1
|
Xiao Z, Huang Q, Huang W, Zhang G, Li D, Zhang Z, Cheng H, Feng J, Li L. An "on-off-on" fluorescent sensor based on Sm:ZnO-NH 2 QDs for hexavalent chromium detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 335:125998. [PMID: 40068317 DOI: 10.1016/j.saa.2025.125998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/11/2025] [Accepted: 03/04/2025] [Indexed: 03/24/2025]
Abstract
The problems of poor water solubility, poor stability, and poor selectivity encountered in the determination of hexavalent chromium (Cr(VI)) in water using ZnO QDs need to be addressed. In this study, we successfully prepared Sm-doped, -NH2-modified Sm:ZnO-NH2 QDs via the sol-gel method. Sm doping was used to enhance the fluorescence intensity of ZnO QDs, while 3-aminopropyltrietoxysilane (APTEs) capping improved their water solubility and fluorescence stability. The fluorescence of Sm:ZnO-NH2 quantum dots was quenched after the addition of Cr(VI) due to the internal filtration effect(IFE), and was restored after the addition of ascorbic acid due to the redox reaction between ascorbic acid (AA) and Cr(VI). Leveraging the fluorescence response patterns of the Sm:ZnO-NH2 QDs system when exposed to Cr(VI) and AA, we developed an ''on-off-on'' fluorescent sensor that can specifically detect Cr(VI) and AA without interference from Cu2+ ions. The "on-off-on" fluorescent sensor exhibited a linear response to Cr(VI) concentrations ranging from 0.05 to 1.5 μg/mL, with a limit of detection (LOD) of 6.15 ng/mL. It exhibited excellent selectivity and repeatability. Furthermore, the Sm:ZnO-NH2 QDs fluorescent sensor was effectively utilized for detecting Cr(VI) in tap water, offering a new method for heavy metal detection via an "on-off-on" fluorescence switching mechanism.
Collapse
Affiliation(s)
- Zhenfang Xiao
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City 545006, Guangxi, PR China; Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004 Guangxi, PR China
| | - Qiumei Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City 545006, Guangxi, PR China; Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004 Guangxi, PR China
| | - Wenyi Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City 545006, Guangxi, PR China; Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004 Guangxi, PR China.
| | - Guoqiang Zhang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City 545006, Guangxi, PR China; Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004 Guangxi, PR China
| | - Dongdong Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City 545006, Guangxi, PR China; Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004 Guangxi, PR China
| | - Zhuwei Zhang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City 545006, Guangxi, PR China; Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004 Guangxi, PR China
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City 545006, Guangxi, PR China; Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004 Guangxi, PR China
| | - Jun Feng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City 545006, Guangxi, PR China; Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004 Guangxi, PR China
| | - Lijun Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City 545006, Guangxi, PR China; Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004 Guangxi, PR China.
| |
Collapse
|
2
|
Dai Y, Hu P, Chu T, Niu M, Shi H, Li H, Wang Z, Guo Y. Confinement of carbon dots into carboxymethyl cellulose matrice to prepare solid-state fluorescent films and couple with Eu-MOF toward white light-emitting diodes. Int J Biol Macromol 2025; 296:139682. [PMID: 39793810 DOI: 10.1016/j.ijbiomac.2025.139682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/26/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
As a novel fluorescent carbon nanomaterial, carbon dots are restricted by their poor fluorescence in the solid state, although they exhibit favorable photoluminescence in solution. N-doped carbon dots (N-CDs) and solid-state fluorescence films were prepared using green and renewable cellulose-derived materials, respectively. The hydrogen bonding network of carboxymethyl cellulose (CMC) inhibits the self-aggregation behavior of N-CDs, which leads to solid-state fluorescence. The N-CDs was initially obtained with CMC as the carbon source, which showed excellent blue fluorescence. Subsequently, the white-emitting films (N-CDs@Eu-MOF/CMC) were successfully constructed by combining the blue fluorescent N-CDs with the red fluorescence of the europium metal-organic framework. The prepared films showed stable luminescence within 30 days and in the heat environment at 120 °C for 3 h. After covering the N-CDs@Eu-MOF/CMC films on the UV-LED chip with ultraviolet emissive at 365 nm, the white light-emitting diodes were obtained, which exhibited excellent color characteristics with the color coordinates, a correlated color temperature, and a color rendering index of (0.31, 0.32), 6580 K, and 92, respectively. The strategy proposed in this work will provide ideas for generating optical luminescent films from biomass and provide guidance for solid-state fluorescence biomass materials.
Collapse
Affiliation(s)
- Yunchuan Dai
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Dalian Key Laboratory of High value application and development of Botanical Resources, The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Pengyu Hu
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Dalian Key Laboratory of High value application and development of Botanical Resources, The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Tingting Chu
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Dalian Key Laboratory of High value application and development of Botanical Resources, The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Meihong Niu
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Dalian Key Laboratory of High value application and development of Botanical Resources, The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Haiqiang Shi
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Dalian Key Laboratory of High value application and development of Botanical Resources, The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Haiming Li
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Dalian Key Laboratory of High value application and development of Botanical Resources, The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zhiwei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yanzhu Guo
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Dalian Key Laboratory of High value application and development of Botanical Resources, The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
3
|
Yu Y, Hong D, Zhu Z, Jiang Y. Development of a MOF-based dual-channel levofloxacin probe and its application in the detection of food and beverage. Food Chem 2025; 465:142110. [PMID: 39571447 DOI: 10.1016/j.foodchem.2024.142110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
Food safety issues are becoming increasingly prominent, raising public concern. Antibiotic pollutants, as a unique category, act like a double-edged sword. On one hand, they provide precise treatment for related diseases, but on the other hand, their excessive use or improper handling can lead to environmental contamination or entry into the biological chain. This makes it easy for living organisms to come into contact with and ingest these pollutants, leading to serious consequences. Among these antibiotics, Levofloxacin (LVF), a broad-spectrum antibacterial agent, effectively treats various bacterial infections but also causes severe problems due to its misuse. Therefore, developing a simple, fast, and efficient probe for detecting LVF is crucial for environmental protection and human safety. In this study, a novel UiO-66-F4 fluorescent probe was synthesized. This probe demonstrated dual-channel detection of LVF through its inner filter effect (IFE) and chemical interactions, resulting in a visible color change from colorless to green. It exhibits good linear ranges at the fluorescence peaks of 494 nm (30-68 μM), with a detection limit of 0.1 μM. Based on its excellent detection performance, the probe was further applied for the quantitative determination of LVF in different types of food and beverages samples, yielding satisfactory results with recovery rates ranging from 93.4 % to 114.6 %. This probe offers a reliable means for the detection and evaluation of trace amounts of LVF in food.
Collapse
Affiliation(s)
- Yaqi Yu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Dilong Hong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Zeyu Zhu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Yuliang Jiang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
4
|
Liang L, Cai SQ, Leng YL, Huang C, Liu YQ, Wang Y, Luo L, Han M, Li XH, Cai XH. Intelligent sensing platform based on europium-doped carbon dots for dual-functional detection of ciprofloxacin/Ga 3+ and its tracking in vivo. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136622. [PMID: 39591936 DOI: 10.1016/j.jhazmat.2024.136622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Abstract
Ciprofloxacin (CIP) and gallium (Ga) are widely used in many fields and their excessive presences will pose serious threats to the environment and life health. Therefore, developing an intelligent detection method for rapidly tracking and determination of CIP and Ga3⁺ concentration in environments and organisms is of great significance. In this work, a europium-doped carbon dots (Eu-CDs) with unique structure and performances was prepared by a one-pot hydrothermal method. Eu-CDs can efficiently overcome the problem of aggregation-induced fluorescence quenching in complex environments to track CIP and Ga3⁺ with highly sensitivity. The "antenna effect" of non-radiative energy transfer is introduced to explain the pathway on fluorescence transition of Eu-CDs through DFT theoretical calculations and mechanism investigations, which provide a theoretical basis for the design and development of novel carbon dots with specific functions. Eu-CDs can successfully be applied to fluorescence imaging in organisms, moreover, it also exhibits excellent application potentials in the field of anti-tumor and antibacterial. In addition, a portable intelligent detection platform based on Eu-CDs-hydrogel device have been developed, which provides a new strategy for rapidly detection of CIP and Ga3⁺ in real samples.
Collapse
Affiliation(s)
- Le Liang
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Su-Qian Cai
- School of Pharmaceutical Sciences, Guilin Medical University, Guilin 541199, Guangxi, PR China
| | - Yan-Li Leng
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Chan Huang
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Yong-Qing Liu
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Ye Wang
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Li Luo
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Mei Han
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Xiao-Hong Li
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Xiao-Hua Cai
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China.
| |
Collapse
|
5
|
Bazazi S, Hashemi E, Mohammadjavadi M, Saeb MR, Liu Y, Huang Y, Xiao H, Seidi F. Metal-organic framework (MOF)/C-dots and covalent organic framework (COF)/C-dots hybrid nanocomposites: Fabrications and applications in sensing, medical, environmental, and energy sectors. Adv Colloid Interface Sci 2024; 328:103178. [PMID: 38735101 DOI: 10.1016/j.cis.2024.103178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/31/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
Developing new hybrid materials is critical for addressing the current needs of the world in various fields, such as energy, sensing, health, hygiene, and others. C-dots are a member of the carbon nanomaterial family with numerous applications. Aggregation is one of the barriers to the performance of C-dots, which causes luminescence quenching, surface area decreases, etc. To improve the performance of C-dots, numerous matrices including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and polymers have been composited with C-dots. The porous crystalline structures, which are constituents of metal nodes and organic linkers (MOFs) or covalently attached organic units (COFs) provide privileged features such as high specific surface area, tunable structures, and pore diameters, modifiable surface, high thermal, mechanical, and chemical stabilities. Also, the MOFs and COFs protect the C-dots from the environment. Therefore, MOF/C-dots and COF/C-dots composites combine their features while retaining topological properties and improving performances. In this review, we first compare MOFs with COFs as matrices for C-dots. Then, the recent progress in developing hybrid MOFs/C-dots and COFs/C-dots composites has been discussed and their applications in various fields have been explained briefly.
