1
|
Chanarsa S, Phetsang S, Thongsuwan W, Limtharakul T, Tinoi J, Jakmunee J, Ounnunkad K. Leveraging self-signal amplifying poly(acrylic acid)/polyaniline electrodes for label-free electrochemical immunoassays in protein biomarker detection. Bioelectrochemistry 2025; 163:108894. [PMID: 39742710 DOI: 10.1016/j.bioelechem.2024.108894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
Accurate quantification of specific biomarkers is essential for clinical diagnosis and evaluating therapeutic efficacy. A self-signal-amplifying poly(acrylic acid) (PAA)/polyaniline (PANI) film-modified disposable and cost-effective screen-printed carbon electrode (SPCE) has been developed for constructing new label-free immunosensors targeting two model biomarkers: human immunoglobulin G (IgG) and alpha-fetoprotein (AFP). The electrochemically deposited PAA/PANI film on the SPCE serves a dual function: both a bio-immobilization support and a signal amplifier, enhancing biomarker detection sensitivity and efficiency. The self-signal amplification properties of PANI streamline the detection process. At the same time, the high-density surface carboxyl groups from embedded PAA enable covalent conjugation with capture antibodies (anti-IgG and anti-AFP). Subsequently, antibody-immobilized PAA/PANI film-modified SPCEs, as immunosensors, successfully detect IgG and AFP without the need for external redox probes. The reductions in the electrochemical PANI signals of the immunosensors are linearly proportional to the logarithm of IgG and AFP concentrations. The proposed immunosensors exhibit sufficiently wide ranges of calibration curves from 0.10 to 50 ng mL-1, with limits of detection of 0.080 ng mL-1 for IgG and 0.090 ng mL-1 for AFP. The sensors exhibit satisfactory sensitivity and selectivity, indicating their potential for accurate and reliable detection.
Collapse
Affiliation(s)
- Supakeit Chanarsa
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sopit Phetsang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wiradej Thongsuwan
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thunwadee Limtharakul
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jidapha Tinoi
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kontad Ounnunkad
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
2
|
Xiao L, Chen X, Li X, Zhang J, Wang Y, Li D, Hong X, Shao Y, Chen Y. Enhanced Sensitivity Mach-Zehnder Interferometer-Based Tapered-in-Tapered Fiber-Optic Biosensor for the Immunoassay of C-Reactive Protein. BIOSENSORS 2025; 15:90. [PMID: 39996992 PMCID: PMC11853398 DOI: 10.3390/bios15020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025]
Abstract
A Mach-Zehnder interferometer-based tapered-in-tapered fiber-optic biosensor was introduced in this paper. By integrating a micro-tapered fiber into a single tapered fiber structure, the design enhances sensitivity, signal-to-noise ratio, and resolution capability, while reducing the length of the sensing fiber. Through simulation analysis, it was found that the tapered-in-tapered fiber significantly improved the refractive index detection sensitivity by exciting a stronger evanescent field effect. The experimental comparison between the tapered-in-tapered fiber and traditional tapered fiber showed a 1.7-fold increase in sensitivity, reaching 3266.78 nm/RIU within the refractive index range of 1.3326 to 1.3414. Furthermore, to expand its application prospects in the biomedical field, glutaraldehyde cross-linking technology was used to immobilize C-reactive protein (CRP) antibodies on the surface of the tapered-in-tapered fiber, successfully creating a biosensing platform for the specific recognition of CRP. The experimental results demonstrate that this novel biosensor can rapidly and accurately detect CRP molecules at different concentrations with a detection limit of 0.278 μg/mL, and that it exhibits good selectivity and repeatability. This tapered-in-tapered fiber-optic biosensor provides new insights into the development of high-performance fiber-optic immunosensors and shows broad application potential in immunology research and early disease diagnosis.
Collapse
Affiliation(s)
- Lei Xiao
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (L.X.); (X.C.); (X.L.); (J.Z.); (Y.W.); (D.L.); (X.H.)
- Shenzhen Engineering Laboratory for Optical Fiber Sensors and Networks, Shenzhen 518060, China
- Shenzhen Tian’an Zhiyuan Sensor Technology Co., Ltd., Shenzhen 518060, China
| | - Xinghong Chen
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (L.X.); (X.C.); (X.L.); (J.Z.); (Y.W.); (D.L.); (X.H.)
- Shenzhen Engineering Laboratory for Optical Fiber Sensors and Networks, Shenzhen 518060, China
- Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060, China
| | - Xuejin Li
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (L.X.); (X.C.); (X.L.); (J.Z.); (Y.W.); (D.L.); (X.H.)
- Shenzhen Engineering Laboratory for Optical Fiber Sensors and Networks, Shenzhen 518060, China
- Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060, China
- School of Science, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jinghan Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (L.X.); (X.C.); (X.L.); (J.Z.); (Y.W.); (D.L.); (X.H.)
- Shenzhen Engineering Laboratory for Optical Fiber Sensors and Networks, Shenzhen 518060, China
- Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060, China
| | - Yan Wang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (L.X.); (X.C.); (X.L.); (J.Z.); (Y.W.); (D.L.); (X.H.)
- Shenzhen Engineering Laboratory for Optical Fiber Sensors and Networks, Shenzhen 518060, China
- Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060, China
| | - Dongqing Li
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (L.X.); (X.C.); (X.L.); (J.Z.); (Y.W.); (D.L.); (X.H.)
- Shenzhen Engineering Laboratory for Optical Fiber Sensors and Networks, Shenzhen 518060, China
- Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060, China
| | - Xueming Hong
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (L.X.); (X.C.); (X.L.); (J.Z.); (Y.W.); (D.L.); (X.H.)
- Shenzhen Engineering Laboratory for Optical Fiber Sensors and Networks, Shenzhen 518060, China
- Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060, China
| | - Yonghong Shao
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (L.X.); (X.C.); (X.L.); (J.Z.); (Y.W.); (D.L.); (X.H.)
| | - Yuzhi Chen
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (L.X.); (X.C.); (X.L.); (J.Z.); (Y.W.); (D.L.); (X.H.)
- Shenzhen Engineering Laboratory for Optical Fiber Sensors and Networks, Shenzhen 518060, China
- Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060, China
| |
Collapse
|
3
|
Silva LRG, Lopes CEC, Tanaka AA, Dantas LMF, Silva IS, Stefano JS. Electrochemical Biosensors 3D Printed by Fused Deposition Modeling: Actualities, Trends, and Challenges. BIOSENSORS 2025; 15:57. [PMID: 39852108 PMCID: PMC11763630 DOI: 10.3390/bios15010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025]
Abstract
The technology of 3D printing, particularly fused deposition modeling (FDM) 3D printing, has revolutionized the development of electrochemical biosensors, offering a versatile and cost-effective approach for clinical applications. This review explores the integration of FDM in fabricating biosensing platforms tailored for clinical diagnostics, emphasizing its role in detecting various biomarkers and viral pathogens. Advances in 3D printing materials, especially the emergence of bespoke conductive filaments, have allowed the production of highly customizable and efficient biosensors. A detailed discussion focuses on the design and application of these biosensors for viral detection, highlighting their potential to improve diagnostic accuracy. Furthermore, the review addresses current trends, including the push towards miniaturization and multianalyte detection, alongside challenges such as material optimization and regulatory hurdles. By providing a comprehensive overview, this work underscores the transformative impact of 3D-printed electrochemical biosensors in clinical diagnostics while also identifying critical areas for future research and development.
Collapse
Affiliation(s)
- Luiz Ricardo Guterres Silva
- Graduate Program in Chemistry, Federal University of Maranhão, São Luís 65080-805, MA, Brazil; (L.R.G.S.); (C.E.C.L.); (A.A.T.); (L.M.F.D.); (I.S.S.)
| | - Carlos Eduardo Costa Lopes
- Graduate Program in Chemistry, Federal University of Maranhão, São Luís 65080-805, MA, Brazil; (L.R.G.S.); (C.E.C.L.); (A.A.T.); (L.M.F.D.); (I.S.S.)
| | - Auro Atsushi Tanaka
- Graduate Program in Chemistry, Federal University of Maranhão, São Luís 65080-805, MA, Brazil; (L.R.G.S.); (C.E.C.L.); (A.A.T.); (L.M.F.D.); (I.S.S.)
- Department of Chemistry, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
| | - Luiza Maria Ferreira Dantas
- Graduate Program in Chemistry, Federal University of Maranhão, São Luís 65080-805, MA, Brazil; (L.R.G.S.); (C.E.C.L.); (A.A.T.); (L.M.F.D.); (I.S.S.)
- Department of Chemical Technology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
| | - Iranaldo Santos Silva
- Graduate Program in Chemistry, Federal University of Maranhão, São Luís 65080-805, MA, Brazil; (L.R.G.S.); (C.E.C.L.); (A.A.T.); (L.M.F.D.); (I.S.S.)
- Department of Chemical Technology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
| | - Jéssica Santos Stefano
- Graduate Program in Chemistry, Federal University of Maranhão, São Luís 65080-805, MA, Brazil; (L.R.G.S.); (C.E.C.L.); (A.A.T.); (L.M.F.D.); (I.S.S.)
- Department of Chemical Technology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
| |
Collapse
|
4
|
Lucia-Tamudo J, Nogueira JJ, Díaz-Tendero S. Charge Transfer Mechanism in Guanine-Based Self-Assembled Monolayers on a Gold Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15129-15139. [PMID: 38984413 PMCID: PMC11270990 DOI: 10.1021/acs.langmuir.4c01512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
In this work, we have theoretically determined the one-electron oxidation potentials and charge transfer mechanisms in complex systems based on a self-assembled monolayer of guanine molecules adsorbed on a gold surface through different organic linkers. Classical molecular dynamics simulations were carried out to sample the conformational space of both the neutral and the cationic species. Thus, the redox potentials were determined for the ensembles of geometries through multiscale quantum-mechanics/molecular-mechanics/continuum solvation model calculations in the framework of the Marcus theory and in combination with an additive scheme previously developed. In this context, conformational sampling, description of the environment, and effects caused by the linker have been considered. Applying this methodology, we unravel the phenomena of electric current transport by evaluating the different stages in which charge transfer could occur. The results revealed how the positive charge migrates from the organic layer to the gold surface. Specifically, the transport mechanism seems to take place mainly along a single ligand and driven with the help of the electrostatic interactions of the surrounding molecules. Aside, several self-assembled monolayers with different linkers have been analyzed to understand how the nature of that moiety can tune the redox properties and the efficiency of the transport. We have found that the conjugation between the guanine and the linker, at the same time conjugated to the gold surface, gives rise to a more efficient transport. In conclusion, the established computational protocol sheds light on the mechanism behind charge transport in electrochemical DNA-based biosensor nanodevices.
