1
|
Zheng X, Wu YJ, Wu LM, Zhang L, Zhang L, Jin Z, Gao F, Li QQ, Wang Y, Wu YD. Development and validation of a HPLC-MS/MS method the determination of genistein and equol in serum, urine and follicular fluid. J Pharm Biomed Anal 2025; 260:116800. [PMID: 40086052 DOI: 10.1016/j.jpba.2025.116800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/17/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Soy isoflavones exert estrogen-like synergistic or antagonistic effects by binding to estrogen receptors, and potentially impact the function of female reproductive system, but their distribution profile in human remains little clarified. To determination of genistein (GEN) and equol (EQ) in human urine, serum and follicular fluid (FF), an analytical method based on high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed and validated. The enrichment and clean-up are performed on a solid-phase extraction (SPE) column; the elution is a gradient one, with the mobile phase (A) of 0.1 % (v/v) formic acid aqueous solution and the mobile phase (B) of 0.1 % (v/v) formic acid in acetonitrile; the column temperature is 40 °C. Mass spectrometry is performed using negative ion mode electrospray ionization (ESI -) in multiple reaction monitoring (MRM) mode. The method was validated over the linear ranges of 7.8-1000.0 ng/mL and 39.1-5000.0 ng/mL, for serum and urine, with correlation coefficients (r) of 0.9948-0.9984. The precision, accuracy and stability meet the U.S. Food and Drug Administration guidance. This method has been used to detect genistein (GEN) and equol (EQ) in serum, follicular fluid, and urine, to report equol in follicular fluid for the first time, and to study the correlation between genistein and equol in three body fluids. The study showed that the average concentration of EQ in follicular fluid was 18.5 ng/mL and there was a significant positive Spearman's correlation between concentrations of GEN in serum and FF (r = 0.44, p ≤ 0.05).
Collapse
Affiliation(s)
- Xia Zheng
- Institute of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yue-Jin Wu
- Institute of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Li-Mei Wu
- Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Ling Zhang
- Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Lin Zhang
- Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhen Jin
- Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Fang Gao
- Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qing-Qing Li
- Science and Research Department, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yin Wang
- Institute of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yi-Dan Wu
- Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
2
|
Yan J, Huang J, Peng S, Sun D, Lu W, Song Z, Ma J, You J, Fan H, Chen L, Li J. Recent advances in molecular-imprinting-based solid-phase microextraction for determination of pharmaceutical residues. J Chromatogr A 2025; 1754:466016. [PMID: 40349500 DOI: 10.1016/j.chroma.2025.466016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/16/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
Pharmaceutical residues usually exist in various complicated matrices at trace levels, but pose potential threats to human health and ecological environment. Recognition and determination of the residues are important and urgent. Therefore, efficient sample pretreatment techniques become a research hotspot for the sensitive and precise determination by chromatography and mass spectrometry. Molecular-imprinting-based solid-phase microextraction (MI-SPME) combines the rapidity, high enrichment and solvent-free property of SPME with the specific recognition and selective adsorption ability of molecularly imprinted polymers (MIPs), and shows significant advantages in the highly selective separation and enrichment of drug residues in complex samples. Herein, we review recent advances in MI-SPME for determination of pharmaceutical residues since 2019. Firstly, the basic characteristics and operation process of SPME are briefly introduced, and then the polymerization methods of MIPs including free radical polymerization, in-situ polymerization and sol-gel polymerization, and new imprinting technologies and strategies including surface imprinting, nano-imprinting, dummy template, multi-template/functional monomer imprinting and stimuli-responsive imprinting, are comprehensively overviewed. Then, various modes of MI-SPME device are meticulously discussed, mainly including MIPs-coated fiber SPME, MIPs-based in-tube SPME, dispersible SPME, MIPs in-tip SPME, MIPs stir bar sorptive extraction, and MIPs thin film microextraction. Subsequently, typical application cases of MI-SPME coupled with chromatography and mass spectrometry for the determination of drug residues are summarized, in the fields of food safety, biological medicine and environmental monitoring, specially mentioning chiral drug detection and matrix effects and interferences. Finally, the possible challenges of MI-SPME in drug residue detection are presented, and the research prospects and development trends of MI-SPME are proposed.
Collapse
Affiliation(s)
- Jingyi Yan
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; Shandong Key Laboratory of Coastal Environmental Processes, Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jingying Huang
- Shandong Key Laboratory of Coastal Environmental Processes, Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Siyuan Peng
- Shandong Key Laboratory of Coastal Environmental Processes, Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Dani Sun
- Shandong Key Laboratory of Coastal Environmental Processes, Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Wenhui Lu
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhihua Song
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jiping Ma
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Jinmao You
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Huaying Fan
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Lingxin Chen
- Shandong Key Laboratory of Coastal Environmental Processes, Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jinhua Li
- Shandong Key Laboratory of Coastal Environmental Processes, Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
3
|
Liu S, Wu Y, Liu T, Ye J, Li L, Guan X, Wang S. Development of an Integrated Multifunctional Column for Rapid Pretreatment and Determination of Trichothecenes in Cereals and Feeds with HPLC-MS/MS. Foods 2025; 14:1466. [PMID: 40361548 DOI: 10.3390/foods14091466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
The frequent detection of trichothecenes in grains highlights critical health risks to humans and animals. Based on the hybrid sorbent strategies, this study developed an innovative multifunctional column (ASAG563) integrating extraction, purification, and filtration to address limitations of existing methods, including cumbersome process, protracted duration, harmful to the environment, and significant matrix interference. Coupled with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), the ASAG563 column demonstrated superior recoveries (80.8-117.8%) and quantification limits (2.02~48.41 µg/kg) across cereals and feeds, with low relative standard deviations (<6.8%). Compared to commercial MFCs, the ASAG563 column simplified the process, reduced material consumption, saved 50% of analysis time, and effectively eliminated matrix effects. Analysis of 512 maize for feedstuff samples from Northeast China revealed significant contaminations with deoxynivalenol (DON) and its derivatives, emphasizing the necessity for enhanced regulatory measures. This novel integrated multifunctional pretreatment column presents a convenient, cost-effective, and eco-friendly solution for accurate TCT detection, significantly advancing analytical capabilities.
Collapse
Affiliation(s)
- Sisi Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- NFSRA Key Laboratory of Grain and Oil Quality and Safety, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Yu Wu
- NFSRA Key Laboratory of Grain and Oil Quality and Safety, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Tongtong Liu
- NFSRA Key Laboratory of Grain and Oil Quality and Safety, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Jin Ye
- NFSRA Key Laboratory of Grain and Oil Quality and Safety, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Li Li
- NFSRA Key Laboratory of Grain and Oil Quality and Safety, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Songxue Wang
- NFSRA Key Laboratory of Grain and Oil Quality and Safety, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| |
Collapse
|
4
|
Fan Z, Yu W, Liu Z. Ultra performance liquid chromatography with ultrasound assisted magnetic ionic liquid dispersive liquid liquid microextraction for determination of 20 neurotransmitters in spinal cords. Sci Rep 2025; 15:5151. [PMID: 39934216 PMCID: PMC11814097 DOI: 10.1038/s41598-025-89692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
Neurotransmitters (NTs) are essential for modulating nerve signal transmission in the spinal cord, and this study aims to develop a highly sensitive, rapid, and accurate method for analyzing NTs in rat spinal cord tissue. This advancement is crucial for improving clinical diagnosis and management of neurological disorders. Ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry (UPLC-QqQ/MS2) in conjunction with ultra-ionic liquid dispersive liquid-liquid microextraction (UA-MIL-DLLME) were employed to extract 20 NTs. Among the two magnetic ionic liquids (MILs) tested, [P6,6,6,14]2[CoCl4] was chosen as the extraction solvent due to its distinct properties, including visual recognition, paramagnetism, and high extraction efficiency. The method features efficient magnetic separation using an external magnetic field. Meanwhile, the color of the ionic liquid itself makes the extraction process easier to observe. To enhance extraction efficiency, the hydrophilic ionic liquid [BMIM]BF4 was utilized as the dispersion solvent, and parameters such as MIL type, solvent amount, extraction time, salt concentration, and pH were systematically optimized. The resulting method demonstrated high precision, a broad linear range, and low detection limits, with satisfactory recovery rates for all 20 NTs analyzed. Given its exceptional analytical performance, this technology has broad prospects in the analysis of the nervous system.
