1
|
Hashemi M, Mohandesi Khosroshahi E, Asadi S, Tanha M, Ghatei Mohseni F, Abdolmohammad Sagha R, Taheri E, Vazayefi P, Shekarriz H, Habibi F, Mortazi S, Khorrami R, Nabavi N, Rashidi M, Taheriazam A, Rahimzadeh P, Entezari M. Emerging roles of non-coding RNAs in modulating the PI3K/Akt pathway in cancer. Noncoding RNA Res 2025; 10:1-15. [PMID: 39296640 PMCID: PMC11406677 DOI: 10.1016/j.ncrna.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer progression results from the dysregulation of molecular pathways, each with unique features that can either promote or inhibit tumor growth. The complexity of carcinogenesis makes it challenging for researchers to target all pathways in cancer therapy, emphasizing the importance of focusing on specific pathways for targeted treatment. One such pathway is the PI3K/Akt pathway, which is often overexpressed in cancer. As tumor cells progress, the expression of PI3K/Akt increases, further driving cancer advancement. This study aims to explore how ncRNAs regulate the expression of PI3K/Akt. NcRNAs are found in both the cytoplasm and nucleus, and their functions vary depending on their location. They can bind to the promoters of PI3K or Akt, either reducing or increasing their expression, thus influencing tumorigenesis. The ncRNA/PI3K/Akt axis plays a crucial role in determining cell proliferation, metastasis, epithelial-mesenchymal transition (EMT), and even chemoresistance and radioresistance in human cancers. Anti-tumor compounds can target ncRNAs to modulate the PI3K/Akt axis. Moreover, ncRNAs can regulate the PI3K/Akt pathway both directly and indirectly.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Tanha
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Forough Ghatei Mohseni
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramina Abdolmohammad Sagha
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elham Taheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Paria Vazayefi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Helya Shekarriz
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Habibi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shaghayegh Mortazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Independent Researchers, Victoria, British Columbia, V8V 1P7, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Cimmino A, Gioia M, Clementi ME, Faraoni I, Marini S, Ciaccio C. Polydatin-Induced Shift of Redox Balance and Its Anti-Cancer Impact on Human Osteosarcoma Cells. Curr Issues Mol Biol 2024; 47:21. [PMID: 39852136 PMCID: PMC11764470 DOI: 10.3390/cimb47010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Cancer cells demonstrate remarkable resilience by adapting to oxidative stress and undergoing metabolic reprogramming, making oxidative stress a critical target for cancer therapy. This study explores, for the first time, the redox-dependent anticancer effects of Polydatin (PD), a glucoside derivative of resveratrol, on the human Osteosarcoma (OS) cells SAOS-2 and U2OS. Using cell-based biochemical assays, we found that cytotoxic doses of PD (100-200 µM) promote ROS production, deplete glutathione (GSH), and elevate levels of both total iron and intracellular malondialdehyde (MDA), which are key markers of ferroptosis. Notably, the ROS scavenger N-acetylcysteine (NAC) and the ferroptosis inhibitor ferrostatin-1 (Fer-1) partially reverse PD's cytotoxic effects. Interestingly, PD's ability to hinder cell adhesion and migration appears independent of its pro-oxidant effect. Analysis of the oxidative stress regulators SIRT1 and Nrf2 at the gene and protein levels using real-time PCR and Western blot indicates an early oxidative response to PD treatment. PD remains effective under tumor-like conditions of hypoxia and serum starvation, and sensitizes OS cells to ROS-inducing chemotherapeutics like doxorubicin (DOX) and cisplatin (CIS). Importantly, PD exhibits minimal toxicity to non-tumorigenic cells (hFOB), suggesting a favorable therapeutic profile. Overall, our findings underscore that PD-induced redox imbalance plays a crucial role in its anti-OS effects, warranting further exploration into the molecular mechanisms behind its pro-oxidant activity.
Collapse
Affiliation(s)
- Alessio Cimmino
- Department of Clinical Sciences and Translational Medicine, University of Rome ‘Tor Vergata’, Via Montpellier 1, 00133 Rome, Italy; (A.C.); (M.G.); (S.M.)
| | - Magda Gioia
- Department of Clinical Sciences and Translational Medicine, University of Rome ‘Tor Vergata’, Via Montpellier 1, 00133 Rome, Italy; (A.C.); (M.G.); (S.M.)
| | - Maria Elisabetta Clementi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” SCITEC-CNR, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Isabella Faraoni
- Department of Systems Medicine, University of Rome ‘Tor Vergata’, Via Montpellier 1, 00133 Rome, Italy;
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome ‘Tor Vergata’, Via Montpellier 1, 00133 Rome, Italy; (A.C.); (M.G.); (S.M.)
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome ‘Tor Vergata’, Via Montpellier 1, 00133 Rome, Italy; (A.C.); (M.G.); (S.M.)
| |
Collapse
|
3
|
Donia T, Ali EMM, Kalantan AA, Alzahrani FA, Eid TM, Khamis AA. Synergistic anticancer efficacy of polydatin and sorafenib against the MCF-7 breast cancer cell line via inhibiting of PI3K/AKT/mTOR pathway and reducing resistance to treatment. Biochem Biophys Res Commun 2024; 739:150972. [PMID: 39541924 DOI: 10.1016/j.bbrc.2024.150972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/25/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Polydatin (PD), a glucoside derivative of resveratrol, has been investigated for its potential to mitigate sorafenib (SOF) side effects and combat multidrug resistance in cancer treatment. The study evaluated its mechanism of action for inhibiting the protein kinase B/mTOR pathway in promoting breast cancer proliferation. The combined PD and SOF have synergistic effects with a combination index (CI) < 1 in the liver (HepG2) and breast (MCF-7) cancer cell lines. Molecular docking studies were conducted to analyze interactions of PD& SOF with protein kinases as well as apoptotic and multidrug resistance proteins, including AKT1, PI3K, mTOR, Apaf-1, and ABCB1 in MCF-7 cells. Experimental validation through real-time PCR confirmed. PD has a strong binding affinity, particularly with AKT1 (-56 kcal/mol) and ABCB1 (-27.16 kcal/mol), a gene associated with multidrug resistance. These interactions were linked to anti-proliferative anti-angiogenic effects and reduced resistance to treatment, demonstrating PD has potential therapeutic benefits. Furthermore, PD combined with SOF induced apoptosis, inhibited cell growth, and arrested MCF-7 cells in the sub-G1 phase with increased intracellular ROS. This was accompanied by reduced expression of AKT1 and ABCB1 genes, reinforcing the anticancer efficacy of PD/SOF combination therapy. In conclusion, the findings suggest that PD/SOF could serve as a promising anticancer treatment strategy, warranting further investigation for potential clinical applications and mechanistic studies in vivo.
Collapse
Affiliation(s)
- Thoria Donia
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Ehab M M Ali
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia.
| | - Abdulaziz A Kalantan
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia.
| | - Faisal Ay Alzahrani
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, 21911 Rabigh, Saudi Arabia.
| | - Thamir M Eid
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia.
| | - Abeer A Khamis
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt.
| |
Collapse
|
4
|
Zhang Z, Sun Z, Jia R, Jiang D, Xu Z, Zhang Y, Wu YQ, Wang X. Protective effects of polydatin against bone and joint disorders: the in vitro and in vivo evidence so far. Nutr Res Rev 2024; 37:96-107. [PMID: 37088535 DOI: 10.1017/s0954422423000082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Polydatin is an active polyphenol displaying multifaceted benefits. Recently, growing studies have noticed its potential therapeutic effects on bone and joint disorders (BJDs). Therefore, this article reviews recent in vivo and in vitro progress on the protective role of polydatin against BJDs. An insight into the underlying mechanisms is also presented. It was found that polydatin could promote osteogenesis in vitro, and symptom improvements have been disclosed with animal models of osteoporosis, osteosarcoma, osteoarthritis and rheumatic arthritis. These beneficial effects obtained in laboratory could be mainly attributed to the bone metabolism-regulating, anti-inflammatory, antioxidative, apoptosis-regulating and autophagy-regulating functions of polydatin. However, studies on human subjects with BJDs that can lead to early identification of the clinical efficacy and adverse effects of polydatin have not been reported yet. Accordingly, this review serves as a starting point for pursuing clinical trials. Additionally, future emphasis should also be devoted to the low bioavailability and prompt metabolism nature of polydatin. In summary, well-designed clinical trials of polydatin in patients with BJD are in demand, and its pharmacokinetic nature must be taken into account.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Department of Spine Surgery, Youyang Tujia and Miao Autonomous County People's Hospital, Chongqing, 409899, People's Republic of China
| | - Zhicheng Sun
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Runze Jia
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Dingyu Jiang
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Zhenchao Xu
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Yilu Zhang
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Yun-Qi Wu
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Xiyang Wang
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| |
Collapse
|
5
|
Hong Z, Li Y, Chen M, Chen X, Deng X, Wu Y, Wang C, Qiu C. Protosappanin B enhances the chemosensitivity of 5-fluorouracil in colon adenocarcinoma by regulating the LINC00612/microRNA-590-3p/Golgi phosphoprotein 3 axis. Discov Oncol 2024; 15:193. [PMID: 38806777 PMCID: PMC11133243 DOI: 10.1007/s12672-024-01036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/13/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND 5-fluorouracil (5-FU) is conventionally used in chemotherapy for colon adenocarcinomas. Acquired resistance of 5-FU remains a clinical challenge in colon cancer, and efforts to develop targeted agents to reduce resistance have not yielded success. Protosappanin B (PSB), the main component of Lignum Sappan extract, is known to exhibit anti-tumor effects. However, whether and how PSB could improve 5-FU resistance in colon cancer have not yet been established. In this study, we aimed to explore the effects and underlying mechanisms of PSB in 5-FU-induced chemoresistance in colon adenocarcinoma. METHODS Forty-seven paired colon cancer tissue samples from patients who received 5-FU chemotherapy were collected as clinical samples. Two 5-FU resistant colon cancer cell lines were established for in vitro experiments. Reverse transcription-quantitative PCR (RT-qPCR) was performed to determine the mRNA and microRNA (miRNA) expression levels in colon adenocarcinoma tissues and cell lines. Cell Counting Kit-8 (CCK-8) and flow cytometry assays were performed to evaluate cell proliferation and apoptosis, respectively. RESULTS LINC00612 was highly expressed in colon adenocarcinoma samples and 5-FU resistant colon cancer cells. LINC00612 knockdown enhances 5-FU chemosensitivity in 5-FU resistant cells. Notably, PSB treatment attenuated LINC00612 expression in 5-FU resistant colon adenocarcinoma cells. Moreover, PSB treatment reversed the increase in LINC00612-induced 5-FU resistance. Mechanistically, LINC00612 specifically bound to miR-590-3p, which promoted 5-FU resistance in colon adenocarcinoma cells and attenuated the inhibitory effect of LINC00612 on GOLPH3 expression. CONCLUSION PSB attenuates 5-FU chemoresistance in colon adenocarcinoma by regulating the LINC00612/miRNA-590-3p/GOLPH3 axis.
