1
|
Lee GH, Lee SY, Baek YW, Lim J, Chung KH, Jeong HG. Polyhexamethylene guanidine phosphate induces epithelial-to-mesenchymal transition and cancer stem cell-like properties via Wnt/β-catenin signaling in human bronchial epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117930. [PMID: 39986058 DOI: 10.1016/j.ecoenv.2025.117930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
Inhalation exposure to polyhexamethylene guanidine phosphate (PHMG-p), a primary component of humidifier disinfectants, has been linked to interstitial lung disease and potential carcinogenic effects. This study aimed to investigate epithelial cell transformation and the underlying molecular mechanisms by examining the properties of epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) following prolonged exposure to PHMG-p. Beas-2B human bronchial epithelial cells were treated with 0.125-0.5 µg/ml PHMG-p for over 55 passages, resulting in approximately a 1.2-fold increase in proliferation and a 2-fold enhancement in wound healing, migration, and invasion. Long-term exposure induced morphological changes in Beas-2B, which adopted a spindle-shaped appearance, and displayed enhanced expression of EMT markers, including N-cadherin, Vimentin, Twist, and Snail (approximately 1.5- to 3.5-fold). Culturing these cells in a cancer stem cell medium further confirmed neoplastic transformation and the induction of CSC properties in long-term PHMG-p-treated cells. Additionally, expression levels of CSC phenotypic markers (CD44, CD133, ABCG2, and ALDH1A1) and stemness markers (SOX2, OCT4, Nanog, and KLF4) increased during PHMG-p-induced carcinogenesis. Moreover, increased reactive oxygen species (ROS) production and expression of β-catenin indicated the involvement of these signaling molecules during carcinogenesis. Collectively, our findings suggest that chronic exposure to PHMG-p, even at relatively low concentrations, can induce neoplastic transformation through the acquisition of EMT, stemness, and CSC phenotypes, potentially linked to the endogenous ROS and Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Gi Ho Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, South Korea
| | - Seung Yeon Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, South Korea
| | - Yong-Wook Baek
- Humidifier Disinfectant Health Center, Environmental Health Research, National Institute of Environmental Research, Incheon 22689, South Korea
| | - Jungyun Lim
- Humidifier Disinfectant Health Center, Environmental Health Research, National Institute of Environmental Research, Incheon 22689, South Korea
| | - Kyu Hyuck Chung
- College of Pharmacy, Kyungsung University, Busan 48434, South Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
2
|
Kim JW, Kim HS, Kim HR, Chung KH. Next generation risk assessment of biocides (PHMG-p and CMIT/MIT)-induced pulmonary fibrosis using adverse outcome pathway-based transcriptome analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134986. [PMID: 38944992 DOI: 10.1016/j.jhazmat.2024.134986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
Next-generation risk assessment (NGRA) has emerged as a promising alternative to non-animal studies owing to the increasing demand for the risk assessment of inhaled toxicants. In this study, NGRA was used to assess the inhalation risks of two biocides commonly used as humidifier disinfectants: polyhexamethylene guanidine phosphate (PHMG-p) and chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT). Human bronchial epithelial cell transcriptomic data were processed based on adverse outcome pathways and used to establish transcriptome-based points of departure (tPODs) for each biocide. tPOD values were 0.00500-0.0510 μg/cm2 and 0.0342-0.0544 μg/cm2 for PHMG-p and CMIT/MIT, respectively. tPODs may provide predictive power comparable to that of traditional animal-based PODs (aPODs). The tPOD-based NGRA determined that both PHMG-p and CMIT/MIT present a high inhalation risk. Moreover, the identified PHMG-p posed a higher risk than CMIT/MIT, and children were identified as more susceptible population compared to adults. This finding is consistent with observations from actual exposure events. Our findings suggest that NGRA with transcriptomics offers a reliable approach for risk assessment of specific humidifier disinfectant biocides, while acknowledging the limitations of current models and in vitro systems, particularly regarding uncertainties in pharmacokinetics (PK) and pharmacodynamics (PD).
Collapse
Affiliation(s)
- Jun Woo Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Ha Ryong Kim
- College of Pharmacy, Korea University, Sejong 30019, South Korea.
| | - Kyu Hyuck Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
3
|
Kim D, Shin Y, Park JI, Lim D, Choi H, Choi S, Baek YW, Lim J, Kim Y, Kim HR, Chung KH, Bae ON. A systematic review and BMD modeling approach to develop an AOP for humidifier disinfectant-induced pulmonary fibrosis and cell death. CHEMOSPHERE 2024; 364:143010. [PMID: 39098349 DOI: 10.1016/j.chemosphere.2024.143010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/06/2024]
Abstract
Dosimetry modeling and point of departure (POD) estimation using in vitro data are essential for mechanism-based hazard identification and risk assessment. This study aimed to develop a putative adverse outcome pathway (AOP) for humidifier disinfectant (HD) substances used in South Korea through a systematic review and benchmark dose (BMD) modeling. We collected in vitro toxicological studies on HD substances, including polyhexamethylene guanidine hydrochloride (PHMG-HCl), PHMG phosphate (PHMG-p), a mixture of 5-chloro-2-methyl-4-isothiazolin-3-one and 2-methyl-4-isothiazolin-3-one (CMIT/MIT), CMIT, and MIT from scientific databases. A total of 193 sets of dose-response data were extracted from 34 articles reporting in vitro experimental results of HD toxicity. The risk of bias (RoB) in each study was assessed following the office of health assessment and translation (OHAT) guideline. The BMD of each HD substance at different toxicity endpoints was estimated using the US Environmental Protection Agency (EPA) BMD software (BMDS). Interspecies- or interorgan differences or most critical effects in the toxicity of the HD substances were analyzed using a 95% lower confidence limit of the BMD (BMDL). We found a critical molecular event and cells susceptible to each HD substance and constructed an AOP of PHMG-p- or CMIT/MIT-induced damage. Notably, PHMG-p induced ATP depletion at the lowest in vitro concentration, endoplasmic reticulum (ER) stress, epithelial-to-mesenchymal transition (EMT), inflammation, leading to fibrosis. CMIT/MIT enhanced mitochondrial reactive oxygen species (ROS) production, oxidative stress, mitochondrial dysfunction, resulting in cell death. Our approach will increase the current understanding of the effects of HD substances on human health and contribute to evidence-based risk assessment of these compounds.