Collapse
Affiliation(s)
- Zheyuan Fan
- Department of Wound repair, Plastic and reconstructive microsurgery, China-Japan Union Hospital, Jilin University, Xiantai Street 126, Changchun, 130033, People's Republic of China
| | - Wei Yu
- Department of Wound repair, Plastic and reconstructive microsurgery, China-Japan Union Hospital, Jilin University, Xiantai Street 126, Changchun, 130033, People's Republic of China.
| | - Zhongling Liu
- China-Japan Union Hospital, Jilin University, Xiantai Street 126, Changchun, 130033, People's Republic of China.
| |
Collapse
|
5
|
Kataoka H, Ishizaki A, Saito K, Ehara K. Developments and Applications of Molecularly Imprinted Polymer-Based In-Tube Solid Phase Microextraction Technique for Efficient Sample Preparation. Molecules 2024; 29:4472. [PMID: 39339467 PMCID: PMC11433927 DOI: 10.3390/molecules29184472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Despite advancements in the sensitivity and performance of analytical instruments, sample preparation remains a bottleneck in the analytical process. Currently, solid-phase extraction is more widely used than traditional organic solvent extraction due to its ease of use and lower solvent requirements. Moreover, various microextraction techniques such as micro solid-phase extraction, dispersive micro solid-phase extraction, solid-phase microextraction, stir bar sorptive extraction, liquid-phase microextraction, and magnetic bead extraction have been developed to minimize sample size, reduce solvent usage, and enable automation. Among these, in-tube solid-phase microextraction (IT-SPME) using capillaries as extraction devices has gained attention as an advanced "green extraction technique" that combines miniaturization, on-line automation, and reduced solvent consumption. Capillary tubes in IT-SPME are categorized into configurations: inner-wall-coated, particle-packed, fiber-packed, and rod monolith, operating either in a draw/eject system or a flow-through system. Additionally, the developments of novel adsorbents such as monoliths, ionic liquids, restricted-access materials, molecularly imprinted polymers (MIPs), graphene, carbon nanotubes, inorganic nanoparticles, and organometallic frameworks have improved extraction efficiency and selectivity. MIPs, in particular, are stable, custom-made polymers with molecular recognition capabilities formed during synthesis, making them exceptional "smart adsorbents" for selective sample preparation. The MIP fabrication process involves three main stages: pre-arrangement for recognition capability, polymerization, and template removal. After forming the template-monomer complex, polymerization creates a polymer network where the template molecules are anchored, and the final step involves removing the template to produce an MIP with cavities complementary to the template molecules. This review is the first paper to focus on advanced MIP-based IT-SPME, which integrates the selectivity of MIPs into efficient IT-SPME, and summarizes its recent developments and applications.
Collapse
Affiliation(s)
- Hiroyuki Kataoka
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan
| | - Atsushi Ishizaki
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan
| | - Keita Saito
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan
| | - Kentaro Ehara
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan
| |
Collapse
|
6
|
Manousi N, Kabir Α, Furton KG, Zacharis CK. Ionic-liquid/Carbowax 20 M functionalized capsule phase microextraction platform for the extraction of phosphodiesterase-5 inhibitors from human serum and urine prior to their determination by LC-MS. J Chromatogr A 2024; 1730:465157. [PMID: 39025028 DOI: 10.1016/j.chroma.2024.465157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Capsule phase microextraction (CPME) is an efficient bioanalytical technique that streamlines the sample preparation by integrating the filtration and stirring mechanism directly into the device. A novel composite sorbent designed to be selective towards the target analytes consisting of mixed-mode sorbent chemistry synthesized by sol-gel technology is found promising and superior to the conventional C18 sorbents. Herein we describe the encapsulation of an ionic liquid (IL)/Carbowax 20M-functionalized sol-gel sorbent (sol-gel IL/Carbowax 20 M) in the lumen of porous polypropylene tubes for the capsule phase microextraction of three phosphodiesterase-5 inhibitors namely avanafil, sildenafil, and tadalafil in human serum and urine samples. The CPME device was characterized by Scanning Electron Microscopy (SEM) and Fourier-Transform Infrared Spectroscopy (FT-IR). The experimental parameters of CPME procedure (e.g. sample pH and ionic strength, extraction time, stirring rate, elution solvent and volume) were carefully optimized to achieve the highest possible extraction efficiency for the analytes. Method validation was conducted in terms of precision, linearity, accuracy, matrix effect, lower limits of quantification, and limits of detection (LOD). The method linearity was investigated in the range of 50-1000 ng mL-1 for all analytes while the precision was less than 11.8 % in all cases. For all analytes, the LOD values were 17 ng mL-1. The IL/CW 20M-functionalized microextraction capsules could be reused at least 25 times both for urine and serum samples. The green character and the applicability of the proposed method were evaluated using the ComplexGAPI and BAGI indexes. The optimized CPME protocol exhibited reduced consumption of organic solvent and generation of waste, cost-effectiveness, and simplicity. Finally, the proposed method was successfully applied to the analysis of sildenafil in human urine after administration of drug-containing formulation.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Αbuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.
| | - Kenneth G Furton
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Constantinos K Zacharis
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
7
|
Qian M, Zhang Y, Bian Y, Feng XS, Zhang ZB. Nitrophenols in the environment: An update on pretreatment and analysis techniques since 2017. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116611. [PMID: 38909393 DOI: 10.1016/j.ecoenv.2024.116611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
Nitrophenols, a versatile intermediate, have been widely used in leather, medicine, chemical synthesis, and other fields. Because these components are widely applied, they can enter the environment through various routes, leading to many hazards and toxicities. There has been a recent surge in the development of simple, rapid, environmentally friendly, and effective techniques for determining these environmental pollutants. This review provides a comprehensive overview of the latest research progress on the pretreatment and analysis methods of nitrophenols since 2017, with a focus on environmental samples. Pretreatment methods include liquid-liquid extraction, solid-phase extraction, dispersive extraction, and microextraction methods. Analysis methods mainly include liquid chromatography-based methods, gas chromatography-based methods, supercritical fluid chromatography. In addition, this review also discusses and compares the advantages/disadvantages and development prospects of different pretreatment and analysis methods to provide a reference for further research.
Collapse
Affiliation(s)
- Min Qian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Zhong-Bo Zhang
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
8
|
Deng S, Tan W, Xiong Y, Xie Z, Zhang J. Selective adsorption of zearalenone by a novel magnetic molecularly imprinted carbon nanomaterial. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30484-30496. [PMID: 38607490 DOI: 10.1007/s11356-024-33249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
In this paper, the objective is to immobilize molecularly imprinted polymers (MIPs) onto the surface of magnetic carbon nanoparticles (Fe3O4@SiO2@C) to develop an effective method for the adsorption of zearalenone (ZEN). The prepared products were characterized by FT-IR, SEM, TEM, XRD, VSM, TGA, and BET. The content of zearalenone in corn samples was monitored by HPLC. The results indicate that the particle size of magnetic molecularly imprinted polymers (MMIPs) is approximately 200 nm. The adsorption mechanism of MMIPs was confirmed by static adsorption and dynamic adsorption experiments. The maximum adsorption capacity was 1.56 mg/g, and the adsorption equilibrium was reached within 50 min. The scatchard model showed that MMIPs had two binding sites, a high-affinity binding site and a low-affinity site. Kinetic second-order fitting indicates that MMIPs are mainly through chemisorption. In the actual sample application, the limit of detection (LOD) and limit of quantitation (LOQ) were 0.3 mg/L and 0.9 mg/L, respectively. The recovery of corn with the standard addition of ZEN was 73.6-88.1%, and the relative standard deviation (RSD) was 2.86-5.63%. The results demonstrated that MMIPs possess the advantages of straightforward operation, high precision, and cost-effectiveness, rendering them suitable for rapid ZEN detection.
Collapse
Affiliation(s)
- ShaoLin Deng
- School of Chemical Engineering, Sichuan University of Science & Engineering, 180 Xuyuan Street, Huixing Road, Zigong, 643000, China
| | - WenYuan Tan
- School of Chemical Engineering, Sichuan University of Science & Engineering, 180 Xuyuan Street, Huixing Road, Zigong, 643000, China.
| | - YaLin Xiong
- School of Chemical Engineering, Sichuan University of Science & Engineering, 180 Xuyuan Street, Huixing Road, Zigong, 643000, China
| | - ZhiJin Xie
- School of Chemical Engineering, Sichuan University of Science & Engineering, 180 Xuyuan Street, Huixing Road, Zigong, 643000, China
| | - Jing Zhang
- School of Chemical Engineering, Sichuan University of Science & Engineering, 180 Xuyuan Street, Huixing Road, Zigong, 643000, China
| |
Collapse
|
9
|
Tuli A, Suresh G, Halder N, Velpandian T. Analysis and remediation of phthalates in aquatic matrices: current perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23408-23434. [PMID: 38456985 DOI: 10.1007/s11356-024-32670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Phthalic acid esters (PAEs) are high production volume chemicals used extensively as plasticizers, to increase the flexibility of the main polymer. They are reported to leach into their surroundings from plastic products and are now a ubiquitous environmental contaminant. Phthalate levels have been determined in several environmental matrices, especially in water. These levels serve as an indicator of plasticizer abuse and plastic pollution, and also serve as a route of exposure to different species including humans. Reports published on effects of different PAEs on experimental models demonstrate their carcinogenic, teratogenic, reproductive, and endocrine disruptive effects. Therefore, regular monitoring and remediation of environmental water samples is essential to ascertain their hazard quotient and daily exposure levels. This review summarises the extraction and detection techniques available for phthalate analysis in water samples such as chromatography, biosensors, immunoassays, and spectroscopy. Current remediation strategies for phthalate removal such as adsorption, advanced oxidation, and microbial degradation have also been highlighted.