Collapse
Affiliation(s)
- Zhongshi Hong
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, No.34, Zhongshan North Road, Quanzhou, Fujian, 362000, China
| | - Yachen Li
- Medical Department, The Second Affiliated Hospital of Fujian Medical University, No.34 Zhongshan North Road, Quanzhou, 362000, Fujian, China
| | - Mingliang Chen
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, No.34, Zhongshan North Road, Quanzhou, Fujian, 362000, China
| | - Xiaojing Chen
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, No.34, Zhongshan North Road, Quanzhou, Fujian, 362000, China
| | - Xian Deng
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, No.34, Zhongshan North Road, Quanzhou, Fujian, 362000, China
| | - Yuze Wu
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, No.34, Zhongshan North Road, Quanzhou, Fujian, 362000, China
| | - Chunxiao Wang
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, No.34, Zhongshan North Road, Quanzhou, Fujian, 362000, China.
| | - Chengzhi Qiu
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, No.34, Zhongshan North Road, Quanzhou, Fujian, 362000, China.
| |
Collapse
|
6
|
Alkan AH, Ensoy M, Cansaran-Duman D. Strategic and Innovative Roles of lncRNAs Regulated by Naturally-derived Small Molecules in Cancer Therapy. Curr Med Chem 2024; 31:6672-6691. [PMID: 37921177 DOI: 10.2174/0109298673264372230919102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/22/2023] [Accepted: 08/17/2023] [Indexed: 11/04/2023]
Abstract
In the field of precision and personalized medicine, the next generation sequencing method has begun to take an active place as genome-wide screening applications in the diagnosis and treatment of diseases. Studies based on the determination of the therapeutic efficacy of personalized drug use in cancer treatment in the size of the transcriptome and its extension, lncRNA, have been increasing rapidly in recent years. Targeting and/or regulating noncoding RNAs (ncRNAs) consisting of long noncoding RNAs (lncRNAs) are promising strategies for cancer treatment. Within the scope of rapidly increasing studies in recent years, it has been shown that many natural agents obtained from biological organisms can potentially alter the expression of many lncRNAs associated with oncogenic functions. Natural agents include effective small molecules that provide anti-cancer effects and have been used as chemotherapy drugs or in combination with standard anti-cancer drugs used in routine treatment. In this review, it was aimed to provide detailed information about the potential of natural agents to regulate and/or target non-coding RNAs and their mechanisms of action to provide an approach for cancer therapy. The discovery of novel anti-cancer targets and subsequent development of effective drugs or combination strategies that are still needed for most cancers will be promising for cancer treatment.
Collapse
Affiliation(s)
- Ayşe Hale Alkan
- Biotechnology Institute, Ankara University, Keçiören, Ankara, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, Bartın, Turkey
| | - Mine Ensoy
- Biotechnology Institute, Ankara University, Keçiören, Ankara, Turkey
| | | |
Collapse
|
7
|
Sun Z, Wang Y, Pang X, Wang X, Zeng H. Mechanisms of polydatin against spinal cord ischemia-reperfusion injury based on network pharmacology, molecular docking and molecular dynamics simulation. Bioorg Chem 2023; 140:106840. [PMID: 37683540 DOI: 10.1016/j.bioorg.2023.106840] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Polydatin has shown considerable pharmacological activities in ischemia-reperfusion injuries of various organs. However, its effects and mechanisms in spinal cord ischemia-reperfusion injury have not been fully established. In this study, the mechanisms of polydatin against spinal cord ischemia-reperfusion injury were investigated via network pharmacology, molecular docking and molecular dynamics simulation. METHODS Spinal cord ischemia-reperfusion injury-related targets were obtained from the GeneCards database, while polydatin-related action targets were obtained from the CTD and SwissTarget databases. A protein-protein interaction network of potential targets was constructed using the String platform. After selecting the potential key targets, GO functional enrichment and KEGG pathway enrichment analyses were performed via the Metascape database, and a network map of "drug-target-pathway-disease" constructed. The relationships between polydatin and various key targets were assessed via molecular docking. Molecular dynamics simulation was conducted for optimal core protein-compound complexes obtained by molecular docking. RESULTS Topological analysis of the PPI network revealed 14 core targets. GO functional enrichment analysis revealed that 435 biological processes, 12 cell components and 29 molecular functions were enriched while KEGG pathway enrichment analysis revealed 91 enriched signaling pathways. Molecular docking showed that polydatin had the highest binding affinity for MAPK3, suggesting that MAPK3 is a key target of polydatin against spinal cord ischemia-reperfusion injury. Molecular dynamics simulations revealed good binding abilities between polydatin and MAPK3. CONCLUSIONS Polydatin exerts its effects on spinal cord ischemia-reperfusion injury through multiple targets and pathways. MAPK3 may be a key target of polydatin in spinal cord ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zhicheng Sun
- Department of Spinal Surgery, Xiangya Hospital of Central South University, Changsha, PR China.
| | - Yuanqing Wang
- School of Life Science and Technology, Central South University of Forestry and Technology, Changsha, PR China.
| | - Xiaoyang Pang
- Department of Spinal Surgery, Xiangya Hospital of Central South University, Changsha, PR China.
| | - Xiyang Wang
- Department of Spinal Surgery, Xiangya Hospital of Central South University, Changsha, PR China.
| | - Hao Zeng
- Department of Spine and Osteopathy Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, PR China.
| |
Collapse
|
8
|
Guan X, Jin L, Zhou H, Chen J, Wan H, Bao Y, Yang J, Yu D, Wan H. Polydatin prevent lung epithelial cell from Carbapenem-resistant Klebsiella pneumoniae injury by inhibiting biofilm formation and oxidative stress. Sci Rep 2023; 13:17736. [PMID: 37853059 PMCID: PMC10584862 DOI: 10.1038/s41598-023-44836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) causes severe inflammation in various infectious diseases, such as bloodstream infections, respiratory and urinary tract infections, which leads to high mortality. Polydatin (PD), an active ingredient of Yinhuapinggan granule, has attracted worldwide attention for its powerful antioxidant, anti-inflammatory, antitumor, and antibacterial capacity. However, very little is known about the effect of PD on CRKP. In this research, we evaluated the inhibitory effects of PD on both the bacterial level and the bacterial-cell co-culture level on anti-biofilm and efflux pumps and the other was the inhibitory effect on apoptosis, reactive oxygen species (ROS), mitochondrial membrane potential (MMP) after CRKP induction. Additionally, we validated the mechanism of action by qRT-PCR and western blot in human lung epithelial cells. Firstly, PD was observed to have an inhibitory effect on the biofilm of CRKP and the efflux pump AcrAB-TolC. Mechanically, CRKP not only inhibited the activation of Nuclear Factor erythroid 2-Related Factor 2 (Nrf-2) but also increased the level of ROS in cells. These results showed that PD could inhibit ROS and activate Nrf-2 production. Together, our research demonstrated that PD inhibited bacterial biofilm formation and efflux pump AcrAB-TolC expression and inhibited CRKP-induced cell damage by regulating ROS and Nrf-2-regulated antioxidant pathways.
Collapse
Affiliation(s)
- Xiaodan Guan
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Liang Jin
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Huifen Zhou
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Jing Chen
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Haofang Wan
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Yida Bao
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Daojun Yu
- Hangzhou First People's Hospital, Hangzhou, 310003, Zhejiang, People's Republic of China.
| | - Haitong Wan
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
9
|
Cimmino A, Fasciglione GF, Gioia M, Marini S, Ciaccio C. Multi-Anticancer Activities of Phytoestrogens in Human Osteosarcoma. Int J Mol Sci 2023; 24:13344. [PMID: 37686148 PMCID: PMC10487502 DOI: 10.3390/ijms241713344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Phytoestrogens are plant-derived bioactive compounds with estrogen-like properties. Their potential health benefits, especially in cancer prevention and treatment, have been a subject of considerable research in the past decade. Phytoestrogens exert their effects, at least in part, through interactions with estrogen receptors (ERs), mimicking or inhibiting the actions of natural estrogens. Recently, there has been growing interest in exploring the impact of phytoestrogens on osteosarcoma (OS), a type of bone malignancy that primarily affects children and young adults and is currently presenting limited treatment options. Considering the critical role of the estrogen/ERs axis in bone development and growth, the modulation of ERs has emerged as a highly promising approach in the treatment of OS. This review provides an extensive overview of current literature on the effects of phytoestrogens on human OS models. It delves into the multiple mechanisms through which these molecules regulate the cell cycle, apoptosis, and key pathways implicated in the growth and progression of OS, including ER signaling. Moreover, potential interactions between phytoestrogens and conventional chemotherapy agents commonly used in OS treatment will be examined. Understanding the impact of these compounds in OS holds great promise for developing novel therapeutic approaches that can augment current OS treatment modalities.
Collapse
Affiliation(s)
| | | | | | | | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome ‘Tor Vergata’, Via Montpellier 1, I-00133 Rome, Italy; (A.C.); (G.F.F.); (M.G.); (S.M.)
| |
Collapse
|
10
|
Chuang YT, Shiau JP, Tang JY, Farooqi AA, Chang FR, Tsai YH, Yen CY, Chang HW. Connection of Cancer Exosomal LncRNAs, Sponging miRNAs, and Exosomal Processing and Their Potential Modulation by Natural Products. Cancers (Basel) 2023; 15:cancers15082215. [PMID: 37190145 DOI: 10.3390/cancers15082215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Cancerous exosomes contain diverse biomolecules that regulate cancer progression. Modulating exosome biogenesis with clinical drugs has become an effective strategy for cancer therapy. Suppressing exosomal processing (assembly and secretion) may block exosomal function to reduce the proliferation of cancer cells. However, the information on natural products that modulate cancer exosomes lacks systemic organization, particularly for exosomal long noncoding RNAs (lncRNAs). There is a gap in the connection between exosomal lncRNAs and exosomal processing. This review introduces the database (LncTarD) to explore the potential of exosomal lncRNAs and their sponging miRNAs. The names of sponging miRNAs were transferred to the database (miRDB) for the target prediction of exosomal processing genes. Moreover, the impacts of lncRNAs, sponging miRNAs, and exosomal processing on the tumor microenvironment (TME) and natural-product-modulating anticancer effects were then retrieved and organized. This review sheds light on the functions of exosomal lncRNAs, sponging miRNAs, and exosomal processing in anticancer processes. It also provides future directions for the application of natural products when regulating cancerous exosomal lncRNAs.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Hong Tsai
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Hsueh-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
11
|
Cherian S, Hacisayidli KM, Kurian R, Mathews A. Therapeutically important bioactive compounds of the genus Polygonum L. and their possible interventions in clinical medicine. J Pharm Pharmacol 2023; 75:301-327. [PMID: 36757388 DOI: 10.1093/jpp/rgac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/26/2022] [Indexed: 02/10/2023]
Abstract
OBJECTIVES Increasing literature data have suggested that the genus Polygonum L. possesses pharmacologically important plant secondary metabolites. These bioactive compounds are implicated as effective agents in preclinical and clinical practice due to their pharmacological effects such as anti-inflammatory, anticancer, antidiabetic, antiaging, neuroprotective or immunomodulatory properties among many others. However, elaborate pharmacological and clinical data concerning the bioavailability, tissue distribution pattern, dosage and pharmacokinetic profiles of these compounds are still scanty. KEY FINDINGS The major bioactive compounds implicated in the therapeutic effects of Polygonum genus include phenolic and flavonoid compounds, anthraquinones and stilbenes, such as quercetin, resveratrol, polydatin and others, and could serve as potential drug leads or as adjuvant agents. Data from in-silico network pharmacology and computational molecular docking studies are also highly helpful in identifying the possible drug target of pathogens or host cell machinery. SUMMARY We provide an up-to-date overview of the data from pharmacodynamic, pharmacokinetic profiles and preclinical (in-vitro and in-vivo) investigations and the available clinical data on some of the therapeutically important compounds of genus Polygonum L. and their medical interventions, including combating the outbreak of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Sam Cherian
- Indian Society for Plant Physiology, New Delhi, India
| | - Kushvar Mammadova Hacisayidli
- Department of Hygiene and Food Safety, Veterinary Medicine Faculty, Azerbaijan State Agricultural University, Ganja City, Azerbaijan
| | - Renju Kurian
- Department of Pathology, Manipal University College, Melaka, Malaysia
| | - Allan Mathews
- Faculty of Pharmacy, Quest International University Perak, Ipoh, Malaysia
| |
Collapse
|
12
|
Farooq U, Wang H, Hu J, Li G, Jehan S, Shi J, Li D, Sui G. Polydatin Inhibits Hepatocellular Carcinoma Cell Proliferation and Sensitizes Doxorubicin and Cisplatin through Targeting Cell Mitotic Machinery. Cells 2023; 12:cells12020222. [PMID: 36672157 PMCID: PMC9856937 DOI: 10.3390/cells12020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Polydatin (PD) is a natural compound with anticancer activities, but the underlying mechanisms remain largely unclear. To understand how PD inhibited hepatocellular carcinoma (HCC), we studied PD treatments in HCC HepG2 and SK-HEP1 cells, and normal liver HL-7702 cells. PD selectively blocked the proliferation of HCC cells but showed low toxicity in normal cells, while the effects of doxorubicin (DOX) and cisplatin (DDP) on HCC and normal liver cells were opposite. In the cotreatment studies, PD synergistically improved the inhibitory activities of DOX and DDP in HCC cells but alleviated their toxicity in HL-7702 cells. Furthermore, RNA-seq studies of PD-treated HepG2 cells revealed multiple altered signaling pathways. We identified 1679 Differentially Expressed Genes (DEGs) with over a 2.0-fold change in response to PD treatment. Integrative analyses using the DEGs in PD-treated HepG2 cells and DEGs in a TCGA dataset of HCC patients revealed five PD-repressed DEGs regulating mitotic spindle midzone formation. The expression of these genes showed significantly positive correlation with poor clinical outcomes of HCC patients, suggesting that mitotic machinery was likely a primary target of PD. Our findings improve the understanding of PD's anticancer mechanisms and provide insights into developing effective clinical approaches in HCC therapies.