Collapse
Affiliation(s)
- Donghyun Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea
| | - Yusun Shin
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea
| | - Jong-In Park
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea
| | - Donghyeon Lim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea
| | - Hyunjoon Choi
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea
| | - Seongwon Choi
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea
| | - Yong-Wook Baek
- Humidifier Disinfectant Health Center, Environmental Health Research, National Institute of Envrironmental Research, Incheon, 22689, South Korea
| | - Jungyun Lim
- Humidifier Disinfectant Health Center, Environmental Health Research, National Institute of Envrironmental Research, Incheon, 22689, South Korea
| | - Younghee Kim
- Humidifier Disinfectant Health Center, Environmental Health Research, National Institute of Envrironmental Research, Incheon, 22689, South Korea
| | - Ha Ryong Kim
- College of Pharmacy, Korea University, Sejong, South Korea
| | - Kyu Hyuck Chung
- College of Pharmacy, Kyungsung University, Busan, South Korea
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea.
| |
Collapse
|
4
|
Kang H, Lee S, Jo EK, Yang W, Choi YH. Synergistic interaction of co-exposure to humidifier disinfectant chemicals CMIT/MIT and PHMG in lung injury. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33098-33106. [PMID: 38676862 DOI: 10.1007/s11356-024-33455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
A number of biocidal disinfectant chemicals are used as household products to prevent spread of pathogens. People are commonly exposed to multiple chemicals through those disinfectants. However, effects of interactions (e.g., synergism) between disinfectants on human health outcomes have been rarely studied. In this study, we aimed to investigate associations of a mixture of chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT) and polyhexamethylene guanidine (PHMG), which had been used as humidifier disinfectants (HDs) in South Korea, with HD-associated lung injury (HDLI) in a Korean population (n = 4058) with HD exposure through use of HD products. Exposure to HD was retrospectively assessed by an interview-based standardized survey, and HDLI was determined by clinical assessment. After adjusting for covariates, PHMG-specific exposure indices (e.g., amount of use, indoor air concentration, and weekly exposure level) were dose-dependently associated with HDLI (their odds ratios for the comparison of third tertile versus first tertile were 1.95, 1.77, and 2.16, respectively). CMIT/MIT exposure was not observed to have a significant association with HDLI in a single chemical exposure model; however, associations between PHMG exposure and HDLI were strengthened by co-exposure to CMIT/MIT in combined chemical exposure models, where synergistic interactions between CMIT/MIT use and PHMG indices (amount of use and weekly exposure level) were observed (p-interaction in additive scale: 0.02 and 0.03, respectively). Our findings imply that adverse effects of PHMG exposure on lung injury among HD users might be worsened by co-exposure to CMIT/MIT. Given that plenty of household products contain disinfectants on global markets, epidemiological and toxicological investigations are warranted on interaction effects of co-exposure to disinfectants.
Collapse
Affiliation(s)
- Habyeong Kang
- Institute of Health Sciences, Korea University, Seoul, 02841, Korea
- School of Health and Environmental Science, Korea University, Anam-Ro 145, Seongbuk-Gu, Seoul, 02841, Korea
| | - Seula Lee
- Center for Humidifier Disinfectant Research, Korean Society of Environmental Health, Seoul, 04376, Korea
| | - Eun-Kyung Jo
- Center for Humidifier Disinfectant Research, Korean Society of Environmental Health, Seoul, 04376, Korea
| | - Wonho Yang
- Department of Occupational Health, Daegu Catholic University, Gyeongsan, 42472, Korea
| | - Yoon-Hyeong Choi
- Institute of Health Sciences, Korea University, Seoul, 02841, Korea.
- School of Health and Environmental Science, Korea University, Anam-Ro 145, Seongbuk-Gu, Seoul, 02841, Korea.
| |
Collapse
|
5
|
Sun H, Yan Z, Sun J, Zhang J, Wang H, Jiang X, Wang M, Zhang X, Xiao Y, Ji X, Tang J, Ren D. Polyhexamethylene guanidine accelerates the macrophage foamy formation mediated pulmonary fibrosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116084. [PMID: 38350217 DOI: 10.1016/j.ecoenv.2024.116084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Polyhexamethylene guanidine (PHMG) is manufactured and applied extensively due to its superior disinfectant capabilities. However, the inhalatory exposure to PHMG aerosols is increasingly recognized as a potential instigator of pulmonary fibrosis, prompting an urgent call for elucidation of the underlying pathophysiological mechanisms. Within this context, alveolar macrophages play a pivotal role in the primary immune defense in the respiratory tract. Dysregulated lipid metabolism within alveolar macrophages leads to the accumulation of foam cells, a process that is intimately linked with the pathogenesis of pulmonary fibrosis. Therefore, this study examines PHMG's effects on alveolar macrophage foaminess and its underlying mechanisms. We conducted a 3-week inhalation exposure followed by a 3-week recovery period in C57BL/6 J mice using a whole-body exposure system equipped with a disinfection aerosol generator (WESDAG). The presence of lipid-laden alveolar macrophages and downregulation of pulmonary tissue lipid transport proteins ABCA1 and ABCG1 were observed in mice. In cell culture models involving lipid-loaded macrophages, we demonstrated that PHMG promotes foam cell formation by inhibiting lipid efflux in mouse alveolar macrophages. Furthermore, PHMG-induced foam cells were found to promote an increase in the release of TGF-β1, fibronectin deposition, and collagen remodeling. In vivo interventions were subsequently implemented on mice exposed to PHMG aerosols, aiming to restore macrophage lipid efflux function. Remarkably, this intervention demonstrated the potential to retard the progression of pulmonary fibrosis. In conclusion, this study underscores the pivotal role of macrophage foaming in the pathogenesis of PHMG disinfectants-induced pulmonary fibrosis. Moreover, it provides compelling evidence to suggest that the regulation of macrophage efflux function holds promise for mitigating the progression of pulmonary fibrosis, thereby offering novel insights into the mechanisms underlying inhaled PHMG disinfectants-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- He Sun
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China; Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Zhijiao Yan
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China; Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jiaxing Sun
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jianzhong Zhang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Hongmei Wang
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xinmin Jiang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Mingyue Wang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xinglin Zhang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yuting Xiao
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xiaoya Ji
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jinglong Tang
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China; Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Dunqiang Ren
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China; Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
6
|