Collapse
Affiliation(s)
- Anannya Tuli
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Gayatri Suresh
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Nabanita Halder
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Thirumurthy Velpandian
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
10
|
Leszczyńska D, Hallmann A, Treder N, Bączek T, Roszkowska A. Recent advances in the use of SPME for drug analysis in clinical, toxicological, and forensic medicine studies. Talanta 2024; 270:125613. [PMID: 38159351 DOI: 10.1016/j.talanta.2023.125613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Solid-phase microextraction (SPME) has gained attention as a simple, fast, and non-exhaustive extraction technique, as its unique features enable its use for the extraction of many classes of drugs from biological matrices. This sample-preparation approach consolidates sampling and sample preparation into a single step, in addition to providing analyte preconcentration and sample clean-up. These features have helped SPME become an integral part of several analytical protocols for monitoring drug concentrations in human matrices in clinical, toxicological, and forensic medicine studies. Over the years, researchers have continued to develop the SPME technique, resulting in the introduction of novel sorbents and geometries, which have resulted in improved extraction efficiencies. This review summarizes developments and applications of SPME published between 2016 and 2022, specifically in relation to the analysis of central nervous system drugs, drugs used to treat cardiovascular disorders and bacterial infections, and drugs used in immunosuppressive and anticancer therapies.
Collapse
Affiliation(s)
- Dagmara Leszczyńska
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Gdańsk, 80-211, Poland
| | - Anna Hallmann
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Gdańsk, 80-211, Poland
| | - Natalia Treder
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, 80-416, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, 80-416, Poland
| | - Anna Roszkowska
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, 80-416, Poland.
| |
Collapse
|
11
|
Batista LFA, Gonçalves SRS, Bressan CD, Grassi MT, Abate G. Evaluation of organo-vermiculites as sorbent phases for solid-phase extraction of ibuprofen from water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1880-1886. [PMID: 38469698 DOI: 10.1039/d3ay02291a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The study of ibuprofen (IBU) preconcentration was carried out making use of a homemade column for solid-phase extraction (SPE), using vermiculite (VT) or organo-vermiculites (OVTs) as sorbent phases. Aqueous samples (50.0 mL) percolated the column and IBU was sorbed onto the VT or OVT and then desorbed using acetonitrile. Employing this SPE system and OVT, calibration curves were generated for IBU, by spectrophotometric quantification using the α-naphthylamine method. R2 values higher than 0.9950 and LOD between 12 and 18 μg L-1 were observed, for real enrichment factors of 21 and 31, by using OVTs. The analytical protocol was applied to three water samples, which were spiked with IBU solutions to evaluate the precision and accuracy of the method. Recoveries between 77 and 110% at three different IBU concentrations and RSD lower than 18% were observed, even by using the spectrophotometric method. The protocol developed in this study demonstrated that the OVT was appropriate to work as a preconcentration phase for IBU determination in water samples.
Collapse
Affiliation(s)
- Luis Fernando A Batista
- Departamento de Química, Universidade Federal do Paraná (UFPR), Centro Politécnico, C. P. 19032, Curitiba, PR, Brazil, CEP 81531-980.
| | - Sara Renata S Gonçalves
- Departamento de Química, Universidade Federal do Paraná (UFPR), Centro Politécnico, C. P. 19032, Curitiba, PR, Brazil, CEP 81531-980.
| | - Carolina D Bressan
- Departamento de Química, Universidade Federal do Paraná (UFPR), Centro Politécnico, C. P. 19032, Curitiba, PR, Brazil, CEP 81531-980.
| | - Marco T Grassi
- Departamento de Química, Universidade Federal do Paraná (UFPR), Centro Politécnico, C. P. 19032, Curitiba, PR, Brazil, CEP 81531-980.
| | - Gilberto Abate
- Departamento de Química, Universidade Federal do Paraná (UFPR), Centro Politécnico, C. P. 19032, Curitiba, PR, Brazil, CEP 81531-980.
| |
Collapse
|
12
|
Huang J, Li J, Meng W, Su G. A critical review on organophosphate esters in drinking water: Analysis, occurrence, sources, and human health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169663. [PMID: 38159759 DOI: 10.1016/j.scitotenv.2023.169663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Organophosphate esters (OPEs) are ubiquitous in the environment. Copious studies assessed OPEs in various environmental media. However, there is limited summative information about OPEs in drinking water. This review provides comprehensive data for the analytical methods, occurrence, sources, and risk assessment of OPEs in drinking water. In general, liquid-liquid extraction and solid-phase extraction are the most common methods in the extraction of OPEs from drinking water, while gas chromatography and liquid chromatography are the most commonly used instrumental methods for detecting OPEs in drinking water. On the basis of these techniques, a variety of methods on OPEs pretreatment and determination have been developed to know the pollution situation of OPEs. Studies on the occurrence of OPEs in drinking water show that the total concentrations of OPEs vary seasonally and regionally, with tris(1-chloro-2-isopropyl) phosphate and tris(2-chloroethyl) phosphate dominant among different kinds of drinking water. Source identification studies show that there are three main sources of OPEs in drinking water: 1) source water contamination; 2) residual in drinking water treatment process; 3) leakage from device or pipeline. Besides, risk assessments indicate that individual and total OPEs pose no or negligible health risk to human, but this result may be significantly underestimated. Finally, the current knowledge gaps on the research of OPEs in drinking water are discussed and some suggestions are provided for future environmental research.
Collapse
Affiliation(s)
- Jianan Huang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jianhua Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weikun Meng
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
13
|
de Sousa DVM, Orlando RM, Pereira FV. Layer-by-layer assembly of PDDA/MWCNTs thin films as an efficient strategy for extraction of organic compounds from complex samples. J Chromatogr A 2024; 1717:464705. [PMID: 38310702 DOI: 10.1016/j.chroma.2024.464705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
This article presents the assembly and characterization of poly(diallyldimethylammonium chloride)/multi-walled carbon nanotubes (PDDA/MWCNTs) thin films on borosilicate bottles using a layer-by-layer (LBL) approach. The thin films, consisting of 10 bilayers of coating materials, were thoroughly characterized using UV-VIS spectroscopy, scanning electron microscopy (SEM), and zeta potential measurements. The modified bottles were then utilized for the extraction of analytes with diverse acid-base characteristics, including drugs, illicit drugs, and pesticides, from saliva, urine, and surface water samples. The studied analytes can be adsorbed on the surface of the LBL film mainly through hydrogen bonding and/or hydrophobic interactions. Remarkably high extraction percentages of up to 92 % were achieved, accompanied by an impressive enhancement in the analytical signal of up to 12 times when the sample volume was increased from 0.7 to 10 mL. These results highlight the outstanding extraction and sorption capabilities of the developed material. Additionally, the (PDDA/MWCNTs)10 films exhibited notable resistance to extraction and desorption processes, enabling their reuse for at least 5 cycles. The straightforward and cost-effective fabrication of these sorbent materials using the LBL technique, combined with the ability to extract target compounds during sample transportation and/or storage, renders this sample preparation method a promising alternative.
Collapse
Affiliation(s)
- Denise V Monteiro de Sousa
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG CEP 31270-901, Brazil
| | - Ricardo Mathias Orlando
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG CEP 31270-901, Brazil
| | - Fabiano Vargas Pereira
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG CEP 31270-901, Brazil.
| |
Collapse
|
14
|
Sha Y, Yu H, Xiong J, Wang J, Fei T, Wu D, Yang K, Zhang L. Separation and purification of active ingredients in tobacco by free-flow electrophoresis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5885-5890. [PMID: 37905587 DOI: 10.1039/d3ay01708g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The active ingredients from tobacco extracts were continuously separated and purified using a homemade free-flow electrophoresis apparatus. A rectangular free flow electrophoresis device was constructed for the continuous separation and preparation, and the operating conditions of the device were optimized. The fractions obtained from the free-flowing component collection unit were then detected by HPLC and GC-MS. The results showed that a 90% methanol-water solution could maximize the extraction of the active components from tobacco. Chlorogenic acid and nicotine were enriched in three and four of 24 fractions, respectively, after free-flow isoelectric focusing electrophoresis. 2-Hydroxy-2-cyclopentene-1-one, 1-(2-methyl-1,3-oxathiolan-2-yl) ethanone, nornicotine, cotinine, and scopolamine were separated and enriched synchronously. Overall, the use of free-flow electrophoresis technology for the separation and purification of the active substances in tobacco can improve the comprehensive utilization rate of tobacco.