Collapse
Affiliation(s)
- Sina Bazazi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Esmaeil Hashemi
- Department of Chemistry, Faculty of Science, University of Guilan, PO Box 41335-1914, Rasht, Iran
| | - Mahdi Mohammadjavadi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Meng S, Liu J, Yang Y, Mao S, Li Z. Lanthanide MOFs based portable fluorescence sensing platform: Quantitative and visual detection of ciprofloxacin and Al 3. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171115. [PMID: 38401730 DOI: 10.1016/j.scitotenv.2024.171115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
In the current context of water environmental monitoring and pollution control, there's a crucial need for rapid and simple methods to detect multi-pollutant. We herein report an easy one-step hydrothermal synthesis method to produce Eu-based metal-organic frameworks (Eu MOFs), which was used as a fluorescent probe to detect the aquatic environmental pollutants of ciprofloxacin (CIP) and aluminum ions (Al3+). This fluorescent sensor enabled the cascade detection of CIP and Al3+ through fluorescence enhancement and ratio fluorescence response, respectively. The introduction of CIP significantly turned on the characteristic fluorescence of Eu MOFs at 595 nm and 616 nm through the "antenna effect". Based on this, the sensor enables quantitative detection of CIP within a linear range of 0-120 μM with a LOD as low as 50.421 nM. In the presence of Al3+, the fluorescence emission of Eu MOFs-CIP was sharply turned off due to strong Al3+ coordination with CIP, while the blue fluorescence emission of CIP was remarkably enhanced. And thus allowing ratio fluorescence quantitative detection of Al3+ (LOD = 2.681 μM). The introduction of CIP and Al3+ in cascade resulted in distinct fluorescence color changes from colorless to red and eventually to blue, exhibiting pronounced fluorescence characteristics. This observable phenomenon enables the visual detection of CIP and Al3+ in both aqueous phase and paper test strips. By combining the analysis of fluorescence chromaticity with the use of a smartphone, the fluorescence color of test papers allows for simple quantitative determination, which provides a convenient and accessible approach for quantifying CIP and Al3+ in water environments.
Collapse
Affiliation(s)
- Shuang Meng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jiaxiang Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 200120, China
| | - Yuanyuan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Shun Mao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
7
|
Zeng J, Zhang T, Liang G, Mo J, Zhu J, Qin L, Liu X, Ni Z. A "turn off-on" fluorescent sensor for detection of Cr(Ⅵ) based on upconversion nanoparticles and nanoporphyrin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:124002. [PMID: 38364512 DOI: 10.1016/j.saa.2024.124002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/16/2024] [Accepted: 02/04/2024] [Indexed: 02/18/2024]
Abstract
Hexavalent chromium (Cr(Ⅵ)) is a significant environmental pollutant because of its toxic and carcinogenic properties and wide use in various industries. Hence, there is an urgent need to develop accurate and selective approaches to detect the concentration of Cr(Ⅵ) in agricultural and aquaculture products to help humans avoid potential hazards of indirectly taking in Cr(Ⅵ). In this work, we report a "turn off-on" fluorescent sensor based on citric acid coated, 808 nm-excited core-shell upconversion nanoparticles (CA-UCNPs) and self-assembled copper porphyrin nanoparticles (nano CuTPyP) for sensitive and specific detection of Cr(Ⅵ). Nano copper 5, 10, 15, 20-tetra(4-pyridyl)-21H-23H- porphine obtained by acid-base neutralization micelle-confined self-assembly method function as an effective quencher due to its excellent optical property and water solubility. Through electrostatic interactions, positively charged nano CuTPyP are attracted to the surface of negatively charged CA-UCNPs, which can almost completely quench the fluorescence emission. In the presence of Cr(Ⅵ), nano CuTPyP can discriminatively interact with Cr(Ⅵ) and form nano CuTPyP/Cr(Ⅵ) complex, which separates nano CuTPyP from CA-UCNPs and restores the fluorescence. The sensing system exhibits a good linear response to Cr(Ⅵ) concentration in the range from 0.5 to 400 µM with a detection limit of 0.36 µM. The sensing method also displays high selectivity against other common ions including trivalent chromium and is applied to the analysis of Cr(Ⅵ) in actual rice and fish samples with satisfactory results.
Collapse
Affiliation(s)
- Jiaying Zeng
- School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Ting Zhang
- School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Geyu Liang
- School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Jingwen Mo
- Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, PR China.
| | - Jianxiong Zhu
- Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, PR China
| | - Longhui Qin
- Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, PR China
| | - Xiaojun Liu
- Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, PR China.
| | - Zhonghua Ni
- Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, PR China.
| |
Collapse
|
8
|
Zhang S, Xiao J, Zhong G, Xu T, Zhang X. Design and application of dual-emission metal-organic framework-based ratiometric fluorescence sensors. Analyst 2024; 149:1381-1397. [PMID: 38312079 DOI: 10.1039/d3an02187d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Metal-organic frameworks (MOFs) are novel inorganic-organic hybridized crystals with a wide range of applications. In the last twenty years, fluorescence sensing based on MOFs has attracted much attention. MOFs can exhibit luminescence from metal nodes, ligands or introduced guests, which provides an excellent fluorescence response in sensing. However, single-signal emitting MOFs are susceptible to interference from concentration, environment, and excitation intensity, resulting in poor accuracy. To overcome the shortcomings, dual-emission MOF-based ratiometric fluorescence sensors have been proposed and rapidly developed. In this review, we first introduce the luminescence mechanisms, synthetic methods, and detection mechanisms of dual-emission MOFs, highlight the strategies for constructing ratiometric fluorescence sensors based on dual-emission MOFs, and classify them into three categories: intrinsic dual-emission and single-emission MOFs with luminescent guests, and non-emission MOFs with other luminescent materials. Then, we summarize the recent advances in dual-emission MOF-based ratiometric fluorescence sensors in various analytical industries. Finally, we discuss the current challenges and prospects for the future development of these sensors.
Collapse
Affiliation(s)
- Shuxin Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Jingyu Xiao
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Geng Zhong
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
9
|
Chen ZJ, Huang AJ, Luo L, Xu ZL, Wang H. Simple dual-readout immunosensor based on phosphate-triggered and potassium permanganate for visual detection of fenitrothion. Biosens Bioelectron 2024; 246:115872. [PMID: 38039731 DOI: 10.1016/j.bios.2023.115872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Multicolor-based visual immunosensor is a promising tool for rapid analysis without the use of bulky instruments. Herein, an anti-fenitrothion nanobody-alkaline phosphatase fusion protein (VHHjd8-ALP) was employed to develop a multicolor visual immunosensor (MVIS) and a ratiometric fluorescence MVIS (RFMVIS, respectively). After one-step competitive immunoassay, the VHHjd8-ALP bound to microplate catalyzed phenyl phosphate disodium salt (ArP) into phenol. Under high alkaline condition (pH 12), the phenol reduced KMnO4 to intermediate (K2MnO4) and further to MnO2 in alkaline condition (pH 12), accompanied by a visible color transition of purple-green-yellow, which can be used for semiquantitative visual analysis or qualitative detection by measuring RGB value. RFMVIS was proposed on the basis of MVIS to further improve sensitivity. The CdTe quantum dot and fluorescein were used as signal probes to develop the fluorescent immunosensor. The CdTe dots with red emission (644 nm) was quenched by oxidation of KMnO4, whereas the fluorescein with green emission (520 nm) remained constant, accompanied by a fluorescent color transition of green-yellow-red. By measuring the ratio of the fluorescence intensity (I644/I520), the ratiometric fluorescence immunosensor was developed for qualitative analysis. The two visual immunosensors were sensitive and simple, and they showed good accuracy and practicability in the recovery test, thus are ideal tools for rapid screening.