Collapse
Affiliation(s)
- Umar Farooq
- College of Life Sciences, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Hao Wang
- College of Life Sciences, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Jingru Hu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guangyue Li
- College of Life Sciences, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Shah Jehan
- College of Life Sciences, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Jinming Shi
- College of Life Sciences, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Dangdang Li
- College of Life Sciences, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
- Correspondence: (D.L.); (G.S.)
| | - Guangchao Sui
- College of Life Sciences, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
- Correspondence: (D.L.); (G.S.)
| |
Collapse
|
13
|
Karami A, Fakhri S, Kooshki L, Khan H. Polydatin: Pharmacological Mechanisms, Therapeutic Targets, Biological Activities, and Health Benefits. Molecules 2022; 27:6474. [PMID: 36235012 PMCID: PMC9572446 DOI: 10.3390/molecules27196474] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Polydatin is a natural potent stilbenoid polyphenol and a resveratrol derivative with improved bioavailability. Polydatin possesses potential biological activities predominantly through the modulation of pivotal signaling pathways involved in inflammation, oxidative stress, and apoptosis. Various imperative biological activities have been suggested for polydatin towards promising therapeutic effects, including anticancer, cardioprotective, anti-diabetic, gastroprotective, hepatoprotective, neuroprotective, anti-microbial, as well as health-promoting roles on the renal system, the respiratory system, rheumatoid diseases, the skeletal system, and women's health. In the present study, the therapeutic targets, biological activities, pharmacological mechanisms, and health benefits of polydatin are reviewed to provide new insights to researchers. The need to develop further clinical trials and novel delivery systems of polydatin is also considered to reveal new insights to researchers.
Collapse
Affiliation(s)
- Ahmad Karami
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Leila Kooshki
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
14
|
Xie W, Chu M, Song G, Zuo Z, Han Z, Chen C, Li Y, Wang ZW. Emerging roles of long noncoding RNAs in chemoresistance of pancreatic cancer. Semin Cancer Biol 2022; 83:303-318. [PMID: 33207266 DOI: 10.1016/j.semcancer.2020.11.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is one of the most common causes of cancer death in the world due to the lack of early symptoms, metastasis occurrence and chemoresistance. Therefore, early diagnosis by detection of biomarkers, blockade of metastasis, and overcoming chemoresistance are the effective strategies to improve the survival of pancreatic cancer patients. Accumulating evidence has revealed that long noncoding RNA (lncRNA) and circular RNAs (circRNAs) play essential roles in modulating chemosensitivity in pancreatic cancer. In this review article, we will summarize the role of lncRNAs in drug resistance of pancreatic cancer cells, including HOTTIP, HOTAIR, PVT1, linc-ROR, GAS5, UCA1, DYNC2H1-4, MEG3, TUG1, HOST2, HCP5, SLC7A11-AS1 and CASC2. We also highlight the function of circRNAs, such as circHIPK3 and circ_0000284, in regulation of drug sensitivity of pancreatic cancer cells. Moreover, we describe a number of compounds, including curcumin, genistein, resveratrol, quercetin, and salinomycin, which may modulate the expression of lncRNAs and enhance chemosensitivity in pancreatic cancers. Therefore, targeting specific lncRNAs and cicrRNAs could contribute to reverse chemoresistance of pancreatic cancer cells. We hope this review might stimulate the studies of lncRNAs and cicrRNAs, and develop the new therapeutic strategy via modulating these noncoding RNAs to promote chemosensitivity of pancreatic cancer cells.
Collapse
Affiliation(s)
- Wangkai Xie
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Man Chu
- Center of Scientific Research, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Gendi Song
- Center of Scientific Research, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Ziyi Zuo
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Zheng Han
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Chenbin Chen
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yuyun Li
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China.
| | - Zhi-Wei Wang
- Center of Scientific Research, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
15
|
Hassan M, Yasir M, Shahzadi S, Kloczkowski A. Exploration of Potential Ewing Sarcoma Drugs from FDA-Approved Pharmaceuticals through Computational Drug Repositioning, Pharmacogenomics, Molecular Docking, and MD Simulation Studies. ACS OMEGA 2022; 7:19243-19260. [PMID: 35721972 PMCID: PMC9202290 DOI: 10.1021/acsomega.2c00518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/12/2022] [Indexed: 05/14/2023]
Abstract
Novel drug development is a time-consuming process with relatively high debilitating costs. To overcome this problem, computational drug repositioning approaches are being used to predict the possible therapeutic scaffolds against different diseases. In the current study, computational drug repositioning approaches were employed to fetch the promising drugs from the pool of FDA-approved drugs against Ewing sarcoma. The binding interaction patterns and conformational behaviors of screened drugs within the active region of Ewing sarcoma protein (EWS) were confirmed through molecular docking profiles. Furthermore, pharmacogenomics analysis was employed to check the possible associations of selected drugs with Ewing sarcoma genes. Moreover, the stability behavior of selected docked complexes (drugs-EWS) was checked by molecular dynamics simulations. Taken together, astemizole, sulfinpyrazone, and pranlukast exhibited a result comparable to pazopanib and can be used as a possible therapeutic agent in the treatment of Ewing sarcoma.
Collapse
Affiliation(s)
- Mubashir Hassan
- Institute
of Molecular Biology and Biotechnology, The University of Lahore, Defense Road Campus, Lahore 54590, Pakistan
- The
Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
- ,
| | - Muhammad Yasir
- Institute
of Molecular Biology and Biotechnology, The University of Lahore, Defense Road Campus, Lahore 54590, Pakistan
| | - Saba Shahzadi
- Institute
of Molecular Sciences and Bioinformatics (IMSB), Nisbet Road, Lahore 52254, Pakistan
| | - Andrzej Kloczkowski
- The
Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
- Department
of Pediatrics, The Ohio State University, Columbus, Ohio 43205, United States
| |
Collapse
|
16
|
Tang D, Zhang Q, Duan H, Ye X, Liu J, Peng W, Wu C. Polydatin: A Critical Promising Natural Agent for Liver Protection via Antioxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9218738. [PMID: 35186191 PMCID: PMC8853764 DOI: 10.1155/2022/9218738] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022]
Abstract
Polydatin, one of the natural active small molecules, was commonly applied in protecting and treating liver disorders in preclinical studies. Oxidative stress plays vital roles in liver injury caused by various factors, such as alcohol, viral infections, dietary components, drugs, and other chemical reagents. It is reported that oxidative stress might be one of the main reasons in the progressive development of alcohol liver diseases (ALDs), nonalcoholic liver diseases (NAFLDs), liver injury, fibrosis, hepatic failure (HF), and hepatocellular carcinoma (HCC). In this paper, we comprehensively summarized the pharmacological effects and potential molecular mechanisms of polydatin for protecting and treating liver disorders via regulation of oxidative stress. According to the previous studies, polydatin is a versatile natural compound and exerts significantly protective and curative effects on oxidative stress-associated liver diseases via various molecular mechanisms, including amelioration of liver function and insulin resistance, inhibition of proinflammatory cytokines, lipid accumulation, endoplasmic reticulum stress and autophagy, regulation of PI3K/Akt/mTOR, and activation of hepatic stellate cells (HSCs), as well as increase of antioxidant enzymes (such as catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH), superoxide dismutase (SOD), glutathione reductase (GR), and heme oxygenase-1 (HO-1)). In addition, polydatin acts as a free radical scavenger against reactive oxygen species (ROS) by its phenolic and ethylenic bond structure. However, further clinical investigations are still needed to explore the comprehensive molecular mechanisms and confirm the clinical treatment effect of polydatin in liver diseases related to regulation of oxidative stress.
Collapse
Affiliation(s)
- Dandan Tang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Huxinyue Duan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Xun Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| |
Collapse
|
17
|
Ye P, Wu H, Jiang Y, Xiao X, Song D, Xu N, Ma X, Zeng J, Guo Y. Old dog, new tricks: Polydatin as a multitarget agent for current diseases. Phytother Res 2021; 36:214-230. [PMID: 34936712 DOI: 10.1002/ptr.7306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022]
Abstract
Polydatin (PD) is a natural single-crystal product that is primarily extracted from the traditional plant Polygonum cuspidatum Sieb. et Zucc. Early research showed that PD exhibited a variety of biological activities. PD has attracted increasing research interest since 2014, but no review comprehensively summarized the new findings. A great gap between its biological activities and drug development remains. It is necessary to summarize new findings on the pharmacological effects of PD on current diseases. We propose that PD will most likely be used in cardiac and cerebral ischaemia/reperfusion-related diseases and atherosclerosis in the future. The present work classified these new findings according to diseases and summarized the main effects of PD via specific mechanisms of action. In summary, we found that PD played a therapeutic role in a variety of diseases, primarily via five mechanisms: antioxidative effects, antiinflammatory effects, regulation of autophagy and apoptosis, maintenance of mitochondrial function, and lipid regulation.