Collapse
Affiliation(s)
- Yunfei Sha
- Key Laboratory of Cigarette Smoke, Technology Center of Shanghai Tobacco Group Co. Ltd, Shanghai, 200082, China
| | - Haoran Yu
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Junwei Xiong
- Key Laboratory of Cigarette Smoke, Technology Center of Shanghai Tobacco Group Co. Ltd, Shanghai, 200082, China
| | - Junfeng Wang
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Ting Fei
- Key Laboratory of Cigarette Smoke, Technology Center of Shanghai Tobacco Group Co. Ltd, Shanghai, 200082, China
| | - Da Wu
- Key Laboratory of Cigarette Smoke, Technology Center of Shanghai Tobacco Group Co. Ltd, Shanghai, 200082, China
| | - Kai Yang
- Key Laboratory of Cigarette Smoke, Technology Center of Shanghai Tobacco Group Co. Ltd, Shanghai, 200082, China
| | - Lei Zhang
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
15
|
Yin J, Guo W, Li X, Ding H, Han L, Yang X, Zhu L, Li F, Bie S, Song X, Yu H, Li Z. Extensive evaluation of plasma metabolic sample preparation process based on liquid chromatography-mass spectrometry and its application in the in vivo metabolism of Shuang-Huang-Lian powder injection. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123808. [PMID: 37453388 DOI: 10.1016/j.jchromb.2023.123808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/04/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Shuang-Huang-Lian powder injection (SHLPI) is a natural drug injection made of honeysuckle, scutellaria baicalensis and forsythia suspensa. It has the characteristics of complex chemical composition and difficult metabolism research in vivo. LC-MS platform has been proven to be an important analytical technology in plasma metabolomics. Unfortunately, the lack of an effective sample preparation strategy before analysis often significantly impacts experimental results. In this work, twenty-one extraction protocols including eight protein precipitation (PPT), eight liquid-liquid extractions (LLE), four solid-phase extractions (SPE), and one ultrafiltration (U) were simultaneously evaluated using plasma metabolism of SHLPI in vivo. In addition, a strategy of "feature ion extraction of the multi-component metabolic platform of traditional Chinese medicine" (FMM strategy) was proposed for the in-depth characterization of metabolites after intravenous injection of SHLPI in rats. The results showed that the LLE-3 protocol (Pentanol:Tetrahydrofuran:H2O, 1:4:35, v:v:v) was the most effective strategy in the in vivo metabolic detection of SHLPI. Furthermore, we used the FMM strategy to elaborate the in vivo metabolic pathways of six representative substances in SHLPI components. This research was completed by ion migration quadrupole time of flight mass spectrometer combined with ultra high performance liquid chromatography (UPLC/Vion™-IMS-QTof-MS) and UNIFI™ metabolic platform. The results showed that 114 metabolites were identified or preliminarily identified in rat plasma. This work provides relevant data and information for further research on the pharmacodynamic substances and in vivo mechanisms of SHLPI. Meanwhile, it also proves that LLE-3 and FMM strategies could achieve the in-depth characterization of complex natural drug metabolites related to Shuang-Huang-Lian in vivo.
Collapse
Affiliation(s)
- Jiaxin Yin
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Tuanbo New Town, Jinghai District, Tianjin 301617, PR China
| | - Wen Guo
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Tuanbo New Town, Jinghai District, Tianjin 301617, PR China
| | - Xuejuan Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Tuanbo New Town, Jinghai District, Tianjin 301617, PR China
| | - Hui Ding
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Tuanbo New Town, Jinghai District, Tianjin 301617, PR China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Xiangdong Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Limin Zhu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Fangyi Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Tuanbo New Town, Jinghai District, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Songtao Bie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Tuanbo New Town, Jinghai District, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Xinbo Song
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Tuanbo New Town, Jinghai District, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Heshui Yu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Tuanbo New Town, Jinghai District, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Tuanbo New Town, Jinghai District, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
16
|
Shi X, Sun F, Liu H, Yan H, Bai L. Extraction and Determination of Evodiamine from Euodia Fructus with SPE-HPLC Based on a Homemade Phenyl-Based Monolithic Cartridge. J Chromatogr Sci 2023; 61:579-584. [PMID: 35870202 DOI: 10.1093/chromsci/bmac062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Indexed: 07/20/2023]
Abstract
A phenyl-based monolithic adsorbent was prepared in a 50-mm-long stainless steel tube, which was initiated by the redox system, using ethylene glycol phenyl ether acrylate as the monomer and ethylene glycol dimethacrylate as the crosslinker. The effects of monomer/crosslinker ratio and the porogens on the permeability and morphology of the resulting adsorbents were investigated, and the optimal adsorbent shows relatively uniform pore structure according to the characterizations of scanning electron microscopy and nitrogen adsorption-desorption method. The column that filled with the adsorbent was used as the solid-phase extraction (SPE) cartridge, exhibiting unique selectivity for the extraction of evodiamine from Euodia fructus (the fruits of Euodia rutaecarpa (Juss.)Benth.), which attributes to the interactions of π-π and hydrogen bonding between the adsorbent and evodiamine. Combined with a C18 analytical column via high-performance liquid chromatography (HPLC) system, an online SPE-HPLC method was established for extraction, enrichment and determination of evodiamine from Euodia fructus. Method validation demonstrates that the relative standard deviation of the precision is less than 0.66%, and the spiked recovery is in the range of 93.11-98.06%. Furthermore, it is worth noting that the prepared SPE cartridge can be reused for no less than 100 times. These results show that the developed method is simple and efficient for online extraction and enrichment of evodiamine from Euodia fructus.
Collapse
Affiliation(s)
- Xiaoqian Shi
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Fanrong Sun
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Baoding, 071002, China
| | - Haiyan Liu
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Baoding, 071002, China
| | - Hongyuan Yan
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Baoding, 071002, China
| | - Ligai Bai
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Baoding, 071002, China
| |
Collapse
|
17
|
Zhang DX, Wang MY, Lin WB, Qu S, Ji L, Xu C, Kan H, Dong K. Recent advances in emerging application of functional materials in sample pretreatment methods for liquid chromatography-mass spectrometry analysis of plant growth regulators: A mini-review. J Chromatogr A 2023; 1704:464130. [PMID: 37302252 DOI: 10.1016/j.chroma.2023.464130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/04/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
Plant growth regulators (PGRs) are a class of small molecular compounds, which can remarkably affect the physiological process of plants. The complex plant matrix along with a wide polarity range and unstable chemical properties of PGRs hinder their trace analysis. In order to obtain a reliable and accurate result, a sample pretreatment process must be carried out, including eliminating the interference of the matrix effect and pre-concentrating the analytes. In recent years, the research of functional materials in sample pretreatment has experienced rapid growth. This review comprehensively overviews recent development in functional materials covering one-dimensional materials, two-dimensional materials, and three-dimensional materials applied in the pretreatment of PGRs before liquid chromatography-mass spectrometry (LC-MS) analysis. Besides, the advantages and limitations of the above functionalized enrichment materials are discussed, and their future trends have been prospected. The work could be helpful to bring new insights for researchers engaged in functional materials in sample pretreatment of PGRs based on LC-MS.
Collapse
Affiliation(s)
- Dong-Xue Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Ming-Yue Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Wen-Bo Lin
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Shuai Qu
- Biology Institute of Jilin province, 1244 Qianjin Street, Changchun 130012, Jilin, China
| | - Li Ji
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Chen Xu
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Hong Kan
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China.
| | - Kai Dong
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China.
| |
Collapse
|
18
|
Ding X, Liu C, Yu W, Liu Z. Magnetic ionic liquid-based liquid-liquid microextraction followed by ultra-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry for simultaneous determination of neurotransmitters in human cerebrospinal fluid and plasma. Talanta 2023; 262:124690. [PMID: 37229812 DOI: 10.1016/j.talanta.2023.124690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
A green, efficient and easy sample pretreatment method of magnetic ionic liquid-based liquid-liquid microextraction (MIL-based LLME) combined with a sensitive, rapid and precise analytical method of ultra-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UPLC-QqQ/MS2) was developed to simultaneously - determining of neurotransmitters (NTs) in biosamples. Two magnetic ionic liquids (MILs), [P6,6,6,14]3[GdCl6] and [P6,6,6,14]2[CoCl4] tested, and the latter was selected as the extraction solvent due to its advantages of visual recognition, paramagnetic behavior and higher extraction efficiency. Facile magnetic separation of MIL containing analytes from matrix was realized by applying external magnetic field without rather than centrifugation. Experimental parameters that would influence the extraction efficiency, including type and amount of MIL, extraction time, speed of the vortex process, salt concentration, and environmental pH, were optimized obtained. The proposed method was successfully applied to the simultaneous extraction and determination of 20 NTs in human cerebrospinal fluid and plasma samples. Excellent analytical performance indicates the broad potential of this method for clinical diagnosis and therapy of neurological diseases.