Kim TH, Heo SY, Chandika P, Kim YM, Kim HW, Kang HW, Je JY, Qian ZJ, Kim N, Jung WK. A literature review of bioactive substances for the treatment of periodontitis: In vitro, in vivo and clinical studies. Heliyon 2024; 10:e24216. [PMID: 38293511 PMCID: PMC10826675 DOI: 10.1016/j.heliyon.2024.e24216] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/16/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Periodontitis is a common chronic inflammatory disease of the supporting tissues of the tooth that involves a complex interaction of microorganisms and various cell lines around the infected site. To prevent and treat this disease, several options are available, such as scaling, root planning, antibiotic treatment, and dental surgeries, depending on the stage of the disease. However, these treatments can have various side effects, including additional inflammatory responses, chronic wounds, and the need for secondary surgery. Consequently, numerous studies have focused on developing new therapeutic agents for more effective periodontitis treatment. This review explores the latest trends in bioactive substances with therapeutic effects for periodontitis using various search engines. Therefore, this study aimed to suggest effective directions for therapeutic approaches. Additionally, we provide a summary of the current applications and underlying mechanisms of bioactive substances, which can serve as a reference for the development of periodontitis treatments.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
| | - Seong-Yeong Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju, 63349, Republic of Korea
| | - Pathum Chandika
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun-Woo Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Marine Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun Wook Kang
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Jae-Young Je
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Human Bioconvergence, School of Smart Healthcare, Pukyong National University, Busan, 48513, Republic of Korea
| | - Zhong-Ji Qian
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
- Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen, 518108, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Namwon Kim
- Ingram School of Engineering, Texas State University, San Marcos, TX, 78666, USA
- Materials Science, Engineering, and Commercialization (MSEC), Texas State University, San Marcos, TX, 78666, USA
| | - Won-Kyo Jung
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
7
|
Sarrand J, Soyfoo MS. Involvement of Epithelial-Mesenchymal Transition (EMT) in Autoimmune Diseases. Int J Mol Sci 2023; 24:14481. [PMID: 37833928 PMCID: PMC10572663 DOI: 10.3390/ijms241914481] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a complex reversible biological process characterized by the loss of epithelial features and the acquisition of mesenchymal features. EMT was initially described in developmental processes and was further associated with pathological conditions including metastatic cascade arising in neoplastic progression and organ fibrosis. Fibrosis is delineated by an excessive number of myofibroblasts, resulting in exuberant production of extracellular matrix (ECM) proteins, thereby compromising organ function and ultimately leading to its failure. It is now well acknowledged that a significant number of myofibroblasts result from the conversion of epithelial cells via EMT. Over the past two decades, evidence has accrued linking fibrosis to many chronic autoimmune and inflammatory diseases, including systemic sclerosis (SSc), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Sjögren's syndrome (SS), and inflammatory bowel diseases (IBD). In addition, chronic inflammatory states observed in most autoimmune and inflammatory diseases can act as a potent trigger of EMT, leading to the development of a pathological fibrotic state. In the present review, we aim to describe the current state of knowledge regarding the contribution of EMT to the pathophysiological processes of various rheumatic conditions.
Collapse
Affiliation(s)
- Julie Sarrand
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Muhammad S. Soyfoo
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
8
|
Yang J, Jiang G, Ni K, Fan L, Tong W, Yang J. Emodin inhibiting epithelial-mesenchymal transition in pulmonary fibrosis through the c-MYC/miR-182-5p/ZEB2 axis. Phytother Res 2023; 37:926-934. [PMID: 36411986 DOI: 10.1002/ptr.7680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/30/2022] [Accepted: 11/06/2022] [Indexed: 11/23/2022]
Abstract
Emodin is a natural anthraquinone compound, which is the main component found in the traditional Chinese herb Polygonum cuspidatum. The anti-fibrosis effects of Emodin have been reported. This study aimed to explore the specific mechanism of Emodin in the epithelial-mesenchymal transition (EMT) of pulmonary fibrosis. The pulmonary fibrosis mice models were constructed with bleomycin, the EMT models of alveolar epithelial cells were stimulated by TGF-β1, and Emodin was used for intervention. c-MYC and miR-182-5p were overexpressed or silenced by cell transfection. Our results demonstrated that Emodin attenuated pulmonary fibrosis induced by bleomycin in mice, and inhibited EMT, meanwhile downregulated c-MYC, upregulated miR-182-5p, and downregulated ZEB2 in vitro and vivo. Next, overexpression of c-MYC promoted EMT, while silencing c-MYC and overexpressing miR-182-5p inhibited EMT. Then, c-MYC negatively regulated the expression of miR-182-5p with a direct binding relationship. And miR-182-5p inhibited ZEB2 expression in a targeted manner. Finally, Emodin inhibited EMT that had been promoted by overexpression of c-MYC. In conclusion, Emodin could attenuate pulmonary fibrosis and EMT by regulating the c-MYC/miR-182-5p/ZEB2 axis, which might provide evidence for the application of Emodin in the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jia Yang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Gangdan Jiang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kaiwen Ni
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liming Fan
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wang Tong
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junchao Yang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
9
|
Biswas PK, Park SR, An J, Lim KM, Dayem AA, Song K, Choi HY, Choi Y, Park KS, Shin HJ, Kim A, Gil M, Saha SK, Cho SG. The Orphan GPR50 Receptor Regulates the Aggressiveness of Breast Cancer Stem-like Cells via Targeting the NF-kB Signaling Pathway. Int J Mol Sci 2023; 24:ijms24032804. [PMID: 36769125 PMCID: PMC9917945 DOI: 10.3390/ijms24032804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
The expression of GPR50 in CSLC and several breast cancer cell lines was assessed by RT-PCR and online platform (UALCAN, GEPIA, and R2 gene analysis). The role of GPR50 in driving CSLC, sphere formation, cell proliferation, and migration was performed using shGPR50 gene knockdown, and the role of GPR50-regulated signaling pathways was examined by Western blotting and Luciferase Assay. Herein, we confirmed that the expression of G protein-coupled receptor 50 (GPR50) in cancer stem-like cells (CSLC) is higher than that in other cancer cells. We examined that the knockdown of GPR50 in CSLC led to decreased cancer properties, such as sphere formation, cell proliferation, migration, and stemness. GPR50 silencing downregulates NF-kB signaling, which is involved in sphere formation and aggressiveness of CSLC. In addition, we demonstrated that GPR50 also regulates ADAM-17 activity by activating NOTCH signaling pathways through the AKT/SP1 axis in CSLC. Overall, we demonstrated a novel GPR50-mediated regulation of the NF-κB-Notch signaling pathway, which can provide insights into CSLC progression and prognosis, and NF-κB-NOTCH-based CSLC treatment strategies.