Collapse
Affiliation(s)
- Jesús Lucia-Tamudo
- Department
of Chemistry, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - Juan J. Nogueira
- Department
of Chemistry, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sergio Díaz-Tendero
- Department
of Chemistry, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
5
|
Nam US, Suh HN, Sung SK, Seo C, Lee JH, Lee JY, Kim S, Lee J. Rapid and High-Density Antibody Immobilization Using Electropolymerization of Pyrrole for Highly Sensitive Immunoassay. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30611-30621. [PMID: 38857116 PMCID: PMC11194765 DOI: 10.1021/acsami.4c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
Polypyrrole (Ppy) is a biologically compatible polymer that is used as a matrix, in which drugs and enzymes can be incorporated by doping. Here, we suggest an inventive application of Ppy as a biorecognition film encapsulated with an antibody (Ab) as an alternative strategy for the on-site multistep functionalization of thiol-based self-assembled monolayers. The fabrication steps of the recognition films were followed by dropping pyrrole and Ab mixed solutions onto the electrode and obtaining a thin film by direct current electropolymerization. The efficiency of Ab immobilization was studied by using fluorescence microscopy and electrochemical (EC) methods. Finally, the Ab density was increased and immobilized in 1 min, and the sensing performance as an EC immunosensor was demonstrated using α-fetoprotein with a limit of detection of 3.13 pg/mL and sensing range from 1 pg/mL to 100 ng/mL. This study demonstrates the potential for electrochemical functionalization of biomolecules with high affinity and rapidity.
Collapse
Affiliation(s)
- USun Nam
- Department
of Medical IT Convergence, Kumoh National
Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea
| | - Han Na Suh
- Korea
Institute of Toxicology (KIT), Jeongeup, Jeollabuk-do 56212, Republic of Korea
| | - Sang-Keun Sung
- Digital
Healthcare Research Center, Gumi Electronics
and Information Technology Research Institute (GERI), Gumi, Gyeongbuk 39253, Republic
of Korea
| | - ChaeWon Seo
- Department
of Medical IT Convergence, Kumoh National
Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea
| | - Jung Hyun Lee
- Department
of Dermatology, School of Medicine, University
of Washington, 850 Republican Street, Seattle, Washington 98109, United States
- Institute
for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, Washington 98109, United States
| | - Jeong Yoon Lee
- The Laboratory
of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan-si, Jeollabuk-do 54531, Republic
of Korea
| | - SangHee Kim
- Department
of Medical IT Convergence, Kumoh National
Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea
| | - JuKyung Lee
- Digital
Healthcare Research Center, Gumi Electronics
and Information Technology Research Institute (GERI), Gumi, Gyeongbuk 39253, Republic
of Korea
| |
Collapse
|
6
|
Wang J, Shao W, Liu Z, Kesavan G, Zeng Z, Shurin MR, Star A. Diagnostics of Tuberculosis with Single-Walled Carbon Nanotube-Based Field-Effect Transistors. ACS Sens 2024; 9:1957-1966. [PMID: 38484361 PMCID: PMC11059104 DOI: 10.1021/acssensors.3c02694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 05/02/2024]
Abstract
Tuberculosis (TB) is still threatening millions of people's lives, especially in developing countries. One of the major factors contributing to the ongoing epidemic of TB is the lack of a fast, efficient, and inexpensive diagnostic strategy. In this work, we developed a semiconducting single-walled carbon nanotube (SWCNT)-based field-effect transistor (FET) device functionalized with anti-Mycobacterium tuberculosis antigen 85B antibody (Ab85B) to detect the major M. tuberculosis-secreted antigen 85B (Ag85B). Through optimizing the device fabrication process by evaluating the mass of the antibody and the concentration of the gating electrolyte, our Ab85B-SWCNT FET devices achieved the detection of the Ag85B spiked in phosphate-buffered saline (calibration samples) with a limit of detection (LOD) of 0.05 fg/mL. This SWCNT FET biosensor also showed good sensing performance in biological matrices including artificial sputum and can identify Ag85B in serum after introducing bovine serum albumin (BSA) into the blocking layer. Furthermore, our BSA-blocked Ab85B-SWCNT FET devices can distinguish between TB-positive and -negative clinical samples, promising the application of SWCNT FET devices in point-of-care TB diagnostics. Moreover, the robustness of this SWCNT-based biosensor to the TB diagnosis in blood serum was enhanced by blocking SWCNT devices directly with a glutaraldehyde cross-linked BSA layer, enabling future applications of these SWCNT-based biosensors in clinical testing.
Collapse
Affiliation(s)
- Jieyu Wang
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Wenting Shao
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zhengru Liu
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ganesh Kesavan
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zidao Zeng
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael R. Shurin
- Department
of Pathology, University of Pittsburgh Medical
Center, Pittsburgh, Pennsylvania 15213, United States
| | - Alexander Star
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
7
|
Er OF, Kivrak H, Alpaslan D, Dudu TE. One-Step Electrochemical Sensing of CA-125 Using Onion Oil-Based Novel Organohydrogels as the Matrices. ACS OMEGA 2024; 9:17919-17930. [PMID: 38680375 PMCID: PMC11044171 DOI: 10.1021/acsomega.3c09149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024]
Abstract
To reduce the high mortality rates caused by ovarian cancer, creating high-sensitivity, quick, basic, and inexpensive methods for following cancer antigen 125 (CA-125) levels in blood tests is of extraordinary significance. CA-125 is known as the exclusive glycoprotein employed in clinical examinations to monitor and diagnose ovarian cancer and detect its relapses as a tumor marker. Elevated concentrations of this antigen are linked to the occurrence of ovarian cancer. Herein, we designed organohydrogels (ONOHs) for identifying the level of CA-125 antigen at fast and high sensitivity with electrochemical strategies in a serum medium. The ONOH structures are synthesized with glycerol, agar, and glutaraldehyde and at distinct ratios of onion oil, and then, the ONOHs are characterized with Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). Electrochemical measurements are performed by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) in the absence and presence of CA-125 on the designed ONOHs. For the prepared ONOH-3 electrode, two distinct linear ranges are determined as 0.41-8.3 and 8.3-249.0 U/mL. The limit of quantitation and limit of detection values are calculated as 2.415 and 0.805 μU/mL, respectively, (S/N = 3). These results prove that the developed electrode material has high sensitivity, stability, and selectivity for the detection of the CA-125 antigen. In addition, this study can be reasonable for the practical detection of CA125 in serum, permitting early cancer diagnostics and convenient treatment.
Collapse
Affiliation(s)
- Omer Faruk Er
- Rare
Earth Elements Research Institute, Turkish Energy Nuclear and Mineral
Research Agency, Ankara 06980, Turkey
- Department
of Chemical Engineering, Faculty of Engineering, Van Yuzuncu Yil University, Van 65000, Turkey
| | - Hilal Kivrak
- Department
of Chemical Engineering, Faculty of Engineering and Architectural
Sciences, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
- Translational
Medicine Research and Clinical Center, Eskisehir
Osmangazi University, Eskisehir 26040, Turkey
| | - Duygu Alpaslan
- Department
of Chemical Engineering, Faculty of Engineering, Van Yuzuncu Yil University, Van 65000, Turkey
| | - Tuba Ersen Dudu
- Department
of Chemical Engineering, Faculty of Engineering, Van Yuzuncu Yil University, Van 65000, Turkey
| |
Collapse
|
8
|
Xia N, Liu G, Chen Y, Wu T, Liu L, Yang S, Li Y. Magnetically-assisted electrochemical immunoplatform for simultaneous detection of active and total prostate-specific antigen based on proteolytic reaction and sandwich affinity analysis. Talanta 2024; 270:125534. [PMID: 38091743 DOI: 10.1016/j.talanta.2023.125534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024]
Abstract
Simultaneous detection of active and inactive proteases is clinically meaningful for improving diagnostic specificity. In this work, we reported an electrochemical method for simultaneous immunoassays of active and total proteases. Magnetic beads (MBs) were used as the solid supports for immobilization of capture antibodies and enrichment of targets. For the detection of active protease, the proteolytic-reaction-based analysis was carried out by the generation of Cu2+-binding peptide, in which a label-free peptide was used as the proteolytic substrate. The redox potential of the resulting peptide-Cu2+ complex was intrinsically distinguished from that of free Cu2+, thus allowing the "signal-on" detection of active protease. For the immunoassay of total protease in a sandwich-like format, electroactive metal-organic frameworks (Cu-MOFs) were used as the signal tags. The captured Cu-MOFs could directly produce a well-defined electrochemical signal from the reduction of Cu2+ ions. The analytical performances of the immunoplatform were evaluated by determining the model analytes of free and total prostate-specific antigen (fPSA and tPSA) in buffer and serum. The detection limits were found to be 0.3 pM for fPSA and 2 pM for tPSA. This work proposed a new strategy for simultaneous detection of active and total proteases, which should be evaluable for clinical diagnosis and treatment of protease-relative diseases.
Collapse
Affiliation(s)
- Ning Xia
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China.
| | - Gang Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China; College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yonghong Chen
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Tong Wu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, People's Republic of China
| | - Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Suling Yang
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Yuanyuan Li
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
9
|
Mehta D, Kaur S, Nagaiah TC. Realizing the label-free sensitive detection of carcinoembryogenic antigen (CEA) in blood serum via a MNC-decorated flexible immunosensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1473-1479. [PMID: 38404261 DOI: 10.1039/d3ay02073h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A label-free electrochemical immunosensor utilising nitrogen-rich mesoporous carbon (MNC) as the substrate material was developed for the sensitive quantification of carcinoembryonic antigen (CEA). The synergic interactions between MNC and AbCEA also eliminated the need for coupling agents such as EDC/NHS. The novel immunosensor demonstrated a wide detection range from 500 fM (9.04 pg mL-1) to 50 nM (1 μg mL-1) and a low detection limit (LOD) of 500 fM. Moreover, the immunosensor showed sensitivities of 12.27 mA nM-1 cm-2 and 0.066 mA nM-1 cm-2 for detecting CEA in the linear ranges 10 pM to 1 nM and 2 nM to 50 nM, respectively, while maintaining long-term storage stability of 6 weeks. Analysis of real serum sample analysis yielded highly accurate results with recovery rates ranging from 99.3% to 103.7%. Furthermore, the developed paper-based screen-printed electrode exhibited a similar detection range, suggesting its potential for use in point-of-care detection devices in future applications.