Collapse
Affiliation(s)
- Xiangdong Ding
- Department of Plastic and reconstructive Microsurgery, China-Japan Union Hospital, Jilin University, Xiantai Street 126, Changchun, 130033, PR China
| | - Chao Liu
- Department of Medical Cosmetology, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, PR China
| | - Wei Yu
- Department of Plastic and reconstructive Microsurgery, China-Japan Union Hospital, Jilin University, Xiantai Street 126, Changchun, 130033, PR China.
| | - Zhongling Liu
- China-Japan Union Hospital, Jilin University, Xiantai Street 126, Changchun, 130033, PR China.
| |
Collapse
|
19
|
Suwanvecho C, Krčmová LK, Švec F. Effective, convenient, and green sample preparation for the determination of retinol and retinol acetate in human serum using pipette tip microextraction. Talanta 2023; 262:124689. [PMID: 37220691 DOI: 10.1016/j.talanta.2023.124689] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/25/2023]
Abstract
An efficient sample preparation based on pipette tip microextraction that can be used for the analysis of retinol in human serum has been developed. Altogether, nine commercial pipette tips were compared based on recovery, sample volume, use of organic solvent, handling difficulty, duration of the preparation process, price, and greenness of the method. Retinol acetate was used as the internal standard. The extraction efficiency for both compounds was evaluated to optimize and select the best pipette tip for sample preparation, which was the WAX-S XTR pipette tip containing an ion exchanger and salt. This tip combined solid phase extraction and salting-out assisted liquid‒liquid extraction. Satisfying recoveries of 100 and 80% for retinol and retinol acetate, respectively, and good repeatability were demonstrated. The action of this pipette tip was based on the clean-up workflow in which the interferences were retained on the sorbent. The presence of residual interferences in the extracted samples did not affect the HPLC separation of compounds of interest. The simplicity of the clean-up workflow reduced the time of the sample preparation compared to the bind-wash-elute counterpart workflow. The advantages of our technique are its environmental friendliness and cost effectiveness. The selected pipette tip with an excellent microextraction efficiency enables sample preparation in both clinical research and practice.
Collapse
Affiliation(s)
- Chaweewan Suwanvecho
- The Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic; The Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- The Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic; The Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05, Hradec Králové, Czech Republic.
| | - František Švec
- The Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| |
Collapse
|
20
|
Gemuh CV, Bezrouk A, Pérez R, Ayala C, Solich P, Horstkotte B. Solvent-assisted dispersive micro-solid phase extraction of bisphenols using iron(III) thenoyltrifluoroacetonate complex (Fe(TTA) 3) as a new nanostructured sorbent: a proof of concept. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2061-2072. [PMID: 36916662 DOI: 10.1039/d3ay00214d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In this work, we describe for the first time the use of iron(III) thenoyltrifluoroacetonate complex (Fe(TTA)3) as a novel sorbent for solvent-assisted dispersive micro-solid phase extraction (SA-dμSPE) of bisphenols from water samples. The extraction procedure is based on the formation of nanoparticles in situ following the rapid injection of a methanolic solution of Fe(TTA)3 into the stirred aqueous sample. Herein, the synthesis of Fe(TTA)3 and study of the essential parameters of the preparative procedure are described. The optimized procedure allowed for efficient enrichment of bisphenols from various water samples, chosen as model contaminants and matrix, within 2.5 min. The sorbent was collected by centrifugation, dissolved in methanol, and injected to perform HPLC with spectrophotometric detection. The limits of detection and quantification obtained ranged from 1.0-3.1 and 3.1-7.5 μg L-1, respectively. Intraday and interday precisions of <7% relative standard deviation (RSD) and <8% RSD with analyte recoveries ranging between 70-117% (103.8% on average) were obtained for the analysis of river water, wastewater treatment plant effluent, and bottled water.
Collapse
Affiliation(s)
- Celestine Vubangsi Gemuh
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Aleš Bezrouk
- Department of Medical Biophysics, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic
| | - Rocío Pérez
- Chemistry Department, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Caitlan Ayala
- Chemistry Department, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Petr Solich
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Burkhard Horstkotte
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
21
|
Wang L, Hou L, Han S, Guo H, Bai L. Extraction and determination of terpenoids from Zexie Decoction based on a porous organic cage-doped monolithic cartridge. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1218:123648. [PMID: 36863242 DOI: 10.1016/j.jchromb.2023.123648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
A monolithic solid-phase extraction (SPE) cartridge packed with a composite adsorbent was fabricated via polymerization using dodecene as the monomer with the porous organic cage (POC) material doped, combing with an analytical column through a high-performance liquid chromatography (HPLC) instrument, which was used for the online extraction and separation of 23-acetyl alismol C, atractylodes lactone II and atractylodes lactone III from Zexie Decoction. The POC-doped adsorbent shows porous structure with a relatively high specific surface area of 85.50 m2/g, which was obtained from the characterizations of a scanning electron microscope and an automatic surface area and porosity analyser. Efficient extraction and separation of three target terpenoids was achieved by an online SPE-HPLC method based on the POC-doped cartridge, which exhibits strong matrix-removal ability and good terpenoids-retention ability with a high adsorption capacity, due to the interactions of hydrogen bond and hydrophobicity between the terpenoids and the POC-doped adsorbent. Method validation shows good linearity (r ≥ 0.9998) of the regression equation, and high accuracy with the spiked recovery in the range of 99.2 %-100.8 % of the proposed method. Compared to the generally disposable adsorbent, this work fabricated a reusable monolithic cartridge, which can be used for at least 100 times, with the RSD based on the peak area of the three terpenoids less than 6.6 %.
Collapse
Affiliation(s)
- Laisen Wang
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Liyue Hou
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Siliang Han
- Affiliated Hospital of Hebei University, Baoding 071002, China
| | - Huaizhong Guo
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Ligai Bai
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China.
| |
Collapse
|
22
|
Liu M, Lu S, Liu H, Yan H, Bai L. Determination and isolation of purpurin and mollugin from Rubiae Radix ET Rhizoma based on a monolithic adsorbent prepared by bio-monomer. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
23
|
Suzaei FM, Daryanavard SM, Abdel-Rehim A, Bassyouni F, Abdel-Rehim M. Recent molecularly imprinted polymers applications in bioanalysis. CHEMICAL PAPERS 2023; 77:619-655. [PMID: 36213319 PMCID: PMC9524737 DOI: 10.1007/s11696-022-02488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/10/2022] [Indexed: 11/18/2022]
Abstract
Molecular imprinted polymers (MIPs) as extraordinary compounds with unique features have presented a wide range of applications and benefits to researchers. In particular when used as a sorbent in sample preparation methods for the analysis of biological samples and complex matrices. Its application in the extraction of medicinal species has attracted much attention and a growing interest. This review focus on articles and research that deals with the application of MIPs in the analysis of components such as biomarkers, drugs, hormones, blockers and inhibitors, especially in biological matrices. The studies based on MIP applications in bioanalysis and the deployment of MIPs in high-throughput settings and optimization of extraction methods are presented. A review of more than 200 articles and research works clearly shows that the superiority of MIP techniques lies in high accuracy, reproducibility, sensitivity, speed and cost effectiveness which make them suitable for clinical usage. Furthermore, this review present MIP-based extraction techniques and MIP-biosensors which are categorized on their classes based on common properties of target components. Extraction methods, studied sample matrices, target analytes, analytical techniques and their results for each study are described. Investigations indicate satisfactory results using MIP-based bioanalysis. According to the increasing number of studies on method development over the last decade, the use of MIPs in bioanalysis is growing and will further expand the scope of MIP applications for less studied samples and analytes.
Collapse
Affiliation(s)
- Foad Mashayekhi Suzaei
- Toxicology Laboratories, Monitoring the Human Hygiene Condition & Standard of Qeshm (MHCS Company), Qeshm Island, Iran
| | - Seyed Mosayeb Daryanavard
- grid.444744.30000 0004 0382 4371Department of Chemistry, Faculty of Science, University of Hormozgan, Bandar-Abbas, Iran
| | - Abbi Abdel-Rehim
- grid.5335.00000000121885934Department of Chemical Engineering and Biotechnology, Cambridge University, Cambridge, UK
| | - Fatma Bassyouni
- grid.419725.c0000 0001 2151 8157Chemistry of Natural and Microbial Products Department, Pharmaceutical industry Research Division, National Research Centre, Cairo, 12622 Egypt
| | - Mohamed Abdel-Rehim
- grid.5037.10000000121581746Functional Materials Division, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, Sweden and Med. Solutions, Stockholm, Sweden
| |
Collapse
|
24
|
Sorribes-Soriano A, Albert Esteve-Turrillas F, Armenta S, Manuel Herrero-Martínez J. Molecularly imprinted polymer –stir bar sorptive extraction of diazepam from natural water. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Mao Y, Hou L, Bai L. Fabrication of a lignin-dopped monolithic adsorbent and its properties for the extraction of hyperin from Senecionis Scandentis Hebra. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
26
|
Guzella CS, Souto DE, Silva BJ. Alginate-based hydrogel fiber as a restricted access material for microextraction of drugs in biological samples. Carbohydr Polym 2022; 294:119810. [DOI: 10.1016/j.carbpol.2022.119810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
|
27
|
Entrapment of polyethylene terephthalate derived carbon in Ca-alginate beads for solid phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Bates TL, Rafson J, Feng H, Pan BS, Mueller BRJ, Yancey B, Fatigante W, Sacks GL. Optimized Solid-Phase Mesh-Enhanced Sorption from Headspace (SPMESH) for Rapid Sub-ng/kg Measurements of 3-Isobutyl-2-methoxypyrazine (IBMP) in Grapes. Molecules 2022; 27:molecules27196195. [PMID: 36234747 PMCID: PMC9573488 DOI: 10.3390/molecules27196195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Parallel extraction of headspace volatiles from multiwell plates using sorbent sheets (HS-SPMESH) followed by direct analysis in real-time high-resolution mass spectrometry (DART-HRMS) can be used as a rapid alternative to solid-phase micro-extraction (SPME) gas-chromatography mass-spectrometry (GC-MS) for trace level volatile analyses. However, an earlier validation study of SPMESH-DART-MS using 3-isobutyl-2-methoxypyrazine (IBMP) in grape juice showed poor correlation between SPMESH-DART-MS and a gold standard SPME-GC-MS around the compound’s odor detection threshold (<10 ng/kg) in grape juice, and lacked sufficient sensitivity to detect IBMP at this concentration in grape homogenate. In this work, we report on the development and validation of an improved SPMESH extraction approach that lowers the limit of detection (LOD < 0.5 ng/kg), and regulates crosstalk between wells (<0.5%) over a calibration range of 0.5−100 ng/kg. The optimized SPMESH-DART-MS method was validated using Cabernet Sauvignon and Merlot grape samples harvested from commercial vineyards in the central valley of California (n = 302) and achieved good correlation and agreement with SPME-GC-MS (R2 = 0.84) over the native range of IBMP (<0.5−20 ng/kg). Coupling of SPMESH to a lower resolution triple quadrupole (QqQ)-MS via a new JumpShot-HTS DART source also achieved low ng/kg detection limits, and throughput was improved through positioning stage optimizations which reduced time spent on intra-well SPMESH areas.