Collapse
Affiliation(s)
- Polash Kumar Biswas
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Sang Rok Park
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jongyub An
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kwonwoo Song
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hye Yeon Choi
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yujin Choi
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kyoung Sik Park
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Republic of Korea
| | - Hyun Jin Shin
- Department of Ophthalmology, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Republic of Korea
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Republic of Korea
| | - Minchan Gil
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- Correspondence: ; Tel.: +82-2-450-4207 or +82-2-444-4207
| |
Collapse
|
10
|
Sengupta A, Dorn A, Jamshidi M, Schwob M, Hassan W, De Maddalena LL, Hugi A, Stucki AO, Dorn P, Marti TM, Wisser O, Stucki JD, Krebs T, Hobi N, Guenat OT. A multiplex inhalation platform to model in situ like aerosol delivery in a breathing lung-on-chip. Front Pharmacol 2023; 14:1114739. [PMID: 36959848 PMCID: PMC10029733 DOI: 10.3389/fphar.2023.1114739] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
Prolonged exposure to environmental respirable toxicants can lead to the development and worsening of severe respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD) and fibrosis. The limited number of FDA-approved inhaled drugs for these serious lung conditions has led to a shift from in vivo towards the use of alternative in vitro human-relevant models to better predict the toxicity of inhaled particles in preclinical research. While there are several inhalation exposure models for the upper airways, the fragile and dynamic nature of the alveolar microenvironment has limited the development of reproducible exposure models for the distal lung. Here, we present a mechanistic approach using a new generation of exposure systems, the Cloud α AX12. This novel in vitro inhalation tool consists of a cloud-based exposure chamber (VITROCELL) that integrates the breathing AXLung-on-chip system (AlveoliX). The ultrathin and porous membrane of the AX12 plate was used to create a complex multicellular model that enables key physiological culture conditions: the air-liquid interface (ALI) and the three-dimensional cyclic stretch (CS). Human-relevant cellular models were established for a) the distal alveolar-capillary interface using primary cell-derived immortalized alveolar epithelial cells (AXiAECs), macrophages (THP-1) and endothelial (HLMVEC) cells, and b) the upper-airways using Calu3 cells. Primary human alveolar epithelial cells (AXhAEpCs) were used to validate the toxicity results obtained from the immortalized cell lines. To mimic in vivo relevant aerosol exposures with the Cloud α AX12, three different models were established using: a) titanium dioxide (TiO2) and zinc oxide nanoparticles b) polyhexamethylene guanidine a toxic chemical and c) an anti-inflammatory inhaled corticosteroid, fluticasone propionate (FL). Our results suggest an important synergistic effect on the air-blood barrier sensitivity, cytotoxicity and inflammation, when air-liquid interface and cyclic stretch culture conditions are combined. To the best of our knowledge, this is the first time that an in vitro inhalation exposure system for the distal lung has been described with a breathing lung-on-chip technology. The Cloud α AX12 model thus represents a state-of-the-art pre-clinical tool to study inhalation toxicity risks, drug safety and efficacy.
Collapse
Affiliation(s)
- Arunima Sengupta
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Aurélien Dorn
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- AlveoliX AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Mohammad Jamshidi
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Magali Schwob
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Widad Hassan
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | | | - Andreas Hugi
- AlveoliX AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Andreas O. Stucki
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- *Correspondence: Andreas O. Stucki,
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Thomas M. Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | | | | | - Nina Hobi
- AlveoliX AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Olivier T. Guenat
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
11
|
Gene expression related to lung cancer altered by PHMG-p treatment in PBTE cells. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00319-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Jeong MH, Kim HR, Park YJ, Chung KH, Kim HS. Reprogrammed lung epithelial cells by decrease of miR-451a in extracellular vesicles contribute to aggravation of pulmonary fibrosis. Cell Biol Toxicol 2022; 38:725-740. [PMID: 34460027 DOI: 10.1007/s10565-021-09626-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/21/2021] [Indexed: 12/22/2022]
Abstract
Extracellular vesicles (EVs) play novel roles in homeostasis through cell-to-cell communication in human airways via transferring miRNAs. However, the contribution of EV miRNAs to pulmonary phenotypic homeostasis is not clearly understood. Hence, the aim of this study was to elucidate the functional role of miRNAs obtained from epithelium-derived EVs in lung fibrogenesis. Pulmonary fibrosis was induced by exposure of polyhexamethylene guanidine phosphate (PHMG-p)-instilled mice. In histopathological changes, a clear phenotypic change was observed in bronchial epithelium. For figuring out the role of EVs derived from conditioned media of untreated cells (EV-Con) and PHMG-p-treated BEAS-2B (EV-PHMG), significant increase in EVs released from PHMG-p-treated BEAS-2B was detected. Functional analysis with targets of differentially expressed miRNAs in EVs was annotated to epithelial-mesenchymal transition (EMT). Especially, the most abundant miRNA, miR-451a, was downregulated in EV of PHMG-p-treated BEAS-2B cells. We found that odd-skipped related 1 (OSR1) was a putative target for miR-451a, which had been known as a transcription factor of several fibrosis-associated genes. Transfer of decreased miR-451a via EV-PHMG upregulated OSR1 and induced EMT compared to Con-EV-treated cells. In pulmonary fibrosis mice, miR-451a levels were significantly reduced in EV derived from bronchoalveolar lavage fluid and OSR1 expression was increased in lung tissues of mice with PHMG-p exposure. MiR-451a-transfected EVs markedly alleviated fibrogenesis in the PHMG-p-exposed lungs. Low level of miR-451a in EVs modulated EMT and fibrogenesis in recipient cells by increasing OSR1 levels in vitro and in vivo. Our results suggest that transferring EV miR-451a induces anti-fibrotic autocrine effect by downregulating its target, OSR1 maintaining pulmonary homeostasis disrupted by PHMG-p exposure, which can be a potential therapeutic target.
