1
|
Yang Y, Luo Z, Wei Z, Zhao J, Lu T, Fu T, Tang S. Combined use of chemical dust suppressant and herbaceous plants for tailings dust control. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:329. [PMID: 39012551 DOI: 10.1007/s10653-024-02119-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/06/2024] [Indexed: 07/17/2024]
Abstract
Tailings dust can negatively affect the surrounding environment and communities because the tailings are vulnerable to wind erosion. In this study, the effects of halides (sodium chloride [NaCl], calcium chloride [CaCl2], and magnesium chloride hexahydrate [MgCl2·6H2O]), and polymer materials (polyacrylamide [PAM], polyvinyl alcohol [PVA], and calcium lignosulfonate [LS]) were investigated for the stabilization of tailings for dust control. Erect milkvetch (Astragalus adsurgens), ryegrass (Lolium perenne L.), and Bermuda grass (Cynodon dactylon) were planted in the tailings and sprayed with chemical dust suppressants. The growth status of the plants and their effects on the mechanical properties of tailings were also studied. The results show that the weight loss of tailings was stabilized by halides and polymers, and decreased with increasing concentration and spraying amount of the solutions. The penetration resistance of tailings stabilized by halides and polymers increased with increasing concentration and spraying amount of the solutions. Among the halides and polymers tested, the use of CaCl2 and PAM resulted in the best control of tailings dust, respectively. CaCl2 solution reduces the adaptability of plants and therefore makes it difficult for grass seeds to germinate normally. PAM solutions are beneficial for the development of herbaceous plants. Among the three herbaceous species, ryegrass exhibited the best degree of development and was more suitable for growth in the tailings. The ryegrass plants planted in the tailings sprayed with PAM grew the best, and the root-soil complex that formed increased the shear strength of the tailings.
Collapse
Affiliation(s)
- Yonghao Yang
- State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
- School of Civil Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Zhihao Luo
- State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
- School of Civil Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Zuoan Wei
- School of Resources and Safety Engineering, Chongqing University, Chongqing, 400044, China
| | - Junkang Zhao
- College of Water Resource and Hydropower, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Ting Lu
- School of Resources and Safety Engineering, Chongqing University, Chongqing, 400044, China
| | - Tianbao Fu
- State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
- School of Civil Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Shuang Tang
- State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
- School of Civil Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| |
Collapse
|
2
|
von Knethen A, Heinicke U, Laux V, Parnham MJ, Steinbicker AU, Zacharowski K. Antioxidants as Therapeutic Agents in Acute Respiratory Distress Syndrome (ARDS) Treatment-From Mice to Men. Biomedicines 2022; 10:98. [PMID: 35052778 PMCID: PMC8773193 DOI: 10.3390/biomedicines10010098] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 12/16/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a major cause of patient mortality in intensive care units (ICUs) worldwide. Considering that no causative treatment but only symptomatic care is available, it is obvious that there is a high unmet medical need for a new therapeutic concept. One reason for a missing etiologic therapy strategy is the multifactorial origin of ARDS, which leads to a large heterogeneity of patients. This review summarizes the various kinds of ARDS onset with a special focus on the role of reactive oxygen species (ROS), which are generally linked to ARDS development and progression. Taking a closer look at the data which already have been established in mouse models, this review finally proposes the translation of these results on successful antioxidant use in a personalized approach to the ICU patient as a potential adjuvant to standard ARDS treatment.
Collapse
Affiliation(s)
- Andreas von Knethen
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Ulrike Heinicke
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Volker Laux
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Andrea U Steinbicker
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
3
|
Shi Y, Liu J, Zhu D, Lu L, Zhang M, Li W, Zeng H, Yu X, Guo J, Zhang Y, Zhou X, Gao Q, Xia F, Chen Y, Li M, Sun M. Methylation-reprogrammed CHRM3 results in vascular dysfunction in the human umbilical vein following IVF-ET. Biol Reprod 2021; 106:687-698. [PMID: 34935917 DOI: 10.1093/biolre/ioab234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/08/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Assisted reproductive technology (ART) has been used globally among infertile couples. However, many epidemiological investigations have indicated that ART is associated with a range of long-term adverse health outcomes in offspring, including cardiovascular disease, obesity and increased plasma lipid levels. Until now, direct evidence has been limited regarding the pathological changes in vascular function in fetuses with ART. In this study, human umbilical cords were collected from healthy normal pregnancies and IVF-ET pregnancies. Vascular functional studies involving acetylcholine (ACh), antagonists of its specific receptors, and L-type calcium channel/PKC-MLC20 phosphorylation pathway specific inhibitors were conducted. Quantitative real-time PCR, Western blotting and methylation analyses were performed on umbilical vein samples. We found that the umbilical vein constriction induced by ACh in the IVF-ET group was significantly attenuated compared with that in the healthy normal pregnancy group, which was not only associated with the hypermethylation of ACh muscarinic receptor subtype 3 (CHRM3) and decreased expression of CHRM3, PKCβ and CaV1.2, but was also related to the reduced phosphorylation of MLC20. The present study revealed that the hypermethylation of CHRM3, leading to a reduction in CHRM3 expression and downregulation of the CaV1.2/PKC-MLC20 phosphorylation pathway, was responsible for the decreased sensitivity to ACh observed in the umbilical vein under IVF-ET conditions. The hypermethylation of CHRM3 caused by IVF-ET might play an important role in altered vasoconstriction and impact cardiovascular systems in the long run.