Collapse
Affiliation(s)
- Daisy Mehta
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| | - Sukhjot Kaur
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| | - Tharamani C Nagaiah
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| |
Collapse
|
10
|
Tyagi R, Yadav K, Srivastava N, Sagar R. Applications of Pyrrole and Pyridine-based Heterocycles in Cancer Diagnosis and Treatment. Curr Pharm Des 2024; 30:255-277. [PMID: 38711394 DOI: 10.2174/0113816128280082231205071504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/23/2023] [Indexed: 05/08/2024]
Abstract
BACKGROUND The escalation of cancer worldwide is one of the major causes of economy burden and loss of human resources. According to the American Cancer Society, there will be 1,958,310 new cancer cases and 609,820 projected cancer deaths in 2023 in the United States. It is projected that by 2040, the burden of global cancer is expected to rise to 29.5 million per year, causing a death toll of 16.4 million. The hemostasis regulation by cellular protein synthesis and their targeted degradation is required for normal cell growth. The imbalance in hemostasis causes unbridled growth in cells and results in cancer. The DNA of cells needs to be targeted by chemotherapeutic agents for cancer treatment, but at the same time, their efficacy and toxicity also need to be considered for successful treatment. OBJECTIVE The objective of this study is to review the published work on pyrrole and pyridine, which have been prominent in the diagnosis and possess anticancer activity, to obtain some novel lead molecules of improved cancer therapeutic. METHODS A literature search was carried out using different search engines, like Sci-finder, Elsevier, ScienceDirect, RSC etc., for small molecules based on pyrrole and pyridine helpful in diagnosis and inducing apoptosis in cancer cells. The research findings on the application of these compounds from 2018-2023 were reviewed on a variety of cell lines, such as breast cancer, liver cancer, epithelial cancer, etc. Results: In this review, the published small molecules, pyrrole and pyridine and their derivatives, which have roles in the diagnosis and treatment of cancers, were discussed to provide some insight into the structural features responsible for diagnosis and treatment. The analogues with the chromeno-furo-pyridine skeleton showed the highest anticancer activity against breast cancer. The compound 5-amino-N-(1-(pyridin-4- yl)ethylidene)-1H-pyrazole-4-carbohydrazides was highly potent against HEPG2 cancer cell. Redaporfin is used for the treatment of cholangiocarcinoma, biliary tract cancer, cisplatin-resistant head and neck squamous cell carcinoma, and pigmentation melanoma, and it is in clinical trials for phase II. These structural features present a high potential for designing novel anticancer agents for diagnosis and drug development. CONCLUSION Therefore, the N- and C-substituted pyrrole and pyridine-based novel privileged small Nheterocyclic scaffolds are potential molecules used in the diagnosis and treatment of cancer. This review discusses the reports on the synthesis of such molecules during 2018-2023. The review mainly discusses various diagnostic techniques for cancer, which employ pyrrole and pyridine heterocyclic scaffolds. Furthermore, the anticancer activity of N- and C-substituted pyrrole and pyridine-based scaffolds has been described, which works against different cancer cell lines, such as MCF-7, A549, A2780, HepG2, MDA-MB-231, K562, HT- 29, Caco-2 cells, Hela, Huh-7, WSU-DLCL2, HCT-116, HBL-100, H23, HCC827, SKOV3, etc. This review will help the researchers to obtain a critical insight into the structural aspects of pyrrole and pyridine-based scaffolds useful in cancer diagnosis as well as treatment and design pathways to develop novel drugs in the future.
Collapse
Affiliation(s)
- Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110007, India
| | - Kanchan Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110007, India
| | - Nitin Srivastava
- Department of Chemistry, Amity University Lucknow Campus, Lucknow, Uttar Pradesh 226028, India
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110007, India
| |
Collapse
|
11
|
Martins G, Galeski HR, Andrade GA, Valenga MGP, Ramos MK, Zarbin AJG, Janegitz BC, Müller-Santos M, de Souza EM, Marcolino-Junior LH, Bergamini MF. One-step selective layer assemble: A versatile approach for the development of a SARS-CoV-2 electrochemical immunosensor. Anal Chim Acta 2023; 1278:341726. [PMID: 37709467 DOI: 10.1016/j.aca.2023.341726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/21/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023]
Abstract
The appearance of new viruses and diseases has made the development of rapid and reliable diagnostic tests crucial. In light of it, we proposed a new method for assembling an electrochemical immunosensor, based on a one-step approach for selective layer formation. For this purpose, a mixture containing the immobilizing agent (polyxydroxybutyrate, PHB) and the recognition element (antibodies against SARS-CoV-2 nucleocapsid protein) was prepared and used to modify a screen-printed carbon electrode with electrodeposited graphene oxide, for the detection of SARS-CoV-2 nucleocapsid protein (N-protein). Under optimum conditions, N-protein was successfully detected in three different matrixes - saliva, serum, and nasal swab, with the lowest detectable values of 50 pg mL-1, 1.0 ng mL-1, and 50 pg mL-1, respectively. Selectivity was assessed against SARS-CoV-2 receptor-binding domain protein (RBD) and antibodies against yellow fever (YF), and no significant response was observed in presence of interferents, reinforcing the suitability of the proposed one-step approach for selective layer formation. The proposed biosensor was stable for up to 14 days, and the mixture was suitable for immunosensor preparation even after 60 days of preparation. The proposed assembly strategy reduces the cost, analysis time, and waste generation. This reduction is achieved through miniaturization, which results in the decreased use of reagents and sample volumes. Additionally, this approach enables healthcare diagnostics to be conducted in developing regions with limited resources. Therefore, the proposed one-step approach for selective layer formation is a suitable, simpler, and a reliable alternative for electrochemical immunosensing.
Collapse
Affiliation(s)
- Gustavo Martins
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CEP 81531-980, Curitiba, PR, Brazil
| | - Helena R Galeski
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CEP 81531-980, Curitiba, PR, Brazil
| | - Gabrielle A Andrade
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CEP 81531-980, Curitiba, PR, Brazil
| | - Marcia G P Valenga
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CEP 81531-980, Curitiba, PR, Brazil
| | - Maria K Ramos
- Grupo de Química de Materiais (GQM), Departamento de Química, Universidade Federal do Paraná (UFPR), CEP 81531-980, Curitiba, PR, Brazil
| | - Aldo J G Zarbin
- Grupo de Química de Materiais (GQM), Departamento de Química, Universidade Federal do Paraná (UFPR), CEP 81531-980, Curitiba, PR, Brazil
| | - Bruno C Janegitz
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, São Paulo, Brazil
| | - Marcelo Müller-Santos
- Núcleo de Fixação de Nitrogênio (NFIX), Departamento de Bioquímica e Biologia Molecular, Universidade Federal Do Paraná (UFPR), CP: 19046, CEP: 81531-980, Curitiba, PR, Brazil
| | - Emanuel M de Souza
- Núcleo de Fixação de Nitrogênio (NFIX), Departamento de Bioquímica e Biologia Molecular, Universidade Federal Do Paraná (UFPR), CP: 19046, CEP: 81531-980, Curitiba, PR, Brazil
| | - Luiz Humberto Marcolino-Junior
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CEP 81531-980, Curitiba, PR, Brazil.
| | - Márcio F Bergamini
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CEP 81531-980, Curitiba, PR, Brazil.
| |
Collapse
|
12
|
Dahiya T, Sharma M, Rathee R, Pundir CS, Rana JS. An impedimetric immunosensor based on chitosan-Au nanoparticles-reduced graphene oxide nanosheet composite modified PG electrode for detection of brain natriuretic peptide. 3 Biotech 2023; 13:280. [PMID: 37496976 PMCID: PMC10366047 DOI: 10.1007/s13205-023-03704-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
An ultrasensitive impedimetric immunosensor was developed to detect brain natriuretic peptide (BNP) for early diagnosis of heart failure. To construct this immunosensor, anti-BNP antibodies were immobilized covalently onto nanocomposite of chitosan-Au nanoparticles and reduced graphene oxide nanosheets (CHIT-Au@rGONs) electrodeposited onto pencil graphite electrode. This approach impedes charge transfer resistance (Rct) value proportionally to the BNP captured by antigen-antibody interactions. The observed Rct values by this immunosensor, were correlated with linear concentrations of BNP in the range, 1 × 10-2 to 1 × 103 pg/mL, with a limit of detection of 12 pg/mL and limit of quantification of 36.3 pg/mL. The immunosensor detected BNP in spiked human sera. The analytic recovery of added BNP in human sera was 97.04%. The present method was fairly consistent with commercial approach. The working electrode was stored for 2 months in cold. BSA-IgG had no interference in the electrode activity showing its high specificity for BNP. This novel approach provided a new POC-diagnostics, as direct sample measurements are easier and more efficient by this immunosensor compared to existing immunosensors. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03704-x.
Collapse
Affiliation(s)
- Twinkle Dahiya
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana 131039 India
| | - Minakshi Sharma
- Department of Zoology, Maharishi Dayanand University, Rohtak, Haryana 124001 India
| | - Ravina Rathee
- Department of Medical Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001 India
| | - C. S. Pundir
- Department of Biochemistry, Maharishi Dayanand University, Rohtak, Haryana 124001 India
| | - J. S. Rana
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana 131039 India
| |
Collapse
|
13
|
Gomez Cardoso A, Rahin Ahmed S, Keshavarz-Motamed Z, Srinivasan S, Reza Rajabzadeh A. Recent advancements of nanomodified electrodes - Towards point-of-care detection of cardiac biomarkers. Bioelectrochemistry 2023; 152:108440. [PMID: 37060706 DOI: 10.1016/j.bioelechem.2023.108440] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/17/2023]
Abstract
The increasing number of deaths from cardiovascular diseases has become a substantial concern in both developed and underdeveloped countries. Rapid and on-site monitoring of this disease is urgently important to control, prevent and make awareness of public health. Recently, a lot of focus has been placed on nanomaterials and modify these nanomaterials have been explored to detect cardiac biomarkers. By implementing biosensors that are modified with novel recognition elements and more stable nanomaterials, the use of electrochemistry for point-of-care devices is more realistic every day. This review focuses on the current state of nanomaterials conjugated biorecognition elements (enzyme integrated with nanomaterials, antibody conjugated nanomaterials and aptamer conjugated nanomaterials) for electrochemical cardiovascular disease detection. Specifically, a lot of attention has been given to the trends toward more stable biosensors that have increased the potential to be used as point-of-care devices for the detection of cardiac biomarkers due to their high stability and specificity. Moreover, the recent progress on biomolecule-free electrochemical nanosensors for cardiovascular disease detection has been considered. At last, the possibility and drawbacks of some of these techniques for point-of-care cardiac device development in the future have been discussed.