Collapse
Affiliation(s)
- Zi-Jian Chen
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, People's Republic of China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Zhaoqing), Ministry of Agriculture and Rural Affairs, Zhaoqing, 526061, People's Republic of China; Guangdong Engineering Technology Research Center of Food & Agricultural Product Safety Analysis and Testing, Zhaoqing, 526061, People's Republic of China
| | - Ai-Jun Huang
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, People's Republic of China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Zhaoqing), Ministry of Agriculture and Rural Affairs, Zhaoqing, 526061, People's Republic of China; Guangdong Engineering Technology Research Center of Food & Agricultural Product Safety Analysis and Testing, Zhaoqing, 526061, People's Republic of China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Hongwu Wang
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, People's Republic of China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Zhaoqing), Ministry of Agriculture and Rural Affairs, Zhaoqing, 526061, People's Republic of China; Guangdong Engineering Technology Research Center of Food & Agricultural Product Safety Analysis and Testing, Zhaoqing, 526061, People's Republic of China.
| |
Collapse
|
10
|
Yin HY, Li Q, Liu TH, Liu J, Qin YT, Wang Y, Zhai WL, Cai XB, Wang ZG, Zhu W. Multifunctional In-MOF and Its S-Scheme Heterojunction toward Pollutant Decontamination via Fluorescence Detection, Physical Adsorption, and Photocatalytic REDOX. Inorg Chem 2024; 63:1816-1827. [PMID: 38232749 DOI: 10.1021/acs.inorgchem.3c03268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
A novel doubly interpenetrated indium-organic framework of 1 has been assembled by In3+ ions and highly conjugated biquinoline carboxylate-based bitopic connectors (H2L). The isolated 1 exhibits an anionic framework possessing channel-type apertures repleted with exposed quinoline N atoms and carboxyl O atoms. Owing to the unique architecture, 1 displays a durable photoluminescence effect and fluorescence quenching sensing toward CrO42-, Cr2O72-, and Cu2+ ions with reliable selectivity and anti-interference properties, fairly high detection sensitivity, and rather low detection limits. Ligand-to-ligand charge transition (LLCT) was identified as the essential cause of luminescence by modeling the ground state and excited states of 1 using DFT and TD-DFT. In addition, the negatively charged framework has the ability to rapidly capture single cationic MB, BR14, or BY24 and their mixture, including the talent to trap MB from the (MB + MO) system with high selectivity. Moreover, intrinsic light absorption capacity and band structure feature endow 1 with effective photocatalytic decomposition ability toward reactive dyes RR2 and RB13 under ultraviolet light. Notably, after further polishing the band structure state of 1 by constructing the S-scheme heterojunction of In2S3/1, highly efficient photocatalytic detoxification of Cr(VI) and degradation of reactive dyes have been fully achieved under visible light. This finding may open a new avenue for designing novel multifunctional MOF-based platforms to address some intractable environmental issues, i.e., detection of heavy metal ions, physical capture of pony-sized dyes, and photochemical decontamination of ultrastubborn reactive dyes and highly toxic Cr(VI) ions from water.
Collapse
Affiliation(s)
- Huan-Yu Yin
- School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| | - Qing Li
- School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
- Key Laboratory of Functional Textile Materials and Products, Ministry of Education, School of Textile Science & Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| | - Tian-Hui Liu
- School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| | - Jie Liu
- School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| | - Ying-Tong Qin
- School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| | - Yang Wang
- School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| | - Wei-Li Zhai
- Key Laboratory of Functional Textile Materials and Products, Ministry of Education, School of Textile Science & Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| | - Xin-Bin Cai
- School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| | - Zhi-Gang Wang
- School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| | - Wei Zhu
- School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| |
Collapse
|
11
|
Li Y, Lu H, Xu S. The construction of dual-emissive ratiometric fluorescent probes based on fluorescent nanoparticles for the detection of metal ions and small molecules. Analyst 2024; 149:304-349. [PMID: 38051130 DOI: 10.1039/d3an01711g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
With the rapid development of fluorescent nanoparticles (FNPs), such as CDs, QDs, and MOFs, the construction of FNP-based probes has played a key role in improving chemical sensors. Ratiometric fluorescent probes exhibit distinct advantages, such as resistance to environmental interference and achieving visualization. Thus, FNP-based dual-emission ratiometric fluorescent probes (DRFPs) have rapidly developed in the field of metal ion and small molecule detection in the past few years. In this review, firstly we introduce the fluorescence sensing mechanisms; then, we focus on the strategies for the fabrication of DRFPs, including hybrid FNPs, single FNPs with intrinsic dual emission and target-induced new emission, and DRFPs based on auxiliary nanoparticles. In the section on hybrid FNPs, methods to assemble two types of FNPs, such as chemical bonding, electrostatic interaction, core satellite or core-shell structures, coordination, and encapsulation, are introduced. In the section on single FNPs with intrinsic dual emission, methods for the design of dual-emission CDs, QDs, and MOFs are discussed. Regarding target-induced new emission, sensitization, coordination, hydrogen bonding, and chemical reaction induced new emissions are discussed. Furthermore, in the section on DRFPs based on auxiliary nanoparticles, auxiliary nanomaterials with the inner filter effect and enzyme mimicking activity are discussed. Finally, the existing challenges and an outlook on the future of DRFP are presented. We sincerely hope that this review will contribute to the quick understanding and exploration of DRFPs by researchers.
Collapse
Affiliation(s)
- Yaxin Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| | - Hongzhi Lu
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| | - Shoufang Xu
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| |
Collapse
|
12
|
Xu X, Min H, Li Y. Preparation and application of carbon quantum dot fluorescent probes combined with rare earth ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5731-5753. [PMID: 37882318 DOI: 10.1039/d3ay01318a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Globally, antibiotic abuse, organic contamination, and excessive heavy metal ion pollution pose serious threats to human health. In this case, ratiometric fluorescent probes can eliminate the errors caused by environmental factors and provide more accurate detection results than single-emission intensity nanoprobes. Accordingly, based on the excellent biocompatibility and abundant surface functional groups of carbon quantum dots (CQDs) and the properties of large Stokes shifts and narrow emission bands of rare earth ions (RE3+), RE-CQD fluorescent probes have attracted widespread attention. Herein, firstly we review the combination of carbon quantum dots with rare earth ions (rare earth complexes) using various functionalization approaches to improve the defects of rare earth complexes and realize the functionalization of carbon quantum dots and their applications in many fields, such as biology and environmental science. In addition, we classify the methods for the synthesis of RE-CQD hybrids into three groups according to the different binding modes of the RE and CQDs, including doping, covalent grafting, and direct coordination. The excellent properties of these fluorescent probes are also briefly described. Finally, a comprehensive overview of the important applications of RE-CQD fluorescent probes in the fields of public safety sensing, chemical sensing, biomedical sensing, temperature sensing, and pH sensing is presented. In this review, the recent research progress in the field of ratiometric fluorescence sensing based on carbon quantum dots and rare earth ions is summarized and an outlook on the future development of RE-CQD fluorescent probes regarding their construction and potential applications is provided.
Collapse
Affiliation(s)
- Xiaoyi Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Hua Min
- Technology Transfer Center, Institute of Science and Technology Development, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ying Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| |
Collapse
|
13
|
Zhang Y, Sun M, Lu Y, Peng M, Du E, Xu X. Nitrogen-Doped Carbon Dots Encapsulated a Polyoxomolybdate-Based Coordination Polymer as a Sensitive Platform for Trace Tetracycline Determination in Water. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2676. [PMID: 37836317 PMCID: PMC10574045 DOI: 10.3390/nano13192676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
The requirement of simple, efficient and accurate detection of tetracycline (TC) in water environments poses new challenges for sensing platform development. Here, we report a simple method for TC sensing via fluorescence detection based on metal-organic coordination polymers (MOCPs, (4-Hap)4(Mo8O26)) coated with nitrogen-doped carbon dots (NCDs). These NCDs@(4-Hap)4(Mo8O26) composites showed excellent luminescence features of NCDs with stable bright-blue emission under UV light. The results of the sensing experiment showed that the fluorescence of NCDs@(4-Hap)4(Mo8O26) can be quenched by TC (166 µM) with 94.1% quenching efficiency via the inner filter effect (IFE) in a short time (10 s), with a detection limit (LOD) of 33.9 nM in a linear range of 8-107 µM. More significantly, NCDs@(4-Hap)4(Mo8O26) showed a high selectivity for TC sensing in the presence of anions and metal cations commonly found in water environments and can be reused in at least six cycles after washing with alcohol. The potential practicality of NCDs@(4-Hap)4(Mo8O26) was verified by sensing TC in real water samples with the standard addition method, and satisfactory recoveries from 91.95% to 104.72% were obtained.
Collapse
Affiliation(s)
- Yanqiu Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Minrui Sun
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Yang Lu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Mingguo Peng
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Erdeng Du
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Xia Xu
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| |
Collapse
|
14
|
Li Z, Liang S, Zhou L, Luo F, Lou Z, Chen Z, Zhang X, Yang M. A Turn-On Fluorescence Sensor Based on Nitrogen-Doped Carbon Dots and Cu 2+ for Sensitively and Selectively Sensing Glyphosate. Foods 2023; 12:2487. [PMID: 37444225 DOI: 10.3390/foods12132487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Glyphosate has excellent herbicidal activity, and its extensive use may induce residue in the environment and enter into humans living through the food chain, causing negative impact. Here, water-soluble 1.55 nm size nitrogen-doped carbon quantum dots (NCDs) with strong blue fluorescence were synthesized using sodium citrate and adenine. The maximum excitation and emission wavelengths of NCDs were 380 nm and 440 nm, respectively. The above synthesized NCDs were first used for the construction of a fluorescence sensor for glyphosate detection. It was found that Cu2+ could quench the fluorescence of NCDs effectively through the photoinduced electron transfer (PET) process, which was confirmed using fluorescence lifetime measurements. Additionally, the fluorescence was restored with the addition of glyphosate. Hence, a sensitive turn-on fluorescence sensor based on NCDs/Cu2+ for glyphosate analysis was developed. The LODs of glyphosate for water and rice samples were recorded as 0.021 μg/mL and 0.049 μg/mL, respectively. The sensor was applied successfully for ultrasensitive and selective detection of glyphosate in environmental water and rice samples with satisfied recoveries from 82.1% to 113.0% using a simple sample pretreatment technique. The proposed strategy can provide a significant potential for monitoring glyphosate residue in water and agricultural product samples.