Collapse
Affiliation(s)
- Terry L. Bates
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA
| | - Jessica Rafson
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA
| | - Hui Feng
- E&J Gallo Winery, Modesto, CA 95354, USA
| | | | | | | | | | - Gavin L. Sacks
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA
- Correspondence: ; Tel.: +1-607-255-2335
| |
Collapse
|
29
|
Azam M, Khan MR, Wabaidur SM, Al-Resayes SI, Islam MS. Date pits waste as a solid phase extraction sorbent for the analysis of lead in wastewater and for use in manufacturing brick: An eco-friendly waste management approach. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022; 26:101519. [DOI: 10.1016/j.jscs.2022.101519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Xing Y, Yu Z, Hu X, Yin J, Fan T, Fu Z, Pan G, Liu E, Zhou J, Han L. Characterization of volatile organic compounds in Polygonum multiflorum and two of its processed products based on multivariate statistical analysis for processing technology monitoring. J Chromatogr A 2022; 1680:463431. [PMID: 36027836 DOI: 10.1016/j.chroma.2022.463431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 01/21/2023]
Abstract
Herein we describe a comprehensive analysis of the volatile organic compounds (VOCs) of raw Polygonum multiflorum Thunb. (PM) and two of its processed products, as well as an effective and simple method based on volatile markers to determine to which extent the PM had been processed. Sixty-five VOCs were identified by headspace-solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS), along with headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). Principal component analysis (PCA) of the HS-SPME-GC-MS spectra and fingerprint analysis of the HS-GC-IMS spectra allowed the identification of raw PM from its processed products based the VOCs identified. Furthermore, the content and distribution of VOCs in the samples were easily analyzed visually based on clustering-kernel density estimation (Cluster-KDE). Finally, exploratory factor analysis (EFA) allowed the screening of significant markers to identify the processing method and consequently distinguish the three studied groups of PM.
Collapse
Affiliation(s)
- Yanchao Xing
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, P.R. China
| | - Zhenyan Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, P.R. China
| | - Xiaohan Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, P.R. China
| | - Jiaxin Yin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, P.R. China
| | - Tianci Fan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, P.R. China
| | - Zhifei Fu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, P.R. China
| | - Guixiang Pan
- Second Affiliated hospital of Tianjin University of Traditional Chinese Medicine, 69 Zengchan Road, Hebei District, Tianjin, 300250, P.R. China
| | - Erwei Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, P.R. China
| | - Jianpeng Zhou
- Tianjin Institude for Drug Control, 98 Guizhou Road, Heping District, Tianjin, 300070, P.R. China.
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, P.R. China.
| |
Collapse
|
31
|
Lis H, Paszkiewicz M, Godlewska K, Maculewicz J, Kowalska D, Stepnowski P, Caban M. Ionic liquid-based functionalized materials for analytical chemistry. J Chromatogr A 2022; 1681:463460. [DOI: 10.1016/j.chroma.2022.463460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022]
|
32
|
Magnetic solid-phase extraction method with modified magnetic ferroferric oxide nanoparticles in a deep eutectic solvent and high-performance liquid chromatography used for the analysis of pharmacologically active ingredients of Epimedium folium. J Chromatogr A 2022; 1679:463395. [DOI: 10.1016/j.chroma.2022.463395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/17/2022] [Accepted: 07/31/2022] [Indexed: 11/18/2022]
|
33
|
Abstract
Commercial solid-phase microextraction fibers are available in a limited number of expensive coatings, which often contain environmentally harmful substances. Consequently, several different approaches have been used in the attempt to develop new sorbents that should possess intrinsic characteristics such as duration, selectivity, stability, and eco-friendliness. Herein we reported a straightforward, green, and easy coating method of silica fibers for solid-phase microextraction with polydopamine (PDA), an adhesive, biocompatible organic polymer that is easily produced by oxidative polymerization of dopamine in mild basic aqueous conditions. After FT-ATR and SEM characterization, the PDA fibers were tested via chromatographic analyses performed on UHPLC system using biphenyl and benzo(a)pyrene as model compounds, and their performances were compared with those of some commercial fibers. The new PDA fiber was finally used for the determination of selected PAHs in soot samples and the results compared with those obtained using the commercial PA fiber. Good reproducibility, extraction stability, and linearity were obtained using the PDA coating, which proved to be a very promising new material for SPME.
Collapse
|
34
|
Dummert SV, Saini H, Hussain MZ, Yadava K, Jayaramulu K, Casini A, Fischer RA. Cyclodextrin metal-organic frameworks and derivatives: recent developments and applications. Chem Soc Rev 2022; 51:5175-5213. [PMID: 35670434 DOI: 10.1039/d1cs00550b] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
While there is a tremendous amount of scientific research on metal organic frameworks (MOFs) for gas storage/separation, catalysis and energy storage, the development and application of biocompatible MOFs still poses major challenges. In general, they can be synthesised from various biocompatible linkers and metal ions but particularly cyclodextrins (CDs) as cyclic oligosaccharides are an astute choice for the former. Although the field of CD-MOF materials is still in the early stages and their design and fabrication comes with many hurdles, the benefits coming from CDs built in a porous framework are exciting. Versatile host-guest complexation abilities, high encapsulation capacity and hydrophilicity are among the valuable properties inherent to CDs and offer extended and novel applications to MOFs. In this review, we provide an overview of the state-of-the-art synthesis, design, properties and applications of these materials. Initially, a rationale for the preparation of CD-based MOFs is provided, based on the chemical and structural properties of CDs and including their advantages and disadvantages. Further on, the review exhaustively surveys CD-MOF based materials by categorising them into three sub-classes, namely (i) CD-MOFs, (ii) CD-MOF hybrids, obtained via combination with external materials, and (iii) CD-MOF-derived materials prepared under pyrolytic conditions. Subsequently, CD-based MOFs in practical applications, such as drug delivery and cancer therapy, sensors, gas storage, (enantiomer) separations, electrical devices, food industry, and agriculture, are discussed. We conclude by summarizing the state of the art in the field and highlighting some promising future developments of CD-MOFs.
Collapse
Affiliation(s)
- Sarah V Dummert
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, D-85748 Garching, Germany.
| | - Haneesh Saini
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India.
| | - Mian Zahid Hussain
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, D-85748 Garching, Germany.
| | - Khushboo Yadava
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India. .,Indian Institute of Science Education and Research Kolkata, Nadia 741246, India
| | - Kolleboyina Jayaramulu
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India.
| | - Angela Casini
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, D-85748 Garching, Germany.
| | - Roland A Fischer
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, D-85748 Garching, Germany.
| |
Collapse
|
35
|
Fan L, An J, Gao J, Cui Y, Dong Z. Determination of atypical antipsychotics in human plasma by UPLC-UV with polystyrene nanofibers as a solid-phase extraction sorbent. RSC Adv 2022; 12:16194-16202. [PMID: 35733678 PMCID: PMC9155176 DOI: 10.1039/d2ra02457h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022] Open
Abstract
A novel extraction procedure was developed using polystyrene (PS) nanofibers as a solid-phase extraction sorbent to collect atypical antipsychotics (AAPs) from human plasma. The extraction targets were then monitored by ultra high performance liquid chromatography with an ultraviolet detector system. Parameters affecting extraction efficiency such as fiber packing amount, wash solution, and eluted solvent were investigated. Under optimized conditions, the linear range of seven AAPs was 1-50 μgmL-1 (R 2 > 0.996). Inter-day and intra-day relative standard deviations were less than 15.1%, and relative error varied from -17.1% to 12.0%. Furthermore, 50.5-79.3% extraction recoveries were obtained. The lower limit of quantification was 1 μg mL-1, and detection limit was 0.5 μg mL-1. The method developed in this study may be applied to simultaneous quantification of seven AAPs in human plasma due to its simplicity, selectivity, and efficiency.