Collapse
Affiliation(s)
- Mi Ho Jeong
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ha Ryong Kim
- College of Pharmacy, Daegu Catholic University, Gyeongsangbuk-do 38430, Gyeongsan, Republic of Korea
| | - Yong Joo Park
- School of Pharmacy, Sungkyunkwan University, Seobu-ro, Jangan-gu, Gyeonggi-do 16419, 2066, Suwon-si, Republic of Korea
| | - Kyu Hyuck Chung
- School of Pharmacy, Sungkyunkwan University, Seobu-ro, Jangan-gu, Gyeonggi-do 16419, 2066, Suwon-si, Republic of Korea.
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Seobu-ro, Jangan-gu, Gyeonggi-do 16419, 2066, Suwon-si, Republic of Korea.
| |
Collapse
|
13
|
Song JH, Ahn J, Park MY, Park J, Lee YM, Myong JP, Koo JW, Lee J. Health Effects Associated With Humidifier Disinfectant Use: A Systematic Review for Exploration. J Korean Med Sci 2022; 37:e257. [PMID: 35996934 PMCID: PMC9424740 DOI: 10.3346/jkms.2022.37.e257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/29/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND It has been 10 years since the outbreak of lung disease caused by humidifier disinfectants in Korea, but the health effects have not yet been summarized. Therefore, this study aims to systematically examine the health effects of humidifier disinfectants that have been discovered so far. METHODS All literature with humidifier disinfectants and their representative components as the main words were collected based on the web, including PubMed, Research Information Sharing Service, and government publication reports. A total of 902 studies were searched, of which 196 were selected. They were divided into four groups: published human studies (group 1), published animal and cytotoxicology studies (group 2), technical reports (group 3), and gray literature (group 4). RESULTS Out of the 196 studies, 97 (49.5%) were published in peer-reviewed journals as original research. Group 1 consisted of 49 articles (50.5%), while group 2 consisted of 48 articles (49.5%). Overall, respiratory diseases such as humidifier disinfectant associated lung injury, interstitial lung disease, and asthma have a clear correlation, but other effects such as liver, heart, thymus, thyroid, fetal growth, metabolic abnormalities, and eyes are observed in toxicological experimental studies, but have not yet been identified in epidemiologic studies. CONCLUSION The current level of evidence does not completely rule out the effects of humidifier disinfectants on extrapulmonary disease. Based on the toxicological evidence so far, it is required to monitor the population of humidifier disinfectant exposure continuously to see if similar damage occurs.
Collapse
Affiliation(s)
- Ji-Hun Song
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Joonho Ahn
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Min Young Park
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jaeyoung Park
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yu Min Lee
- Department of Occupational and Environmental Medicine, Severance Hospital, College of Medicine, Yonsei University, Seoul, Korea
| | - Jun-Pyo Myong
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung-Wan Koo
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jongin Lee
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
14
|
Jeong MH, Han H, Lagares D, Im H. Recent Advances in Molecular Diagnosis of Pulmonary Fibrosis for Precision Medicine. ACS Pharmacol Transl Sci 2022; 5:520-538. [PMID: 35983278 PMCID: PMC9379941 DOI: 10.1021/acsptsci.2c00028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Indexed: 12/12/2022]
Abstract
Pulmonary fibrosis is a serious, progressive lung disease characterized by scarring and stiffening lung tissues, affecting the respiratory system and leading to organ failure. It is a complex disease consisting of alveolar damage, chronic inflammation, and a varying degree of lung fibrosis. Significant challenges with pulmonary fibrosis include the lack of effective means to diagnose the disease at early stages, identify patients at higher risks of progress, and assess disease progression and treatment response. Precision medicine powered by accurate molecular profiling and phenotyping could significantly improve our understanding of the disease's heterogeneity, potential biomarkers for diagnosis and prognosis, and molecular targets for treatment development. This Review discusses various translational model systems, including organoids and lung-on-a-chip systems, biomarkers in single cells and extracellular vesicles, and functional pharmacodynamic markers. We also highlight emerging sensing technologies for molecular characterization of pulmonary fibrosis and biomarker detection.
Collapse
Affiliation(s)
- Mi Ho Jeong
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
| | - Hongwei Han
- Department
of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts
General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - David Lagares
- Department
of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts
General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hyungsoon Im
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| |
Collapse
|
15
|
Liu L, Sun Q, Davis F, Mao J, Zhao H, Ma D. Epithelial-mesenchymal transition in organ fibrosis development: current understanding and treatment strategies. BURNS & TRAUMA 2022; 10:tkac011. [PMID: 35402628 PMCID: PMC8990740 DOI: 10.1093/burnst/tkac011] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/16/2021] [Indexed: 01/10/2023]
Abstract
Organ fibrosis is a process in which cellular homeostasis is disrupted and extracellular matrix is excessively deposited. Fibrosis can lead to vital organ failure and there are no effective treatments yet. Although epithelial–mesenchymal transition (EMT) may be one of the key cellular mechanisms, the underlying mechanisms of fibrosis remain largely unknown. EMT is a cell phenotypic process in which epithelial cells lose their cell-to-cell adhesion and polarization, after which they acquire mesenchymal features such as infiltration and migration ability. Upon injurious stimulation in different organs, EMT can be triggered by multiple signaling pathways and is also regulated by epigenetic mechanisms. This narrative review summarizes the current understanding of the underlying mechanisms of EMT in fibrogenesis and discusses potential strategies for attenuating EMT to prevent and/or inhibit fibrosis. Despite better understanding the role of EMT in fibrosis development, targeting EMT and beyond in developing therapeutics to tackle fibrosis is challenging but likely feasible.