Collapse
Affiliation(s)
- Yajun Shi
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, 215006, China
| | - Jingliu Liu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, 215006, China
| | - Dan Zhu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, 215006, China
| | - Likui Lu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, 215006, China
| | - Mengshu Zhang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, 215006, China.,Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Weisheng Li
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, 215006, China
| | - Hongtao Zeng
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, 215006, China
| | - Xi Yu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, 215006, China
| | - Jun Guo
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, 215006, China
| | - Yingying Zhang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, 215006, China
| | - Xiuwen Zhou
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, 215006, China
| | - Qinqin Gao
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, 215006, China
| | - Fei Xia
- Reproductive Medicine Center of the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, 215006, China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, 215006, China
| | - Min Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, 215006, China
| | - Miao Sun
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, 215006, China
| |
Collapse
|
4
|
Chau B, Witten ML, Cromey D, Chen Y, Lantz RC. Lung developmental is altered after inhalation exposure to various concentrations of calcium arsenate. Toxicol Appl Pharmacol 2021; 432:115754. [PMID: 34634286 PMCID: PMC8572171 DOI: 10.1016/j.taap.2021.115754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022]
Abstract
Exposure to dust from active and abandoned mining operations may be a very significant health hazard, especially to sensitive populations. We have previously reported that inhalation of real-world mine tailing dusts during lung development can alter lung function and structure in adult male mice. These real-world dusts contain a mixture of metal(loid)s, including arsenic. To determine whether arsenic in inhaled dust plays a role in altering lung development, we exposed C57Bl/6 mice to a background dust (0 arsenic) or to the background dust containing either 3% or 10% by mass, calcium arsenate. Total level of exposure was kept at 100 μg/m3. Calcium arsenate was selected since arsenate is the predominant species found in mine tailings. We found that inhalation exposure during in utero and postnatal lung development led to significant increases in pulmonary baseline resistance, airway hyper-reactivity, and airway collagen and smooth muscle expression in male C57Bl/6 mice. Responses were dependent on the level of calcium arsenate in the simulated dust. These changes were not associated with increased expression of TGF-β1, a marker of epithelial to mesenchymal transition. However, responses were correlated with decreases in the expression of club cell protein 16 (CC16). Dose-dependent decreases in CC16 expression and increases in collagen around airways was seen for animals exposed in utero only (GD), animals exposed postnatally only (PN) and animals continuously exposed throughout development (GDPN). These data suggest that arsenic inhalation during lung development can decrease CC16 expression leading to functional and structural alterations in the adult lung.
Collapse
Affiliation(s)
- Binh Chau
- Department of Cellular & Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ 85719, United States of America.
| | - Mark L Witten
- Phoenix Biometrics, Inc., Tucson, AZ 85710, United States of America
| | - Doug Cromey
- Department of Cellular & Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ 85719, United States of America.
| | - Yin Chen
- Department of Pharmacology and Toxicology, University of Arizona College of Pharmacy, United States of America.
| | - R Clark Lantz
- Department of Cellular & Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ 85719, United States of America.