Collapse
Affiliation(s)
- Ana Gomez Cardoso
- Department of Mechanical Engineering, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada
| | - Syed Rahin Ahmed
- W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada
| | - Zahra Keshavarz-Motamed
- Department of Mechanical Engineering, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada
| | - Seshasai Srinivasan
- Department of Mechanical Engineering, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada; W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada.
| | - Amin Reza Rajabzadeh
- Department of Mechanical Engineering, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada; W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada.
| |
Collapse
|
14
|
Feng D, Chen L, Zhang K, Zhu S, Ying M, Jiang P, Fu M, Wei Y, Li L. Highly Sensitive Immunosensing of Carcinoembryonic Antigen Based on Gold Nanoparticles Dotted PB@PANI Core-Shell Nanocubes as a Signal Probe. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2023; 2023:7009624. [PMID: 37063701 PMCID: PMC10104734 DOI: 10.1155/2023/7009624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/01/2022] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Herein, a method was developed for the sensitive monitoring of carcinoembryonic antigen (CEA) by gold nanoparticles dotted prussian blue@polyaniline core-shell nanocubes (Au NPs/PB@PANI). First, a facile low-temperature method was used to prepare the uniform PB@PANI core-shell nanocubes with the assistance of PVP, where PB acted as the electron transfer mediator to provide electrochemical signals, and the PANI with excellent conductivity and desirable chemical stability not only played the role of a protective layer to prevent etching of PB in basic media but also effectively improved electron transfer. Importantly, to further enhance the electrical conductivity and biocompatibility of PB@PANI and to further enhance the electrochemical signal and capture a large amount of Ab2, Au NPs were doped on the surface of PB@PANI to form Au NPs/PB@PANI nanocomposites. Subsequently, benefiting from the advantages of core-shell structure nanoprobes and gold-platinum bimetallic nanoflower (AuPt NF), a sandwich-type electrochemical immunosensor for CEA detection was constructed, which provided a wide linear detection range from 1.0 pg·mL-1 to 100.0 ng·mL-1 and a low detection limit of 0.35 pg·mL-1 via DPV (at 3σ). Moreover, it displayed a satisfactory result when the core-shell structure nanoprobe-based immunosensor was applied to determine CEA in real human serum samples.
Collapse
Affiliation(s)
- Dexiang Feng
- Department of Chemistry, Wannan Medical College, Wuhu 241002, China
- Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Lingzhi Chen
- Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Ke Zhang
- Department of Chemistry, Wannan Medical College, Wuhu 241002, China
- Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Shuangshuang Zhu
- Department of Chemistry, Wannan Medical College, Wuhu 241002, China
| | - Meichen Ying
- Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Peng Jiang
- Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Menglan Fu
- Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Yan Wei
- Department of Chemistry, Wannan Medical College, Wuhu 241002, China
- Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Lihua Li
- Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
15
|
Monteiro TO, Neto AGDS, de Menezes AS, Damos FS, Luz RDCS, Fatibello-Filho O. Photoelectrochemical Determination of Cardiac Troponin I as a Biomarker of Myocardial Infarction Using a Bi 2S 3 Film Electrodeposited on a BiVO 4-Coated Fluorine-Doped Tin Oxide Electrode. BIOSENSORS 2023; 13:379. [PMID: 36979591 PMCID: PMC10046628 DOI: 10.3390/bios13030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
A sensitive and selective label-free photoelectrochemical (PEC) immunosensor was designed for the detection of cardiac troponin I (cTnI). The platform was based on a fluorine-doped tin oxide (FTO)-coated glass photoelectrode modified with bismuth vanadate (BiVO4) and sensitized by an electrodeposited bismuth sulfide (Bi2S3) film. The PEC response of the Bi2S3/BiVO4/FTO platform for the ascorbic acid (AA) donor molecule was approximately 1.6-fold higher than the response observed in the absence of Bi2S3. The cTnI antibodies (anti-cTnI) were immobilized on the Bi2S3/BiVO4/FTO platform surface to produce the anti-cTnI/Bi2S3/BiVO4/FTO immunosensor, which was incubated in cTnI solution to inhibit the AA photocurrent. The photocurrent obtained by the proposed immunosensor presented a linear relationship with the logarithm of the cTnI concentration, ranging from 1 pg mL-1 to 1000 ng mL-1. The immunosensor was successfully employed in artificial blood plasma samples for the detection of cTnI, with recovery values ranging from 98.0% to 98.5%.
Collapse
Affiliation(s)
| | | | - Alan Silva de Menezes
- Department of Physics, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
| | - Flávio Santos Damos
- Department of Chemistry, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
| | | | | |
Collapse
|
16
|
Lucia-Tamudo J, Nogueira JJ, Díaz-Tendero S. An Efficient Multilayer Approach to Model DNA-Based Nanobiosensors. J Phys Chem B 2023; 127:1513-1525. [PMID: 36779932 PMCID: PMC9969517 DOI: 10.1021/acs.jpcb.2c07225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
In this work, we present a full computational protocol to successfully obtain the one-electron reduction potential of nanobiosensors based on a self-assembled monolayer of DNA nucleobases linked to a gold substrate. The model is able to account for conformational sampling and environmental effects at a quantum mechanical (QM) level efficiently, by combining molecular mechanics (MM) molecular dynamics and multilayer QM/MM/continuum calculations within the framework of Marcus theory. The theoretical model shows that a guanine-based biosensor is more prone to be oxidized than the isolated nucleobase in water due to the electrostatic interactions between the assembled guanine molecules. In addition, the redox properties of the biosensor can be tuned by modifying the nature of the linker that anchor the nucleobases to the metal support.
Collapse
Affiliation(s)
- Jesús Lucia-Tamudo
- Department of Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Juan J Nogueira
- Department of Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sergio Díaz-Tendero
- Department of Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
17
|
Li B, Wang Q, Sohail M, Zhang X, He H, Lin L. Facilitating the determination of microcystin toxins with bio-inspired sensors. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Brussasco JG, Guedes PHG, Moço ACR, Moraes DD, Flauzino JMR, Silva HS, Silva AC, Silva JP, Madurro JM, Brito-Madurro AG. Electro-immunosensor for ultra-sensitive determination of cardiac troponin I based on reduced graphene oxide and polytyramine. J Mol Recognit 2023; 36:e2995. [PMID: 36116102 DOI: 10.1002/jmr.2995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/30/2022] [Accepted: 09/15/2022] [Indexed: 01/14/2023]
Abstract
This work reports the construction of a novel nanostructured immunosensor for detection of the troponin I biomarker (cTnI). Anti-troponin I antibody was anchored on the modified graphite electrode with reduced graphene oxide and polytyramine for detection of troponin I in serum samples. The performance of the electro-immunosensor was evaluated by differential pulse voltammetry. The immunosensor presented a wide work range, from 4 ng mL-1 to 4 pg mL-1 , whose detection limit (4 pg mL-1 ) is significantly lower than the basal level in human serum, and maintained 100% of response after 30 days of storage. Moreover, the immunosensor showed good selectivity for detection of cTnI in real sample containing interfering substances and specificity of response to cTnI in the serum of healthy and sick patients, and demonstrated the possibility of reuse for two consecutive analyses, in addition to using a simplified and inexpensive platform when compared to other devices, demonstrating them excellent potential for application in diagnosis in the early stages of acute myocardial infarction.
Collapse
Affiliation(s)
- Jéssica G Brussasco
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - Pedro H G Guedes
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Anna C R Moço
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Dayane D Moraes
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - José M R Flauzino
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Heliane S Silva
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - Atair C Silva
- Institute of Physics, Federal University of Uberlândia, Uberlândia, Brazil
| | | | - João M Madurro
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - Ana G Brito-Madurro
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
19
|
Du C, Jiao J, Zhang H. Biomimetic nanochannels for molybdate transport: application to sensitive electrochemical immunoassay for HER2. Mikrochim Acta 2023; 190:53. [PMID: 36640214 DOI: 10.1007/s00604-023-05632-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023]
Abstract
A nanochannel-based electrochemical immunoassay was developed for the detection of human epidermal growth factor receptor 2 (HER2), with molybdate as the reporter to explore the interaction occurring into the nanochannels. The presence of target increased steric hindrance of the antibody-functionalized nanochannels, thereby hindering the transport of molybdate. And the reporter could be monitored by working electrode modified with hydroxyapatite nanoparticles, based on the formation of the redox-active molybdophosphate. As a result, peak current obtained at ca. - 0.28 V in square wave voltammograms could be applied to quantitative determination of HER2. The electrochemical signal increased linearly with the logarithm of the concentration of HER2 in a broad dynamic range of 0.1 pg∙mL-1 to 10 ng∙mL-1 with a detection limit of 0.05 pg∙mL-1. The reliability of this immunoassay was validated by a recovery range of 99.5% to 111.7% for the detection of three different levels of HER2 in human serum samples. Integrating with multiple bionanochannels, this immunoassay is expected to provide a versatile approach for quantitative detection of various biomarkers in related disease diagnosis and therapy.
Collapse
Affiliation(s)
- Chunyang Du
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Jiao Jiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, Shaanxi, China.,Department of Applied Chemistry, Yuncheng University, Yuncheng, 044000, Shanxi, China
| | - Hongfang Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, Shaanxi, China.
| |
Collapse
|
20
|
Garcia-Melo LF, Morales-Rodríguez M, Madrigal-Bujaidar E, Madrigal-Santillán EO, Morales-González JA, Pineda Cruces RN, Campoy Ramírez JA, Damian-Matsumura P, Tellez-Plancarte A, Batina N, Álvarez-González I. Development of a Nanostructured Electrochemical Genosensor for the Detection of the K-ras Gene. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:6575140. [PMID: 36299712 PMCID: PMC9592225 DOI: 10.1155/2022/6575140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/06/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
In the scientific literature, it has been documented that electrochemical genosensors are novel analytical tools with proven clinical diagnostic potential for the identification of carcinogenic processes due to genetic and epigenetic alterations, as well as infectious diseases due to viruses or bacteria. In the present work, we describe the construction of an electrochemical genosensor for the identification of the k12p.1 mutation; it was based on use of Screen-Printed Gold Electrode (SPGE), Cyclic Voltammetry (CV), and Atomic Force Microscopy (AFM), for the monitoring the electron transfer trough the functionalized nanostructured surface and corresponding morphological changes. The sensitivity of the genosensor showed a linear response for the identification of the k12p.1 mutation of the K-ras gene in the concentration range of 10 fM to 1 μM with a detection limit of 7.96 fM in the presence of doxorubicin (Dox) as DNA intercalating agent and indicator of the hybridization reaction. Thus, the electrochemical genosensor developed could be useful for the identification of diseases related with the K-ras oncogene.