Collapse
Affiliation(s)
- Lexin Liu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK.,Department of Nephrology and Urology, Pediatric Urolith Center, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, 310003, China
| | - Qizhe Sun
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Frank Davis
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Jianhua Mao
- Department of Nephrology, The Children Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| |
Collapse
|
16
|
Lee H, Jeong SH, Lee H, Kim C, Nam YJ, Kang JY, Song MO, Choi JY, Kim J, Park EK, Baek YW, Lee JH. Analysis of lung cancer-related genetic changes in long-term and low-dose polyhexamethylene guanidine phosphate (PHMG-p) treated human pulmonary alveolar epithelial cells. BMC Pharmacol Toxicol 2022; 23:19. [PMID: 35354498 PMCID: PMC8969249 DOI: 10.1186/s40360-022-00559-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lung injury elicited by respiratory exposure to humidifier disinfectants (HDs) is known as HD-associated lung injury (HDLI). Current elucidation of the molecular mechanisms related to HDLI is mostly restricted to fibrotic and inflammatory lung diseases. In our previous report, we found that lung tumors were caused by intratracheal instillation of polyhexamethylene guanidine phosphate (PHMG-p) in a rat model. However, the lung cancer-related genetic changes concomitant with the development of these lung tumors have not yet been fully defined. We aimed to discover the effect of long-term exposure of PHMG-p on normal human lung alveolar cells. METHODS We investigated whether PHMG-p could increase distorted homeostasis of oncogenes and tumor-suppressor genes, with long-term and low-dose treatment, in human pulmonary alveolar epithelial cells (HPAEpiCs). Total RNA sequencing was performed with cells continuously treated with PHMG-p and harvested after 35 days. RESULTS After PHMG-p treatment, genes with transcriptional expression changes of more than 2.0-fold or less than 0.5-fold were identified. Within 10 days of exposure, 2 protein-coding and 5 non-coding genes were selected, whereas in the group treated for 27-35 days, 24 protein-coding and 5 non-coding genes were identified. Furthermore, in the long-term treatment group, 11 of the 15 upregulated genes and 9 of the 14 downregulated genes were reported as oncogenes and tumor suppressor genes in lung cancer, respectively. We also found that 10 genes of the selected 24 protein-coding genes were clinically significant in lung adenocarcinoma patients. CONCLUSIONS Our findings demonstrate that long-term exposure of human pulmonary normal alveolar cells to low-dose PHMG-p caused genetic changes, mainly in lung cancer-associated genes, in a time-dependent manner.
Collapse
Affiliation(s)
- Hong Lee
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Sang Hoon Jeong
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Hyejin Lee
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Cherry Kim
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Yoon Jeong Nam
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Ja Young Kang
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Myeong Ok Song
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Jin Young Choi
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Jaeyoung Kim
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Eun-Kee Park
- Department of Medical Humanities and Social Medicine, College of Medicine, Kosin University, Busan, Republic of Korea
| | - Yong-Wook Baek
- Environmental Health Research Department, Humidifier Disinfectant Health Center, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Ju-Han Lee
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea.
| |
Collapse
|
17
|
Choi S, Choi S, Choi Y, Cho N, Kim SY, Lee CH, Park HJ, Oh WK, Kim KK, Kim EM. Polyhexamethylene guanidine phosphate increases stress granule formation in human 3D lung organoids under respiratory syncytial virus infection. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113094. [PMID: 34942421 DOI: 10.1016/j.ecoenv.2021.113094] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Polyhexamethylene guanidine phosphate (PHMG-p), a humidifier disinfectant, is known to cause lung toxicity, including inflammation and pulmonary fibrosis. In this study, we aimed to investigate the effect of PHMG-p on human lung tissue models (2D epithelial cells and 3D organoids) under conditions of oxidative stress and viral infection. The effect of PHMG-p was studied by evaluating the formation of stress granules (SGs), which play a pivotal role in cellular adaptation to various stress conditions. Under oxidative stress and respiratory syncytial virus (RSV) infection, exposure to PHMG-p remarkably increased eIF2α phosphorylation, which is essential for SG-related signalling, and significantly increased SG formation. Furthermore, PHMG-p induced fibrotic gene expression and caused cell death due to severe DNA damage, which was further increased under oxidative stress and RSV infection, indicating that PHMG-p induces severe lung toxicity under stress conditions. Taken together, toxicity evaluation under various stressful conditions is necessary to accurately predict potential lung toxicity of chemicals affecting the respiratory tract.
Collapse
Affiliation(s)
- Seri Choi
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, South Korea; Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Sunkyung Choi
- Department of Biochemistry, Chungnam National University, Daejeon 34134, South Korea
| | - Yeongsoo Choi
- Department of Biochemistry, Chungnam National University, Daejeon 34134, South Korea
| | - Namjoon Cho
- Department of Biochemistry, Chungnam National University, Daejeon 34134, South Korea
| | - Seung-Yeon Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, South Korea; Department of Biochemistry, Chungnam National University, Daejeon 34134, South Korea
| | - Chang Hyun Lee
- Institute of Radiation Medicine, Seoul National University Hospital and College of Medicine, Seoul National University, Seoul 08826, South Korea; Department of Radiology, Seoul National University College of Medicine and Hospital, Seoul National University, Seoul 03080, South Korea
| | - Han-Jin Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, South Korea
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Kee K Kim
- Department of Biochemistry, Chungnam National University, Daejeon 34134, South Korea.
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, South Korea.
| |
Collapse
|
18
|
Xie C, Wan L, Li C, Feng Y, Kang YJ. Selective suppression of M1 macrophages is involved in zinc inhibition of liver fibrosis in mice. J Nutr Biochem 2021; 97:108802. [PMID: 34119631 DOI: 10.1016/j.jnutbio.2021.108802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/23/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023]
Abstract
Zinc deficiency is common in the liver of patients with chronic liver disease. Zinc supplementation suppresses the progression of liver fibrosis induced by bile duct ligation (BDL) in mice. The present study was undertaken to specifically investigate a possible mechanism by which zinc plays this role in the liver. Kunming mice were subjected to BDL for 4 weeks to induce liver fibrosis, and concomitantly treated with zinc sulfite or saline as control by gavage once a day. The results showed that zinc supplementation significantly suppressed liver fibrosis and inflammation along with inhibition of hepatic stellate cells activation induced by BDL. These inhibitory effects were accompanied by the reduction of collagen deposition and a significant reduction of macrophage infiltration affected livers. Importantly, zinc selectively inhibited M1 macrophage polarization and M1-related inflammatory cytokines. This inhibitory effect was further confirmed by the reduction of relevant biomarkers of M1 macrophages including inducible NO synthase (iNOS), monocyte chemotactic protein-1 (MCP-1/CCL2), and tumor necrosis factor-α in the zinc supplemented BDL livers. In addition, zinc inhibition of M1 macrophages was associated with a decrease of Notch1 expression. Taken together, these data indicated that zinc supplementation inhibited liver inflammation and fibrosis in BDL mice through selective suppression of M1 macrophages, which is associated with inhibition of Notch1 pathway in M1 macrophage polarization.