Collapse
Affiliation(s)
- Ziqiang Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Shuang Liang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Li Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Fengjian Luo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Zhengyun Lou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Zongmao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Mei Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| |
Collapse
|
15
|
Peng L, Guo H, Wu N, Liu B, Wang M, Tian J, Ren B, Yu Z, Yang W. Rapid detection of the biomarker for cystinuria by a metal-organic framework fluorescent sensor. Talanta 2023; 262:124715. [PMID: 37245430 DOI: 10.1016/j.talanta.2023.124715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Arginine (Arg) is considered a valuable biomarker for various diseases, including cystinuria, and its concentration level holds significant implications for human health. To achieve the purposes of food evaluation and clinical diagnosis, it is imperative to develop a rapid and facile method for selective and sensitive determination of Arg. In this work, a novel fluorescent material (Ag/Eu/CDs@UiO-66) was synthesized by encapsulating carbon dots (CDs), Eu3+ and Ag + into UiO-66. This material can serve as a ratiometric fluorescent probe for detecting Arg. It exhibits a high sensitivity with a detection limit of 0.74 μM and a relatively broad linear range from 0-300 μM. After dispersing the composite Ag/Eu/CDs@UiO-66 in an Arg solution, the red emission of Eu3+ center at 613 nm was significantly enhanced, while the characteristic peak of CDs center at 440 nm remained unchanged. Therefore, a ratio fluorescence probe could be constructed based on the peak height ratio of the two emission peaks to achieve selective detection of Arg. In addition, the remarkable ratiometric luminescence response induced by Arg results in a significant color transition from blue to red under UV-lamp for Ag/Eu/CDs@UiO-66, which was convenient for visual analysis.
Collapse
Affiliation(s)
- Liping Peng
- Key Lab of Eco-Environments Related Polymer Materials of MOE; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Hao Guo
- Key Lab of Eco-Environments Related Polymer Materials of MOE; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China.
| | - Ning Wu
- Key Lab of Eco-Environments Related Polymer Materials of MOE; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Bingqing Liu
- Key Lab of Eco-Environments Related Polymer Materials of MOE; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Mingyue Wang
- Key Lab of Eco-Environments Related Polymer Materials of MOE; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Jiaying Tian
- Key Lab of Eco-Environments Related Polymer Materials of MOE; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Borong Ren
- Key Lab of Eco-Environments Related Polymer Materials of MOE; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Zhiguo Yu
- Key Lab of Eco-Environments Related Polymer Materials of MOE; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Wu Yang
- Key Lab of Eco-Environments Related Polymer Materials of MOE; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China.
| |
Collapse
|
16
|
Fan J, Kang L, Liu D, Zhang S. Modification of Carbon Dots for Metal‐Ions Detection. ChemistrySelect 2023; 8. [DOI: 10.1002/slct.202300062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/28/2023] [Indexed: 01/06/2025]
Abstract
AbstractIt is very appealing to develop cheap, highly sensitive and efficient metal ion fluorescence sensors as traditional instrument methods are inherently costly and time‐consuming. Carbon dots (CDs) are widely used for sensing metal ions, attributing to their merits of good biocompatibility, low toxicity, easy surface modification and excellent photostability. This article reviewed the research progress of CDs as metal ion sensors in recent years, and studied their modification methods and detection performances. Finally, the challenges and opportunities of CDs as metal ion sensors were also analyzed. This article is expected to provide inspiration and help for researchers focusing on CDs as metal ion sensors.
Collapse
Affiliation(s)
- Jiang Fan
- Department of Chemical Engineering, Textile and Clothing Shaanxi Polytechnic Institute No. 12 Wenhui West Road Xianyang 712000 Shaanxi China
| | - Lei Kang
- School of Surveying & Testing Shaanxi Railway Institute West Section of Shengli Street Weinan 714000 Shaanxi China
- School of Chemistry and Chemical Engineering Guangzhou University No. 230 Waihuan West Road, Guangzhou 510006, GuangdongGuangdong China
| | - Di Liu
- Department of Chemical Engineering, Textile and Clothing Shaanxi Polytechnic Institute No. 12 Wenhui West Road Xianyang 712000 Shaanxi China
| | - Sufeng Zhang
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development Shaanxi University of Science and Technology Weiyang University Park Xi'an 710021, GuangdongShaanxi China
| |
Collapse
|
17
|
Annamalai K, Annamalai A, Ravichandran R, Elumalai S. Recyclable waste Dry-cell batteries derived carbon dots (CDs) for detection of Two-fold metal ions and degradation of BTB dye. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 163:61-72. [PMID: 37001313 DOI: 10.1016/j.wasman.2023.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
In modern era, electronic wastes are one of the major threats around us, most of them are reused with less efficiency instead of re-usage, and conversion into valuable products is highly recommended. In this work, we report an innovative approach for the synthesis of highly photoluminescent CDs from waste dry-cell batteries through one-step hydrothermal treatment for the detection and degradation of environmental pollutants. The as-prepared CDs were studied by X-ray photoelectron spectroscopy (XPS), HR-TEM studies, X-ray diffractometer (XRD), Raman spectrometer, FTIR spectroscopy, UV-visible spectrophotometer, and spectrofluorometric measurements. The calculated quantum yield for synthesized CDs was around 13 %. The CDs have uniform particle size distribution, strong photoluminescent behavior, and possess high stability against various environmental conditions. Also, CDs display the selective and sensitive detection of Cr6+ and Co2+ and ions with a detection limit of around 0.11 µM and 0.10 µM respectively. The possible mechanism of CDs was also examined. Moreover, the photocatalytic activity of CDs with Bromothymol Blue (BTB) dye was studied. The degradation efficiency of BTB dye can be achieved at around 84 % over 180 min under the irradiation of direct sunlight in presence of H2O2. To date, it's the first time we have recycled waste dry-cell batteries into CDs as an effective probe for the detection and decomposition of environmental pollution. Furthermore, this work provides not only an easier route to make good quality and improved photoluminescent CDs from waste material like used batteries and also paves way for the reconversion of global treating waste. Finally, the outstanding detection capability with multiple properties of as-prepared CDs provides various environmental applications like the detection of pollutants and carcinogenic polluted water treatment.
Collapse
Affiliation(s)
- Kumaresan Annamalai
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Arun Annamalai
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Ramya Ravichandran
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Sundaravadivel Elumalai
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India.
| |
Collapse
|
18
|
Peng L, Guo H, Wu N, Liu Y, Wang M, Liu B, Tian J, Wei X, Yang W. Ratiometric fluorescent sensor based on metal-organic framework for selective and sensitive detection of CO 32. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122844. [PMID: 37196552 DOI: 10.1016/j.saa.2023.122844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/12/2023] [Accepted: 05/06/2023] [Indexed: 05/19/2023]
Abstract
Carbonate ion (CO32-) is an anion essential for the maintenance of life activities and is of great importance to human health. Here, a novel ratiometric fluorescent probe Eu/CDs@UiO-66-(COOH)2 (ECU) was prepared by introducing europium ions (Eu3+) and carbon dots (CDs) into the UiO-66-(COOH)2 parent framework under the guidance of a post-synthetic modification strategy and used for the detection of CO32- ion in the aqueous environment. Interestingly, when CO32- ions were added to the ECU suspension, the characteristic emission of carbon dots at 439 nm was significantly enhanced, while the characteristic emission of Eu3+ ions at 613 nm was reduced. Therefore, the detection of CO32- ions can be realized through the peak height ratio of the two emissions. The probe had a low detection limit (about 1.08 μM) and a wide linear range (0-350 μM) for the detection of carbonate. In addition, the presence of CO32- ions can cause a significant ratiometric luminescence response and resulted obvious red-to-blue color shift of the ECU under UV light, which will facilitate visual analysis by the naked eye.
Collapse
Affiliation(s)
- Liping Peng
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Hao Guo
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Ning Wu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Yinsheng Liu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Mingyue Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Bingqing Liu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Jiaying Tian
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Xiaoqin Wei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Wu Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| |
Collapse
|
19
|
Wang Z, Jin X, Yan L, Yang Y, Liu X. Recent research progress in CDs@MOFs composites: fabrication, property modulation, and application. Mikrochim Acta 2022; 190:28. [PMID: 36520192 DOI: 10.1007/s00604-022-05597-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
Carbon dots (CDs) have exhibited a promising application prospect in many fields because of their good fluorescence properties, biocompatibility, low toxicity, and easy functionalization. In order to improve their photoelectricity and stability, metal-organic frameworks (MOFs) can be used as host materials to provide ideal carriers for CDs to realize the multifunctional composites of CDs and MOFs (CDs@MOFs). At present, CDs@MOFs composites have shown tremendous application potential because they have various advantages of both CDs and MOFs. In this review, the synthesis methods of CDs@MOFs composites are firstly introduced. Then, the influence of the synergy between CDs and MOFs on the regulation of their structures and optical properties is highlighted. Furthermore, the recent application researches of CDs@MOFs composites in fluorescent probes, solid-state lighting, and photoelectrocatalysis are generalized. Finally, the critical issues, challenges, and solutions on their structure and property regulation and application are put forward, and their commercialization direction is also prospected.