Collapse
Affiliation(s)
- Penghui Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hefei Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yinxiao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nuo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaoguang Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Homayoonfal M, Asemi Z, Yousefi B. Targeting long non coding RNA by natural products: Implications for cancer therapy. Crit Rev Food Sci Nutr 2021:1-29. [PMID: 34783279 DOI: 10.1080/10408398.2021.2001785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In spite of achieving substantial progress in its therapeutic strategies, cancer-associated prevalence and mortality are persistently rising globally. However, most malignant cancers either cannot be adequately diagnosed at the primary phase or resist against multiple treatments such as chemotherapy, surgery, radiotherapy as well as targeting therapy. In recent decades, overwhelming evidences have provided more convincing words on the undeniable roles of long non-coding RNAs (lncRNAs) in incidence and development of various cancer types. Recently, phytochemical and nutraceutical compounds have received a great deal of attention due to their inhibitory and stimulatory effects on oncogenic and tumor suppressor lncRNAs respectively that finally may lead to attenuate various processes of cancer cells such as growth, proliferation, metastasis and invasion. Therefore, application of phytochemicals with anticancer characteristics can be considered as an innovative approach for treating cancer and increasing the sensitivity of cancer cells to standard prevailing therapies. The purpose of this review was to investigate the effect of various phytochemicals on regulation of lncRNAs in different human cancer and evaluate their capabilities for cancer treatment and prevention.
Collapse
Affiliation(s)
- Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
LncRNAs in tumor microenvironment: The potential target for cancer treatment with natural compounds and chemical drugs. Biochem Pharmacol 2021; 193:114802. [PMID: 34678226 DOI: 10.1016/j.bcp.2021.114802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
It was thought that originally long non-coding RNAs (lncRNAs) were a kind of RNAs without any encoding function. Recently, a variety of studies have shown that lncRNAs play important roles in many life activities. The abnormal expression of lncRNAs in tumor microenvironment (TME) usually promotes the proliferation, migration, and drug resistance of tumor cells through direct or indirect effects, which also usually predicts the poor prognosis. The regulation of lncRNAs expression in TME could significantly inhibit tumor progress. However, the interaction between lncRNAs and TME has not been fully defined at present. Therefore, this paper provided the systemic summary of their interaction and natural products and chemicals targeting lncRNAs in cancer treatment. Currently, the strategies of cancer treatment still have their limits. Understanding the relationship between TME and lncRNAs can help us to realize breakthrough strategy for tumor treatment.
Collapse
|
20
|
Chen G, Yang Z, Wen D, Guo J, Xiong Q, Li P, Zhao L, Wang J, Wu C, Dong L. Polydatin has anti-inflammatory and antioxidant effects in LPS-induced macrophages and improves DSS-induced mice colitis. Immun Inflamm Dis 2021; 9:959-970. [PMID: 34010516 PMCID: PMC8342204 DOI: 10.1002/iid3.455] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Polydatin (PD), a monocrystalline compound isolated from the root and rhizome of Polygonum cuspidatum, is widely used in inhibiting the inflammatory response and oxidative stress. PD has an anti-inflammatory effect on colitis mice; however, information regulating the mechanism by which maintains the intestinal epithelium barrier is currently scarce. Here, we assessed the anti-inflammatory and antioxidant of PD in lipopolysaccharide (LPS)-induced macrophages in vitro, and explored its effects on inhibiting intestinal inflammation and maintaining the intestinal epithelium barrier in dextran sodium sulfate (DSS)-induced colitis mice. Results showed that PD reduced the level of proinflammatory cytokines and enzymes, including tumor necrosis factor-α, interleukin-4 (IL-4), IL-6, cyclooxygenase-2, and inducible nitric oxide synthase, in LPS-induced macrophages, and improved the expression level of IL-10. PD maintained the expression of tight junction proteins in medium (LPS-induced macrophages medium)-induced MCEC cells. Additionally, PD inhibited the phosphorylation of nuclear factor-κB (NF-κB), p65, extracellular signal-regulated kinase-1/2, c-Jun N-terminal kinase, and p38 signaling pathways in LPS-induced macrophages and facilitated the phosphorylation of AKT and the nuclear translocation of Nrf2, improving the expression of HO-1 and NQO1. Furthermore, PD ameliorated the intestinal inflammatory response and improved the dysfunction of the colon epithelium barrier in DSS-induced colitis mice. Taken together, our results indicated that PD inhibited inflammation and oxidative stress, maintained the intestinal epithelium barrier, and the protective role of PD was associated with the NF-κB p65, itogen-activated protein kinases, and AKT/Nrf2/HO-1/NQO1 signaling pathway.
Collapse
Affiliation(s)
- Guangxin Chen
- Institute of Biomedical SciencesShanxi UniversityTaiyuanChina
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanShanxiChina
| | - Ziyue Yang
- Institute of Biomedical SciencesShanxi UniversityTaiyuanChina
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanShanxiChina
| | - Da Wen
- Institute of Biomedical SciencesShanxi UniversityTaiyuanChina
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanShanxiChina
| | - Jian Guo
- Institute of Biomedical SciencesShanxi UniversityTaiyuanChina
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanShanxiChina
- Department of General Surgery, Shanxi Provincial People's HospitalAffiliate of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Qiuhong Xiong
- Institute of Biomedical SciencesShanxi UniversityTaiyuanChina
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanShanxiChina
| | - Ping Li
- Institute of Biomedical SciencesShanxi UniversityTaiyuanChina
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanShanxiChina
| | - Liping Zhao
- Department of Pathology, Shanxi Provincial People's HospitalAffiliate of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Junping Wang
- Department of Gastroenterology, Shanxi Provincial People's HospitalAffiliate of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Changxin Wu
- Institute of Biomedical SciencesShanxi UniversityTaiyuanChina
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanShanxiChina
| | - Lina Dong
- Central Laboratory, Shanxi Provincial People's HospitalAffiliate of Shanxi Medical UniversityTaiyuanShanxiChina
| |
Collapse
|
21
|
Khalili-Tanha G, Moghbeli M. Long non-coding RNAs as the critical regulators of doxorubicin resistance in tumor cells. Cell Mol Biol Lett 2021; 26:39. [PMID: 34425750 PMCID: PMC8381522 DOI: 10.1186/s11658-021-00282-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022] Open
Abstract
Resistance against conventional chemotherapeutic agents is one of the main reasons for tumor relapse and poor clinical outcomes in cancer patients. Various mechanisms are associated with drug resistance, including drug efflux, cell cycle, DNA repair and apoptosis. Doxorubicin (DOX) is a widely used first-line anti-cancer drug that functions as a DNA topoisomerase II inhibitor. However, DOX resistance has emerged as a large hurdle in efficient tumor therapy. Furthermore, despite its wide clinical application, DOX is a double-edged sword: it can damage normal tissues and affect the quality of patients’ lives during and after treatment. It is essential to clarify the molecular basis of DOX resistance to support the development of novel therapeutic modalities with fewer and/or lower-impact side effects in cancer patients. Long non-coding RNAs (lncRNAs) have critical roles in the drug resistance of various tumors. In this review, we summarize the state of knowledge on all the lncRNAs associated with DOX resistance. The majority are involved in promoting DOX resistance. This review paves the way to introducing an lncRNA panel marker for the prediction of the DOX response and clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Bai Y, Li Y, Bai J, Zhang Y. Hsa_circ_0004674 promotes osteosarcoma doxorubicin resistance by regulating the miR-342-3p/FBN1 axis. J Orthop Surg Res 2021; 16:510. [PMID: 34407841 PMCID: PMC8371803 DOI: 10.1186/s13018-021-02631-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/24/2021] [Indexed: 12/22/2022] Open
Abstract
Background The occurrence of chemoresistance is a common problem in tumor treatment. Circular RNA (circRNA) has been confirmed to be related to tumor chemoresistance. However, the role and the underlying molecular mechanism of hsa_circ_0004674 in the chemoresistance of osteosarcoma (OS) are still unclear. Methods The expression of hsa_circ_0004674, miR-342-3p, and fibrillin-1 (FBN1) was determined by qRT-PCR. Cell counting kit 8 assay was used to evaluate the doxorubicin (DXR) resistance of cells. The proliferation and apoptosis of cells were measured using colony formation assay and flow cytometry. Western blot analysis was utilized to examine the protein levels of resistance markers, Wnt/β-catenin pathway markers and FBN1. The interaction between miR-342-3p and hsa_circ_0004674 or FBN1 was confirmed by dual-luciferase reporter assay and RNA pull-down assay. Moreover, animal experiments were performed to assess the effect of hsa_circ_0004674 silencing on the DXR sensitive of OS in vivo. Results The upregulated hsa_circ_0004674 was found in DXR-resistant OS tissues and cells. Knockdown of hsa_circ_0004674 could inhibit the DXR resistance of OS cells in vitro and promote the DXR sensitive of OS tumors in vivo. In addition, we discovered that hsa_circ_0004674 could sponge miR-342-3p, and miR-342-3p could target FBN1. MiR-342-3p inhibitor could reverse the inhibition effect of hsa_circ_0004674 knockdown on the DXR resistance of OS cells. Similarly, the suppressive effect of miR-342-3p on the DXR resistance of OS cells also could be reversed by FBN1 overexpression. Furthermore, we revealed that hsa_circ_0004674 silencing inhibited the activity of Wnt/β-catenin pathway by the miR-342-3p/FBN1 axis. Conclusion Hsa_circ_0004674 facilitated the DXR resistance of OS through Wnt/β-catenin pathway via regulating the miR-342-3p/FBN1 axis, suggesting that hsa_circ_0004674 was a promising target for the chemoresistance of OS.
Collapse
Affiliation(s)
- Yumei Bai
- Department of Pharmacy, Jingmen No.1 People's Hospital, No.3, Shenzhen Avenue, Duodao District, Jingmen, 448000, Hubei, China
| | - Yanghua Li
- Department of Pharmacy, Jingmen No.1 People's Hospital, No.3, Shenzhen Avenue, Duodao District, Jingmen, 448000, Hubei, China
| | - Juan Bai
- Department of Pharmacy, Jingmen No.1 People's Hospital, No.3, Shenzhen Avenue, Duodao District, Jingmen, 448000, Hubei, China
| | - Yumei Zhang
- Department of Pharmacy, Jingmen No.1 People's Hospital, No.3, Shenzhen Avenue, Duodao District, Jingmen, 448000, Hubei, China.
| |
Collapse
|
23
|
Samra YA, Abdelghany AM, Zaghloul RA. Polydatin gold nanoparticles potentiate antitumor effect of doxorubicin in Ehrlich ascites carcinoma-bearing mice. J Biochem Mol Toxicol 2021; 35:e22869. [PMID: 34339076 DOI: 10.1002/jbt.22869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/16/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
Breast cancer is a leading cause of death. Anticancer treatment such as gold nanoparticles (AuNP) seems highly promising in this regard. Therefore, this study aimed to assess the beneficial effect of doxorubicin (Dox) and polydatin (PD) AuNP in Ehrlich ascites carcinoma (EAC) and the ability of PD-AuNP to protect the heart from Dox's deteriorating effects. EAC was induced in mice. The mice were divided into nine groups: normal, EAC, PD: received PD (20 mg/kg), Dox: received Dox (2 mg/kg), PD-AuNPH: received 10 ppm AuNP of PD, PD-AuNPL: received 5 ppm AuNP of PD, Dox-AuNP: received Dox-AuNP, PD-Dox-AuNP: received PD-Dox-AuNP, AuNP: received AuNP. On the 21st day from tumor inoculation, the mice were sacrificed and tumor and heart tissues were removed. Tumor β-catenin/Cyclin D1 and p53 were assessed by immunohistochemistry. IL-6 was determined by enzyme-linked immunosorbent assay. PD-AuNP and Dox-AuNP showed a significant reduction in tumor volume and weight more than their free forms. Also, PD-AuNP and Dox-AuNP showed markedly less dense tumor cells. β-catenin and Cyclin D1 were markedly decreased and p53 was highly upregulated by PD-AuNP and Dox-AuNP. Moreover, PD-AuNP and Dox-AuNP have the ability to decrease IL-6 production. PD-AuNP protected the heart from Dox-induced severe degeneration. Therefore, PD-AuNP could be a tool to decelerate the progression of breast cancer.