Collapse
Affiliation(s)
- Chengxia Xie
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Wan
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yinrui Feng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China; Memphis Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| |
Collapse
|
19
|
miR-138 inhibits epithelial-mesenchymal transition in silica-induced pulmonary fibrosis by regulating ZEB2. Toxicology 2021; 461:152925. [PMID: 34481903 DOI: 10.1016/j.tox.2021.152925] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022]
Abstract
Silica dust is a common pollutant in the occupational environment, such as coal mines. Inhalation of silica dust can cause progressive pulmonary fibrosis and then silicosis. Silicosis is still one of the most harmful occupational diseases in the world, so the study of its pathogenesis is necessary for the treatment of silicosis. In this study, we constructed a mouse model of pulmonary fibrosis via intratracheal instillation of silica particles and identified the decreased expression of miR-138 in fibrotic lung tissues of mice. Moreover, the overexpression of miR-138 retarded the process of epithelial-mesenchymal transition (EMT) in a mouse model of silica particles exposure and epithelial cells stimulated by silica particles. Further studies showed that ZEB2 was one of the potential targets of miR-138, and the up-regulation of miR-138 reduced ZEB2 levels in mouse lung tissues and in epithelial cells. We next found that the expression levels of ɑ-SMA and Vimentin were significantly increased and E-cadherin levels were decreased after transfection with miR-138 inhibitor in epithelial cells. However, these effects were abated by the knockdown of ZEB2. Consistently, the increased migration ability of epithelial cells by miR-138 inhibitor transfection was also reversed by the knockdown of ZEB2. Collectively, we revealed that miR-138 significantly targeted ZEB2, thus inhibited the EMT process and mitigated the development of pulmonary fibrosis. miR-138 may be a potential target for the treatment of pulmonary fibrosis.
Collapse
|
20
|
Qi L, Sun B, Yang B, Lu S. CircMMP11 regulates proliferation, migration, invasion, and apoptosis of breast cancer cells through miR-625-5p/ZEB2 axis. Cancer Cell Int 2021; 21:133. [PMID: 33632213 PMCID: PMC7905581 DOI: 10.1186/s12935-021-01816-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/06/2021] [Indexed: 02/06/2023] Open
Abstract
Background Circular RNAs (circRNAs) have been demonstrated to play significant roles in regulating gene expression in tumorigenesis, including breast cancer (BC). This study was designed to explore the role and underlying molecular mechanisms of circMMP11 in BC. Methods The real-time quantitative polymerase chain reaction (RT-qPCR) assay was used for examining expression of circMMP11, microRNA-625-5p (miR-625-5p), and Zinc finger E-box binding homeobox-2 (ZEB2). The protein expression of ZEB2, Vimentin, and E-cadherin was assessed by western blot assay. The proliferation ability of BC cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazol-3-ium bromide (MTT) and colony-forming assays. The transwell assay was used to measure migration and invasion of BC cells. The apoptotic cells were examined by flow cytometry assay. The interaction association among circMMP11, miR-625-5p, and ZEB2 was confirmed by RNA pull-down and dual-luciferase report assays. A xenograft experiment was established to clarify the role of circMMP11 silencing in vivo. Results We found that circMMP11 and ZEB2 were overexpressed in BC tissues and cells compared with controls. The suppression of circMMP11 or ZEB2 repressed proliferation, migration, and invasion while induced apoptosis of BC cells. Additionally, miR-625-5p, interacted with ZEB2, was a target of circMMP11 in BC cells. CircMMP11 regulated the expression of ZEB2 by targeting miR-625-5p. Knockdown of circMMP11-mediated effects on BC cells could be abolished by overexpression of ZEB2. Consistently, silencing of circMMP11 impeded the tumor growth in vivo. Conclusions CircMMP11/miR-625-5p/ZEB2 axis affected proliferation, migration, invasion, and apoptosis of BC cells through the mechanism of competing endogenous RNAs (ceRNA), indicating that circMMP11 was an oncogenic circRNA in BC.
Collapse
Affiliation(s)
- Liqiang Qi
- Department of Breast Surgical Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Bo Sun
- The 2nd Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Beibei Yang
- The 2nd Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Su Lu
- The 2nd Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
21
|
Polyhexamethylene Guanidine Phosphate Induces Apoptosis through Endoplasmic Reticulum Stress in Lung Epithelial Cells. Int J Mol Sci 2021; 22:ijms22031215. [PMID: 33530568 PMCID: PMC7865558 DOI: 10.3390/ijms22031215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
Airway epithelial cell death contributes to the pathogenesis of lung fibrosis. Polyhexamethylene guanidine phosphate (PHMG-p), commonly used as a disinfectant, has been shown to be strongly associated with lung fibrosis in epidemiological and toxicological studies. However, the molecular mechanism underlying PHMG-p-induced epithelial cell death is currently unclear. We synthesized a PHMG-p–fluorescein isothiocyanate (FITC) conjugate and assessed its uptake into lung epithelial A549 cells. To examine intracellular localization, the cells were treated with PHMG-p–FITC; then, the cytoplasmic organelles were counterstained and observed with confocal microscopy. Additionally, the organelle-specific cell death pathway was investigated in cells treated with PHMG-p. PHMG-p–FITC co-localized with the endoplasmic reticulum (ER), and PHMG-p induced ER stress in A549 cells and mice. The ER stress inhibitor tauroursodeoxycholic acid (TUDCA) was used as a pre-treatment to verify the role of ER stress in PHMG-p-induced cytotoxicity. The cells treated with PHMG-p showed apoptosis, which was inhibited by TUDCA. Our results indicate that PHMG-p is rapidly located in the ER and causes ER-stress-mediated apoptosis, which is an initial step in PHMG-p-induced lung fibrosis.