Collapse
Affiliation(s)
- Luis Fernando Garcia-Melo
- Division de Ingeniería en Nanotecnología, Universidad Politécnica del Valle de México, Av. Mexiquense s/n esquina Av. Universidad Politécnica, Tultitlan Estado de México, CP 54910, Mexico
- Laboratorio de Nanotecnología e Ingeniería Molecular Área Electroquímica, Departamento de Química, CBI, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), Av. San Rafael Atlixco 186, Iztapalapa, CP 09340, México City, Mexico
| | - Miguel Morales-Rodríguez
- Division de Ingeniería en Nanotecnología, Universidad Politécnica del Valle de México, Av. Mexiquense s/n esquina Av. Universidad Politécnica, Tultitlan Estado de México, CP 54910, Mexico
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Avenida Wilfrido Massieu s/n Col. Zacatenco Del. Gustavo A. Madero, CP 07738, Ciudad de México, Mexico
| | - Eduardo O. Madrigal-Santillán
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Unidad Casco de Santo Tomás, Plan de San Luis y Díaz Mirón, Ciudad de México, CP 11340, Mexico
| | - José Antonio Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Unidad Casco de Santo Tomás, Plan de San Luis y Díaz Mirón, Ciudad de México, CP 11340, Mexico
| | - Rosa Natali Pineda Cruces
- Laboratorio de Nanotecnología e Ingeniería Molecular Área Electroquímica, Departamento de Química, CBI, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), Av. San Rafael Atlixco 186, Iztapalapa, CP 09340, México City, Mexico
| | - Jorge Alfredo Campoy Ramírez
- Laboratorio de Nanotecnología e Ingeniería Molecular Área Electroquímica, Departamento de Química, CBI, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), Av. San Rafael Atlixco 186, Iztapalapa, CP 09340, México City, Mexico
| | - Pablo Damian-Matsumura
- Laboratorio de Endocrinología Molecular, Departamento de Biología de la Reproducción, CBS, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), México City, Mexico
| | - Alexandro Tellez-Plancarte
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Avenida Wilfrido Massieu s/n Col. Zacatenco Del. Gustavo A. Madero, CP 07738, Ciudad de México, Mexico
| | - Nikola Batina
- Laboratorio de Nanotecnología e Ingeniería Molecular Área Electroquímica, Departamento de Química, CBI, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), Av. San Rafael Atlixco 186, Iztapalapa, CP 09340, México City, Mexico
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Avenida Wilfrido Massieu s/n Col. Zacatenco Del. Gustavo A. Madero, CP 07738, Ciudad de México, Mexico
| |
Collapse
|
21
|
Lima FMR, de Menezes AS, Maciel AP, Sinfrônio FSM, Kubota LT, Damos FS, Luz RCS. Zero-Biased Photoelectrochemical Detection of Cardiac Biomarker Myoglobin Based on CdSeS/ZnS Quantum Dots and Barium Titanate Perovskite. Molecules 2022; 27:molecules27154778. [PMID: 35897951 PMCID: PMC9330231 DOI: 10.3390/molecules27154778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/10/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular diseases are considered one of the leading causes of premature mortality of patients worldwide. Therefore, rapid diagnosis of these diseases is crucial to ensure the patient's survival. During a heart attack or severe muscle damage, myoglobin is rapidly released in the body to constitute itself as a precise biomarker of acute myocardial infarction. Thus, we described the photoelectrochemical immunosensor development to detect myoglobin. It was based on fluorine-doped tin oxide modified with CdSeS/ZnSe quantum dots and barium titanate (BTO), designated as CdSeS/ZnSQDS/BTO. It was characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and amperometry. The anodic photocurrent at the potential of 0 V (vs. Ag/AgCl) and pH 7.4 was found linearly related to the myoglobin (Mb) concentration from 0.01 to 1000 ng mL-1. Furthermore, the immunosensor showed an average recovery rate of 95.7-110.7% for the determination of myoglobin.
Collapse
Affiliation(s)
- Fernanda M. R. Lima
- Department of Chemistry, Federal University of Maranhão, São Luís 65080-805, Brazil; (F.M.R.L.); (A.P.M.)
| | - Alan S. de Menezes
- Department of Physics, Federal University of Maranhão, São Luís 65080-805, Brazil;
| | - Adeilton P. Maciel
- Department of Chemistry, Federal University of Maranhão, São Luís 65080-805, Brazil; (F.M.R.L.); (A.P.M.)
| | | | - Lauro T. Kubota
- Institute of Chemistry, State University of Campinas, Campinas 13083-970, Brazil;
| | - Flávio S. Damos
- Department of Chemistry, Federal University of Maranhão, São Luís 65080-805, Brazil; (F.M.R.L.); (A.P.M.)
- Correspondence: (F.S.D.); (R.C.S.L.)
| | - Rita C. S. Luz
- Department of Chemistry, Federal University of Maranhão, São Luís 65080-805, Brazil; (F.M.R.L.); (A.P.M.)
- Correspondence: (F.S.D.); (R.C.S.L.)
| |
Collapse
|
22
|
Zambry NS, Obande GA, Khalid MF, Bustami Y, Hamzah HH, Awang MS, Aziah I, Manaf AA. Utilizing Electrochemical-Based Sensing Approaches for the Detection of SARS-CoV-2 in Clinical Samples: A Review. BIOSENSORS 2022; 12:473. [PMID: 35884276 PMCID: PMC9312918 DOI: 10.3390/bios12070473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 05/16/2023]
Abstract
The development of precise and efficient diagnostic tools enables early treatment and proper isolation of infected individuals, hence limiting the spread of coronavirus disease 2019 (COVID-19). The standard diagnostic tests used by healthcare workers to diagnose severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection have some limitations, including longer detection time, the need for qualified individuals, and the use of sophisticated bench-top equipment, which limit their use for rapid SARS-CoV-2 assessment. Advances in sensor technology have renewed the interest in electrochemical biosensors miniaturization, which provide improved diagnostic qualities such as rapid response, simplicity of operation, portability, and readiness for on-site screening of infection. This review gives a condensed overview of the current electrochemical sensing platform strategies for SARS-CoV-2 detection in clinical samples. The fundamentals of fabricating electrochemical biosensors, such as the chosen electrode materials, electrochemical transducing techniques, and sensitive biorecognition molecules, are thoroughly discussed in this paper. Furthermore, we summarised electrochemical biosensors detection strategies and their analytical performance on diverse clinical samples, including saliva, blood, and nasopharyngeal swab. Finally, we address the employment of miniaturized electrochemical biosensors integrated with microfluidic technology in viral electrochemical biosensors, emphasizing its potential for on-site diagnostics applications.
Collapse
Affiliation(s)
- Nor Syafirah Zambry
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (N.S.Z.); (M.F.K.)
| | - Godwin Attah Obande
- Department of Medical Microbiology and Parasitology, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
- Department of Microbiology, Faculty of Science, Federal University of Lafia, Lafia PMB 146, Nasarawa State, Nigeria
| | - Muhammad Fazli Khalid
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (N.S.Z.); (M.F.K.)
| | - Yazmin Bustami
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia;
| | - Hairul Hisham Hamzah
- School of Chemical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia;
| | - Mohd Syafiq Awang
- Collaborative Microelectronic Design Excellence Centre (CEDEC), Sains@USM, Universiti Sains Malaysia, Bayan Lepas 11900, Pulau Pinang, Malaysia;
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (N.S.Z.); (M.F.K.)
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Centre (CEDEC), Sains@USM, Universiti Sains Malaysia, Bayan Lepas 11900, Pulau Pinang, Malaysia;
| |
Collapse
|
23
|
Lazarenko HO, Boiko IV. THE METHOD OF ATOMIC FORCE MICROSCOPY AS A POSSIBLE TOOL FOR TESTING THE BIOCOMPATIBILITY OF IMPLANTS IN TRAUMATOLOGY AND ORTHOPEDICS PRACTICE. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:2614-2618. [PMID: 36591742 DOI: 10.36740/wlek202211111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
OBJECTIVE The aim: To establish the possibility of using the atomic force microscope (AFM) to predict the body's reaction to the implant. PATIENTS AND METHODS Materials and methods: A total of 32 patients, 22 men and 10 women, the average age of the patients was 55±6 years, were included in the study. They performed pre- and post-operative testing of the biocompatibility of orthopedic implant materials with the patient's body with the help of AFM. RESULTS Results: According to the research, an increase in pro-inflammatory factors was found, which may indicate a constant inflammatory process, which is probably related to the presence of the implant. CONCLUSION Conclusions: On the basis of atomic force spectroscopy, an express method of testing biomaterials for compatibility with the body of a specific recipient and studying the effect of the reactions of recipient tissues on the surface of various implants has been developed. The obtained results can be useful in planning further clinical studies.
Collapse
Affiliation(s)
- Hlib O Lazarenko
- STATE INSTITUTION OF SCIENCE «RESEARCH AND PRACTICAL CENTER OF PREVENTIVE AND CLINICAL MEDICINE», KYIV, UKRAINE, STATE ADMINISTRATIVE DEPARTMENT, KYIV, UKRAINE
| | - Igor V Boiko
- STATE INSTITUTION OF SCIENCE «RESEARCH AND PRACTICAL CENTER OF PREVENTIVE AND CLINICAL MEDICINE», KYIV, UKRAINE, STATE ADMINISTRATIVE DEPARTMENT, KYIV, UKRAINE
| |
Collapse
|
24
|
Electrochemical aptamer-based nanobiosensors for diagnosing Alzheimer's disease: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112689. [DOI: 10.1016/j.msec.2022.112689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 12/22/2022]
|
25
|
Anthi J, Kolivoška V, Holubová B, Vaisocherová-Lísalová H. Probing polymer brushes with electrochemical impedance spectroscopy: a mini review. Biomater Sci 2021; 9:7379-7391. [PMID: 34693954 DOI: 10.1039/d1bm01330k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polymer brushes are frequently used as surface-tethered antifouling layers in biosensors to improve sensor surface-analyte recognition in the presence of abundant non-target molecules in complex biological samples by suppressing nonspecific interactions. However, because brushes are complex systems highly responsive to changes in their surrounding environment, studying their properties remains a challenge. Electrochemical impedance spectroscopy (EIS) is an emerging method in this context. In this mini review, we aim to elucidate the potential of EIS for investigating the physicochemical properties and structural aspects of polymer brushes. The application of EIS in brush-based biosensors is also discussed. Most common principles employed in these biosensors are presented, as well as interpretation of EIS data obtained in such setups. Overall, we demonstrate that the EIS-polymer brush pairing has a considerable potential for providing new insights into brush functionalities and designing highly sensitive and specific biosensors.
Collapse
Affiliation(s)
- Judita Anthi
- Institute of Physics of the CAS, Na Slovance 2, 182 21 Prague, Czech Republic. .,Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 16628 Prague, Czech Republic
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic.
| | - Barbora Holubová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 16628 Prague, Czech Republic
| | | |
Collapse
|
26
|
McCord CP, Ozer T, Henry CS. Synthesis and grafting of diazonium tosylates for thermoplastic electrode immunosensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5056-5064. [PMID: 34651620 PMCID: PMC8628260 DOI: 10.1039/d1ay00965f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
For electrochemical immunosensors, inexpensive electrodes with fast redox kinetics, and simple stable methods of electrode functionalization are vital. However, many inexpensive and easy to fabricate electrodes suffer from poor redox kinetics, and functionalization can often be difficult and/or unstable. Diazonium tosylates are particularly stable soluble salts that can be useful for electrode functionalization. Recently developed thermoplastic electrodes (TPEs) have been inexpensive, moldable, and highly electroactive carbon composite materials. Herein, the synthesis and grafting of diazonium tosylate salts were optimized for modification of TPEs and used to develop the first TPE immunosensors. With diazonium tosylates, TPEs were amine functionalized either directly through grafting of p-aminophenyl diazonium salt or indirectly through grafting p-nitrophenyl diazonium salt followed by electrochemical reduction to an amine. Diazonium tosylates were synthesized in situ as a paste in 6 min. Once the reaction paste was spread over the electrodes, near monolayer coverage (1.0 ± 0.2 nmol cm-2) was achieved for p-nitrophenyl diazonium salt within 5 min. Amine functionalized electrodes were conjugated to C-reactive protein (CRP) antibodies. Antibody-modified TPEs were applied for the sensitive detection of CRP, a biomarker of cardiovascular disease using electrochemical enzyme-linked immunosorbent assays (ELISA). LODs were determined to be 2 ng mL-1 in buffer, with high selectivity against interfering species for both functionalization methods. The direct p-aminophenyl modification method had the highest sensitivity to CRP and was further tested in spiked serum with an LOD of 10 ng mL-1. This low-cost and robust TPE immunosensor platform can be easily adapted for other analytes and multiplexed detection.