Collapse
Affiliation(s)
- Zhi Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xudong Jin
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Lingpeng Yan
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.,College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Xuguang Liu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
20
|
Fang W, Zhang L, Feng H, Meng J, Zhang Z, Liu Z. Research Progress of fluorescent-substance@MOFs. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Zhao P, Tang S, Wu X, Chen Y, Tang K, Fu J, Lei H, Yang Z, Zhang Z. Imprinted ratiometric fluorescence capillary sensor based on UiO-66-NH2 for rapid determination of sialic acid. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Yan F, Wang X, Wang Y, Yi C, Xu M, Xu J. Sensing performance and mechanism of carbon dots encapsulated into metal-organic frameworks. Mikrochim Acta 2022; 189:379. [PMID: 36087187 DOI: 10.1007/s00604-022-05481-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/27/2022] [Indexed: 01/28/2023]
Abstract
Metal-organic frameworks (MOFs) can be combined with nanomaterials and the combined composites have excellent optical properties. Carbon dots (CDs) with tiny particle size, non-toxic and rich surface functional groups are novel fluorescent materials. Carbon dots@metal-organic frameworks (CDs@MOFs) are synthesized by encapsulating CDs into MOFs. CDs@MOFs are promising composites for the preparation of a new generation of fluorescence sensors, which combine the hybrid properties of MOFs and the special optical properties of CDs. Urged as such, we are encouraged to categorize according to the sensing mechanisms. These include fluorescence resonance energy transfer (FRET), aggregation-caused quenching (ACQ), static quenching, dynamic quenching, photo-induced electron transfer (PET), inner filter effect (IFE) and so on. Based on the above mechanisms, CDs@MOFs can specifically interact with target analytes to generate fluorescence quenching. This review covers the research progress of CDs@MOFs in recent five years (with 103 refs), synthetic design of CDs@MOFs and introduces the sensing mechanism. The current challenges and future research directions are discussed briefly. The sensing mechanism and applications of CDs@MOFs.
Collapse
Affiliation(s)
- Fanyong Yan
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, People's Republic of China.
| | - Xiule Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Yao Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Chunhui Yi
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Ming Xu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemistry, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Jinxia Xu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemistry, Tiangong University, Tianjin, 300387, People's Republic of China
| |
Collapse
|
23
|
Mei X, Wang D, Wang S, Li J, Dong C. Synthesis of intrinsic dual-emission type N,S-doped carbon dots for ratiometric fluorescence detection of Cr (VI) and application in cellular imaging. Anal Bioanal Chem 2022; 414:7253-7263. [PMID: 35980424 DOI: 10.1007/s00216-022-04277-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Abstract
In this paper, intrinsic dual-emission fluorescent carbon dots (CDs) doped with N and S atoms have been firstly fabricated. The characterization results show that CDs are successfully synthesized with two separate fluorescence emissions at 468 nm and 628 nm, respectively. The strong and selective interaction of Cr (VI) ions with CDs lead to obvious fluorescence decrease of CDs at 468 nm, which is caused by a mixed quenching mechanism. At the same time, the fluorescence at 628 nm increase. Interestingly, the CDs solution show obvious color change under the daylight and UV light, so visualization detection of Cr (VI) can be realized in water samples. Based on the data of the emission intensity ratios of F468/F628, Cr (VI) can be detected from 3.8 to 38.9 μM combined with the linear correlation coefficient of 0.998, and the lowest detection concentration is 47.2 nM. The platform is satisfactorily applied to the detection of Cr (VI) ions in water samples. In addition, the CDs could be applied as fluorescent probes for cell imaging with dual fluorescent emission.
Collapse
Affiliation(s)
- Xiping Mei
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Dongxiu Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Songbai Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Junfen Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
24
|
Fu J, Zhou S, Tang S, Wu X, Zhao P, Tang K, Chen Y, Yang Z, Zhang Z. Imparting down/up-conversion dual channels fluorescence to luminescence metal-organic frameworks by carbon dots-induced for fluorescence sensing. Talanta 2022; 242:123283. [DOI: 10.1016/j.talanta.2022.123283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
|
25
|
Zhang Y, Sun M, Peng M, Du E, Xu X, Wang CC. The fabrication strategies and enhanced performances of metal-organic frameworks and carbon dots composites: State of the art review. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Li Y, Jiang XX, Xie JX, Lv YK. Recent Advances in the Application and Mechanism of Carbon Dots/Metal-Organic Frameworks Hybrids in Photocatalysis and the Detection of Environmental Pollutants. Chem Asian J 2022; 17:e202200283. [PMID: 35460188 DOI: 10.1002/asia.202200283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/22/2022] [Indexed: 11/12/2022]
Abstract
Metal-organic frameworks (MOFs) are a class of crystalline porous materials with simple synthesis conditions, large specific surface area, structural diversity, and a wide range of interesting properties. The integration of MOFs with other materials can provide new multifunctional composites that exhibit both component properties and new characteristics. In recent years, the integration of carbon dots (CDs) into MOFs to form composites has shown improved optical properties and fascinating new characteristics. This review focuses on the design and synthesis strategies of CDs@MOFs composites (including pore-confined synthesis, in situ encapsulation, post-synthesis modification and impregnation method) and their recent research progress in photocatalysis and detection of environmental pollutants. Both the achievements and problems are evaluated and proposed, and the opportunities and challenges of CDs@MOF composite are discussed.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| | - Xiao-Xue Jiang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| | - Jia-Xiu Xie
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| | - Yun-Kai Lv
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| |
Collapse
|
27
|
Yin HQ, Yin XB. Multi-Emission from Single Metal-Organic Frameworks under Single Excitation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106587. [PMID: 34923736 DOI: 10.1002/smll.202106587] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Multi-emission materials have come to prominent attention ascribed to their extended applications other than single-emission ones. General and robust design strategies of a single matrix with multi-emission under single excitation are urgently required. Metal-organic frameworks (MOFs) are porous materials prepared with organic ligands and metal nodes. The variety of metal nodes and ligands makes MOFs with great superiority as multi-emission matrices. Guest species encapsulated into the channels or pores of MOFs are the additional emission sites for multi-emission. In this review, multi-emission MOFs according to the different excitation sites are summarized and classified. The emission mechanisms are discussed, such as antenna effect, excited-state intramolecular proton transfer (ESIPT) and tautomerism for dual-emission. The factors that affect the emissions are revealed, including ligand-metal energy transfer and host-guest interaction, etc. Multi-emission MOFs could be predictably designed and prepared, once the emissive factors are controlled rationally in combination with the different multi-emission mechanisms. Correspondingly, new and practical applications are realized, including but not limited to ratiometric/multi-target sensing and bioimaging, white light-emitting diodes, and anti-counterfeiting. The design strategies of multi-emission MOFs and their extensive applications are reviewed. The results will shed light on other multi-emission systems to develop the structure-derived functionality and applications.
Collapse
Affiliation(s)
- Hua-Qing Yin
- Institute for New Energy Materials and Low Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, China
| | - Xue-Bo Yin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| |
Collapse
|
28
|
Wu W, Tan Z, Chen X, Chen X, Cheng L, Wu H, Li P, Zhang Z. Carnation-like Morphology of BiVO 4-7 Enables Sensitive Photoelectrochemical Determination of Cr(VI) in the Food and Environment. BIOSENSORS 2022; 12:130. [PMID: 35200390 PMCID: PMC8870108 DOI: 10.3390/bios12020130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/26/2022]
Abstract
Hexavalent chromium, namely, Cr(VI), is a significant threat to ecological and food safety. Current detection methods are not sensitive to Cr(VI). A photoelectrochemical (PEC) sensor based on bismuth vanadate (BiVO4) was developed for sensitive detection of Cr(VI). First, BiVO4-X (X: the pH of the reaction precursor solution) was synthesized using a facile surfactant-free hydrothermal method. The BiVO4-X morphology was well controlled according to pH values, showing rock-like (X = 1), wrinkled bark-like (X = 4), carnation-like (X = 7), and the collapsed sheet-like morphologies (X = 9, 12). BiVO4-7 exhibited excellent photoelectric performance due to a proper band structure under visible light and a large specific surface area. Then, BiVO4-7 was used to construct a PEC sensor to detect Cr(VI), which was demonstrated to have a low detection limit (10 nM) and wide detection range (2-210 μM). The BiVO4-7 PEC sensor had a stable output signal, as well as excellent reproducibility, repeatability, and selectivity. We used the BiVO4-7 PEC sensor to detect Cr(VI) in real environmental and food samples, resulting in a satisfactory recovery of 90.3-103.0%, as determined by comparison with results obtained using a spectrophotometric method. The BiVO4-7 PEC sensor is promising for practical application to heavy metal detection in the food and environment.