Collapse
Affiliation(s)
- Yara A Samra
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Amr M Abdelghany
- Department of Spectroscopy, Physics Division, National Research Centre, Giza, Egypt.,Basic Science Department, Horus University, New Damietta, Damietta, Egypt
| | - Randa A Zaghloul
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
24
|
Ren Z, Li C, Gan Y, Liu X, Liang F. Long noncoding RNA taurine-up regulated gene 1 for the prognosis of osteosarcoma: A protocol for meta-analysis and bioinformatics analysis. Medicine (Baltimore) 2021; 100:e26182. [PMID: 34128849 PMCID: PMC8213273 DOI: 10.1097/md.0000000000026182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND In recent years, a variety of long noncoding RNA (lncRNA) has been confirmed to be involved in the initiation and progression of osteosarcoma. Taurine-up regulated gene 1 (TUG1) plays an important role in the formation, invasion, and metastasis of osteosarcoma. Therefore, perhaps TUG1 is a potential biomarker for the prognosis of patients suffering from osteosarcoma. In this study, meta-analysis and bioinformatics were adopted to further explore the effects of TUG1 on the prognosis of patients with osteosarcoma and its potential molecular mechanism. METHODS Embase, PubMed, Sinomed, Web of Science, Cochrane Library, China National Knowledge Infrastructure, Wanfang database, and Vip Journal Integration Platform were searched from inception to May 2021. The relationship between TUG1 expression and survival outcome was estimated by hazard ratio (HRs) and 95% confidence interval (CIs). Meta-analysis was conducted on the Stata 16.0. The differential expression of TUG1 in osteosarcoma was analyzed by using UALCAN database, and the survival of TUG1 was analyzed as well. The target genes of TUG1 were predicted by RegRNA2.0 biology software, HMDD, targetscan and microTCDS, and TUG1-micoRNAs-mRNAs regulatory network was constructed. The predicted target genes obtained GeneOntology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signal transduction pathway enrichment analysis using FunRich platform. RESULTS The results of this meta-analysis would be submitted to peer-reviewed journals for publication. CONCLUSION This study will provide evidence-based medical evidence for the relationship between TUG1 and the prognosis of osteosarcoma. Furthermore, bioinformatics analysis will provide ideas for the exploration on osteosarcoma mechanism. ETHICS AND DISSEMINATION The private information from individuals will not be published. This systematic review also should not damage participants' rights. Ethical approval is not available. The results will be published in a peer-reviewed journal or disseminated in relevant conferences. OSF REGISTRATION NUMBER DOI 10.17605/OSF.IO/CW4BF.
Collapse
Affiliation(s)
- Zheng Ren
- Department of Orthopedic Trauma, The Sixth Affiliated Hospital of Xinjiang Medical University
| | - Chenyang Li
- Department of Hand Foot Microsurgery, The Third People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xin Jiang Province
| | - Yuling Gan
- Department of Orthopedics and Soft Surgery, Gansu Cancer Hospital, Lanzhou, Gansu Province, China
| | - Xiuxin Liu
- Department of Orthopedic Trauma, The Sixth Affiliated Hospital of Xinjiang Medical University
| | - Fudong Liang
- Department of Orthopedics and Soft Surgery, Gansu Cancer Hospital, Lanzhou, Gansu Province, China
| |
Collapse
|
25
|
Da M, Zhuang J, Zhou Y, Qi Q, Han S. Role of long noncoding RNA taurine-upregulated gene 1 in cancers. Mol Med 2021; 27:51. [PMID: 34039257 PMCID: PMC8157665 DOI: 10.1186/s10020-021-00312-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a group of non-protein coding RNAs with a length of more than 200 bp. The lncRNA taurine up-regulated gene 1 (TUG1) is abnormally expressed in many human malignant cancers, where it acts as a competitive endogenous RNA (ceRNA), regulating gene expression by specifically sponging its corresponding microRNAs. In the present review, we summarised the current understanding of the role of lncRNA TUG1 in cancer cell proliferation, metastasis, angiogenesis, chemotherapeutic drug resistance, radiosensitivity, cell regulation, and cell glycolysis, as well as highlighting its potential application as a clinical biomarker or therapeutic target for malignant cancer. This review provides the basis for new research directions for lncRNA TUG1 in cancer prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Miao Da
- Department of Nursing, Huzhou Third Municipal Hospital, 2088 East Tiaoxi Rd, Huzhou, Zhejiang, People's Republic of China
| | - Jing Zhuang
- Medical College of Nursing, Huzhou University, No. 759 Erhuan East Road, Huzhou, 313000, Zhejiang, China
| | - Yani Zhou
- Graduate School of Medicine Faculty, Zhejiang University, No. 866 Yuhangtang Road, Xihu, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Quan Qi
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing, Huzhou, 313000, Zhejiang, China
| | - Shuwen Han
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing, Huzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
26
|
Sun Z, Wang X, Xu Z. SIRT1 provides new pharmacological targets for polydatin through its role as a metabolic sensor. Biomed Pharmacother 2021; 139:111549. [PMID: 33901876 DOI: 10.1016/j.biopha.2021.111549] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 12/29/2022] Open
Abstract
The SIRT family of proteins constitutes highly conserved deacetylases with diverse and extensive functions. These proteins have specific biological functions, including regulation of transcription, cell cycle, cell differentiation, apoptosis, stress, metabolism, and genomic stability. Polydatin is a monocrystalline compound isolated from a Chinese herb, Polygonum cuspidatum. The pharmacological mechanisms of polydatin are mostly unclear but involve members of the SIRT protein family, among which SIRT1 plays a vital role. Polydatin is usually considered a potential SIRT1 activator. This review summarizes the signaling mechanism of polydatin involving SIRT1 and discusses the roles of related signal molecules such as PGC-1α, Nrf2, p38-MAPK, NLPR3 inflammasome, and p53. Further, we describe the metabolic regulation of related biological macromolecules and demonstrate that SIRT1, as a metabolic sensor, may act as a new pharmacological target for polydatin.
Collapse
Affiliation(s)
- Zhicheng Sun
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China.
| | - Xiyang Wang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China.
| | - Zhenchao Xu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China.
| |
Collapse
|
27
|
Taheri M, Mahmud Hussen B, Tondro Anamag F, Shoorei H, Dinger ME, Ghafouri-Fard S. The role of miRNAs and lncRNAs in conferring resistance to doxorubicin. J Drug Target 2021; 30:1-21. [PMID: 33788650 DOI: 10.1080/1061186x.2021.1909052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Doxorubicin is a chemotherapeutic agent that inhibits topoisomerase II, intercalates within DNA base pairs and results in oxidative DNA damage, thus inducing cell apoptosis. Although it is effective in the treatment of a wide range of human cancers, the emergence of resistance to this drug can increase tumour growth and impact patients' survival. Numerous molecular mechanisms and signalling pathways have been identified that induce resistance to doxorubicin via stimulation of cell proliferation, cell cycle switch and preclusion of apoptosis. A number of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have also been identified that alter sensitivity to doxorubicin. Understanding the particular impact of these non-coding RNAs in conferring resistance to doxorubicin has considerable potential to improve selection of chemotherapeutic regimens for cancer patients. Moreover, modulation of expression of these transcripts is a putative strategy for combating resistance. In the current paper, the influence of miRNAs and lncRNAs in the modification of resistance to doxorubicin is discussed.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | | | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Yuan X, Chen G, Guo D, Xu L, Gu Y. Polydatin Alleviates Septic Myocardial Injury by Promoting SIRT6-Mediated Autophagy. Inflammation 2021; 43:785-795. [PMID: 32394287 DOI: 10.1007/s10753-019-01153-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sepsis is a life-threatening condition. Polydatin (PD), a small natural compound from Polygonum cuspidatum, possesses antioxidant and anti-inflammatory properties. However, the protective mechanism of PD on sepsis-induced acute myocardial damage is still unclear. The aim of this study was to investigate the effect and mechanism of action of PD on lipopolysaccharide (LPS)-induced H9c2 cells and in a rat model of sepsis, and explored the role of PD-upregulated sirtuin (SIRT)6. LPS-induced H9c2 cells were used to simulate sepsis. Cecal ligation and puncture (CLP)-induced sepsis in rats were used to verify the protective effect of PD. ELISA, western blotting, immunofluorescence, immunohistochemistry, and flow cytometry were used to study the protective mechanism of PD against septic myocardial injury. PD pretreatment suppressed LPS-induced H9c2 cell apoptosis by promotion of SIRT6-mediated autophagy. Downregulation of SIRT6 or inhibition of autophagy reversed the protective effect of PD on LPS-induced apoptosis. PD pretreatment also suppressed LPS-induced inflammatory factor expression. CLP-induced sepsis in rats showed that PD pretreatment decreased CLP-induced myocardial apoptosis and serum tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 expression. 3-Methyladenine (autophagy inhibitor) pretreatment prevented the protective effect of PD on septic cardiomyopathy. SIRT6 expression was increased with PD treatment, which confirmed that PD attenuates septic cardiomyopathy by promotion of SIRT6-mediated autophagy. All these results indicate that PD has potential therapeutic effects that alleviate septic myocardial injury by promotion of SIRT6-mediated autophagy.