Collapse
Affiliation(s)
- Cynthia P McCord
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Tugba Ozer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34220, Turkey
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
27
|
Label-free electrochemical-immunoassay of cancer biomarkers: Recent progress and challenges in the efficient diagnosis of cancer employing electroanalysis and based on point of care (POC). Microchem J 2021. [DOI: 10.1016/j.microc.2021.106424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Wehmeyer KR, White RJ, Kissinger PT, Heineman WR. Electrochemical Affinity Assays/Sensors: Brief History and Current Status. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:109-131. [PMID: 34314225 DOI: 10.1146/annurev-anchem-061417-125655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The advent of electrochemical affinity assays and sensors evolved from pioneering efforts in the 1970s to broaden the field of analytes accessible to the selective and sensitive performance of electrochemical detection. The foundation of electrochemical affinity assays/sensors is the specific capture of an analyte by an affinity element and the subsequent transduction of this event into a measurable signal. This review briefly covers the early development of affinity assays and then focuses on advances in the past decade. During this time, progress on electroactive labels, including the use of nanoparticles, quantum dots, organic and organometallic redox compounds, and enzymes with amplification schemes, has led to significant improvements in sensitivity. The emergence of nanomaterials along with microfabrication and microfluidics technology enabled research pathways that couple the ease of use of electrochemical detection for the development of devices that are more user friendly, disposable, and employable, such as lab-on-a-chip, paper, and wearable sensors.
Collapse
Affiliation(s)
- Kenneth R Wehmeyer
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, USA; , ,
| | - Ryan J White
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, USA; , ,
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio 45221-0030, USA
| | - Peter T Kissinger
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA;
| | - William R Heineman
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, USA; , ,
| |
Collapse
|
29
|
Mechanism of Myoglobin Molecule Adsorption on Silica: QCM, OWLS and AFM Investigations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094944. [PMID: 34066515 PMCID: PMC8124256 DOI: 10.3390/ijerph18094944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022]
Abstract
Adsorption kinetics of myoglobin on silica was investigated using the quartz crystal microbalance (QCM) and the optical waveguide light-mode spectroscopy (OWLS). Measurements were carried out for the NaCl concentration of 0.01 M and 0.15 M. A quantitative analysis of the kinetic adsorption and desorption runs acquired from QCM allowed to determine the maximum coverage of irreversibly bound myoglobin molecules. At a pH of 3.5-4 this was equal to 0.60 mg m-2 and 1.3 mg m-2 for a NaCl concentration of 0.01 M and 0.15 M, respectively, which agrees with the OWLS measurements. The latter value corresponds to the closely packed monolayer of molecules predicted from the random sequential adsorption approach. The fraction of reversibly bound protein molecules and their biding energy were also determined. It is observed that at larger pHs, the myoglobin adsorption kinetics was much slower. This behavior was attributed to the vanishing net charge that decreased the binding energy of molecules with the substrate. These results can be exploited to develop procedures for preparing myoglobin layers at silica substrates of well-controlled coverage useful for biosensing purposes.
Collapse
|
30
|
|
31
|
Yukird J, Chailapakul O, Rodthongkum N. Label-free anti-Müllerian hormone sensor based on polyaniline micellar modified electrode. Talanta 2021; 222:121561. [PMID: 33167258 DOI: 10.1016/j.talanta.2020.121561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/01/2022]
Abstract
A label-free electrochemical immunosensor based on polyaniline (PANI) micellar electrode was firstly fabricated for direct AMH detection. To control the size regularity of PANI, a micelle-based method using ammonium peroxydisulfate (APS) as a reducing agent was employed in the polymerization process. The Anti-AMH antibodies were readily immobilized onto PANI via peptide bond to enhance the sensor specificity and sensitivity. This sensor was applied for the detection of AMH, an ovarian response indicator in female related to residual eggs during a woman's monthly cycle. The sensor performances were systematically investigated by differential pulse voltammetry. The anodic peak current decreases with the increase of AMH concentration owing to blocking of electron transfer by AMH. Under the optimal conditions, this sensor offers high sensitivity with a low detection limit of 0.1 ng mL-1 and a wide linear range of 0.1-4 ng mL-1, which is sensitive enough to indicate the ability to produce eggs during a woman's monthly cycle. Furthermore, this system requires lower sample volume (5 μL), while offers the simple fabrication with low cost and no synthetic challenge and faster analysis compared with a standard ELISA. Ultimately, this sensor was successfully applied for the detection of AMH in human serum with satisfactory results. Thus, it might be an alternative tool for AMH screening in clinical setting.
Collapse
Affiliation(s)
- Jutiporn Yukird
- Nanoscience and Technology Program, Graduate School, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand.
| | - Nadnudda Rodthongkum
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
32
|
Chang SM, Palanisamy S, Wu TH, Chen CY, Cheng KH, Lee CY, Yuan SSF, Wang YM. Utilization of silicon nanowire field-effect transistors for the detection of a cardiac biomarker, cardiac troponin I and their applications involving animal models. Sci Rep 2020; 10:22027. [PMID: 33328513 PMCID: PMC7745037 DOI: 10.1038/s41598-020-78829-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
This study develops an ultrasensitive electrical device, the silicon nanowire-field effect transistor (SiNW-FET) for detection of cardiac troponin I (cTnI) in obesity induced myocardial injury. The biosensor device utilizes metal-oxide-semiconductor (MOS) compatible top-down methodology for the fabrication process. After fabrication, the surface of the SiNW is modified with the cTnI monoclonal antibody (Mab-cTnI) upon covalent immobilization to capture cTnI antigen. The sensitivity of the device is also examined using cTnI at different concentrations with the lowest detection limit of 0.016 ng/mL. The electrocardiogram (ECG), magnetic resonance imaging (MRI), and superior vena cave (SVC) provide more information about cardiac responses in a mouse model of acute myocardial infarction (AMI). Further, magnetic resonance imaging helps to evaluate the cardiac output of an obesity induced myocardial injury mouse model. These methods play an essential role in monitoring the obesity based cardiac injury and hence, these studies were carried out. This is the first report to use the ECG, MRI, and SVC sampling methods to study the obesity based cardiac injury involving Syrian hamsters as animal models. The proposed SiNW-FET in this study shows greater sensitivity than the previously developed devices and demonstrates great potential for future applications in point-of-care (POC) diagnosis.
Collapse
Affiliation(s)
- Shih-Mein Chang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, 75 Bo-Ai Street, Hsinchu, 300, Taiwan, ROC
| | - Sathyadevi Palanisamy
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, 75 Bo-Ai Street, Hsinchu, 300, Taiwan, ROC
| | - Tung-Ho Wu
- Division of Cardiovascular Surgery, Department of Surgery and Division of Surgical Critical Care, Department of Critical Care Medicine, Veterans General Hospital, Kaohsiung, 813, Taiwan, ROC
| | - Chiao-Yun Chen
- Department of Radiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC.,Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC
| | - Kai-Hung Cheng
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC
| | - Chen-Yi Lee
- Department of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC
| | - Shyng-Shiou F Yuan
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC. .,Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC. .,Faculty and College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC.
| | - Yun-Ming Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, 75 Bo-Ai Street, Hsinchu, 300, Taiwan, ROC. .,Department of Biomedical Science and Environmental Biology, Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan, ROC.
| |
Collapse
|
33
|
Ribeiro BV, Cordeiro TAR, Oliveira E Freitas GR, Ferreira LF, Franco DL. Biosensors for the detection of respiratory viruses: A review. TALANTA OPEN 2020; 2:100007. [PMID: 34913046 PMCID: PMC7428963 DOI: 10.1016/j.talo.2020.100007] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/26/2022] Open
Abstract
The recent events of outbreaks related to different respiratory viruses in the past few years, exponentiated by the pandemic caused by the coronavirus disease 2019 (COVID-19), reported worldwide caused by SARS-CoV-2, raised a concern and increased the search for more information on viruses-based diseases. The detection of the virus with high specificity and sensitivity plays an important role for an accurate diagnosis. Despite the many efforts to identify the SARS-CoV-2, the diagnosis still relays on expensive and time-consuming analysis. A fast and reliable alternative is the use of low-cost biosensor for in loco detection. This review gathers important contributions in the biosensor area regarding the most current respiratory viruses, presents the advances in the assembly of the devices and figures of merit. All information is useful for further biosensor development for the detection of respiratory viruses, such as for the new coronavirus.
Collapse
Affiliation(s)
- Brayan Viana Ribeiro
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology (RMPCT), Laboratory of Electroanlytical Applied to Biotechnology and Food Engineering (LEABE) - Chemistry Institute, Federal University of Uberlândia - campus Patos de Minas, Av. Getúlio Vargas, 230, 38.700-128, Patos de Minas, Minas Gerais 38700-128, Brazil
| | - Taís Aparecida Reis Cordeiro
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| | - Guilherme Ramos Oliveira E Freitas
- Laboratory of Microbiology (MICRO), Biotechnology Institute, Federal University of Uberlândia - campus Patos de Minas - Av. Getúlio Vargas, 230, 38.700-128, Patos de Minas, Minas Gerais, Brazil
| | - Lucas Franco Ferreira
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| | - Diego Leoni Franco
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology (RMPCT), Laboratory of Electroanlytical Applied to Biotechnology and Food Engineering (LEABE) - Chemistry Institute, Federal University of Uberlândia - campus Patos de Minas, Av. Getúlio Vargas, 230, 38.700-128, Patos de Minas, Minas Gerais 38700-128, Brazil
| |
Collapse
|
34
|
Recent Advances in Noninvasive Biosensors for Forensics, Biometrics, and Cybersecurity. SENSORS 2020; 20:s20215974. [PMID: 33105602 PMCID: PMC7659947 DOI: 10.3390/s20215974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
Recently, biosensors have been used in an increasing number of different fields and disciplines due to their wide applicability, reproducibility, and selectivity. Three large disciplines in which this has become relevant has been the forensic, biometric, and cybersecurity fields. The call for novel noninvasive biosensors for these three applications has been a focus of research in these fields. Recent advances in these three areas has relied on the use of biosensors based on primarily colorimetric assays based on bioaffinity interactions utilizing enzymatic assays. In forensics, the use of different bodily fluids for metabolite analysis provides an alternative to the use of DNA to avoid the backlog that is currently the main issue with DNA analysis by providing worthwhile information about the originator. In biometrics, the use of sweat-based systems for user authentication has been developed as a proof-of-concept design utilizing the levels of different metabolites found in sweat. Lastly, biosensor assays have been developed as a proof-of-concept for combination with cybersecurity, primarily cryptography, for the encryption and protection of data and messages.