| |
Collapse
|
5
|
Vega-Millán CB, Dévora-Figueroa AG, Burgess JL, Beamer PI, Furlong M, Lantz RC, Meza-Figueroa D, O Rourke MK, García-Rico L, Meza-Escalante ER, Balderas-Cortés JJ, Meza-Montenegro MM. Inflammation biomarkers associated with arsenic exposure by drinking water and respiratory outcomes in indigenous children from three Yaqui villages in southern Sonora, México. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34355-34366. [PMID: 33650048 PMCID: PMC7919633 DOI: 10.1007/s11356-021-13070-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Environmental arsenic exposure in adults and children has been associated with a reduction in the expression of club cell secretory protein (CC16) and an increase in the expression of matrix metalloproteinase-9 (MMP-9), both biomarkers of lung inflammation and negative respiratory outcomes. The objectives of this study were to determine if the levels of serum CC16 and MMP-9 and subsequent respiratory infections in children are associated with the ingestion of arsenic by drinking water. This cross-sectional study included 216 children from three Yaqui villages, Potam, Vicam, and Cocorit, with levels of arsenic in their ground water of 70.01 ± 21.85, 23.3 ± 9.99, and 11.8 ± 4.42 μg/L respectively. Total arsenic in water and urine samples was determined by inductively coupled plasma/optical emission spectrometry. Serum was analyzed for CC16 and MMP-9 using ELISA. The children had an average urinary arsenic of 79.39 μg/L and 46.8 % had levels above of the national concern value of 50 μg/L. Increased arsenic concentrations in drinking water and average daily arsenic intake by water were associated with decreased serum CC16 levels (β = - 0.12, 95% CI - 0.20, - 0.04 and β = - 0.10, 95% CI - 0.18, - 0.03), and increased serum MMP-9 levels (β = 0.35, 95% CI 0.22, 0.48 and β = 0.29, 95% CI 0.18, 0.40) at significant levels (P < 0.05). However, no association was found between levels of these serum biomarkers and urinary arsenic concentrations. In these children, reduced serum CC16 levels were significantly associated with increased risk of respiratory infections (OR = 0.34, 95% CI 0.13, 0.90). In conclusion, altered levels of serum CC16 and MMP-9 in the children may be due to the toxic effects of arsenic exposure through drinking water.
Collapse
Affiliation(s)
- Christian B Vega-Millán
- Programa de Doctorado en Ciencias Especialidad en Biotecnología, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, 85000, Cd. Obregón, Sonora, México
| | - Ana G Dévora-Figueroa
- Programa de Doctorado en Ciencias Especialidad en Biotecnología, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, 85000, Cd. Obregón, Sonora, México
| | - Jefferey L Burgess
- Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Paloma I Beamer
- Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Melissa Furlong
- Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - R Clark Lantz
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Diana Meza-Figueroa
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, México
| | - Mary Kay O Rourke
- Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Leticia García-Rico
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Astiazarán 46, 83304, Hermosillo, Sonora, México
| | - Edna R Meza-Escalante
- Departamento de Recursos Naturales, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, 85000, Cd. Obregón, Sonora, México
| | - José J Balderas-Cortés
- Departamento de Recursos Naturales, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, 85000, Cd. Obregón, Sonora, México
| | - Maria M Meza-Montenegro
- Departamento de Recursos Naturales, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, 85000, Cd. Obregón, Sonora, México.
| |
Collapse
|
6
|
Sun XW, Lin YN, Ding YJ, Li SQ, Li HP, Li QY. Bronchial Variation: Anatomical Abnormality May Predispose Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2021; 16:423-431. [PMID: 33654392 PMCID: PMC7914054 DOI: 10.2147/copd.s297777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Noxious particulate matter in the air is a primary cause of chronic obstructive pulmonary disease (COPD). The bronchial tree acts to filter these materials in the air and preserve the integrity of the bronchi. Accumulating evidence has demonstrated that smoking and air pollutants are the most prominent risk factors of COPD. Bifurcations in the airway may act as deposition sites for the retention of inhaled particles, however, little is known concerning the impacts of abnormalities of the bronchial anatomy in the pathogenesis of COPD. Studies have reported significant associations between bronchial variations and the symptoms in COPD. In particular, it has been shown that bronchial variations in the central airway tree may contribute to the development of COPD. In this review, we identified three common types of bronchial variation that were used to formulate a unifying hypothesis to explain how bronchial variations contribute to the development of COPD. We also investigated the current evidence for the involvement of specific genes including fibroblast growth factor 10 (Fgf10) and bone morphogenetic protein 4 (Bmp4) in the formation of bronchial variation. Finally, we highlight novel assessment strategies and opportunities for future research of bronchial variations and genetic susceptibility in COPD and comorbidities. Our data strongly highlight the role of bronchial variations in the development, complications, and acute exacerbation of COPD.