Collapse
Affiliation(s)
- Wenqin Wu
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, National Reference Lab for Biotoxin Test, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.W.); (Z.T.); (X.C.); (X.C.); (L.C.); (P.L.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zhao Tan
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, National Reference Lab for Biotoxin Test, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.W.); (Z.T.); (X.C.); (X.C.); (L.C.); (P.L.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China;
| | - Xiao Chen
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, National Reference Lab for Biotoxin Test, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.W.); (Z.T.); (X.C.); (X.C.); (L.C.); (P.L.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China;
| | - Xiaomei Chen
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, National Reference Lab for Biotoxin Test, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.W.); (Z.T.); (X.C.); (X.C.); (L.C.); (P.L.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Ling Cheng
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, National Reference Lab for Biotoxin Test, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.W.); (Z.T.); (X.C.); (X.C.); (L.C.); (P.L.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Huimin Wu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China;
| | - Peiwu Li
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, National Reference Lab for Biotoxin Test, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.W.); (Z.T.); (X.C.); (X.C.); (L.C.); (P.L.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zhaowei Zhang
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, National Reference Lab for Biotoxin Test, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.W.); (Z.T.); (X.C.); (X.C.); (L.C.); (P.L.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
29
|
Fu J, Zhou S, Zhao P, Wu X, Tang S, Chen S, Yang Z, Zhang Z. A dual-response ratiometric fluorescence imprinted sensor based on metal-organic frameworks for ultrasensitive visual detection of 4-nitrophenol in environments. Biosens Bioelectron 2022; 198:113848. [PMID: 34861527 DOI: 10.1016/j.bios.2021.113848] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/05/2021] [Accepted: 11/25/2021] [Indexed: 02/08/2023]
Abstract
A dual-response ratiometric fluorescence imprinted sensor based on visible/near-infrared emission was established for ultrasensitive, selective and visual detection 4-nitrophenol (4-NP). The molecularly imprinted polymer was incorporated in the ratiometric sensing system consisting of visible emission carbon dots@zeolitic imidazolate framework-8 (CDs@ZIF-8) and near-infrared emission cadmium telluride (CdTe) quantum dots. The CDs@ZIF-8 enhanced the emission of CDs and the fluorescence sensing performance. Compared to short wavelength of fluorophore, the near-infrared emission CdTe is less interference caused by auto-fluorescence of sample. The ratiometric fluorescence imprinted sensor exhibited dual response for 4-NP at 420 nm and 703 nm and a wide concentration response range. Moreover, a good linear response was existed in the two concentration ranges of 0.1 pM-3.0 pM and 0.05 μM-30 μM with the detection limit of 0.08 pM and 0.05 μΜ, respectively. Significantly, the fluorescence color changes can be observed from purple to pink to red with the naked eye. The fluorescence quenching mechanism of the ratimetric fluorescence imprinted sensor was discussed in detail. The ratiometric fluorescence imprinted sensor was used to detect 4-NP in various real samples with satisfactory recoveries of 97.5-106.3%, which provided an interesting avenue for the rapid detection of pollutant with high sensitivity, high selectivity and visualization in real environment.
Collapse
Affiliation(s)
- Jinli Fu
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Shu Zhou
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Pengfei Zhao
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Xiaodan Wu
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Sisi Tang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Shan Chen
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Zhaoxia Yang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Zhaohui Zhang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China; School of Pharmaceutical Sciences, Jishou University, Jishou, 416000, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
30
|
Li J, Yu B, Fan L, Wang L, Zhao Y, Sun C, Li W, Chang Z. A novel multifunctional Tb-MOF fluorescent probe displaying excellent abilities for highly selective detection of Fe3+, Cr2O72− and acetylacetone. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Hitabatuma A, Wang P, Su X, Ma M. Metal-Organic Frameworks-Based Sensors for Food Safety. Foods 2022; 11:382. [PMID: 35159532 PMCID: PMC8833942 DOI: 10.3390/foods11030382] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 01/07/2023] Open
Abstract
Food contains a variety of poisonous and harmful substances that have an impact on human health. Therefore, food safety is a worldwide public concern. Food detection approaches must ensure the safety of food at every step of the food supply chain by monitoring and evaluating all hazards from every single step of food production. Therefore, early detection and determination of trace-level contaminants in food are one of the most crucial measures for ensuring food safety and safeguarding consumers' health. In recent years, various methods have been introduced for food safety analysis, including classical methods and biomolecules-based sensing methods. However, most of these methods are laboratory-dependent, time-consuming, costly, and require well-trained technicians. To overcome such problems, developing rapid, simple, accurate, low-cost, and portable food sensing techniques is essential. Metal-organic frameworks (MOFs), a type of porous materials that present high porosity, abundant functional groups, and tunable physical and chemical properties, demonstrates promise in large-number applications. In this regard, MOF-based sensing techniques provide a novel approach in rapid and efficient sensing of pathogenic bacteria, heavy metals, food illegal additives, toxins, persistent organic pollutants (POPs), veterinary drugs, and pesticide residues. This review focused on the rapid screening of MOF-based sensors for food safety analysis. Challenges and future perspectives of MOF-based sensors were discussed. MOF-based sensing techniques would be useful tools for food safety evaluation owing to their portability, affordability, reliability, sensibility, and stability. The present review focused on research published up to 7 years ago. We believe that this work will help readers understand the effects of food hazard exposure, the effects on humans, and the use of MOFs in the detection and sensing of food hazards.
Collapse
Affiliation(s)
| | | | - Xiaoou Su
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.H.); (P.W.); (M.M.)
| | | |
Collapse
|
32
|
Tian X, Li Y, Zhang Y, Gao E. A FLUORESCENT PROBE OF THE Zn(II) COMPLEX CONSTRUCTED BY TERPHENYL- 3,2″,3″,5,5″,5′′′-HEXACARBOXYLIC ACID AND 3,5-BIS(1-IMIDAZOLE)PYRIDINE. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621120076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Li P, Zhou Z, Zhao YS, Yan Y. Recent advances in luminescent metal-organic frameworks and their photonic applications. Chem Commun (Camb) 2021; 57:13678-13691. [PMID: 34870655 DOI: 10.1039/d1cc05541k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In recent years, metal-organic frameworks (MOFs) have been attracting ever more interest owing to their fascinating structures and widespread applications. Among the optoelectronic materials, luminescent MOFs (LMOFs) have become one of the most attractive candidates in the fields of optics and photonics thanks to the unique characteristics of their frameworks. Luminescence from MOFs can originate from either the frameworks, mainly including organic linkers and metal ions, or the encapsulated guests, such as dyes, perovskites, and carbon dots. Here, we systematically review the recent progress in LMOFs, with an emphasis on the relationships between their structures and emission behaviour. On this basis, we comprehensively discuss the research progress and applications of multicolour emission from homogeneous and heterogeneous structures, host-guest hybrid lasers, and pure MOF lasers based on optically excited LMOFs in the field of micro/nanophotonics. We also highlight recent developments in other types of luminescence, such as electroluminescence and chemiluminescence, from LMOFs. Future perspectives and challenges for LMOFs are provided to give an outlook of this emerging field. We anticipate that this article will promote the development of MOF-based functional materials with desired performance towards robust optoelectronic applications.
Collapse
Affiliation(s)
- Penghao Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhonghao Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yong Sheng Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongli Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
34
|
Volynkin SS, Demakov PA, Shuvaeva OV, Kovalenko KA. Metal-organic framework application for mercury speciation using solid phase extraction followed by direct thermal release-electrothermal atomization atomic absorption spectrophotometric detection (ETA AAS). Anal Chim Acta 2021; 1177:338795. [PMID: 34482884 DOI: 10.1016/j.aca.2021.338795] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/11/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Metal-organic frameworks (MOFs) are increasingly used in analytical chemistry for pre-concentration of trace elements followed by their determination using modern analytical techniques. However, there are a limited number of publications concerning the use of MOFs for speciation purposes, while their structural and functional features are perspective for the element species selective extraction and pre-concentration. It is known that mercury refers to the most hazardous elements which species demonstrate different toxicity, migration routes and bioavailability as well. Consequently the development of new approaches for mercury speciation in environments remains an actual objective of analytical chemistry. In present work a new methodology for inorganic and organic mercury speciation in water was proposed. This approach is based on pre-concentration using solid phase extraction (SPE) followed by their determination directly from the solid phase with the application of the thermal release - electrothermal-atomic-absorption technique (TR-ETA-AAS). An original SPE-procedure based on the use of UIO-66 [Zr6O4(OH)4(bdc)6] in two different modes (non-modified and modified with cysteine) as a sorbent was designed. As a result of SPE as well as TR-ETA-AAS optimization the detection limits (LOD) for all listed species at the level of 0.06 μg L-1 have been achieved. It was also shown that the presence of the other elements (K, Na, Ca, Mg at the level of 100 μg L-1, and Mn, Fe, Cr, Al, Zn, Cd, Pb - of 25 μg L-1) does not affect the results obtained. The developed assay demonstrates a high efficiency, low LODs, wide linear range and admissible analysis duration. The reliability of the data obtained was confirmed by the standard addition approach and by a comparison with the results of independent analytical methods.