Collapse
Affiliation(s)
- Liju Fan
- College of Graduate Studies, Hebei Medical University Shijiazhuang 050017 Hebei China
- Pharmaceutical Department, Hebei General Hospital Shijiazhuang 050051 Hebei China
| | - Jing An
- Pharmaceutical Department, Hebei General Hospital Shijiazhuang 050051 Hebei China
| | - Jin Gao
- Department of Glandular Surgery, Hebei General Hospital Shijiazhuang 050051 Hebei China
| | - Yanjun Cui
- College of Graduate Studies, Hebei Medical University Shijiazhuang 050017 Hebei China
| | - Zhanjun Dong
- College of Graduate Studies, Hebei Medical University Shijiazhuang 050017 Hebei China
- Pharmaceutical Department, Hebei General Hospital Shijiazhuang 050051 Hebei China
| |
Collapse
|
36
|
Pan H, Gan Z, Hu H, Liu C, Huang Y, Ruan G. Magnetic phenolic resin core-shell structure derived carbon microspheres for ultrafast magnetic solid-phase extraction of triazine herbicides. J Sep Sci 2022; 45:2687-2698. [PMID: 35579607 DOI: 10.1002/jssc.202200283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/08/2022]
Abstract
In this study, monodisperse magnetic carbon microspheres were successfully synthesized through the carbonization of phenolic resin encapsulated Fe3 O4 core-shell structures. The magnetic carbon microspheres showed high performance in ultrafast extraction and separation of trace triazine herbicides from environmental water samples. Under optimized conditions, both the adsorption and desorption processes could be achieved in 2 min, and the maximum adsorption capacity for simazine and prometryn were 387.6 and 448.5 μg/g. Coupled with HPLC-UV detection technology, the detection limit of triazine herbicides was in the range of 0.30-0.41 ng/mL. The mean recoveries ranged from 81.44 to 91.03% with relative standard deviations lower than 7.47%. The excellent magnetic solid phase extraction performance indicates that magnetic carbon microspheres are promising candidate adsorbent for the fast analysis of environmental contaminants. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hong Pan
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, P. R. China
| | - Zushan Gan
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, P. R. China
| | - Haoyun Hu
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, P. R. China
| | - Cheng Liu
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, P. R. China
| | - Yipeng Huang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, P. R. China
| | - Guihua Ruan
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, P. R. China
| |
Collapse
|
37
|
Zoratto Romoli JC, Palma Scanferla DT, Gomes Aguera R, Lini RS, Pante GC, Bueno Junior CR, Castro JC, Mossini SAG, Marchioni C, Junior MM. Analytical and toxicological aspects of dithiocarbamates: an overview of the last 10 years. Toxicol Mech Methods 2022; 32:637-649. [PMID: 35387549 DOI: 10.1080/15376516.2022.2063096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Compilation studies related to toxicological aspects and also biological monitoring and analysis methods for specific fungicides and, mainly, those that belong to the class of the dithiocarbamates (DTCs) have not been carried out at least in the last ten years. DTCs - dimethyldithiocarbamates, ethylenebisditiocarbamates, propylenebisditiocarbamates - are organosulfur compounds that form complexes due to the presence of different chemical elements, which bind strongly and inhibit enzymes that are essential to the functioning of the organism, causing a serious proven adverse effect on biological systems, such as alteration of thyroid hormones, teratogenesis and neurotoxicity. It is still evident, as shown by world data, that the growing consumption of fungicides has increasingly exposed the population in general and, in particular, workers who deal with these substances. There is a scarcity of studies in the literature discussing the toxicological and analytical aspects that are important for understanding the real effects of DTCs and monitoring human exposure to them. Therefore, the aim of this work was to expose, in a comprehensive way and through a narrative review, the negligence of research related to the fungicides of the DTCs class, their metabolites, as well as the toxicological and analytical aspects involved. The review is divided into two parts: (1) Toxicological aspects, including toxicokinetics, toxicodynamics and toxidromes; and (2) Analytical Toxicology, which comprises biomarkers, sample preparation and identification/quantification methods.
Collapse
Affiliation(s)
- Jéssica Cristina Zoratto Romoli
- Department of Basic Health Science, State University of Maringa, Avenida Colombo N° 5790, Maringa, PR, CEP 87020-900, Brazil
| | - Deborah Thais Palma Scanferla
- Department of Basic Health Science, State University of Maringa, Avenida Colombo N° 5790, Maringa, PR, CEP 87020-900, Brazil
| | - Raul Gomes Aguera
- Department of Basic Health Science, State University of Maringa, Avenida Colombo N° 5790, Maringa, PR, CEP 87020-900, Brazil
| | - Renata Sano Lini
- Department of Basic Health Science, State University of Maringa, Avenida Colombo N° 5790, Maringa, PR, CEP 87020-900, Brazil
| | - Giseli Cristina Pante
- Department of Basic Health Science, State University of Maringa, Avenida Colombo N° 5790, Maringa, PR, CEP 87020-900, Brazil
| | - Carlos Roberto Bueno Junior
- Department of Basic Health Science, State University of Maringa, Avenida Colombo N° 5790, Maringa, PR, CEP 87020-900, Brazil
| | - Juliana Cristina Castro
- Department of Basic Health Science, State University of Maringa, Avenida Colombo N° 5790, Maringa, PR, CEP 87020-900, Brazil
| | | | - Camila Marchioni
- Department of Pathology, Federal University of Santa Catarina, Rua Delfino Conti S/N, Florianopolis, SC, CEP 88040-370, Brazil
| | - Miguel Machinski Junior
- Department of Basic Health Science, State University of Maringa, Avenida Colombo N° 5790, Maringa, PR, CEP 87020-900, Brazil
| |
Collapse
|
38
|
Ahmad H, Koo BH, Khan RA. Enrichment of trace Hg(II) ions from food and water samples after solid phase extraction combined with ICP-OES determination. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Bertotto C, Bilck AP, Yamashita F, Anjos O, Bakar Siddique MA, Harrison SM, Brunton NP, Carpes ST. Development of a biodegradable plastic film extruded with the addition of a Brazilian propolis by-product. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
An J, Wang X, Li Y, Kang W, Lian K. Polystyrene nanofibers as an effective sorbent for the adsorption of clonazepam: kinetic and thermodynamic studies. RSC Adv 2022; 12:3394-3401. [PMID: 35425381 PMCID: PMC8979250 DOI: 10.1039/d1ra08134a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/16/2022] [Indexed: 11/21/2022] Open
Abstract
Polystyrene (PS) electrospun nanofibers were prepared via electrospinning for the adsorption of clonazepam from aqueous solution. The adsorption conditions such as adsorption time, solution pH and the amount of adsorbent were optimized. The adsorption kinetics and thermodynamic properties of clonazepam on PS nanofibers were studied under optimized conditions. The pseudo-second-order kinetic model can fit well the adsorption process of clonazepam on polystyrene nanofibers, indicating that the diffusion process in the fiber is the rate-limiting step of the adsorption process. The adsorption equilibrium data are in accordance with the Freundlich isotherm model, and the maximum adsorption capacity is 3.2 mg g−1. Thermodynamic studies revealed that the adsorption process is endothermic and spontaneous in nature. It was suggested that PS electrospun nanofibers have good potential for the separation and purification of clonazepam from a water-soluble matrix as a novel effective adsorbent material. Polystyrene (PS) electrospun nanofibers were prepared via electrospinning for the adsorption of clonazepam from aqueous solution.![]()
Collapse
Affiliation(s)
- Jing An
- School of Public Health, Hebei Medical University Shijiazhuang 050017 China .,Department of Pharmacy, Hebei General Hospital Shijiazhuang 050051 China
| | - Xin Wang
- School of Public Health, Hebei Medical University Shijiazhuang 050017 China
| | - Ying Li
- Department of Pharmacy, Hebei General Hospital Shijiazhuang 050051 China
| | - Weijun Kang
- School of Public Health, Hebei Medical University Shijiazhuang 050017 China
| | - Kaoqi Lian
- School of Public Health, Hebei Medical University Shijiazhuang 050017 China .,Hebei Key Laboratory of Environment and Human Health Shijiazhuang 050017 China
| |
Collapse
|
41
|
Canpolat G, Dolak İ, Keçili R, Hussain CG, Amiri A, Hussain CM. Conductive Polymer-Based Nanocomposites as Powerful Sorbents: Design, Preparation and Extraction Applications. Crit Rev Anal Chem 2022; 53:1419-1432. [PMID: 35040725 DOI: 10.1080/10408347.2021.2025334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Conductive polymers as composite materials have been attracted tremendous attention due to their versatile and excellent features such as tunable conductivity, facile synthesis and fabrication, high chemical and thermal stability etc. These characteristics make them versatile and let them being used in numerous fields including microelectronics, optics and biosensors. Throughout the mentioned fields, conductive polymers particularly perform as effective sorbents. Although tremendous efforts have been put into this topic, to the best of our knowledge, a comprehensive up-to-date review on the applications of conductive polymers as efficient sorbents has not been reported. The main objective of this paper is to make a significant contribution to the recent literature toward the synthesis and extraction applications of conductive polymers as efficient sorbents.