Collapse
Affiliation(s)
- Xian Wen Sun
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ying Ni Lin
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yong Jie Ding
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Shi Qi Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hong Peng Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qing Yun Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Anderson ED, Alishahedani ME, Myles IA. Epithelial-Mesenchymal Transition in Atopy: A Mini-Review. FRONTIERS IN ALLERGY 2020; 1. [PMID: 34308414 PMCID: PMC8301597 DOI: 10.3389/falgy.2020.628381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Atopic diseases, particularly atopic dermatitis (AD), asthma, and allergic rhinitis (AR) share a common pathogenesis of inflammation and barrier dysfunction. Epithelial to mesenchymal transition (EMT) is a process where epithelial cells take on a migratory mesenchymal phenotype and is essential for normal tissue repair and signal through multiple inflammatory pathways. However, while links between EMT and both asthma and AR have been demonstrated, as we outline in this mini-review, the literature investigating AD and EMT is far less well-elucidated. Furthermore, current studies on EMT and atopy are mostly animal models or ex vivo studies on cell cultures or tissue biopsies. The literature covered in this mini-review on EMT-related barrier dysfunction as a contributor to AD as well as the related (perhaps resultant) atopic diseases indicates a potential for therapeutic targeting and carry treatment implications for topical steroid use and environmental exposure assessments. Further research, particularly in vivo studies, may greatly advance the field and translate into benefit for patients and families.
Collapse
Affiliation(s)
- Erik D Anderson
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| | - Mohammadali E Alishahedani
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| | - Ian A Myles
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
García-Rico L, Meza-Figueroa D, Beamer PI, Burgess JL, O'Rourke MK, Lantz CR, Furlong M, Martinez-Cinco M, Mondaca-Fernandez I, Balderas-Cortes JJ, Meza-Montenegro MM. Serum matrix metalloproteinase-9 in children exposed to arsenic from playground dust at elementary schools in Hermosillo, Sonora, Mexico. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:499-511. [PMID: 31372863 PMCID: PMC8845485 DOI: 10.1007/s10653-019-00384-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/24/2019] [Indexed: 05/06/2023]
Abstract
Arsenic exposure in adults has been associated with increased serum matrix metalloproteinase-9 (MMP-9), a biomarker which is associated with chronic respiratory disease, lung inflammation, cardiovascular disease and cancer. The objective of this study was to evaluate the association between serum MMP-9 levels in children, urinary arsenic, arsenic chronic daily intake (CDI) and arsenic exposure from playground dust. This cross-sectional study examined 127 children from five elementary schools, in Hermosillo, Sonora, Mexico. Arsenic was analyzed in the dust using a portable X-ray fluorescence (XRF) analyzer. Total urinary arsenic was determined by inductively coupled plasma/optical emission spectrometry. Serum was analyzed for MMP-9 using ELISA. Arsenic levels in playground dust averaged 16.9 ± 4.6 mg/kg. Urinary arsenic averaged 34.9 ± 17.1 µg/L. Arsenic concentration in playground dust was positively associated with serum MMP-9 levels in crude analyses and after adjustment (P < 0.01), MMP-9 and CDI were positively associated only after adjustment (P < 0.01), and no association was found between MMP-9 and urinary arsenic. In conclusion, our study showed an association in children between serum MMP-9 levels and playground dust arsenic concentrations. Therefore, exposure to arsenic in dust where children spend significant time may manifest toxic effects.
Collapse
Affiliation(s)
- Leticia García-Rico
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Astiazarán 46, 83304, Hermosillo, Sonora, México
- Programa de Doctorado en Ciencias Especialidad en Biotecnología, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, 85000, Cd. Obregón, Sonora, México
| | - Diana Meza-Figueroa
- División de Ciencias Exactas y Naturales, Departamento de Geología, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, México
| | - Paloma I Beamer
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Jefferey L Burgess
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Mary K O'Rourke
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Clark R Lantz
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Melissa Furlong
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Marco Martinez-Cinco
- Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Iram Mondaca-Fernandez
- Departamento de Recursos Naturales, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, 85000, Cd. Obregón, Sonora, México
| | - Jose J Balderas-Cortes
- Departamento de Recursos Naturales, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, 85000, Cd. Obregón, Sonora, México
| | - Maria M Meza-Montenegro
- Departamento de Recursos Naturales, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, 85000, Cd. Obregón, Sonora, México.
| |
Collapse
|
9
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|