Collapse
Affiliation(s)
- Sergey S Volynkin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Lavrentiev Avenue, Novosibirsk, 630090, Russia
| | - Pavel A Demakov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Lavrentiev Avenue, Novosibirsk, 630090, Russia
| | - Olga V Shuvaeva
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Lavrentiev Avenue, Novosibirsk, 630090, Russia; Novosibirsk State University, 2, Pirogova Str., 630090, Novosibirsk, Russia.
| | - Konstantin A Kovalenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Lavrentiev Avenue, Novosibirsk, 630090, Russia
| |
Collapse
|
35
|
Yuan H, Ren T, Luo Q, Huang Y, Huang Y, Xu D, Guo X, Li X, Wu Y. Fluorescent wood with non-cytotoxicity for effective adsorption and sensitive detection of heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126166. [PMID: 34492942 DOI: 10.1016/j.jhazmat.2021.126166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal pollution is one of the primary challenges of water pollution, and the fabrication of highly effective, green and non-toxic adsorbents for heavy metals is urgently required on the basis of environmental and sustainable development strategies. Here, we report a novel fluorescent wood (FW) with effective adsorption ability (maximum theoretical adsorption capacity of 98.14 mg/g for hexavalent chromium [Cr(VI)]), good fluorescence properties (absolute quantum yield of 12.8%), non-cytotoxicity (cell viability of >90%) and high detection sensitivity and selectivity for Cr(VI). The FW was formed using a process involving delignification, infiltration with carbon dots, and free-radical polymerization with acrylic acid. Mechanistic analysis confirmed that the reconstructed 3D porous structure of the FW provided many effective sorption sites, such as amino, hydroxyl and carboxyl groups. This improved the adsorption ability and stabilized the fluorescence signal, which enhanced the detection ability. These factors give the novel FW considerable potential for use in the removal of Cr(VI) ions from wastewater.
Collapse
Affiliation(s)
- Hanmeng Yuan
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Tingting Ren
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qiuyan Luo
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yifeng Huang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China; College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yong Huang
- Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Dong Xu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xin Guo
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Xianjun Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yiqiang Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
36
|
Xu YK, Meng MM, Xi JM, Wang LF, Zhu R, Liu XG, Zhang R, Dong W, Lu ZZ, Zheng HG, Huang W. Mixed matrix membranes containing fluorescent coordination polymers for detecting Cr 2O 72- with high sensitivity, stability and recyclability. Dalton Trans 2021; 50:7944-7948. [PMID: 34096564 DOI: 10.1039/d1dt00894c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Three coordination polymers (CPs) were synthesized by using CdII, fluorescent 9,10-di(4-pyridyl)anthracene (dpa), and cyclohexane-1,4-dicarboxylic acid (H2cda), and they are [Cd2(dpa)2(cda)Cl2]n (1), [Cd(dpa)2(cda)]n (2) and [Cd(dpa)(cda)(H2O)]n (3). Both 1 and 2 are fluorescent and contain nonporous layers. 3 is an isomer of 2 and contains a porous diamondoid network. Fluorescent mixed matrix membranes were prepared by dispersing the particles of 1 or 2 within the matrix of polymethyl methacrylate, and showed high sensitivity and selectivity for detecting Cr2O72- in water. Both stability and recyclability of the MMMs were remarkably higher than those of the CP powders.
Collapse
Affiliation(s)
- Yong-Kai Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China.
| | - Mei-Mei Meng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China.
| | - Ji-Ming Xi
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China.
| | - Li-Fei Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China.
| | - Rui Zhu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China.
| | - Xing-Gui Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China.
| | - Rui Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China.
| | - Wei Dong
- Institute of Radiation Medicine, China Academy of Medical Science & Peking Union Medical college, Tianjin 300192, China.
| | - Zhen-Zhong Lu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China. and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - He-Gen Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China. and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
37
|
Shu Y, Ye Q, Dai T, Xu Q, Hu X. Encapsulation of Luminescent Guests to Construct Luminescent Metal-Organic Frameworks for Chemical Sensing. ACS Sens 2021; 6:641-658. [PMID: 33571406 DOI: 10.1021/acssensors.0c02562] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metal-organic frameworks (MOFs), which are a class of coordination polymers constructed by metal ions or clusters with organic ligands, have emerged as exciting inorganic-organic hybrid materials with the superiorities of inherent crystallinity, adjustable pore size, clear structure, and high degree of functionalization. The MOFs have attracted much attention to develop good luminescent functional materials due to their inherent luminescent centers of both inorganic and organic photonic units. Furthermore, the pores within MOFs can also be used to encapsulate a large number of luminescent guest species, which provides a broader luminescent property for MOF materials. MOFs possess the incomparable multifunctional advantages of inorganic and organic luminescent materials. A large number of luminescent MOFs (LMOFs) have been synthesized for applications in sensing, white-light-emitting diodes (LED), photocatalysis, biomedicine, etc. This paper reviews the encapsulation of various luminescent guests such as lanthanide ions, dyes, quantum dots, and luminescent complexes in metal-organic frameworks to construct luminous sensors with single- or double-emission centers, as well as the research progress of these sensors in chemical sensing. Finally, the challenges in these fields were outlined and the prospects for future development were put forward.
Collapse
Affiliation(s)
- Yun Shu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Qiuyu Ye
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Tao Dai
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
38
|
Shokri R, Amjadi M. A ratiometric fluorescence sensor for triticonazole based on the encapsulated boron-doped and phosphorous-doped carbon dots in the metal organic framework. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:118951. [PMID: 32992238 DOI: 10.1016/j.saa.2020.118951] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
In this work, boron-doped carbon dots (B-CDs) with blue fluorescence and phosphorous-doped green emitting CDs (P-CDs) were encapsulated into zeolitic imidazolate framework-8 (ZIF-8) to prepare a dual-emission ratiometric fluorescence sensor for triticonazole. The B-CDs/P-CDs@ZIF-8 composite exhibited two emission peaks at 440 nm and 510 nm under a single wavelength excitation of 385 nm that respectively belong to B-CDs and P-CDs. In the presence of triticonazole, the fluorescence intensity of B-CDs remarkably declined while that of P-CDs remained unchanged. With increasing concentration of triticonazole, the fluorescence color of the ratiometric probe progressively changed from blue to green. Under the optimized conditions, B-CDs/P-CDs@ZIF-8 probe showed a high sensitivity with a linear range from 10 to 400 nM and a detection limit of 4.0 nM for triticonazole. The probe not only has an improved sensitivity through the accumulation of analyte molecules into the metal-organic framework but also has the advantages of ratiometric fluorescence measurements in terms of precision and accuracy. The applicability of the sensor was evaluated in the analysis of water and fruit juice samples.
Collapse
Affiliation(s)
- Roghayeh Shokri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran.
| |
Collapse
|
39
|
Li S, Zhang Z. Recent advances in the construction and analytical applications of carbon dots-based optical nanoassembly. Talanta 2021; 223:121691. [PMID: 33303144 DOI: 10.1016/j.talanta.2020.121691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/26/2022]
Abstract
Recently, more and more attention has been focused on the construction and analytical applications of optical nanoassembly through combining carbon dots (CDs) with various other functional nanomaterials. The rational design and manufacture of CDs-based optical nanoassembly will be critical to meeting the needs of analytical science. The last decade has witnessed the immense potential of CDs-based optical nanoassembly in multiple sensing applications owing to their controlled optical properties, adjustable surface chemistry and microscopic morphology. This feature article collects the recent advances in the research and development of CDs-based optical nanoassembly and their applications in analytical sensors, aiming to provide vital insights and suggestions to inspire their broad sensing applications.
Collapse
Affiliation(s)
- Siqiao Li
- Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhengwei Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
40
|
Li B, Suo T, Xie S, Xia A, Ma YJ, Huang H, Zhang X, Hu Q. Rational design, synthesis, and applications of carbon dots@metal–organic frameworks (CD@MOF) based sensors. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116163] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
41
|
Sun T, Gao Y, Du Y, Zhou L, Chen X. Recent Advances in Developing Lanthanide Metal-Organic Frameworks for Ratiometric Fluorescent Sensing. Front Chem 2021; 8:624592. [PMID: 33569372 PMCID: PMC7868329 DOI: 10.3389/fchem.2020.624592] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/21/2020] [Indexed: 01/18/2023] Open
Abstract
Fluorescent probes have attracted special attention in developing optical sensor systems due to their reliable and rapid fluorescent response upon reaction with the analyte. Comparing to traditional fluorescent sensing systems that employ the intensity of only a single emission, ratiometric fluorescent sensors exhibit higher sensitivity and allow fast visual screening of analytes because of quantitatively analyzing analytes through the emission intensity ratio at two or more wavelengths. Lanthanide metal–organic frameworks (LnMOFs) are highly designable multifunctional luminescent materials as lanthanide ions, organic ligands, and guest metal ions or chromophores are all potential sources for luminescence. They thus have been widely employed as ratiometric fluorescent sensors. This mini review summarized the basic concept, optical features, construction strategies, and the ratiometric fluorescent sensing mechanisms of dual-emitting LnMOFs. The review ends with a discussion on the prospects, challenges, and new direction in designing LnMOF-based ratiometric fluorescent sensors.
Collapse
Affiliation(s)
- Tianying Sun
- School of Chemical Engineering and Technology/School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Yaobin Gao
- School of Chemical Engineering and Technology/School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Yangyang Du
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Lei Zhou
- School of Chemical Engineering and Technology/School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Xian Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
42
|
Wang XQ, Tang J, Ma X, Wu D, Yang J. A water-stable zinc(ii)–organic framework as an “on–off–on” fluorescent sensor for detection of Fe3+ and reduced glutathione. CrystEngComm 2021. [DOI: 10.1039/d0ce01741h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A zinc(ii) metal–organic framework exhibits fluorescence on–off–on behaviour for Fe3+ and reduced glutathione in PBS solution and in real samples.