Collapse
|
22
|
Aesculetin Attenuates Alveolar Injury and Fibrosis Induced by Close Contact of Alveolar Epithelial Cells with Blood-Derived Macrophages via IL-8 Signaling. Int J Mol Sci 2020; 21:ijms21155518. [PMID: 32752252 PMCID: PMC7432571 DOI: 10.3390/ijms21155518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
Pulmonary fibrosis is a disease in which lung tissues become fibrous and thereby causes severe respiratory disturbances. Various stimuli induce infiltration of macrophages to the respiratory tract, secreting inflammatory cytokines, which subsequently leads to the development of pulmonary fibrosis. Aesculetin, a major component of the sancho tree and chicory, is known to biologically have antioxidant and anti-inflammatory effects. Human alveolar epithelial A549 cells were cultured for 24 h in conditioned media of THP-1 monocyte-derived macrophages (mCM) with 1–20 μM aesculetin. Micromolar aesculetin attenuated the cytotoxicity of mCM containing inflammatory tumor necrosis factor-α (TNF)-α and interleukin (IL)-8 as major cytokines. Aesculetin inhibited alveolar epithelial induction of the mesenchymal markers in mCM-exposed/IL-8-loaded A549 cells (≈47–51% inhibition), while epithelial markers were induced in aesculetin-treated cells subject to mCM/IL-8 (≈1.5–2.3-fold induction). Aesculetin added to mCM-stimulated A549 cells abrogated the collagen production and alveolar epithelial CXC-chemokine receptor 2 (CXCR2) induction. The production of matrix metalloproteinase (MMP) proteins in mCM-loaded A549 cells was reduced by aesculetin (≈52% reduction), in parallel with its increase in tissue inhibitor of metalloproteinases (TIMP) proteins (≈1.8-fold increase). In addition, aesculetin enhanced epithelial induction of tight junction proteins in mCM-/IL-8-exposed cells (≈2.3–2.5-fold induction). The inhalation of polyhexamethylene guanidine (PHMG) in mice accompanied neutrophil predominance in bronchoalveolar lavage fluid (BALF) and macrophage infiltration in alveoli, which was inhibited by orally administrating aesculetin to mice. Treating aesculetin to mice alleviated PHMG-induced IL-8-mediated subepithelial fibrosis and airway barrier disruption. Taken together, aesculetin may antagonize pulmonary fibrosis and alveolar epithelial barrier disruption stimulated by the infiltration of monocyte-derived macrophages, which is typical of PHMG toxicity, involving interaction of IL-8 and CXCR2. Aesculetin maybe a promising agent counteracting macrophage-mediated inflammation-associated pulmonary disorders.
Collapse
|
23
|
Leem JH, Kim HC. Mitochondria disease due to humidifier disinfectants: diagnostic criteria and its evidences. Environ Anal Health Toxicol 2020; 35:e2020007. [PMID: 32693559 PMCID: PMC7374188 DOI: 10.5620/eaht.e2020007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
Humidifier disinfectant damages caused by the misuse of humidifier disinfects, such as polyhexamethylene guanidine (PHMG), resulted in chemical disasters in South Korea in 2011. About four million people were exposed to humidifier disinfectants (HDs) in the 17 years between 1994 and 2011. Although fatal lung damage was initially reported, investigations into the victims’ injuries revealed that the damage was not limited to the lungs, but that systemic damage was also confirmed. Considering the spread of HD from the lungs to the whole body, the toxic effects of PHMG from reactive oxygen species (ROS), NOTCH signaling pathways, and mitochondrial dysfunction resulted in endothelial damage in the lungs, blood vessels, liver, kidneys, bone marrow, nerves, and muscles. The main toxic mechanisms involved in HD damage may be the NOTCH pathway and mitochondrial damage. There are many case reports which include neurologic disorders (ADHD, depression, posttraumatic stress disorder), muscular disorder (exercise intolerance, myalgia), energy metabolism disorder (chronic fatigue syndrome), and immunologic disorder (rheumatoid arthritis) in HDs victims. These case reports involve multi-system involvement in HDs victims. Further well-designed study is needed to clarify whether mitochondrial dysfunction is associated with multi-organs involvement in HDs victims.
Collapse
Affiliation(s)
- Jong Han Leem
- Department of Occupational and Environmental Medicine, Inha University, Incheon, Korea
| | - Hwan-Cheol Kim
- Department of Occupational and Environmental Medicine, Inha University, Incheon, Korea
| |
Collapse
|
24
|
Lee E, Kang MJ, Kim JH, Lee SH, Lee SY, Cho HJ, Yoon J, Jung S, Park Y, Oh DK, Hong SB, Hong SJ. NOTCH1 Pathway is Involved in Polyhexamethylene Guanidine-Induced Humidifier Disinfectant Lung Injuries. Yonsei Med J 2020; 61:186-191. [PMID: 31997628 PMCID: PMC6992453 DOI: 10.3349/ymj.2020.61.2.186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/29/2019] [Accepted: 12/26/2019] [Indexed: 12/17/2022] Open
Abstract
An outbreak of fatal humidifier disinfectant lung injuries (HDLI) occurred in Korea. Human studies on mechanisms underlying HDLI have yet to be conducted. This study aimed to investigate methylation changes and their potential role in HDLI after exposure to HDs containing polyhexamethylene guanidine-phosphate. DNA methylation analysis was performed in blood samples from 10 children with HDLI and 10 healthy children using Infinium Human MethylationEPIC BeadChip. Transcriptome analysis was performed using lung tissues from 5 children with HDLI and 5 controls. Compared to healthy controls, 92 hypo-methylated and 79 hyper-methylated CpG sites were identified in children with HDLI at the statistical significance level of |Δβ|>0.2 and p<0.05. NOTCH1 was identified as a candidate network hub gene in cases. NOTCH1 transcripts significantly increased in lung tissues from HDLI cases compared to unexposed controls (p=0.05). NOTCH1 may play an important role in pulmonary fibrosis of HDLI.
Collapse
Affiliation(s)
- Eun Lee
- Department of Pediatrics, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Mi Jin Kang
- Asan Medical Center, Asan Institute for Life Sciences, Environmental Health Center, Seoul, Korea
| | - Jeong Hyun Kim
- Department of Medicine, University of Ulsan Collage of Medicine, Seoul, Korea
| | - Seung Hwa Lee
- Asan Medical Center, Asan Institute for Life Sciences, Environmental Health Center, Seoul, Korea
| | - So Yeon Lee
- Department of Pediatrics, Childhood Asthma Atopy Center, Environmental Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun Ju Cho
- Department of Pediatrics, International St. Mary's hospital, Catholic Kwandong University College of Medicine, Incheon, Korea
| | - Jisun Yoon
- Department of Pediatrics, Mediplex Hospital, Incheon, Korea
| | - Sungsu Jung
- Department of Pediatrics, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Yangsoon Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dong Kyu Oh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, Seoul, Korea
| | - Sang Bum Hong
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Environmental Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|