Collapse
Affiliation(s)
- Xiaoyan Yuan
- Department of Emergency Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, China.,Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, 750004, China
| | - Guo Chen
- Department of Emergency Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, China
| | - Dongfeng Guo
- Department of Emergency Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, China.
| | - Lei Xu
- Department of Emergency Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, China.
| | - Yongfeng Gu
- Department of Emergency Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, China.
| |
Collapse
|
29
|
Ashrafizaveh S, Ashrafizadeh M, Zarrabi A, Husmandi K, Zabolian A, Shahinozzaman M, Aref AR, Hamblin MR, Nabavi N, Crea F, Wang Y, Ahn KS. Long non-coding RNAs in the doxorubicin resistance of cancer cells. Cancer Lett 2021; 508:104-114. [PMID: 33766750 DOI: 10.1016/j.canlet.2021.03.018] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 12/24/2022]
Abstract
Chemotherapy is the main treatment used for cancer patients failing surgery. Doxorubicin (DOX) is a well-known chemotherapeutic agent capable of suppressing proliferation in cancer cells and triggering apoptosis via inhibiting topoisomerase II activity and producing DNA breaks. This activity of DOX restrains mitosis and cell cycle progression. However, frequent application of DOX results in the emergence of resistance in the cancer cells. It seems that genetic and epigenetic factors can provide DOX resistance of cancer cells. Long non-coding RNAs (lncRNAs) are a subcategory of non-coding RNAs with role in the regulation of several cellular processes such as proliferation, migration, differentiation and apoptosis. LncRNA dysregulation has been associated with chemoresistance, and this profile occurs upon DOX treatment of cancer. In the present review, we focus on the role of lncRNAs in mediating DOX resistance and discuss the molecular pathways and mechanisms. LncRNAs can drive DOX resistance via activating pathways such as NF-κB, PI3K/Akt, Wnt, and FOXC2. Some lncRNAs can activate protective autophagy in response to the stress caused by DOX, which mediates resistance. In contrast, there are other lncRNAs involved in the sensitivity of cancer cells to DOX, such as GAS5, PTCSC3 and FENDRR. Some anti-tumor agents such as polydatin can regulate the expression of lncRNAs, enhancing DOX sensitivity. Overall, lncRNAs are potential players in DOX resistance, and their identification and targeting are of importance in chemosensitivity. Furthermore, these findings can be translated into clinical for treatment of cancer patients.
Collapse
Affiliation(s)
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Kiavash Husmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK.
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
30
|
Kalhori MR, Khodayari H, Khodayari S, Vesovic M, Jackson G, Farzaei MH, Bishayee A. Regulation of Long Non-Coding RNAs by Plant Secondary Metabolites: A Novel Anticancer Therapeutic Approach. Cancers (Basel) 2021; 13:cancers13061274. [PMID: 33805687 PMCID: PMC8001769 DOI: 10.3390/cancers13061274] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cancer is caused by the rapid and uncontrolled growth of cells that eventually lead to tumor formation. Genetic and epigenetic alterations are among the most critical factors in the onset of carcinoma. Phytochemicals are a group of natural compounds that play an essential role in cancer prevention and treatment. Long non-coding RNAs (lncRNAs) are potential therapeutic targets of bioactive phytochemicals, and these compounds could regulate the expression of lncRNAs directly and indirectly. Here, we critically evaluate in vitro and in vivo anticancer effects of phytochemicals in numerous human cancers via regulation of lncRNA expression and their downstream target genes. Abstract Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs that play an essential role in various cellular activities, such as differentiation, proliferation, and apoptosis. Dysregulation of lncRNAs serves a fundamental role in the progression and initiation of various diseases, including cancer. Precision medicine is a suitable and optimal treatment method for cancer so that based on each patient’s genetic content, a specific treatment or drug is prescribed. The rapid advancement of science and technology in recent years has led to many successes in this particular treatment. Phytochemicals are a group of natural compounds extracted from fruits, vegetables, and plants. Through the downregulation of oncogenic lncRNAs or upregulation of tumor suppressor lncRNAs, these bioactive compounds can inhibit metastasis, proliferation, invasion, migration, and cancer cells. These natural products can be a novel and alternative strategy for cancer treatment and improve tumor cells’ sensitivity to standard adjuvant therapies. This review will discuss the antineoplastic effects of bioactive plant secondary metabolites (phytochemicals) via regulation of expression of lncRNAs in various human cancers and their potential for the treatment and prevention of human cancers.
Collapse
Affiliation(s)
- Mohammad Reza Kalhori
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran;
| | - Hamid Khodayari
- International Center for Personalized Medicine, 40235 Düsseldorf, Germany; (H.K.); (S.K.)
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Saeed Khodayari
- International Center for Personalized Medicine, 40235 Düsseldorf, Germany; (H.K.); (S.K.)
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Miko Vesovic
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Gloria Jackson
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6718874414, Iran
- Correspondence: (M.H.F.); or (A.B.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: (M.H.F.); or (A.B.)
| |
Collapse
|
31
|
Lin Z, Xie X, Lu S, Liu T. Noncoding RNAs in osteosarcoma: Implications for drug resistance. Cancer Lett 2021; 504:91-103. [PMID: 33587978 DOI: 10.1016/j.canlet.2021.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/13/2021] [Accepted: 02/08/2021] [Indexed: 02/09/2023]
Abstract
Osteosarcoma is the most frequent bone malignancy in children and adolescents. Despite advances of surgery and chemotherapy in osteosarcoma over the past decades, overall survival rates of osteosarcoma have reached a plateau. The development of multi-drug resistance (MDR) has become the main obstacle in improving chemotherapeutic effects in osteosarcoma treatment. Therefore, understanding detailed mechanisms of chemoresistance and developing novel therapeutic targets to overcome chemoresistance are crucial to improve the prognosis of osteosarcoma patients. Accumulating evidence has proved that multiple noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) play pivotal roles in osteosarcoma progression. Notably, a great number of ncRNAs are abnormally expressed and can regulate chemosensitivity through various mechanisms in osteosarcoma. In this review, we systematically summarize the roles of ncRNAs as well as the molecular mechanisms in modulating drug resistance of osteosarcoma and discuss the potential roles of ncRNAs as biomarkers and novel therapeutic targets for osteosarcoma.
Collapse
Affiliation(s)
- Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, People's Republic of China; Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Xubin Xie
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Shiyao Lu
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
32
|
Prudowsky ZD, Yustein JT. Recent Insights into Therapy Resistance in Osteosarcoma. Cancers (Basel) 2020; 13:E83. [PMID: 33396725 PMCID: PMC7795058 DOI: 10.3390/cancers13010083] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma, the most common bone malignancy of childhood, has been a challenge to treat and cure. Standard chemotherapy regimens work well for many patients, but there remain minimal options for patients with progressive or resistant disease, as clinical trials over recent decades have failed to significantly improve survival. A better understanding of therapy resistance is necessary to improve current treatments and design new strategies for future treatment options. In this review, we discuss known mechanisms and recent scientific advancements regarding osteosarcoma and its patterns of resistance against chemotherapy, radiation, and other newly-introduced therapeutics.
Collapse
Affiliation(s)
- Zachary D. Prudowsky
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Houston, TX 77030, USA;
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason T. Yustein
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Houston, TX 77030, USA;
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
33
|
Wang S, Cheng M, Zheng X, Zheng L, Liu H, Lu J, Liu Y, Chen W. Interactions Between lncRNA TUG1 and miR-9-5p Modulate the Resistance of Breast Cancer Cells to Doxorubicin by Regulating eIF5A2. Onco Targets Ther 2020; 13:13159-13170. [PMID: 33380806 PMCID: PMC7767720 DOI: 10.2147/ott.s255113] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Breast cancer (BC) is one of the leading causes of cancer-related deaths. Chemoresistance of BC remains a major unmet clinical obstacle. TUG1 (taurine-upregulated gene 1), a long noncoding RNA (lncRNA), and microRNAs (miRNA) are implicated in therapeutic resistance. However, the interactions between TUG1 and miRNAs that regulate doxorubicin (Dox) resistance in BC remain elusive. MATERIALS AND METHODS Expression of TUG1 and miR-9 was measured by real-time PCR. EIF5A2 (eukaryotic translation initiation factor 5A-2) was detected by Western blot. Transfection of siRNAs or miRNA inhibitors was applied to silence lncRNA TUG1, eIF5A2 or miR-9. Cell viability, proliferation, and apoptosis were determined by CCK-8 (cell counting kit-8), flow cytometry, and EdU (5-ethynyl-2'-deoxyuridine) assays, respectively. The regulatory relationship between TUG1 and miR-9 was determined by a luciferase assay. RESULTS LncRNA TUG1 was highly expressed in BC tissues and positively associated with Dox resistance in BC cell lines. SiRNA knockdown of TUG1 reversed Dox resistance in MCF-7/ADR cells. Mechanistically, TUG1 acted as a "sponge" for miR-9 and downregulated miR-9. Treatment with a miR-9 inhibitor blocked the effect of TUG1 siRNA, and knockdown of TUG1 inhibited the effects of miR-9. Furthermore, TUG1 inhibition of apoptosis induced by Dox involved miR-9 targeting of eIF5A2. CONCLUSION TUG1 modulates the susceptibility of BC cells to Dox by regulating the expression of eIF5A2 via interacting with miR-9. These results indicate that the lncRNA TUG1 may be a novel therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Shuqian Wang
- Department of Breast Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou310003, People’s Republic of China
| | - Mengjing Cheng
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang310012, People’s Republic of China
| | - Xiaoxiao Zheng
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang310012, People’s Republic of China
| | - Li Zheng
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang310012, People’s Republic of China
| | - Hao Liu
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang310012, People’s Republic of China
| | - Jianju Lu
- Department of Breast Surgery, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing College, Jiaxing314000, People’s Republic of China
| | - Yu Liu
- Department of Breast Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou310003, People’s Republic of China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang310012, People’s Republic of China
| |
Collapse
|
34
|
Guo C, Qi Y, Qu J, Gai L, Shi Y, Yuan C. Pathophysiological Functions of the lncRNA TUG1. Curr Pharm Des 2020; 26:688-700. [PMID: 31880241 DOI: 10.2174/1381612826666191227154009] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) with little or no coding capacity are associated with a plethora of cellular functions, participating in various biological processes. Cumulative study of lncRNA provides explanations to the physiological and pathological processes and new perspectives to the diagnosis, prevention, and treatment of some clinical diseases. Long non-coding RNA taurine-upregulated gene 1(TUG1) is one of the first identified lncRNAs associated with human disease, which actively involved in various physiological processes, including regulating genes at epigenetics, transcription, post-transcription, translation, and posttranslation. The aim of this review was to explore the molecular mechanism of TUG1 in various types of human diseases. METHODS In this review, we summarized and analyzed the latest findings related to the physiologic and pathophysiological processes of TUG1 in human diseases. The related studies were retrieved and selected the last six years of research articles in PubMed with lncRNA and TUG1 as keywords. RESULTS TUG1 is a valuable lncRNA that its dysregulated expression and regulating the biological processes were found in a variety of human diseases. TUG1 is found to exhibit aberrant expression in a variety of malignancies. Dysregulation of TUG1 has been shown to contribute to proliferation, migration, cell cycle changes, inhibited apoptosis, and drug resistance of cancer cells, which revealed an oncogenic role for this lncRNA, but some reports have shown downregulation of TUG1 in lung cancer samples compared with noncancerous samples. In addition, the molecular and biological functions of TUG1 in physiology and disease (relevant to endocrinology, metabolism, immunology, neurobiology) have also been highlighted. Finally, we discuss the limitations and tremendous diagnostic/therapeutic potential of TUG1 in cancer and other diseases. CONCLUSION Long non-coding RNA-TUG1 likely served as useful disease biomarkers or therapy targets and effectively applied in different kinds of diseases, such as human cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Chong Guo
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Yuying Qi
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Jiayuan Qu
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Liyue Gai
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Yue Shi
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Chengfu Yuan
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China.,Tumor Microenvironment and Immunotherapy Key Laboratory of Hubei province in China, Yichang City, China
| |
Collapse
|
35
|
Guan X, Xu Y, Zheng J. Long non‑coding RNA PCAT6 promotes the development of osteosarcoma by increasing MDM2 expression. Oncol Rep 2020; 44:2465-2474. [PMID: 33125146 PMCID: PMC7610325 DOI: 10.3892/or.2020.7813] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is a severe malignant tumor. Several studies indicated that lncRNA prostate cancer-associated transcript 6 (PCAT6) promoted the development of multiple types of cancers. Studies have also revealed that MDM2 could aggravate tumor symptoms inhibiting P53 expression. However, whether lncRNA PCAT6 could affect the proliferation and metastasis of osteosarcoma cells by regulating P53 expression is unclear. The present study established lncRNA PCAT6-overexpressing osteosarcoma cells. Cell Counting Kit-8, wound healing and Transwell assays were performed to detect the change in proliferation, migration and invasion of these cells, respectively. Subsequently, E3 ubiquitin-protein ligase Mdm2 (MDM2), P53 and P21 expression were determined using western blotting. Finally, MDM2 expression was inhibited and the proliferation, migration and invasion of these cells was determined again. The present study found that the proliferation, migration and invasion of osteosarcoma cells increased following overexpression of lncRNA PCAT6. MDM2 expression was upregulated while the levels of P53 and P21 decreased following overexpression of lncRNA PCAT6. However, the proliferation, migration and invasion of osteosarcoma cells were inhibited following MDM2 knockdown. Additionally, P53 and P21 was rescued following MDM2 knockdown. To conclude, lncRNA PCAT6 promoted the proliferation, migration and invasion of osteosarcoma cells by promoting the expression of MDM2 and suppressing the expression of P53 and P21.