Collapse
Affiliation(s)
| | - İbrahim Dolak
- Vocational School of Technical Sciences, Dicle University, Diyarbakır, Turkey
| | - Rüstem Keçili
- Department of Medical Services and Techniques, Yunus Emre Vocational School of Health Services, Anadolu University, Eskişehir, Turkey
| | | | - Amirhassan Amiri
- Department of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
42
|
El Nemr A, Eleryan A, Ragab S. Synthesis of 6-cellulose-triethylenetetramine-glutaraldehyde for removal of toxic chromium from an aquatic environment. DESALINATION AND WATER TREATMENT 2022; 245:129-143. [DOI: 10.5004/dwt.2022.27960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
43
|
Xu Z, Zhang Z, She Z, Lin C, Lin X, Xie Z. Aptamer-functionalized metal-organic framework-coated nanofibers with multi-affinity sites for highly sensitive, selective recognition of ultra-trace microcystin-LR. Talanta 2022; 236:122880. [PMID: 34635260 DOI: 10.1016/j.talanta.2021.122880] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/26/2022]
Abstract
A novel aptamer-functionalized metal-organic framework nanofibrous composite (viz. PAN/UiO@UiO2-N3-aptamer) with a high aptamer coverage density was proposed based on the electrospinning and seeded growth method, and used for specific affinity recognition of trace Microcystin-LR (MC-LR). Heterobifunctional ligand was used to modify the metal-organic framework nanoparticles (MOF NPs) surface, which could passivate the MOF surface with respect to unmodified DNA, followed by coupling massive aptamers on MOF of the solid-phase microextraction (SPME) fiber using click chemistry. Characterizations including morphology, spectra analysis, mechanical stability, binding capacity and specificity were fulfilled. Applied to the analysis of MC-LR, the good selective and sensitive recognition were obtained with the detection limit as low as 0.003 ng/mL, which was better than most non-specific SPME or solid-phase extraction (SPE) protocols. The stability and reproducibility were acceptable, and the intra-day, inter-day and column-to-column relative standard deviations (RSDs) for the recovery of MC-LR were gained in the range from 2.5% to 14.3%, respectively. Satisfactory recoveries of MC-LR in environmental water samples were measured as 96.3 ± 4.7% - 98.9 ± 2.7% (n = 3) in tap water, 94.4 ± 2.5% - 96.1 ± 3.5% (n = 3) in pond water, and 97.0 ± 2.1% - 97.9 ± 3.1% (n = 3) in river water, respectively. This work demonstrated that the electrospun nanofibrous composite with massive aptamers would be a better alternative for ultra-trace MC-LR detection with good selectivity, matrix-resistance ability and high resolution.
Collapse
Affiliation(s)
- Zhiqun Xu
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Zhexiang Zhang
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Zongkang She
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Chenchen Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fujian, Fuzhou, 350108, People's Republic of China.
| | - Zenghong Xie
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fujian, Fuzhou, 350108, People's Republic of China
| |
Collapse
|
44
|
Manousi N, Kabir A, Furton KG, Samanidou VF, Zacharis CK. Exploiting the capsule phase microextraction features in bioanalysis: Extraction of ibuprofen from urine samples. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106934] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Alhendal A, Almoaeen RA, Rashad M, Husain A, Mouffouk F, Ahmad Z. Aramid-wrapped CNT hybrid sol–gel sorbent for polycyclic aromatic hydrocarbons. RSC Adv 2022; 12:18077-18083. [PMID: 35800310 PMCID: PMC9207600 DOI: 10.1039/d2ra02659g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
This work describes the preparation of an analytical microextraction sorbent using a simple and versatile sol–gel hybrid composite, i.e., aramid oligomers wrapping multi-walled carbon nanotubes (CNTs) covalently bonded to a porous silica network.
Collapse
Affiliation(s)
- Abdullah Alhendal
- Department of Chemistry, Kuwait University, P. O. Box 5969, Safat, 13060, Kuwait
| | - Randa Abd Almoaeen
- Department of Chemistry, Kuwait University, P. O. Box 5969, Safat, 13060, Kuwait
| | - Mohamed Rashad
- Department of Chemistry, Kuwait University, P. O. Box 5969, Safat, 13060, Kuwait
| | - Ali Husain
- Department of Chemistry, Kuwait University, P. O. Box 5969, Safat, 13060, Kuwait
| | - Fouzi Mouffouk
- Department of Chemistry, Kuwait University, P. O. Box 5969, Safat, 13060, Kuwait
| | - Zahoor Ahmad
- Department of Chemistry, Kuwait University, P. O. Box 5969, Safat, 13060, Kuwait
| |
Collapse
|
46
|
Ding X, Teng X, She Z, Li Y, Liu Y, Zhuang Y, Wang C. Preparation of chitosan-coated polystyrene microspheres for the analysis of trace Pb( ii) ions in salt by GF-AAS assisted with solid-phase extraction. RSC Adv 2022; 12:32526-32533. [DOI: 10.1039/d2ra04968f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Chitosan-coated polystyrene solid-phase extraction fillers.
Collapse
Affiliation(s)
- Xingyu Ding
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xin Teng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Zhuxin She
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yi Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yuanyuan Liu
- School of Pharmaceutical and Chemical Engineering, ChengXian College, Southeast University, Nanjing 210088, P. R. China
| | - Ying Zhuang
- Nanjing Station of National Light Industry Food Quality Supervision and Inspection, Nanjing 211816, P. R. China
| | - Chaochao Wang
- Nanjing Station of National Light Industry Food Quality Supervision and Inspection, Nanjing 211816, P. R. China
| |
Collapse
|
47
|
Ji X, Ji W. Determination of the Volatile Organic Compounds (VOCs) in Mature and Immature Foliage of Five Species of Pinaceae by Gas Chromatography–Mass Spectrometry (GC-MS) with Principal Component Analysis (PCA) and Cluster Analysis (CA). ANAL LETT 2021. [DOI: 10.1080/00032719.2021.2006682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xiaoyue Ji
- Advanced Analysis & Testing Center, Nanjing Forestry University, Nanjing, P. R. China
| | - Wensu Ji
- Ordnance Non-commissioned Officers School, Army Engineering University of PLA, Wuhan, China
| |
Collapse
|
48
|
|
49
|
Su L, Zhang N, Tang J, Zhang L, Wu X. In-situ fabrication of a chlorine-functionalized covalent organic framework coating for solid-phase microextraction of polychlorinated biphenyls in surface water. Anal Chim Acta 2021; 1186:339120. [PMID: 34756254 DOI: 10.1016/j.aca.2021.339120] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/21/2021] [Indexed: 01/20/2023]
Abstract
The functionalization of covalent organic frameworks (COFs) identifies significant potential for developing selective coating materials for solid-phase microextraction (SPME). Herein, a chlorine-functionalized covalent organic framework (CF-COF) was in-situ synthesized by employing triformylphloroglucinol (Tp) and 2,5-dichloro-1,4-phenylenediamine (2,5-DCA) as monomers on an amino-functionalized stainless steel wire. The obtained CF-COF coated fiber exhibited a higher enrichment capacity for polychlorinated biphenyls (PCBs) than commercial fibers and non-chlorinated COF fiber, owing to a more hydrophobic surface, size-matching effect, a large number of micropores and the π-π stacking interactions between COF coating and analytes. As a practical application, the CF-COF coated fiber was applied to the headspace extraction of 17 PCBs prior to their quantification by GC/MS. The established analytical method offered a good linearity in the range of 0.1-1000 ng L-1, low detection limits of 0.0015-0.0088 ng L-1, and satisfactory enhancement factors (EFs) of 699-4281. The repeatability for single fiber and the fiber-to-fiber reproducibility was lower than 9.26% and 9.33%, respectively. The proposed method was verified to be sensitive, selective, and applicable for the analysis of ultra-trace PCBs in environmental surface water samples with the recoveries ranged from 78.7% to 124.0%.
Collapse
Affiliation(s)
- Lishen Su
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Ning Zhang
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Jingpu Tang
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Lan Zhang
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Xiaoping Wu
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|
50
|
Aptamer functionalized and reduced graphene oxide hybridized porous polymers SPE coupled with LC-MS for adsorption and detection of human α-thrombin. Anal Bioanal Chem 2021; 414:1553-1561. [PMID: 34779902 DOI: 10.1007/s00216-021-03776-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/19/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
In this study, reduced graphene oxide (rGO) hybridized high internal phase emulsions were developed and polymerized as porous carriers for aptamer (5'/5AmMC6/-AGT CCG TGG TAG GGC AGG TTG GGG TGA CT-3') modification to enrich human α-thrombin from serum. The structure and properties of the materials were confirmed by scanning electron microscope (SEM), Fourier transform infrared spectroscope (FT-IR), and X-ray photoelectron spectra (XPS). The adsorption ability and selectivity were studied and the thrombin was detected with liquid chromatography-mass spectrometry (LC-MS). The adsorption of thrombin onto the sorbent was achieved within 30 min and the desorption was realized using 5.0 mL of acetonitrile/water (80/20, v/v). The thrombin was quantified by LC-MS according to its characteristic peptide sequence of ELLESYIDGR.
Collapse
|