabel Ramis
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | - Marta Calbet
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | - Anna Domenech
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | - Neus Prats
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | | | - Dave Singh
- 1Division of Infection, Immunity & Respiratory Medicine, The Medicines Evaluation Unit, The University of Manchester, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
45
|
Ge P, Yao X, Li J, Jiang R, Dai J, Zhang L. Diminazene aceturate alleviated lipopolysaccharide/D-galactosamine-induced fulminant hepatitis in mice. Biomed Pharmacother 2018; 98:142-148. [DOI: 10.1016/j.biopha.2017.12.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/15/2022] Open
|
46
|
Targeting the renin-angiotensin system as novel therapeutic strategy for pulmonary diseases. Curr Opin Pharmacol 2017; 40:9-17. [PMID: 29288933 DOI: 10.1016/j.coph.2017.12.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 12/16/2022]
Abstract
The renin-angiotensin system (RAS) plays a major role in regulating electrolyte balance and blood pressure. RAS has also been implicated in the regulation of inflammation, proliferation and fibrosis in pulmonary diseases such as asthma, acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF) and pulmonary arterial hypertension (PAH). Current therapeutics suffer from some drawbacks like steroid resistance, limited efficacies and side effects. Novel intervention is definitely needed to offer optimal therapeutic strategy and clinical outcome. This review compiles and analyses recent investigations targeting RAS for the treatment of inflammatory lung diseases. Inhibition of the upstream angiotensin (Ang) I/Ang II/angiotensin receptor type 1 (AT1R) pathway and activation of the downstream angiotensin-converting enzyme 2 (ACE2)/Ang (1-7)/Mas receptor pathway are two feasible strategies demonstrating efficacies in various pulmonary disease models. More recent studies favor the development of targeting the downstream ACE2/Ang (1-7)/Mas receptor pathway, in which diminazene aceturate, an ACE2 activator, GSK2586881, a recombinant ACE2, and AV0991, a Mas receptor agonist, showed much potential for further development. As the pathogenesis of pulmonary diseases is so complex that RAS modulation may be used alone or in combination with existing drugs like corticosteroids, pirfenidone/nintedanib or endothelin receptor antagonists for different pulmonary diseases. Personalized medicine through genetic screening and phenotyping for angiotensinogen or ACE would aid treatment especially for non-responsive patients. This review serves to provide an update on the latest development in the field of RAS targeting for pulmonary diseases, and offer some insights into future direction.
Collapse
|
47
|
Mediating Role of TRPV1 Ion Channels in the Co-exposure to PM2.5 and Formaldehyde of Balb/c Mice Asthma Model. Sci Rep 2017; 7:11926. [PMID: 28931832 PMCID: PMC5607312 DOI: 10.1038/s41598-017-11833-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/24/2017] [Indexed: 01/31/2023] Open
Abstract
Asthma is a complex pulmonary inflammatory disease that can be promoted by air pollutants such as PM2.5 and formaldehyde (FA). However, existent experimental evidence principally focuses on the negative influence of a single air pollutant, neglecting the possible synergistic effect in biological responses to mixture of these pollutants, a more common situation in our daily life. In this study, allergic Balb/c mice were exposed to a mixture of PM2.5 and FA, and their toxicological effects and mechanisms were explored. It is demonstrated that the combined exposure to PM2.5 and FA can greatly aggravate allergic asthma in mice. When compared with exposure to PM2.5 or FA alone, the co-exposure showed a certain synergistic effect. Increased levels of ROS, inflammatory factors and total serum immunoglobulin E were concomitant with this deterioration. Furthermore, results suggested that co-exposure exacerbated the activation of TRPV1 signal pathways, with an enhancement in substance P and calcitonin gene-related peptide production, which contributed to inflammation in asthma by neurogenic inflammation. The study also proved that capsazepine treatment could reduce the levels of not only pro-inflammatory neuropeptides, but also oxidative stress. It is concluded that co-exposure to PM2.5 and FA exacerbated allergic asthma through oxidative stress and enhanced TRPV1 activation.