Collapse
Affiliation(s)
- Xiliang Guan
- Department of Orthopaedic Surgery, People's Hospital of Rizhao, Rizhao, Shandong 276826, P.R. China
| | - Yufen Xu
- Department of Oncology, The First Hospital of Jiaxing and The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China
| | - Jufen Zheng
- The Department of Bone, Zhejiang Hospital, Hangzhou, Zhejiang 310030, P.R. China
| |
Collapse
|
36
|
Wu X, Yu H, Zhou H, Li Z, Huang H, Xiao F, Xu S, Yang Y. Proanthocyanidin B2 inhibits proliferation and induces apoptosis of osteosarcoma cells by suppressing the PI3K/AKT pathway. J Cell Mol Med 2020; 24:11960-11971. [PMID: 32914567 PMCID: PMC7579710 DOI: 10.1111/jcmm.15818] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 01/04/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumour in children and adolescents. The long‐term survival rate of OS patients is stubbornly low mainly due to the chemotherapy resistance. We therefore aimed to investigate the antitumoral effects and underlying mechanisms of proanthocyanidin B2 (PB2) on OS cells in the current study. The effect of PB2 on the proliferation and apoptosis of OS cell lines was assessed by CCK‐8, colony formation, and flow cytometry assays. The target gene and protein expression levels were measured by qRT‐PCR and Western blotting. A xenograft mouse model was established to assess the effects of PB2 on OS proliferation and apoptosis in vivo. Results from in vitro experiments showed that PB2 inhibited the proliferation and induced apoptosis of OS cells, and also increased the expression levels of apoptosis‐related proteins. Moreover, PB2 induced OS cell apoptosis through suppressing the PI3K/AKT signalling pathway. The in vivo experiments further confirmed that PB2 could inhibit OS tumour growth and induce its apoptosis. Taken together, these results suggested that PB2 inhibited the proliferation and induced apoptosis of OS cells through the suppression of the PI3K/AKT signalling pathway.
Collapse
Affiliation(s)
- Xinbo Wu
- Department of Orthopedics, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiyang Yu
- Department of Orthopedics, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haichao Zhou
- Department of Orthopedics, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zihua Li
- Department of Orthopedics, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Huang
- Department of Orthopedics, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fajiao Xiao
- Department of Orthopedics, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shaochen Xu
- Department of Orthopedics, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yunfeng Yang
- Department of Orthopedics, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
PD-1/PD-L1 axis regulation in cancer therapy: The role of long non-coding RNAs and microRNAs. Life Sci 2020; 256:117899. [DOI: 10.1016/j.lfs.2020.117899] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/31/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023]
|
38
|
Zang L, Song Y, Yu F, Liu X. Emodin relieved lipopolysaccharide-evoked inflammatory damage in WI-38 cells by up-regulating taurine up-regulated gene 1. Biofactors 2020; 46:860-868. [PMID: 31912578 DOI: 10.1002/biof.1609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/19/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Neonatal pneumonia (NP) has a high fatality rate in neonatal illness. This research investigated the functions of emodin on lipopolysaccharide (LPS)-evoked inflammatory injury in WI-38 cells. METHODS Cell counting kit-8 (CCK-8) assay and flow cytometry were utilized for examining the impacts of LPS and emodin on viability and apoptosis, respectively. Taurine up-regulated gene 1 (TUG1) level was altered through cell transfection and investigated by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Moreover, RT-qPCR, western blot and enzyme-linked immunosorbent assay (ELISA) were utilized for investigating expressions of monocyte chemoattractant protein-1 (MCP-1) and interleukin (IL)-6. Western blot was carried out for investigating the levels of Bcl-2, Bax, pro-Caspase-3, cleaved-Caspase-3 and NF-κB and p38MAPK pathway-related proteins. RESULTS LPS treatment restrained cell viability, enhanced apoptosis, and expressions of inflammation-related IL-6 and MCP-1. Emodin alleviated LPS-evoked inflammatory injury and restrained the NF-κB and p38MAPK pathways. Furthermore, emodin positively regulated TUG1 expression and TUG1 silencing could reverse the efficacy of emodin on IL-6 and MCP-1 expressions. Finally, TUG1 regulates the expression of inflammatory factors through NF-κB and p38MAPK pathways. CONCLUSION Emodin alleviated LPS-evoked inflammatory injury by raising TUG1 expression via NF-κB and p38MAPK pathways in WI-38 cells.
Collapse
Affiliation(s)
- Linlin Zang
- Department of Clinical Laboratory, The Affiliated Qingdao Hiser Hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, China
| | - Yongqing Song
- Department of Pharmaceutical, Binzhou People's Hospital, Binzhou, Shandong, China
| | - Fengying Yu
- Department of Pharmaceutical, Binzhou People's Hospital, Binzhou, Shandong, China
| | - Xiuxia Liu
- Department of Pediatrics, Jining No.1 People's Hospital, Jining, Shandong, China
| |
Collapse
|
39
|
Zhang W, Liu Y, Zhang J, Zheng N. Long Non-Coding RNA Taurine Upregulated Gene 1 Targets miR-185 to Regulate Cell Proliferation and Glycolysis in Acute Myeloid Leukemia Cells in vitro. Onco Targets Ther 2020; 13:7887-7896. [PMID: 32982274 PMCID: PMC7493018 DOI: 10.2147/ott.s238189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/15/2020] [Indexed: 12/17/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a group of malignant hematopoietic system diseases. Taurine-upregulated gene 1 (TUG1) is a long non-coding RNA that has been associated with human cancers, including AML. However, the role and molecular mechanisms of TUG1 in AML remains to be defined. Methods Expression of TUG1 and miR-185 was detected using RT-qPCR. Cell viability and apoptotic rate were measured by MTT assay and flow cytometry, respectively. Glycolysis was determined by commercial glucose and lactate assay kits and Western blot. The target binding between TUG1 and miR-185 was predicted on Starbase online database and confirmed by luciferase reporter assay and RNA immunoprecipitation. Results TUG1 was upregulated and miR-185 was downregulated in the peripheral blood mononuclear cells of AML specimens and cells (HL-60, KG-1, MOLM-14, and MOLM-13). Both TUG1 knockdown and miR-185 overexpression via transfection could suppress cell viability, glucose consumption, lactate production, and hexokinase 2 expression, but promote apoptotic rate in HL-60 and KG-1 cells. Notably, TUG1 functioned as a sponge of miR-185 by target binding. Moreover, downregulation of miR-185 could partially overturn the effect of TUG1 knockdown on cell proliferation and glycolysis in HL-60 and KG-1 cells. Conclusion Expression of TUG1 was upregulated in AML patients and cells, and its knockdown repressed cell proliferation and glycolysis in AML cells in vitro by targeting miR-185.
Collapse
Affiliation(s)
- Weide Zhang
- Department of Hematology, The People's Hospital of Shouguang, Shouguang, Shandong, People's Republic of China
| | - Yuhua Liu
- Department of Digestive Oncology, The Gansu Provincial Cancer Hospital, Lanzhou, Gansu, People's Republic of China
| | - Jing Zhang
- Department of Psychiatry, Shouguang Mental and Health Care Center, Shouguang, Shandong, People's Republic of China
| | - Ni Zheng
- Department of Clinical Laboratory, Shengli Oilfield Central Hospital, Dongying, Shandong, People's Republic of China
| |
Collapse
|
40
|
Zhang Y, Pu Y, Wang J, Li Z, Wang H. Research progress regarding the role of long non-coding RNAs in osteosarcoma. Oncol Lett 2020; 20:2606-2612. [PMID: 32782578 PMCID: PMC7400499 DOI: 10.3892/ol.2020.11807] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma is a malignant tumor that occurs in children and adolescents. Although treatments for osteosarcoma have improved, the likelihood of survival remains low for most patients with metastasis and recurrence. Elucidating the mechanism underlying the development of osteosarcoma and chemotherapy resistance will be important to improve diagnosis and treatment. Long non-coding RNAs (lncRNAs), which are longer than 200 nucleotides in length and do not encode for proteins, have been shown to play a regulatory role in the occurrence and development of osteosarcoma, and are expected to serve as biomarkers and molecular targets. This review discusses the progress in the study of the role of lncRNAs in osteosarcoma, and highlights the recent developments in this field.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Orthopedics, Wuwei People's Hospital, Wuwei, Gansu 733000, P.R. China
| | - Yanchuan Pu
- Department of Orthopedics, Wuwei People's Hospital, Wuwei, Gansu 733000, P.R. China
| | - Jin Wang
- Department of Orthopedics, Wuwei People's Hospital, Wuwei, Gansu 733000, P.R. China
| | - Zicai Li
- Department of Orthopedics, Wuwei People's Hospital, Wuwei, Gansu 733000, P.R. China
| | - Hulin Wang
- Department of Orthopedics, Wuwei People's Hospital, Wuwei, Gansu 733000, P.R. China
| |
Collapse
|
41
|
Li L, Li J, Wang Q, Zhao X, Yang D, Niu L, Yang Y, Zheng X, Hu L, Li Y. Shenmai Injection Protects Against Doxorubicin-Induced Cardiotoxicity via Maintaining Mitochondrial Homeostasis. Front Pharmacol 2020; 11:815. [PMID: 32581790 PMCID: PMC7289952 DOI: 10.3389/fphar.2020.00815] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Shenmai injection (SMI), as a patented traditional Chinese medicine, is extracted from Panax ginseng and Ophiopogon japonicus. It commonly used in the treatment of cardiovascular disease and in the control of cardiac toxicity induced by doxorubicin (DOX) treatment. However, its anti-cardiotoxicity mechanism remains unknown. The purpose of this study was to investigate the underlying mitochondrial protective mechanisms of SMI on DOX-induced myocardial injury. The cardioprotective effect of SMI against DOX-induced myocardial damage was evaluated in C57BL/6 mice and H9c2 cardiomyocytes. In vivo, myocardial injury, apoptosis and phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB/Akt)/glycogen synthase kinase 3 beta (GSK-3β) signaling pathway related proteins were measured. In vitro, apoptosis, mitochondrial superoxide, mitochondrial membrane potential, mitochondrial morphology, levels of mitochondrial fission/fusion associated proteins, mitochondrial respiratory function, and AMP-activated protein kinase (AMPK) activity were assessed. To further elucidate the regulating effects of SMI on AMPK and PI3K/Akt/GSK-3β signaling pathway, compound C and LY294002 were utilized. In vivo, SMI decreased mortality rate, levels of creatine kinase, and creatine kinase-MB. SMI significantly prevented DOX-induced cardiac dysfunction and apoptosis, decreased levels of Bax/Bcl-2 and cleaved-Caspase3, increased levels of PI3K, p-Akt, and p-GSK-3β. In vitro, SMI rescued DOX-injured H9c2 cardiomyocytes from apoptosis, excessive mitochondrial reactive oxygen species production and descending mitochondrial membrane potential, which were markedly suppressed by LY294002. SMI increased ratio of L-OPA1 to S-OPA1, levels of AMPK phosphorylation, and DRP1 phosphorylation (Ser637) in order to prevent DOX-induced excessive mitochondrial fission and insufficient mitochondrial fusion. In conclusion, SMI prevents DOX-induced cardiotoxicity, inhibits mitochondrial oxidative stress and mitochondrial fragmentation through activation of AMPK and PI3K/Akt/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Lin Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinghao Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Zhao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dongli Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Niu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanze Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xianxian Zheng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Limin Hu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhong Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
42
|
Zhang Y, Li Y, Feng Q, Shao M, Yuan F, Liu F. Polydatin attenuates cadmium-induced oxidative stress via stimulating SOD activity and regulating mitochondrial function in Musca domestica larvae. CHEMOSPHERE 2020; 248:126009. [PMID: 32000039 DOI: 10.1016/j.chemosphere.2020.126009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is a widespread environment contaminant due to the development of electroplating and metallurgical industry. Cd can be enriched by organisms via food chain, causing the enlarged environmental problems and posing threats to the health of humans. Polydatin (PD), a natural stilbenoid compound derived from Polygonum cuspidatum, shows pronouncedly curative effect on oxidative damage. In this work, the protective effects of PD on oxidative damage induced by Cd in Musca domestica (housefly) larvae were evaluated. The larvae were exposed to Cd and/or PD, subsequently, the oxidative stress status, mitochondria activity, oxidative phosphorylation efficiency, and survival rate were assessed. Cd exposure generated significant increases of malondialdehyde (MDA), reactive oxygen species (ROS) and 8-hydroxy-2-deoxyguanosine (8-oxoG) in the housefly larvae, causing mitochondrial dysfunction and survival rate decline. Interestingly, pretreatment with PD exhibited obviously mitochondrial protective effects in the Cd-exposed larvae, as evidenced by reduced MDA, ROS and 8-oxoG levels, and increased activities of superoxide dismutase (SOD), mitochondrial electron transfer chain, and mitochondrial membrane potential, as well as respiratory control ratio. These results suggested that PD could attenuate Cd-induced damage via maintaining redox balance, stimulating SOD activity, and regulating mitochondria activity in housefly larvae. As a natural polyphenolic chemical, PD can act as a potential candidate compounds to relieve Cd injury.