Collapse
|
35
|
Rafat N, Satoh P, Calabrese Barton S, Worden RM. Integrated Experimental and Theoretical Studies on an Electrochemical Immunosensor. BIOSENSORS 2020; 10:bios10100144. [PMID: 33080847 PMCID: PMC7603011 DOI: 10.3390/bios10100144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 05/31/2023]
Abstract
Electrochemical immunosensors (EIs) integrate biorecognition molecules (e.g., antibodies) with redox enzymes (e.g., horseradish peroxidase) to combine the advantages of immunoassays (high sensitivity and selectivity) with those of electrochemical biosensors (quantitative electrical signal). However, the complex network of mass-transfer, catalysis, and electrochemical reaction steps that produce the electrical signal makes the design and optimization of EI systems challenging. This paper presents an integrated experimental and modeling framework to address this challenge. The framework includes (1) a mechanistic mathematical model that describes the rate of key mass-transfer and reaction steps; (2) a statistical-design-of-experiments study to optimize operating conditions and validate the mechanistic model; and (3) a novel dimensional analysis to assess the degree to which individual mass-transfer and reaction steps limit the EI's signal amplitude and sensitivity. The validated mechanistic model was able to predict the effect of four independent variables (working electrode overpotential, pH, and concentrations of catechol and hydrogen peroxide) on the EI's signal magnitude. The model was then used to calculate dimensionless groups, including Damkohler numbers, novel current-control coefficients, and sensitivity-control coefficients that indicated the extent to which the individual mass-transfer or reaction steps limited the EI's signal amplitude and sensitivity.
Collapse
Affiliation(s)
- Neda Rafat
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 S. Shaw Lane, East Lansing, MI 48824, USA; (N.R.); (P.S.); (S.C.B.)
- The Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr, East Lansing, MI 48824, USA
| | - Paul Satoh
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 S. Shaw Lane, East Lansing, MI 48824, USA; (N.R.); (P.S.); (S.C.B.)
| | - Scott Calabrese Barton
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 S. Shaw Lane, East Lansing, MI 48824, USA; (N.R.); (P.S.); (S.C.B.)
| | - Robert Mark Worden
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 S. Shaw Lane, East Lansing, MI 48824, USA; (N.R.); (P.S.); (S.C.B.)
- The Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, 775 Woodlot Dr, East Lansing, MI 48824, USA
| |
Collapse
|
36
|
Djebbi MA, Boubakri S, Braiek M, Jaffrezic‐Renault N, Namour P, Amara ABH. NZVI©Au magnetic nanocomposite‐based electrochemical magnetoimmunosensing for ultrasensitive detection of troponin‐T cardiac biomarker. ELECTROCHEMICAL SCIENCE ADVANCES 2020. [DOI: 10.1002/elsa.202000019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Mohamed Amine Djebbi
- Laboratory of Ressources, Materials & Ecosystem (RME) Faculty of Sciences of Bizerte University of Carthage Zarzouna Tunisia
- INRAE UR RiverLy, Centre de Lyon‐Villeurbanne Villeurbanne France
- Institute of Analytical Sciences University of Lyon Villeurbanne France
| | - Saber Boubakri
- National Institute for Research and Physico‐chemical Analysis BiotechPole Sidi‐Thabet Ariana Tunisia
| | - Mohamed Braiek
- Institute of Analytical Sciences University of Lyon Villeurbanne France
| | | | - Philippe Namour
- INRAE UR RiverLy, Centre de Lyon‐Villeurbanne Villeurbanne France
| | - Abdesslem Ben Haj Amara
- Laboratory of Ressources, Materials & Ecosystem (RME) Faculty of Sciences of Bizerte University of Carthage Zarzouna Tunisia
| |
Collapse
|
37
|
Piguillem SV, Gamella M, García de Frutos P, Batlle M, Yáñez‐Sedeño P, Messina GA, Fernández‐Baldo MA, Campuzano S, Pedrero M, Pingarrón JM. Easily Multiplexable Immunoplatform to Assist Heart Failure Diagnosis through Amperometric Determination of Galectin‐3. ELECTROANAL 2020. [DOI: 10.1002/elan.202060323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sofía V. Piguillem
- Analytical Chemistry Dept. Faculty of Chemistry Complutense University of Madrid. E-28040 Madrid Spain
- INQUISAL, Departamento de Química. Universidad Nacional de San Luis, CONICET. Chacabuco 917. D5700BWS. San Luis Argentina
| | - Maria Gamella
- Analytical Chemistry Dept. Faculty of Chemistry Complutense University of Madrid. E-28040 Madrid Spain
| | | | - Montserrat Batlle
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS) and The Cardiovascular Clinic Institute Hospital Clínic de Barcelona Spain
| | - Paloma Yáñez‐Sedeño
- Analytical Chemistry Dept. Faculty of Chemistry Complutense University of Madrid. E-28040 Madrid Spain
| | - Germán A. Messina
- INQUISAL, Departamento de Química. Universidad Nacional de San Luis, CONICET. Chacabuco 917. D5700BWS. San Luis Argentina
| | - Martín A. Fernández‐Baldo
- INQUISAL, Departamento de Química. Universidad Nacional de San Luis, CONICET. Chacabuco 917. D5700BWS. San Luis Argentina
| | - Susana Campuzano
- Analytical Chemistry Dept. Faculty of Chemistry Complutense University of Madrid. E-28040 Madrid Spain
| | - María Pedrero
- Analytical Chemistry Dept. Faculty of Chemistry Complutense University of Madrid. E-28040 Madrid Spain
| | - José M. Pingarrón
- Analytical Chemistry Dept. Faculty of Chemistry Complutense University of Madrid. E-28040 Madrid Spain
| |
Collapse
|
38
|
A microfabricated thickness shear mode electroacoustic resonator for the label-free detection of cardiac troponin in serum. Talanta 2020; 215:120890. [DOI: 10.1016/j.talanta.2020.120890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022]
|
39
|
Review on electrochemical sensing strategies for C-reactive protein and cardiac troponin I detection. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104857] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Reddy KK, Bandal H, Satyanarayana M, Goud KY, Gobi KV, Jayaramudu T, Amalraj J, Kim H. Recent Trends in Electrochemical Sensors for Vital Biomedical Markers Using Hybrid Nanostructured Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902980. [PMID: 32670744 PMCID: PMC7341105 DOI: 10.1002/advs.201902980] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/12/2020] [Indexed: 05/09/2023]
Abstract
This work provides a succinct insight into the recent developments in electrochemical quantification of vital biomedical markers using hybrid metallic composite nanostructures. After a brief introduction to the biomarkers, five types of crucial biomarkers, which require timely and periodical monitoring, are shortlisted, namely, cancer, cardiac, inflammatory, diabetic and renal biomarkers. This review emphasizes the usage and advantages of hybrid nanostructured materials as the recognition matrices toward the detection of vital biomarkers. Different transduction methods (fluorescence, electrophoresis, chemiluminescence, electrochemiluminescence, surface plasmon resonance, surface-enhanced Raman spectroscopy) reported for the biomarkers are discussed comprehensively to present an overview of the current research works. Recent advancements in the electrochemical (amperometric, voltammetric, and impedimetric) sensor systems constructed with metal nanoparticle-derived hybrid composite nanostructures toward the selective detection of chosen vital biomarkers are specifically analyzed. It describes the challenges involved and the strategies reported for the development of selective, sensitive, and disposable electrochemical biosensors with the details of fabrication, functionalization, and applications of hybrid metallic composite nanostructures.
Collapse
Affiliation(s)
- K. Koteshwara Reddy
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - Harshad Bandal
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
| | - Moru Satyanarayana
- Department of ChemistryNational Institute of Technology WarangalWarangalTelangana506004India
| | - Kotagiri Yugender Goud
- Department of ChemistryNational Institute of Technology WarangalWarangalTelangana506004India
| | | | - Tippabattini Jayaramudu
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - John Amalraj
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - Hern Kim
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
| |
Collapse
|
41
|
Otero F, Magner E. Biosensors-Recent Advances and Future Challenges in Electrode Materials. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3561. [PMID: 32586032 PMCID: PMC7349852 DOI: 10.3390/s20123561] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Electrochemical biosensors benefit from the simplicity, sensitivity, and rapid response of electroanalytical devices coupled with the selectivity of biorecognition molecules. The implementation of electrochemical biosensors in a clinical analysis can provide a sensitive and rapid response for the analysis of biomarkers, with the most successful being glucose sensors for diabetes patients. This review summarizes recent work on the use of structured materials such as nanoporous metals, graphene, carbon nanotubes, and ordered mesoporous carbon for biosensing applications. We also describe the use of additive manufacturing (AM) and review recent progress and challenges for the use of AM in biosensing applications.
Collapse
Affiliation(s)
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland;
| |
Collapse
|
42
|
Yousefi F, Movahedpour A, Shabaninejad Z, Ghasemi Y, Rabbani S, Sobnani-Nasab A, Mohammadi S, Hajimoradi B, Rezaei S, Savardashtaki A, Mazoochi M, Mirzaei H. Electrochemical-Based Biosensors: New Diagnosis Platforms for Cardiovascular Disease. Curr Med Chem 2020; 27:2550-2575. [DOI: 10.2174/0929867326666191024114207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 02/05/2023]
Abstract
One of the major reasons for mortality throughout the world is cardiovascular diseases.
Therefore, bio-markers of cardiovascular disease are of high importance to diagnose and manage procedure.
Detecting biomarkers provided a promising procedure in developing bio-sensors. Fast, selective,
portable, accurate, inexpensive, and sensitive biomarker sensing instruments will be necessary for
detecting and predicting diseases. One of the cardiac biomarkers may be ordered as C-reactive proteins,
lipoprotein-linked phospho-lipase, troponin I or T, myoglobin, interleukin-6, interleukin-1, tumor necrosis
factor alpha, LDL and myeloperoxidase. The biomarkers are applied to anticipate cardio-vascular
illnesses. Initial diagnoses of these diseases are possible by several techniques; however, they are laborious
and need costly apparatus. Current researches designed various bio-sensors for resolving the respective
issues. Electrochemical instruments and the proposed bio-sensors are preferred over other
methods due to its inexpensiveness, mobility, reliability, repeatability. The present review comprehensively
dealt with detecting biomarkers of cardiovascular disease through electro-chemical techniques.