Collapse
|
48
|
Goru SK, Kadakol A, Malek V, Pandey A, Sharma N, Gaikwad AB. Diminazene aceturate prevents nephropathy by increasing glomerular ACE2 and AT 2 receptor expression in a rat model of type1 diabetes. Br J Pharmacol 2017; 174:3118-3130. [PMID: 28688122 DOI: 10.1111/bph.13946] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 06/30/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE One of the protective actions of angiotensin converting enzyme-2 (ACE2) is the inactivation of angiotensin II. Expression and activity of ACE2 was reduced in glomeruli of diabetic patients and in animal models of diabetes. Recently the potential role of recombinant ACE2 administration in preventing diabetic nephropathy (DN) has been shown. Here we have tested the effects of the ACE2 activator, diminazene aceturate (DIZE), in a model of DN. EXPERIMENTAL APPROACH Male Wistar rats were rendered diabetic using a single dose of streptozotocin (55 mg·kg-1 , i.p.). After 4 weeks, diabetic animals were divided into experimental groups and treated with DIZE, at a low dose (5 mg·kg-1 ·day-1 ), a high dose (15 mg·kg-1 ·day-1 ) and the high dose with of the AT2 receptor antagonist PD123319 (10 mg·kg-1 ·day-1 ). At the end of the treatment , kidneys from all the groups were collected and processed separately for glomerular isolation, protein isolation, mRNA extraction and for immunohistochemical studies. KEY RESULTS Treatment with DIZE restored ACE2 expression in glomeruli and increased expression of AT2 receptors in whole kidney and isolated glomeruli of diabetic animals. DIZE administration reduced angiotensin II levels and increased angiotensin-(1-7) levels in diabetic kidney. However, PD123319 treatment reversed all these actions of DIZE. CONCLUSIONS AND IMPLICATIONS DIZE treatment reduced diabetes-induced renal damage as shown by reduction of fibrosis and apoptosis. These protective actions of DIZE were blocked by the AT2 receptor antagonist. Taken together, these results suggest that DIZE protected against DN through the ACE2/angiotensin-(1-7)/ AT2 receptor axis.
Collapse
Affiliation(s)
- Santosh Kumar Goru
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| | - Almesh Kadakol
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| | - Vajir Malek
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| | - Anuradha Pandey
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| | - Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| |
Collapse
|
49
|
Correlations between ACE single nucleotide polymorphisms and prognosis of patients with septic shock. Biosci Rep 2017; 37:BSR20170145. [PMID: 28336767 PMCID: PMC5408661 DOI: 10.1042/bsr20170145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/19/2017] [Accepted: 03/23/2017] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study is to investigate association between septic shock (SS) and angiotensin I-converting enzyme (ACE) single nucleotide polymorphisms (SNPs). From October 2009 to December 2016, 238 SS patients and 242 healthy individuals were selected for our study. ACE activity was detected, ACE rs4291 and rs4646994 polymorphisms were detected using PCR-restriction fragment length polymorphism (PCR-RFLP). The Kaplan–Meier survival curve was employed to evaluate the association between ACE SNPs and patients’ survival and univariate and multivariate analyses to estimate risk factors for SS. ACE activity in the case group was increased in comparison with the control group. Allele and genotype frequencies of rs4291 and rs4646994 were different between the case and control groups. The TT genotype frequency of the rs4291 polymorphisms and the DD genotype of the rs4646994 polymorphisms of the case group were higher than those in the control group. The AT and TT genotypes indicated a significant elevation of ACE activity than the AA genotype, while a significant decline was found in the DI and II genotypes in comparison with the DI genotype. Patients with TT or DD genotypes had increased fatality rate within 7 and 30 days when compared with those with non-TT or non-DD genotypes. Lower sepsis-related organ failure assessment (SOFA) scores, rs4291, serum ACE and rs4646994 were all considered as risky factors for SS patients. The study demonstrates that TT genotype of rs4291 or DD genotype of rs4646994 may be indicative of a higher risk of SS and a poorer prognosis in SS patients.
Collapse
|
50
|
Zhu LY, Ni ZH, Luo XM, Wang XB. Advance of antioxidants in asthma treatment. World J Respirol 2017; 7:17-28. [DOI: 10.5320/wjr.v7.i1.17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/23/2016] [Accepted: 01/14/2017] [Indexed: 02/07/2023] Open
Abstract
Asthma is an allergic disease, characterized as a recurrent airflow limitation, airway hyperreactivity, and chronic inflammation, involving a variety of cells and cytokines. Reactive oxygen species have been proven to play an important role in asthma. The pathogenesis of oxidative stress in asthma involves an imbalance between oxidant and antioxidant systems that is caused by environment pollutants or endogenous reactive oxygen species from inflammation cells. There is growing evidence that antioxidant treatments that include vitamins and food supplements have been shown to ameliorate this oxidative stress while improving the symptoms and decreasing the severity of asthma. In this review, we summarize recent studies that are related to the mechanisms and biomarkers of oxidative stress, antioxidant treatments in asthma.
Collapse
|