Collapse
Affiliation(s)
- Yuming Zhang
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Yajing Li
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Qin Feng
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Menghua Shao
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Fengyu Yuan
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Fengsong Liu
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China.
| |
Collapse
|
43
|
Li DM, Zhong M, Su QB, Song FM, Xie TG, He JH, Wei J, Lu GS, Hu XX, Wei GN. Active fraction of Polyrhachis vicina Rogers (AFPR) suppressed breast cancer growth and progression via regulating EGR1/lncRNA-NKILA/NF-κB axis. Biomed Pharmacother 2020; 123:109616. [PMID: 31881485 DOI: 10.1016/j.biopha.2019.109616] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/23/2019] [Accepted: 10/26/2019] [Indexed: 01/22/2023] Open
Abstract
Breast cancer (BC) is a major contributor of cancer-associated mortality in women. It is essential to find new therapeutic targets and drugs. Polyrhachis vicina Rogers is one of the Traditional Chinese Medicine (TCM). Our previous studies have shown an active fraction of Polyrhachis vicina Rogers (AFPR) has significant anti-inflammatory activity, suggesting its anti-cancer effect. Here, we aimed to explore the inhibitory effects of AFPR on BC and reveal its mechanism. The effects of AFPR on BC were examined by cell proliferation assay, wound healing assay, invasion assay and xenograft assay. Microarray sequencing, qRT-PCR, Western blot, chromatin immunoprecipitation assay and luciferase reporter assay were performed to investigate the regulation of AFPR on related genes and underlying mechanisms. As a result, AFPR suppressed BC cell growth, migration and invasion and inhibited tumor growth. LncRNA NKILA was most prominently upregulated in AFPR-treated MCF7 cells. AFPR inactivated NF-κB signaling pathway via regulating NKILA. Furthermore, AFPR regulated the expression of NKILA by inhibiting its transcript suppressor EGR1. This study firstly indicated that AFPR was a potential inhibitor of BC development via regulating EGR1/NKILA/NF-κB axis.
Collapse
Affiliation(s)
- Dong-Mei Li
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China; Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Nanning, 530022, China
| | - Ming Zhong
- Department of Chemistry, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China
| | - Qi-Biao Su
- College of Health Science, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Fang-Ming Song
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Tang-Gui Xie
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China
| | - Jun-Hui He
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China
| | - Jie Wei
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China
| | - Guo-Shou Lu
- Department of Chemistry, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China
| | - Xiao-Xi Hu
- Department of Chemistry, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China
| | - Gui-Ning Wei
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China.
| |
Collapse
|
44
|
Sun Z, Wang X. Protective effects of polydatin on multiple organ ischemia-reperfusion injury. Bioorg Chem 2020; 94:103485. [DOI: 10.1016/j.bioorg.2019.103485] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 02/09/2023]
|
45
|
Dai J, Ma J, Liao Y, Luo X, Chen G. Polydatin protects H9c2 cells from hypoxia-induced injury via up-regulating long non-coding RNA DGCR5. ACTA ACUST UNITED AC 2019; 52:e8834. [PMID: 31826181 PMCID: PMC6903803 DOI: 10.1590/1414-431x20198834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
Polydatin (PD), a monocrystalline polyphenolic drug mainly found in the roots of Polygonum cuspidatum, has various pharmacological activities. Long non-coding RNAs (lncRNA) DiGeorge syndrome critical region gene 5 (DGCR5) was found to participate in the suppression of multiple cancers. Here, we proposed to study the effect of PD on myocardial infarction (MI) by inducing DGCR5. CCK-8 assay was performed to detect the viability of H9c2 cells. Flow cytometry was utilized to test apoptosis of H9c2 cells. These results determined the optimal concentration and effect time of hypoxia as well as PD. Si-DGCR5 was transfected into cells and the expression level was determined by qRT-PCR. Western blot was utilized to evaluate the expression of apoptosis-related proteins, Bcl-2, Bax, and cleaved-caspase-3, as well as autophagy-associated proteins including Beclin-1, p62, and LC3-II/LC3-I. As a result, PD efficiently attenuated hypoxia-induced apoptosis and autophagy in H9c2 cells. The expression of DGCR5 was down-regulated by hypoxia and up-regulated by PD. Besides, knocking-down the expression of DGCR5 inhibited the protection of PD in H9c2 cells. In addition, PD up-regulated the accumulation of DGCR5, DGCR5 decreased the expression of Bcl-2 and p62, raised the expression of Bax and cleaved-caspase-3, and the proportion of LC3-II/LC3-I. PD stimulated the PI3K/AKT/mTOR and MEK/ERK signaling pathways via up-regulating the expression of DGCR5. Our data demonstrated that PD reduced cell apoptosis and autophagy induced by hypoxia in cardiomyocytes. Moreover, PD activated PI3K/AKT/mTOR and MEK/ERK signaling pathways by up-regulating the expression of DGCR5.
Collapse
Affiliation(s)
- Jinhua Dai
- Department of Clinical Laboratory, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo, Zhejiang, China
| | - Jianbo Ma
- Department of Clinical Laboratory, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo, Zhejiang, China
| | - Yufeng Liao
- Department of Clinical Laboratory, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo, Zhejiang, China
| | - Xianhai Luo
- Department of Clinical Laboratory, Ningbo Kangning Hospital, Ningbo Mental Health Center, Ningbo, Zhejiang, China
| | - Guofang Chen
- Department of Cardiology, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo, Zhejiang, China
| |
Collapse
|
46
|
Xia C, Chen L, Sun W, Yan R, Xia M, Wang Y, Yang D. Total saponins from Paris forrestii (Takht) H. Li. show the anticancer and RNA expression regulating effects on prostate cancer cells. Biomed Pharmacother 2019; 121:109674. [PMID: 31810132 DOI: 10.1016/j.biopha.2019.109674] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/29/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022] Open
Abstract
Paris forrestii is a unique plant found in Tibet and Yunnan, China, and total saponins from Paris forrestii (PCT3) contain anticancer steroid glycosides. RNA expression plays an important role in various biological processes. However, the cytotoxicity effects and mechanisms of PCT3 in relation to prostate cancer (PCa) cells have not yet been reported. In the present study, the antitumor activity of PCT3 on PCa cells was evaluated. PCT3 displayed potent anticancer effects toward PCa cells that were similar to the effects of pure saponins from P. forrestii, but PCT3 had less activity in suppressing the prostate epithelial cell line RWPE. Furthermore, using CCK-8 assays, Edu incorporation, colony formation assays, Annexin V/PI assays and western blotting, we found that treatment with 4 μg/mL PCT3 significantly decreased proliferation and induced apoptosis in PCa cells. Using wound healing and transwell assays, we demonstrated that treatment with 2 μg/mL PCT3 significantly suppressed the migration and invasion of PCa cells. To explore the molecular mechanisms behind the anticancer effect of PCT3, PCT3 (5 μg/mL) treated and untreated PCa cells (LNCAP and PC3 cell lines) were analyzed using transcriptomics. Taking the commonly differentially expressed genes (log2FC > 0.585) in both cell lines, 41 mRNAs and 5 lncRNAs were eventually identified. Bioinformatics analysis (GO and KEGG analyses) revealed that some genes involved in classical cell proliferation and apoptosis pathways were aberrantly expressed after PCT3 treatment of PCa cells. By using q-PCR, the expression levels of NEAT1, MALAT1, TIPIN, LYAR, IQGAP3, GINS2, and ZGRF1 were validated as consistent with microarray data, suggesting that these genes might participate in the PCT3 anticancer effect. The present study suggests that PCT3 exhibits an anticancer effect on PCa and reveals some crucial lncRNAs and mRNAs that are involved in the anticancer mechanisms of PCT3 on Pca.
Collapse
Affiliation(s)
- Chengxing Xia
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Liu Chen
- Department of Urology, The First Affiliated Hospital of Hunan University of Medicine, Changsha 410000, China
| | - Wanghong Sun
- Department of Urology, Zhuji People's Hospital of Zhejiang Province, Zhuji 311800, China
| | - Ruping Yan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Mengyuan Xia
- Key Laboratory of Economic Plants and Biotechnology and Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yuehu Wang
- Key Laboratory of Economic Plants and Biotechnology and Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Delin Yang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China.
| |
Collapse
|