Collapse
Affiliation(s)
- Fatemeh Yousefi
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shabaninejad
- Department of Biological Sciences, Faculty of Nanotechnology, Tarbiat Modares University, Tehran, Iran
| | - Younes Ghasemi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Sobnani-Nasab
- Social Determinants of Health (SDH) Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behzad Hajimoradi
- Cardiology Department of Shohaday-e-Tajrish Hospital Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Samaneh Rezaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Mazoochi
- Department of Cardiology, Cardiac Electrophysiology Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
43
|
Demirbakan B, Kemal Sezgintürk M. A novel ultrasensitive immunosensor based on disposable graphite paper electrodes for troponin T detection in cardiovascular disease. Talanta 2020; 213:120779. [DOI: 10.1016/j.talanta.2020.120779] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/09/2020] [Accepted: 01/22/2020] [Indexed: 12/11/2022]
|
44
|
Highly sensitive photoelectrochemical immunosensor based on anatase/rutile TiO2 and Bi2S3 for the zero-biased detection of PSA. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04637-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Pidenko PS, Pidenko SA, Skibina YS, Zacharevich AM, Drozd DD, Goryacheva IY, Burmistrova NA. Molecularly imprinted polyaniline for detection of horseradish peroxidase. Anal Bioanal Chem 2020; 412:6509-6517. [PMID: 32388579 DOI: 10.1007/s00216-020-02689-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022]
Abstract
A new facile and fast approach to the synthesis of polyaniline (PANi) molecularly imprinted polymers (MIPs) based on aniline oxidative chemical polymerization was proposed for protein recognition. For the first time, a surface imprinting strategy was implemented for the synthesis of PANi MIPs on the inner surface of soft glass polycapillaries (PC) with a large (2237) number of individual microcapillaries. Two different PANi layers-(i) PANi film and (ii) protein imprinted PANi nanowires-were synthesized sequentially. Uniform and highly stable PANi film was synthesized by oxidative polymerization at pH< 1. The synthesis of PANi MIPs on the PANi film pre-coated surface improved the reproducibility of PANi MIP formation. PANi MIP nanowires were synthesized at "mild" conditions (pH > 4.5) to preserve the protein template activity. The binding of horseradish peroxidase (HRP) molecules on the PANi MIP selective sites was confirmed by photometry (TMB chromogenic reaction), SEM images, and FTIR spectroscopy. The developed PANi MIPs enable HRP determination with a limit of detection (LOD) as low as 1.00 and 0.07 ng mL-1 on the glass slips and PC, respectively. The PANi MIPs are characterized by high stability; they are reversible and selective to HRP. The proposed approach allows PANi MIPs to be obtained for proteins on different supports and to create new materials for separation and sensing. Graphical abstract.
Collapse
Affiliation(s)
- Pavel S Pidenko
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov, Russia, 410012
| | - Sergei A Pidenko
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov, Russia, 410012
| | - Yulia S Skibina
- SPE LLC Nanostructured Glass Technology, Saratov, 410033, Russia
| | - Andrey M Zacharevich
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov, Russia, 410012
| | - Daniil D Drozd
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov, Russia, 410012
| | - Irina Yu Goryacheva
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov, Russia, 410012
| | - Natalia A Burmistrova
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov, Russia, 410012.
| |
Collapse
|
46
|
Tandon S, George SM, McIntyre R, Kandasubramanian B. Polymeric immunosensors for tumor detection. Biomed Phys Eng Express 2020; 6:032001. [PMID: 33438645 DOI: 10.1088/2057-1976/ab8a75] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer is a broad-spectrum disease which is spread globally, having high mortality rates. This results from genetic, epigenetic and molecular abnormalities caused by various mutations. The main reason behind this critical problem lies in its diagnostics, the late detection of the disease is the root cause of all this. This can be managed well by the timely diagnosis of cancer by means of the tumor biomarkers present in the body fluids such as serum, blood, and urine. These tumor biomarkers are present in normal conditions as well, but their concentrations are altered in the presence of a malignant tumor. Prolonged studies have reported that immunosensors can be used to detect the minimal amount of biomarkers present in the sample and also provides point-of-care detection. The recent investigations demonstrated the use of polymers along with immunosensors for enhancing their selectivity and sensitivity towards the biomarkers and making them even more efficient. This review focuses on the variety of tumor biomarkers, different types of immunosensors and polymeric immunosensors using different polymers like polypyrrole, polyaniline, PHEMA, etc.
Collapse
Affiliation(s)
- Saloni Tandon
- Biotechnology Lab, Center for Converging Technologies, University of Rajasthan, JLN Marg, Jaipur-302004, Rajasthan, India
| | | | | | | |
Collapse
|
47
|
Kondzior M, Grabowska I. Antibody-Electroactive Probe Conjugates Based Electrochemical Immunosensors. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2014. [PMID: 32260217 PMCID: PMC7180895 DOI: 10.3390/s20072014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
Abstract
Suitable immobilization of a biorecognition element, such as an antigen or antibody, on a transducer surface is essential for development of sensitive and analytically reliable immunosensors. In this review, we report on (1) methods of antibody prefunctionalization using electroactive probes, (2) methods for immobilization of such conjugates on the surfaces of electrodes in electrochemical immunosensor construction and (3) the use of antibody-electroactive probe conjugates as bioreceptors and sensor signal generators. We focus on different strategies of antibody functionalization using the redox active probes ferrocene (Fc), anthraquinone (AQ), thionine (Thi), cobalt(III) bipyridine (Co(bpy)33+), Ru(bpy)32+ and horseradish peroxidase (HRP). In addition, new possibilities for antibody functionalization based on bioconjugation techniques are presented. We discuss strategies of specific, quantitative antigen detection based on (i) a sandwich format and (ii) a direct signal generation scheme. Further, the integration of different nanomaterials in the construction of these immunosensors is presented. Lastly, we report the use of a redox probe strategy in multiplexed analyte detection.
Collapse
Affiliation(s)
| | - Iwona Grabowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| |
Collapse
|
48
|
Asghari S, Rezaei Z, Mahmoudifard M. Electrospun nanofibers: a promising horizon toward the detection and treatment of cancer. Analyst 2020; 145:2854-2872. [PMID: 32096500 DOI: 10.1039/c9an01987a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Due to the increase in the number of cancer patients, because of environmental parameters, high stress, low immunity, etc., there is an urgent need to develop cost-effective sensors for early targeted detection of cancerous cells with adequate selectivity and efficiency. Early disease diagnosis is important, as it is necessary to start treatments before disease progression. On the other hand, we need new, more efficient cancer treatment approaches with minimized side effects, more biocompatibility, and easy disposal. Nanobiotechnology is a field that can assist in developing new diagnostic and treatment approaches, specifically in fatal cancers. Herein, a study on the different applications of nanofibers in cancer detection as well as its treatment has been done. Here, a very brief survey on the main structure of biosensors and their different categories has been conducted and will precede the discussion of the study to serve as a reference and guide the reader's understanding.
Collapse
Affiliation(s)
- Sahar Asghari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | | | | |
Collapse
|
49
|
Burmistrova NA, Pidenko PS, Pidenko SA, Zacharevich AM, Skibina YS, Beloglazova NV, Goryacheva IY. Soft glass multi-channel capillaries as a platform for bioimprinting. Talanta 2020; 208:120445. [DOI: 10.1016/j.talanta.2019.120445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
|
50
|
Lin CH, Lin MJ, Huang JD, Chuang YS, Kuo YF, Chen JC, Wu CC. Label-Free Impedimetric Immunosensors Modulated by Protein A/Bovine Serum Albumin Layer for Ultrasensitive Detection of Salbutamol. SENSORS 2020; 20:s20030771. [PMID: 32023863 PMCID: PMC7038488 DOI: 10.3390/s20030771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 11/16/2022]
Abstract
The sensing properties of immunosensors are determined not only by the amount of immobilized antibodies but also by the number of effective antigen-binding sites of the immobilized antibody. Protein A (PA) exhibits a high degree of affinity with the Fc part of IgG antibody to feasibly produce oriented antibody immobilization. This work proposes a simple method to control the PA surface density on gold nanostructure (AuNS)-deposited screen-printed carbon electrodes (SPCEs) by mixing concentration-varied PA and bovine serum albumin (BSA), and to explore the effect of PA density on the affinity attachment of anti-salbutamol (SAL) antibodies by electrochemical impedance spectroscopy. A concentration of 100 μg/mL PA and 100 μg/mL BSA can obtain a saturated coverage on the 3-mercaptoproponic acid (MPA)/AuNS/SPCEs and exhibit a 50% PA density to adsorb the amount of anti-SAL, more than other concentration-varied PA/BSA-modified electrodes. Compared with the randomly immobilized anti-SAL/MPA/AuNS/SPCEs and the anti-SAL/PA(100 μg/mL):BSA(0 μg/mL)/MPA/AuNS/SPCE, the anti-SAL/PA(100 μg/mL): BSA(100 μg/mL)/MPA/AuNS/SPCE-based immunosensors have better sensing properties for SAL detection, with an extremely low detection limit of 0.2 fg/mL and high reproducibility (<2.5% relative standard deviation). The mixture of PA(100 μg/mL):BSA(100 μg/mL) for the modification of AuNS/SPCEs has great promise for forming an optimal protein layer for the oriented adsorption of IgG antibodies to construct ultrasensitive SAL immunosensors.
Collapse
Affiliation(s)
- Chia-Hung Lin
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan; (C.-H.L.); (M.-J.L.); (J.-D.H.); (Y.-S.C.)
| | - Ming-Jie Lin
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan; (C.-H.L.); (M.-J.L.); (J.-D.H.); (Y.-S.C.)
| | - Jie-De Huang
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan; (C.-H.L.); (M.-J.L.); (J.-D.H.); (Y.-S.C.)
| | - Yu-Sheng Chuang
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan; (C.-H.L.); (M.-J.L.); (J.-D.H.); (Y.-S.C.)
| | - Yu-Fen Kuo
- Metal Industries Research & Development Centre, Kaohsiung 811, Taiwan;
| | - Jung-Chih Chen
- Institute of Biomedical Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Correspondence: (J.-C.C.); (C.-C.W.); Tel.: +886-3-5712-121 (ext. 54047) (J.-C.C.); +886-4-2285-1268 (C.-C.W.)
| | - Ching-Chou Wu
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan; (C.-H.L.); (M.-J.L.); (J.-D.H.); (Y.-S.C.)
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan
- Correspondence: (J.-C.C.); (C.-C.W.); Tel.: +886-3-5712-121 (ext. 54047) (J.-C.C.); +886-4-2285-1268 (C.-C.W.)
| |
Collapse
|