Collapse
Affiliation(s)
- Xiao-Qing Wang
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| | - Jing Tang
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| | - Xuehui Ma
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| | - Dan Wu
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| | - Jie Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- and School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252000
- PR China
| |
Collapse
|
43
|
Zhang M, Zhai X, Sun M, Ma T, Huang Y, Huang B, Du Y, Yan C. When rare earth meets carbon nanodots: mechanisms, applications and outlook. Chem Soc Rev 2020; 49:9220-9248. [PMID: 33165456 DOI: 10.1039/d0cs00462f] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rare earth (RE) elements are widely used in the luminescence and magnetic fields by virtue of their abundant 4f electron configurations. However, the overall performance and aqueous stability of single-component RE materials need to be urgently improved to satisfy the requirements for multifunctional applications. Carbon nanodots (CNDs) are excellent nanocarriers with abundant functional surface groups, excellent hydrophilicity, unique photoluminescence (PL) and tunable features. Accordingly, RE-CND hybrids combine the merits of both RE and CNDs, which dramatically enhance their overall properties such as luminescent and magnetic-optical imaging performances, leading to highly promising practical applications in the future. Nevertheless, a comprehensive review focusing on the introduction and in-depth understanding of RE-CND hybrid materials has not been reported to date. This review endeavors to summarize the recent advances of RE-CNDs, including their interaction mechanisms, general synthetic strategies and applications in fluorescence, biosensing and multi-modal biomedical imaging. Finally, we present the current challenges and the possible application perspectives of newly developed RE-CND materials. We hope this review will inspire new design ideas and valuable references in this promising field in the future.
Collapse
Affiliation(s)
- Mengzhen Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Yang Y, Dong J, Li H, Guo D, Yang W, Pan Q. AIE Infinite Coordination Polymer for Phosphate Ion Detection via Aggregation State Modulation. ChemistrySelect 2020. [DOI: 10.1002/slct.202003449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yang Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education School of Science Hainan University Haikou 570228 China
| | - Jiaxuan Dong
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education School of Science Hainan University Haikou 570228 China
| | - Huihui Li
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education School of Science Hainan University Haikou 570228 China
| | - Dongyu Guo
- Department of Clinical Laboratory Xiamen Huli Guoyu Clinic, Co., Ltd. Xiamen 361000 China
| | - Weiting Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education School of Science Hainan University Haikou 570228 China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education School of Science Hainan University Haikou 570228 China
| |
Collapse
|
45
|
Han Y, Yang W, Luo X, He X, Zhao H, Tang W, Yue T, Li Z. Carbon dots based ratiometric fluorescent sensing platform for food safety. Crit Rev Food Sci Nutr 2020; 62:244-260. [PMID: 32876496 DOI: 10.1080/10408398.2020.1814197] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Food safety has become a major global concern and the rapid detection of food nutritional ingredients and contaminants has aroused much more attention. Nanomaterials-based fluorescent sensing holds great potential in designing highly sensitive and selective detection strategies for food safety analysis. Carbon dots (CDs) possess tremendous prospects in fluorescent sensing food ingredients and contaminants due to their superior properties of chemical and photostability, highly fluorescence with tunability, and no/low-toxicity. Numerous endeavors are demanded to contribute to overcoming the challenge of lower sensitivity and selectivity of the sensors interfered by various components in intricate food matrices to ensure food safety and human health. Nanohybrid CDs based ratiometric fluorescent sensing with self-calibration is regarded as an efficient strategy for the CDs based sensors for the specific recognition of target analyte in the food matrices. This work is devoted to reviewing the development of nanohybrid CDs based ratiometric fluorescent sensing platform and the perspectives of the platform for food safety. The applications of nanohybrid CDs in sensing are summarized and the sensing mechanisms are briefly discussed.
Collapse
Affiliation(s)
- Yong Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Weixia Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xueli Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xie He
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Haiping Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Wenzhi Tang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Zhonghong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi, PR China
| |
Collapse
|
46
|
Lee SC, Park S, So H, Lee G, Kim KT, Kim C. An Acridine-Based Fluorescent Sensor for Monitoring ClO - in Water Samples and Zebrafish. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4764. [PMID: 32842534 PMCID: PMC7506904 DOI: 10.3390/s20174764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
A novel acridine-based fluorescent chemosensor, BK ((E)-2-((acridine-9-ylimino)methyl)-N-benzhydrylhydrazine-1-carbothioamide), for monitoring ClO- was prepared. The sensor BK was synthesized by introducing a new synthetic route of making aldehyde group using formic hydrazide. Probe BK displayed notable fluorescence quenching in the presence of ClO- and showed a great selectivity over other guest analytes. The detection limit was calculated to be 7.65 μM. Additionally, BK was satisfactorily applied for sensing ClO- in water samples and zebrafish.
Collapse
Affiliation(s)
- Su Chan Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 136-741, Korea; (S.C.L.); (S.P.); (H.S.)
| | - Soyoung Park
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 136-741, Korea; (S.C.L.); (S.P.); (H.S.)
| | - Haeri So
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 136-741, Korea; (S.C.L.); (S.P.); (H.S.)
| | - Gyudong Lee
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 136-741, Korea;
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 136-741, Korea;
| | - Cheal Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 136-741, Korea; (S.C.L.); (S.P.); (H.S.)
| |
Collapse
|
47
|
Zhang Y, Liu J, Wu X, Tao W, Li Z. Ultrasensitive detection of Cr(VI) (Cr 2O 72-/CrO 42-) ions in water environment with a fluorescent sensor based on metal-organic frameworks combined with sulfur quantum dots. Anal Chim Acta 2020; 1131:68-79. [PMID: 32928481 DOI: 10.1016/j.aca.2020.07.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/04/2020] [Accepted: 07/14/2020] [Indexed: 11/16/2022]
Abstract
Accurate, simple and quick detection methods for Cr(VI) detection are urgently needed for water quality monitoring. Herein, a novel and facile method of detecting Cr(VI) (Cr2O72-/CrO42-) ions is developed via the fluorescent detection technology based on metal-organic frameworks (MOFs) doped with sulfur quantum dots (SQDs) (SQDs@UiO-66-NH2). The blue-light-emitting SQDs@UiO-66-NH2 composites exhibit excellent fluorescent properties in water environment with high quantum yield (68%) and ideal fluorescent stability, thus demonstrating excellent potential for serving as a chemical sensor. After characterizing the performance and stability of SQDs@UiO-66-NH2, qualitative and quantitative detection of Cr2O72- and CrO42- ions was successfully conducted. The fluorescence of SQDs@UiO-66-NH2 composites in aqueous solution was quenched effectively with more than 90% quenching efficiency by Cr(VI) via the inner filter effect. The detection system provides considerable advantages such as rapid response (10 s), high sensitivity with a low detection limit of 0.16 μM in a broad linear range of 0-200 μM (R2 = 0.99) for Cr2O72- and 0.17 μM for CrO42- in a broad linear range of 0-220 μM (R2 = 0.99), high selectivity and reproducibility for at least five cycles with simple washing with alcohol. In practical applications, the sensor showed rapid response, high sensitivity and excellent recoveries (96.7%-105.4%) for detecting Cr2O72- in real water samples. Furthermore, a SQDs@UiO-66-NH2-based fluorescent test paper was successfully developed, providing a simple, reliable and portable method for Cr(VI) (Cr2O72-/CrO42-) detection in water environment.
Collapse
Affiliation(s)
- Yanqiu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science & Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Jiaxiang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science & Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Xiaohan Wu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, PR China
| | - Wenquan Tao
- State Key Laboratory of Pollution Control and Resource Reuse, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science & Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science & Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
48
|
Zhu A, Pan J, Liu Y, Chen F, Ban X, Qiu S, Luo Y, Zhu Q, Yu J, Liu W. A novel dibenzimidazole-based fluorescent organic molecule as a turn-off fluorescent probe for Cr3+ ion with high sensitivity and quick response. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
49
|
Zhuang X, Zhang N, Zhang X, Wang Y, Zhao L, Yang Q. A stable Cu-MOF as a dual function sensor with high selectivity and sensitivity detection of picric acid and CrO42-in aqueous solution. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104498] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Wang H, Pei Y, Qian X, An X. Eu-metal organic framework@TEMPO-oxidized cellulose nanofibrils photoluminescence film for detecting copper ions. Carbohydr Polym 2020; 236:116030. [PMID: 32172846 DOI: 10.1016/j.carbpol.2020.116030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 12/11/2022]
Abstract
Metal-organic frameworks (MOFs) are emerging highly crystallized three-dimensional network complex formed by self-assembling metal ions and organic ligands. However, all MOFs are nanoscale and micro scale powder materials, which greatly impedes their further applications. In this study, a transparent Eu-MOF@TEMPO-oxidized cellulose nanofibrils (Eu-MOF@TOCNF) photoluminescence material for specifically detecting copper ions was fabricated via in-situ synthesis in hydroalcoholic medium. Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, Fluorescence spectrometer and other equipment were applied to characterize functionalized TOCNF film samples, and the results confirmed the successful fabrication of the functionalized TOCNF film with stable fluorescence properties. The film performed a high selectivity toward copper ion in the presence of other interfering metal ions. The fluorescence intensity of the film decreased gradually with the increase of copper ion concentration, and I0/I-1 developed a good linear relationship with [Cu2+], which made the film a promising material for detecting Cu2+ in water body.
Collapse
Affiliation(s)
- Haiping Wang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University) Ministry of Education, Harbin 150040, China
| | - Yujia Pei
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University) Ministry of Education, Harbin 150040, China
| | - Xueren Qian
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University) Ministry of Education, Harbin 150040, China.
| | - Xianhui An
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University) Ministry of Education, Harbin 150040, China
| |
Collapse
|